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HOMOGENEOUS FORCING
1257

SAHARON SHELAH

ABSTRACT. Assume k = g or kK = k<" > N, usually an inaccessible.

We shall deal with iterated forcings preserving > Ord and not collapsing
cardinals along a linear order. The aim is to have homogeneous ones, so that
for some natural ideals on “2, we get a model of ZF + DC, 4+ “modulo this
ideal, every set is equivalent to a k-Borel one.”

The main application is improving the consistency result of Kellner and
Shelah [KS11], and Horowitz and Shelah [HS] on saccharinity. But presently,
the homogeneity is only forcing (Q¢,q [ Lq,t).

§ 0. INTRODUCTION

§ 0(A). Aim. Fix k = k<" (maybe R) and we consider homogeneous iteration of
(< k)-complete forcing notions, with a version of k*-cc, preserving those properties.

To get homogeneity we intend to iterate along a linear order which is quite
homogeneous (and so not well-ordered).

Ever since Solovay’s celebrated work [Sol70], we know about the connection
between the following two issues:

e, Forcing notions P with lots of automorphisms. E.g. for small P’ < P and
two relevant P-names 77,72, generic for the same relevant forcing Q over

VP,, there is an automorphism of P over P’ mapping n1 to 2.

o, Models of ZF + DC+ “every set of reals is equivalent to a Borel set modulo
the null ideal (or other reasonable ideal)”. (The relevant forcing Q was
Random Real forcing for the null ideal — and e.g. for the meagre ideal,
Cohen forcing.)

Concerning the classical case of Lebesgue measurability, another formulation is “no
non-measurable set is easily definable,” formulated® in L[R]. See the history and
more in [RS04], [RS06].
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This applies to other ideals id(Q, n) for a definable forcing notion @ (mainly a ccc
one) and a Q-name 7 of a real. Geﬁerally, it was not so easy to build such forcing
notions: it required one to prove the existence of amalgamation in the relevant
class of forcings. In Kellner-Shelah [KS11] it was suggested to look at so-called
saccharine pairs (Q,n), where Q is very non-homogeneous. (E.g. forcing with Q
adds just one (Q, y)—éeneric, so we have few cases we need to build automorphisms
for.)

Notation 0.1. 1) idp(Q,n) = id<5(Q, n) is the ideal consisting of the union of < d
Borel sets B such that I-q “n ¢ B”.

2) Let idga(@,?j) be id<3+(Q,7~7)-

)
3) a, B,7,9, e, ¢ will denote ordinals; ¢ will be a limit ordinal if not stated otherwise.
4) S} == {6 < X :cf(8) = K}

5) Recall that L, , is defined like first-order logic, but allowing A ¢; for o < A

i<a
and (3...2;...);erp with T of cardinality < o.

Comparing [KS11] to the older results:

o1 The forcing Q collapsed no cardinal, but was not ccc; this? we consider a
drawback.
e, > The model, as in those older results, does satisfy ZF + DC.
e, 35 The iteration was along a homogeneous linear order.
o4 We get only a weak version of measurability, the ideal being id<x,(Q,7)
instead of id«x,(Q, n). )
Alternatively, )

o) 4 Useidey,(n, Q)+ X, where X is the set {§[G]: G C Q" is generic over L}.

The next step was Horowitz-Shelah [HS], where:

®5 1 The forcing is ccc, which is a plus.

o595 The model only satisfies ZF; we do not get DC or even ACyx, — not so good.
e 3 Again, the iteration is along a homogeneous linear order.

e> 4 This ideal is again id<x,(n, Q) (or as in e} , above).

Here (in 4.1) we regain both ccc (as in e5 1) as well as DC (as in o ). Moreover,
we can demand DCy, (or more — see §1) which is a significant plus.

We continue [She04b], [She], but do not rely on them. Instead of defining iter-
ations we introduce them axiomatically and allow k > Ny (in the support), but it
suffices here to demand that the memory is a set, not an ideal. Unlike [She04b],
the present paper does not address forcing a > 9. Earlier continuations of [She04b],
[She] were the parallels [STa] and [STb] (and later, their descendants [ST¢], [STd] —
all in preparation). There, as in [She04b], we sometimes replace the set I (see 1.1)
by an ideal (sometimes the whole) and use more general definable forcing notions.

In our iteration we are allowed to replace Ny by some x = k<%, so the forcing
notions are (< )-complete £T-cc. But we need a forcing notion analogous to the
one in [HS]: this will hopefully be done in [S*e].

2Note that Solovay uses Levy collapse of an inaccessible, but the later versions use ccc ones.
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§ 0(B). Preliminaries.
Hypothesis 0.2. 1) xk = <" (mainly X, or an inaccessible).
2) 0 is a regular cardinal > k.

3) D a normal filter on ¥ such that S5 := {§ < kT : cf(d) = x} € D.

Definition 0.3. Let Q be a forcing notion.
1) We say Q is a strong k-forcing (or ‘(k, 1)-forcing’) when:

(A) If k = Ng, then Q is Knaster (and hence ccc).
(B) When s > Ng:
o1 Q satisfies *} ;, (which means a strong version of the x*-cc; see below
in 0.3(4) and more in [She22, 0.2(B)(2)4-1x2])-
ey Q is (< k)-complete.
o3 Any increasing sequence of length < & has a lub.?

2) Q is a weak k-forcing (or ‘(k, 2)-forcing’) when:
(A) If kK = Ry, then Q is a ccc forcing.
(B) Asin (1)(B).
3) Whenever we write ‘a k-forcing,” we mean the strong version.

4) For D anormal filter on s containing Sg"ftn), we say the forcing notion Q satisfies

1 .
*,. p when:

k = Ng and Q is ccc, or kK > Ny and

*, Given a sequence (p; : i < k) of members of P, there is a set C' € D and
a regressive function h on C such that
a,p € C Ah(a) =h(8) = ‘p, and pg have a lub.’
Notation 0.4. 1) Here s will denote a combinatorial template (that is, a member of
T — see Definition 1.1).

2) Here q,r, p will denote ATIs (abstract template iterations); i.e. members of Qpre
(the weakest version — see Definition 1.4).

3) L is a linear order (usually L C Ly) and r,s,t € L.
L is derived from L, with oco,t,t(+) € Ly for t € L. (See below in 1.1(2).)
4) Lg or Lq will be the relevant linear order for s or q, etc.

5) P,@Q, R denote forcing notions as in Definition 0.3 (which means quasi-orders).

3 It seems sufficient to just demand
o Instead of clause (2)q of [She22, 0.2(B)-1«2], we use the game of length e of [She00] (with
€ a limit ordinal < k; the natural choice is € = 9).

o), Q strategically (-complete for every ¢ < k.

5 Any increasing 0-sequence has a lub, for one 9 = cf(9).
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§ 1. THE FRAME

Definition 1.1. 0) Let T be the class of (0, x)-combinatorial templates (defined
below), assuming 9 = cf(9) > k. If @ = co we may omit it.

1) A (k,0)-CT (a (k, 0)-combinatorial template) s consists of:

(a) A linear order L (we could have used ‘partial’; it does not really matter for
our purposes).
We may write x € s instead of x € L, or x <, y instead of z <, y.
(b) A sequence (I : t € L) = (If : t € Lg) = (It[s] : t € L[s]), where
I, =I C{s€L:s<yt}C Ls has cardinality < 9.
(c) A set Sy =S} (say, of ordinals) for t € L.

2) We define t(+), L., and so forth as follows:

) Fore=teL,let L, ={s e L:s<yt}

) Fort € L and x = t(+), let L, :={s € L:s <y t}.

¢) Naturally, (t:t € L) (t(+) : t € L)"(o0) is without repetition.

) Ly =LF ={t,t(+):t € L} U{cc}

) <z, is the closure, to a linear order, of the set
{t<t(+):teL}u{s(+) <t:s<ptjU{t(+) <oo:teL}.

(f) Let Lo = Ls.

3) For L C L, we define s | L € T as follows.
o) Lo =1L
o IV =I5 N L,
4) For s € Ly, let s [ s:=5 [ Ls 5.
5) We call L C L, closed (really, ‘s-closed’) when t € L = I} C L (e.g. L < Ls).

)

)
6) We say s is closed when I7 is s-closed for every t € L.
7) Let o(s) == min{d > kT : 0 = cf(0) and s € L, = |IZ] < 9}.
)

8) We say m is an isomorphism from s1 onto s (for s1,59 € T) when
m: Lg, — L,

is an order-preserving function mapping I;7* onto I ;ZE 0 for each t € L, .

Definition 1.2. We define a two-place relation <t (obviously a partial order) on
the class of combinatorial templates by:

51 <7 59 iff

(a) Ls, C L, as linear orders.
(b) If s € Ly, then I = I22.

Claim 1.3. 1) <t is indeed a partial order on T.
2) If (se : € < 0) is <r-increasing then |J s. (naturally defined) exists, is a <p-lub,

e<d
and is unique.

Proof. Easy. Uhis
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Definition 1.4. 1) QWX is the class of weak s-ATIs (see below), and
Qu = J Q™.

s€T
(ATI stands for abstract template iterations.)

2) For s a combinatorial template, we say q is a weak s-ATI when it consists of:*

(A) s € T (We may write Lq for L, etc.)
(B) (a) A weak s-forcing notion P = Py (as in Definition 0.3(2)).
(b) For t € L, Py < Pyyy <P are weak x-forcing notions. (This includes
t = 0o, in which case P, = P.)
(c) For t € L, Q; is a Pi-name of a weak r-forcing with set of elements

S, =5S(t).
(d) (See 0.3(1)(B)es.) If k > X and ¢t € L, then there is H; : ©~(S;) — S;
such that:
o1 Irp, “if n € %7 (St) is <g,-increasing then H;(n) is a lub of
{n(i) =i < tg(m)}”.

o, If n €25, and {n(0),n(1)} has a <g,-lub then H,(n) is that lub.

(e) If p € P then p is a function with domain dom(p) € [Ls]<* and support
supp(p) € [Ls]=", with supp(p) 2 dom(p). (See more in clause (E)(c).)

(C) (a) [Notation:] If L C L, then Py, :=P [ {p: supp(p) C L}.
(b) If L is s-closed then Pp, is a weak k-forcing and Py, < P.
(c) Fort € L}, let Py :=Pp,,.
(D) 7= (n; : t € L) with n; a P;(;)-name of a member of 52 but we identify
€ 52 with {a : ni(e) = 1} such that:
t(a) = 1 < a € Gp, where Gp is a Py()-generic over V.

t
(a) n
(b) For s-closed L, 7] [ L is a generic of Pr.
(a)

p e Piff
(o) p is a function.

(8) dom(p) € [L]<~
(v) For s € dom(p), p(s) is a Ps-name of a member of Q.
More specifically, it is of the form B(..., 7, (5), - - -)J~’<jp<s)) where
o tj e
& &5 € St].
3 Jp(s) S K
e, B is a x-Borel function® from U»)2 into some
Z/{p(s) S [SS]SK.
(b) The truth value of p <p ¢ is computed in V(7 [ A], where

A = dom(q) U U {I,: s € dom(q)}.
(C) supp(p) = dOm(p) U {pr(s),j HERS dom(p), J< .]p(s)}
(d) Ns ==
{P()( -ty Ep(s)go - - Di<ino (Gl ) 1P € Gy, t € dom(p)}

exists and is well-founded, noting that p(s) € Sy is computed from
<ﬁt[gPL(s)] te IS>'

(E)

150 P = Pq, etc. We may omit s or q when it is clear from context.
5The point is absoluteness.
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(e) Forx e Ly, P, E‘p<q iff
e; dom(p) C dom(q) C L,
o> If s € dom(p) then p [ L IFp, ‘p(s) <q, q(s)"

(f) Similar to clause (e), but for P. (This actually follows by setting
x = 00.)

Definition 1.5. 1) We define Q%*, Qg, and say ‘strong ATT when we replace
“weak rk-forcing” by “strong s-forcing” in 1.4, clauses (B)(a), (C)(a).

2) We define Qpre, QY as in Definition 1.4, replacing “weak rk-forcing” by “forcing”
in clauses (B)(a), (C)(a).

3) Let Qo, Q1, Q2 be shorthand for Qpre, Qwk, and Qgy, respectively.
4) When we omit the subscripts, we mean ‘pre.” (But not in 1.8(2) below, however.)

5 If g € Qpre and L C Lg, then p = q [ L is defined by s, = s4 | L and
Pp == Pq,r.

6) We define “r is an isomorphism from q onto p” naturally.

Remark 1.6. 1) Recall that Lq is just a linear order and not necessarily a well-
ordering.

2) As a consequence, for a given q, (Qs : s € Lq) does not necessarily determine
Pg, but if s is as in [She04b, §2] then it is unique.

Observation 1.7. Let q € Qpre.
1) If L C Lq is q-closed, p € Py, and p | L <p_ q € Pq 1, then

r=(p (dom(p) \ L) Ug
is a lub of p and q.

2) For q-closed L, we have Pqy 1, = “p < q” iff

e; dom(p) C dom(q) C L
oy If s € dom(p) then for some q-closed Ly satisfying I3 C L1 C LN Lg 5, we
have q | Ly Ik, “p(s) <q, q(s)”.

3) Like (2)ey, replacing “for some” with “for every.”

4) If q is closed, then in (2)ey we can choose Ly = I3.

Proof. 1) Note
(1) 7€ Py

[Why? First, r is a well-defined function. Second, dom(r) € [Lq]<"*, and third
s € dom(r) = ‘r(s) is as required in 1.4(2)(E)(a)(v).” So by 1.4(2)(E)(a) we are
done.]

(*)2 Pq |="p <7’
We have to check 1.4(2)(E)(e). Now ey is trivial, as dom(p | L) C dom(q) C L; as

for o5, let s € dom(r) and exactly one of the following cases will occur.

Case 1: s € dom(p) \ L.
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In this case, 7(s) = p(s), so
r | Ls lFp,, “p(s) <q, r(s)”

holds trivially.

Case 2: s € dom(p) N L.
Recalling Py, = “(p | L) < ¢” and Py, <P (by 1.4(2)(C)(b)), we have
q I Is IFp,, “p(s) <q, 7(s)7,
so as r(s) = q(s) we are done.
Case 3: s € dom(gq) \ dom(p).

Also in this case, r(s) = ¢(s) is well-defined (and there is no demand on ¢(s)) so
we are done.

(#)3 Pq =g <’
As r | dom(q) = ¢, this is trivial.
(#)a IPq = “p<1"Ag<7"” then Pq =71 <7’
Easy as well.
2,3,4) Also straightforward. Oy.7
Definition 1.8. 1) Let q1 <q g2 (or q; §V(5k d2) mean:

(a) qris a weak sp-ATI for £ = 1,2 (where s, = §4,; recall that q, determines
5@).

~?1 = @?2 for t € L, .
(e) IFpy, “ni* =17 (and so Sg, (t) = Sq,(t)) for t € L, .

)

) Pg, <Pq,
)
)

2) We define <,° as above, changing clause (a) to ‘qs € Qpre’ and omitting clause
(c). (Le. we do not require Pq, <Pq,.)

We define <q, = <q [ Qo.
2A) If r <° q and p € Pg, then we define ¢ := p [ r as follows:

e; dom(q) = dom(p) N Ly
o, If s € dom(q) then ¢(s) = p(s) (recalling 1.2(b)).

)

3) If (4o : & < §) is <qg-increasing then “q:= |J q.’
a<d

will mean the following:

4) We say 4 = (qq @ @ < au) is <qg-increasing continuous if it is <q-increasing and

as = J gq for every limit § < a.
a<d
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Remark 1.9. 1) Note that in parts (3),(4) of Definition 1.8, for a given {q, : & < ),
it is not a priori clear that such q exists — and even if it does, whether it is unique.

2) Regarding 1.8(1)(c), does “Pq, <Pgq,” follow by 1.4(2)(C)(a), as Ls, is qa-closed
by Definition 1.27 This is not clear. (See 1.6(2).)

We can only show that given q2 and a qs-closed L C Ly, we have (q2 | L) <q q2.
Observation 1.10. 1) Assume q; Sge do-

(A) If p e Py, and q € Py,, then we have (a) < (b), where:
(a) ]P)q2 ': “p S q77
(b) If s € dom(p) then s € dom(q) Aq [ Lq, s IFpg, . “P(s) <q, q(s)”-
(B) If Pg, = “p # ¢” and s € dom(p) N Lq, , then
q 1 Lays IFepg, . “(s) <q, a(s)”.

(C) Assume
(a) L% < L% S] LOI2
2
) AlL}=120La)]

(¢c)pe Py,rr2 and q € Py, ros-
(d) Pg, 12 Faql Ly <pt.
If in addition, p* € Pg, 1 is <p,;above q [ Lq, 1 and p | Ly, 1, then
{p,p",q} have a common upper bound in P,z
2) Ifr e L} thens | L, € T and
q€Qs=q[L; € Qs s (See 1.1(4) and 1.4(3).)

3) Assume q1 <q q2.
Then

(a) If L C Lqg, then L is qi-closed iff L is qa-closed.
(b) If L1 C Lo, Ly is qy-closed, and Loy is qz-closed (so L, C Lq, fort=1,2)
then
® ]PQLLl < ]P)CIQ,LQ
o Ifp €Pqy, 1, fort=1,2 and p1 =pa | L1 then
Pq,.. E “p1 < ¢” = p2 and g are compatible in Pq, 1,.
Proof. 1A) First assume Pq, = “p < ¢” (i.e. clause (A)(a)). Then for every s €
dom(p), we have s € dom(q) (by 1.4(2)(E)(a) and 1.2) and
Feg, . 0 [ Ly I p(s) <q. a(s)’”
by 1.7(3). Together we get clause (A)(b).
[No clue why this is in red. Just say ‘ok’ and I'll revert it.]
Now assume clause (A)(b). So dom(p) C dom(g), and by 1.7(2) we get Pq, =
“p S q”.
1B) Similar proof.
1C) Use the proof of 1.7(1).

2),3) Easy. Dl.lO
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Claim 1.11. If (q, : @ < §) is <q-increasing continuous (Note: when k > ¢ this
does NOT mean that (Pq, : a < §) is C-increasing continuous!) and cf(§) > &,

then |J Qo exists and is unique.
a<d

Proof. Straightforward — anyhow, we shall use 2.1. 0111
Claim 1.12. [Assume k = Rg.]

1) In the definition of Qi (1.4(2)), we may omit clause (B)(D).

2) Similarly in 1.5(1), replacing ‘weak’ by ‘strong.’

Remark 1.13. See more in the proof of 2.6; in particular, proving 1.12(2) for k > V.

Proof. 1) The < direction is obvious. For ‘= let (p, : @ < k™) € “+Pq.

Without loss of generality, (dom(p,) : @ < k1) is a A-system with heart
u € [Lg]<N0. Let to <Lq -+ <Lq tn-1 list u, and let ¢,, := oo.

We choose p; € Pg .+, increasing with £ such that

pelbe,,, (3 a<wb)[pal Las, € Gr

Cl~tz} :

2) For the strong case, recall 0.3(1)(B)es. 0112
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§ 2. UNIONS

Claim 2.1. 1) If § = (qq : o < 6) is <q,, -increasing continuous (see 1.8(4)) then

ds = |J du exists and is unique, belongs to Qwk, and G (qs) is <q-increasing
a<d
continuous.

2) Similarly for <q., .

Remark 2.2. Note that this is not a repeat of 1.11, as we have dropped the assump-
tion on cf(9).

Proof. 1) Let s, = §q, and Lq = Lg, for a < 4.

Note that § = 54 := |J 84 is well defined, but when cf(4) < £ we cannot choose

a<d
Py = U Pg,. We have to choose q = g5 as follows:
a<d
(#)1 (a) 5q =55 = |J Sa, and let Ls := Ly 5.
a<d
(b) pePq iff

o1 dom(p) € [Ls]<"
o, If s € dom(p) then p [ {s} € U Pq,.-
a<d
(c) ‘p <p, ¢ is defined by 1.7(2); that is,
(Vs € dom(p)) [q | Lqs IFe,, “p(s) <. 4a(s)"],
where 8 = 3(s) ;= min{a < §: s € Ly}

Let § = (qq : a < §). Easily,
a <0 =Py, CPqy (As partial orders, of course.)
If <6 and L C Lg is ss-closed, then Pq 1, = Pq, .

L C L; is g-closed iff L N L, is qu-closed for every a < .
If L is ss-closed then Py 1 = |J Pq,.nL, (defined as above).
a<d

b

(c
(d

(x)2 (a
(

NI N

Why? Obvious, but we will elaborate.

Clause (a): Let a < 4.
First, if p € P,, then by (%)2.14(%)2.2 below we have p € Ps.
(%)2.1 dom(p) C Lg, is of cardinality < &, by 1.4(2)(E)(a)(a), (8). Lo C Lg, by
(*)1(a), so p satisfies (x)1(b)ey.
(%)2.2 If s € dom(p) then p | {s} € P, by 1.4(2)(E)(a), hence p | {s} € P;.

Second, assume p,q € P,. Then
PoEp<q" =PsE“p<q”
by (%)2(b) and 1.10(1)(B).

Clauses (b)-(d): Similarly.

(¥)3 (a) a <d=Pqy, <Pq
(b) If L C Lq is g-closed then Pq j, < Pq.
(c) (ns:s € Ls) is a generic for Ps.



Paper Sh:1257, version 2024-11-01. See https://shelah.logic.at/papers/1257/ for possible updates.

HOMOGENEOUS FORCING 1257 11

(d) If L C Ly is s-closed then (1, : s € L) is a generic for Pq, .

To prove clause (a), let p € Pq. Now by the assumptions (sq, : f < 0) is increasing.
So by the choice of sq, if s € dom(p) then there is an a, < J such that s €

L, \5U Lg. So easily, recalling (x)1(c), po :==p | (dom(p) N L) satisfies
<as

Pq. E “Pa < ¢” = p and ¢ are compatible in Pg.
(See 1.7(1). Even their union, as defined as in 1.7(1), is okay.)
So clause (a) holds. The proof of clause (b) is similar.

As for (c¢), let G5 C Ps be generic over V. By clause (a), G, = Gs NP,
is a generic subset of P, for a« < 4. Sop € Gs = p | L, € Gg, recalling
pEPs=pl Ls <p, p-

Also,
PEPA N [plLa€Ga] =peGy
a<d
because Ps is (< k)-complete, and Ps = “ A [p | Lo < ¢g]” implies Ps = “p < ¢”.

a<d

So clause (c) holds. Clause (d) is proved similarly.

Next,
(x)a If L is ss-closed then Py, , is a weak x-forcing.

Why? If kK = Ry then (Pq, rnL, @ o < J) is a <-increasing continuous sequence
of ccc forcing notions with union Pg; 1, and so this is known. Therefore assume
% > Rg and then prove that Pq, , satisfies #} ,, for D and & as in 0.3(4).

qs,L
Let (p; : i < k) € % (PL) be given. First, let u; := dom(p;), so u; € [L]<F. As

kK = K~*, there are C' and h such that:

()41 (a) C €D and a € C = cf(a) = k.
(b) h is a regressive function on C.
(c) If ¢ € rang(h), then for some v; C L we have
i#j€CAh(E) =h(j)=(=uNuy; =v.
(*)s.2 (a) Without loss of generality ¢ € rang(h) = C¢ :== h='({¢}) € D™.
(b) For s € Lg, let o(s) == min{a : s € Lq, }.
[Why? For clause (a) recall that D is a normal filter on 7]

The proof splits into cases.

Case 1: cf(0) < k.

Without loss of generality & < x, hence there is a function g : k™ — kN (5 + 1)
such that i < kT = p; € Pq,,. Without loss of generality, dom(p;) = g(i) and
g(4) is a limit ordinal (recalling k = cf(k) > Vo).

Now, using qq € Qwk for @ < d, consider (p; | Lq, : i < k). There are C,, € D
and h, (a regressive function on C,) as follows from ‘P satisfies . .’

Now, recalling x = k<% and (Vy € C)[cf(y) = k], we can find C, and h, such
that
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(¥)a3 (a) Cx € D and
C.C{jeC:i<jnsecu;=jcCysAEFkeCnjlh(j) =h(k)}.
(b) h, is a regressive function on Ci.
(c) If j € Cy and ¢ < g(j), then h,(j) codes h¢(j).
(d) If j1,j2 € C4, hi(j1) = hi(j2), and g(j1) = ¢ then g(j2) = ¢ and
h¢(j1) = he(j2)-
[Why? Easy, but we elaborate.

Let Cf == {6 < k" : § a limit ordinal, @« < § = 6 € Co}. So Cf € D, as D,
is a normal filter on s and every C,, belongs to D by our choices. As Cf and C
belong to the filter D, clearly C5 := C7 N C does as well.

As k = k<%, there is a one-to-one function from *>(k*t)U |J *(k") into kT

a<k

such that
B<ktAner™ (B+k)=cd(n) < B+ k.

[No idea what ‘cd’ is; it hasn’t been defined anywhere]

Let C5 = {6 <kt :a<dAn€?B=h(n) <d};itisa club of k¥, hence
C,:=C3nC; e D.

Lastly, define the function h, with domain C, by § — pr({h.(ps [ €) : € < g(9))).
It is easy to check that C, and h, are as desired. ]

(%)4.4 If p,q € Ps, a1 < ag < 0, ag C dom(p) Ndom(q) (for transparency), and
for £=1,2, {p | au,q | ¢} has a <p_ -lub r(, then ry and ro | a; are not
equivalent.

(That is, v < a1 = r1(7) <g, 72(7) <0, 12(7)-)
[ra(v) <q, m2(7) is true, but uninteresting. I don’t see any-
thing else this could have been referring to, and can probably be

deleted.]
[Why? Easy.]
(%)a5 If 4,7 € C, with g, (i) = g«(j), then
(Va < 0)[pi | a,p; | 0 has a <p_-lub],
hence p;, p; have a <p;-lub.
[Why? Easy.]
Together we are done. That is, C, and h, are as required.
Case 2: cf(6) > k™.
For some o < §, {p; : i < KT} C Pg, so the conclusion is obvious.
Case 3: cf(6) = k™.
Without loss of generality § = x™; hence

(¥)a.5 In clause ()41, without loss of generality, for each ¢ € rang(h) and i € C
satisfying h(i) = ¢, we have
o v C Ly, andi<jeC = p; €Pgy,.

e C, and h, are as in (*)4.3.
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”

Now easily 7,7 € Ci Ah, (i) = h,(j) = “p; and p; are comparable.
So clearly we have proved ().

(*)5 qc ka
[Why? We have to check all clauses of Definition 1.4; this is straightforward by
(#)1=(%)4.]

(¥)6 da <q qs for a < é.

[Why? We should check Definition 1.8(1). Clause (a) holds by (x)s. Clause (b)
holds by (x)1(a) (recalling p <q q = sp <T sq and 1.3(2)). Clause (c) is covered
by (%)3(a), and clauses (d) and (e) are obvious.]

(*)7 qs = U qu
a<d

[Why? We should check Definition 1.8(3):

Clause (a): (q € Q)
Holds by (%)s.

Clause (b): (sq; = U 5q..)
a<d

Holds by (*)1(a), recalling o <q dg = So <7 53 and Claim 1.3(2).

Clause (c): (gqo <q Q)
Holds by (*)g.]

2) Similarly, as the Knaster condition is preserved by the union of <-increasing
continuous chains.

So we are done proving 2.1. Oa1

Claim 2.3. 1) We have (A) implies (B),” where:
(4)(@) reQu
(b)  Q is a Py-name of a strong k-forcing.
(b)* Moreover, it is a Pyr,-name, where Ly C L < L, is r-closed.
(B) There are q € Qs and t,. € Ly \ Ly such that
(a) r<qq
(b) Lq=L+{t:}+ (L \ L) as linear orders.

(¢) Qqi. =Q and I = Ly.

2) Identical to part (1), but replacing ‘strong’ by ‘weak’ everywhere (so of interest
only when k = Vo) and adding to the antecedent:

(A)(c) Lo is q-closed and Py 1, <L, , Pr, where 0 = (27)T. (See 0.1(5).)

3) In part (2) we can weaken (A)(c) to

(A)(c)" If K =Rg then IFp, , “MA,”.

Proof. Easy, recalling 1.12. Las
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Claim 2.4. 1) For every r € Qg and® 9 = cf(9) > o(r) (see 1.1(7)) satisfying
(Va < 9)[|af*” < 9], there is a q € Qg such that:
(A)y (a) r<q.q
(6) Pqll = [P
(B)} (a) q satisfies cf(Lq) > 0.
(b) Ift € Ly then cf(Lqg,) > 0.
(©)

¢) If L < Lq is of cofinality > 0, Lo C L is q-closed, Q is a Pq,r,-name
of a weak k-forcing of cardinality < 0, and
[As I said, the clause that Lo C L is q-closed had already been
added. It needs to be mentioned before you start talking about
Pq,1,-names.]

K= No = Pr,Lo —<]Lo,o' Pr

(where o = (25)T ) then
e For some s € L, Q is a Pq s-name and

IFp, . “Qq,s and Q are isomorphic”.

2) Similar to part (1), but r,q € Quxk, (Voo < 9)[|al® < 8], and

(4)3 (a) r<qa
(b) As above
(B)2 (a) As above
(b) As above
(¢) Like (B)§(c), but replacing ‘weak k-forcing’ by ‘strong k-forcing’ and

omutting Pr 1, <L,., Pr.

3) Like part (1), but replacing
“kh =Ng = Prr, <L,., P~
by IFe, ., “MAy, "
(We shall call the resulting clauses (A)%° and (B)%®.)

Proof. 1) We shall prove more. Let Q. be the class of q € Qg satisfying (A4)}.
Consider the statement

H If p € Q. then there exists q € Q. such that:
(a) P<q.qd
(b) There is t € Lq such that s € L, = s < t.

(c) Ift € Ly, Lo € Lis g-closed, and Q is a Pg 1,,-name of a weak r-forcing
of cardinality < 0, then e; or e; holds where
o; For some s € Lq; we have

13 : b
IFp,, @q,s and @ are not isomorphic”.
o IFp, “@ is not ccc”.

6 If we omit “@ = cf(8) > o(r),” then in 2.3 we need to expand by S, C Sq.s of cardinality
< 0 for s € L, and make further changes.
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We shall prove that B is both true and sufficient, together proving part (1).

Why H is true:
Let
Y={(tL, Q) :t € LU{oo}, L a p-closed subset of Ly, ; of cardinality

< 0, and Q a Pq r-name of a forcing notion with set

of elements an ordinal < 8}.

Easily, |V| < [|[Pp||<?, hence we can find a sequence ((tq, Lo, Qq) : o < |V]) listing

Now we choose p,, by induction on « < |Y| such that

@y (a) Pa € Q*

(b) po

(c) <pg [3 < a) is <q-increasing continuous.
)

(d) If & = B+ 1, then one of the following hold:
o1 lFp,, “@5 is not ccc” and p, = pg.

e, For some sg, Lp, \ Lp, = {sg}, Lpsts < sp <r,. tp, and
Qposy = Q-

Why can we carry the induction? The base case is covered by clause (b), and for
« a limit ordinal we use Definition 2.1. For a < |))| successor let v = 3 + 1.

So B does indeed hold.

Why H is sufficient:

We choose g, by induction on a < @ such that

@% (a) da € Q.
(b) o =p
c : B8 < «) is <@-increasing continuous.
as Q g
(d) If o = B+ 1 then H is satisfied, with (gg, q.) standing in for (p, q).
We can carry the induction, using H for « a successor. Now,
@3 qg is as required.

Why? We shall check 2.4(1)(A),(B).
Clauses (A)(a),(b): This means gy € Q., which holds by &32.

Clause (B)(a): This says cf(Lq) > 0.

It holds because (Lq, : o < 0) is increasing continuous and L, is bounded in
L, by B(b) and @2 (d).

Clause (B)(b):
Similarly, using H(c) we can find Ly C Lg, ; as required, because
K =Rg = (Va < 9)[|al™ < 9],

because necessarily Lo C Lq, for some 8 < 9, and by our choice of qg1.

Clause (B)(b): Similarly to (B)(b).
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So we are done proving part (1).

2) Repeat the proof of part (1) using Qo.

3) Straightforward. 0o 4
Definition 2.5. We say q is strongly (< 0)-homogeneous when

o If L, C Lq is g-closed for £ = 1,2 and 7; is an isomorphism from L; onto
Ly mapping q [ Ly to q | Lo, then there is an automorphism my of Lg
extending m; and mapping q to itself. Hence it induces an automorphism

7ty of Pq (e.g. mapping 7y t0 7z, (1))-
Claim 2.6. 1) If q € Qg for ¢ € {1,2} and L C Lq is q-closed, then Pq/Pq 1 is a
(K, £)-forcing. (See 0.3.)
2) (Qst, <q.,) satisfies amalgamation.

3) For k = Ry, Qi satisfies a weak version of amalgamation:”

(*) Ifdo € Q1, a0 <q ¢ for £ =1,2, Lg, N Lg, = Lq,, and lFp, “MAy,” then
there is a q3 € Q1 such that q¢ < q3 for £ =0,1,2.

7

4) In (3)(x) above, we may replace IFp, “MAy,” with the demand “qo <L, , d1,
where o = (280)*,

Proof. 1) Case 1: k > Xy (so the choice of ¢ is immaterial).

Proving “Pq/Pq,1 is (< k)-complete” is easy, when k > Ry. So it suffices to do
the following;:

B (a) Assume plFp, , “¢a € Pq/Gp, , for a <x*7.
(b) Now find p.. € Pq r above p, and Pq r-names C, h as required in
*R,D~

Now

(x)1 For each aw < kT, we can choose (pa.,,qa, : ¢ < t(a) < k) such that
a) For ¢ < (@), pa., € Pq.L is above p,, and
. qa,

* 9

pa7L H‘[p»q,L “ga = qa,L .
(b) Without loss of generality, Qq.r. = “(¢3,, [ L) < pa,.’ for ¢ < i(a).
(c) Therefore, ro, = pa,. U(q;, [ (Lq\ L)) is a <p,-lub of p, and g,.

(d) (Pa,. :t < k) is a maximal antichain of Pq r.
Next,

()2 There are C, h, and @ such that
(a) CeD
(b) h is a pressing-down function on C'
(c) @ = {uc : ¢ € rang(h))
() Tt ¢ € rang(h) then
o; The set S := h™'({¢}) belongs to DT, and (o) = j(¢) for
[eBS S(.
o, (dom(ry) : @ € S¢) is a A-system with heart u..

"For > Ng this is not interesting, and is already covered by 2.10(1).
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Next,

(¥)3 For each ¢ € rang(h), v < j(¢), and t € u, recalling IFp_ ; “Q; satisfies
x.. p", there are Py ;-names C'¢ ¢, and h¢,; witnessing *,. p.

Let (e.g.) € := w. We repeat the process ¢ times, and then we use Hq; from
1.4(2)(B)(d) and ‘k<* = k,” and we get
(¥)4 There are C,, h,,u*, and § = (8¢ : ¢ € rang(hy)) as in ()2, but for
(ri. ra€ St 1< j(C) < k) such that (repeating ourselves a bit)
(a) rh, €EPq,and v [ LiFp, , “go <77, in Py/Pq.r”.
(b) For a € S¢, the sequence (r},, : ¢ < j(¢)) is a maximal antichain of Py
above p,.

(c) If ¢ € rang(hy), t € uf, and a1, g € SE, then
Py, “T, (1), 75, (t) have a lub in Qg ;.

(o5 %]

The rest of the proof of part (1) for K > Ry should be clear.

Case 2: Kk =Ng and ¢ = 1.
Well known.

Case 3: Kk = Ng and £ = 2.
Like Case 1, but simpler.

2) So assume

() for £=0,1,2,
(a) ae € Q2
(b) q0 <@, ar
(¢) Lq, N Ly, = Lq, for transparency.

(¥)1 Let L be a linear order with set of elements Lq, U Lg,, and Lgq, C L as
linear orders.

(¥)2 We define s € T such that L, = L and I, = Is, ¢ for t € Lg,.
(¥)3 We define q € Q2 above q; (for ¢ < 2) naturally.

We have to prove that q € Qs; being (< k)-complete (with k > Rg) is easy, satis-
fying . p is a consequence of 2.6(1), and being closed under finite products and
composition.

3) Like part (1), but easier.
4) The point here is proving the implication ‘(A) = (B),” where
(A) (a) Py <P, (for £ =1,2) are ccc forcing notions.
(b) Py <1, P1
(B) P:=Py *p, Py is ccc.
Why does this hold?

Assume (pa,1,Pa,2) € P1*p, Po for o < wq, and let (ga,i : @ < to < w) be a
maximal antichain of Py such that each g, ; forces a truth value to ‘po1 € P1/ Gp,’
and to ‘pa2 € Pa/ Gp,.” Similarly, for o, 8 < wi, let (gap,: : % < t(, B) < w) be a
maximal antichain of Py such that each ¢, s, forces a truth value to “p,,; and gg;
are compatible in Py/ Gp, for £ =1,2.7
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Now, finding a sequence (py, ; : @ < wi) € “1 Py similar enough to (pa,1 : @ < wy)
over

{qmb Ta<wy, 1< L(a)} U {qa@i B <wy, 1< L(a,ﬁ)}
will contradict “P, satisfies the cce.” Cog

Claim 2.7. 1) Assume p € Qa, L, is a p-closed subset of Ly, (for £ =1,2), and
m: Ly — Lo is an isomorphism which induces an isomorphism 7t : Py 1, — Pp 1.

Then we can find q, 71, Lf, L;‘ such that

(a‘) p SQZ q

(b) Fort=1,2, L, C LZ C Ly, sz is q-closed, and Ly, C Li’,

(¢) m 2 7 is an isomorphism from Lf onto L;r which induces an isomorphism
ﬁ'l : PPaLT — Pp,L;'

2) ‘If (A) then (B),” where

A) (a) Q= {(qu:a <d,) is <qg-increasing continuous.
( q=(q Q 9
(0) (e = afe) : € < () is an increasing continuous sequence of ordinals
with limit d,.
Lé(e) and Li(e) are qq(c)-closed subsets of Ly

e Lt

a(e)

)

) — Li(e) s order-preserving and onto.
e) m. is an isomorphism from qq(c) [Li(s) 0nto qa(e) [LZ(E).

)

)

(f L}x(s)’ Li(s)vﬂs are increasing continuously with €.
(9) For £ =1,2, if Lq, ., € Liy 4 then La, ., © Ll o
(B) m:= | 7. is an automorphism of qs, .
e<(¢

Proof. 1) By 2.6(2).
2) Easy. U7
Definition 2.8. 1) For « = 1,2, we say q is (0,)-saturated when it satisfies
2.4(0)(B)s.
2) We say G = (Qq : @ < a) is (9, t)-saturated when:

(a) qis <q,-increasing continuous, recalling 1.5(3) and 1.8(2).

(b) qq is (9, ¢)-saturated for oo < v, non-limit.

Remark 2.9. Recall 1.5(3), so e.g. we denote Qg and Qi by Q1, Q2, respectively.
We may replace them by other classes.

Claim 2.10. 1) If A\ = A<? and 0 = cf(9) > & (recalling Qy, = Q' 5) then there
is a q € Q3 5 such that

(a) Lq and Py have cardinality \.
(b) q is strongly homogeneous.
(¢) q is (0,1)-saturated.

2) We can combine part (1) with 2.6(3); that is, if 0 = cf(0) > k = Ry and A = A<?,
then there exists a q € Q‘g% such that

(a) Lq has cardinality .
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(b) q is strongly homogeneous, when we restrict ourselves to an L C Lq such
that H_Pq,L “MANI”.

(c) q is (0, 3)-saturated.
3) Similarly for the <y, -version.

Proof. 1) By 2.7.

2,3) Easy as well. U210
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& 3. MORE ON THE ITERATION

Definition 3.1. 1) For ¢« <5, we say Q is a (k, ¢)-forcing when

(A) (a) If t =0 it is a forcing,.
(b) If « =1 it is a weak k-forcing.
(c) If « = 2 then it is a strong s-forcing.

(B) If = 3 then Q = (Q, <, tr) = (Q, <g, trg) satisfies the following.
(a) It is a strong k-forcing. (Of course, clauses (b),(c) restrict it even
further.)
(b) trg is a function Q — H(k).
(c) For each = € H(k), for some O(z) = Og(x) € [2,k], any < 1 + O(z)
members of {p € Q : tr(p) = z} have a common upper bound.

(C) If ¢ = 4 then as in (B), but we add
(d) If o < k then {p € Q: I(tr(p)) > o} is dense.

(D) If « = 5 then as in (B), but 9(x) = k for every z € Q.
2) For + < 5, let Q, be the class of q such that®

(A) q€ Qe
(B) If t € Lq then IFp,, “Q; is an t-forcing”, and if L C Lq is g-closed then
Pq. is a (k,¢)-forcing.
(C) If t = 3,4,5 then
o, If p € Py and s € dom(p), then trg,(p(s)) is an object, not just a
name.

o If L C L is g-closed then Py 1, is a (k, 2)-forcing.
(D) If « = 4 then in addition to e; and e,
o3 If 0 <k and L C Lq is g-closed then

{p € Pq: (Vs € dom(p))[dq. (p(s)) > 9] }

is dense in Pq y..

3) For v <5, let Qj ,, be the class of q € Q, such that ¢t € Lq = |Iq,¢| < r and q is
strongly (< d)-homogeneous.

Claim 3.2. For . = 3,4,5, we can repeat the work done for 1 =2 (i.e. Qa) in §1-2.

Proof. Repeating previous proofs, using Definition 3.1. Oz

Definition 3.3. If clause (A) holds, then we define P; as in clause (B), where:

q € Q; and Kk = N.

5€ *(Lg) and u; C a for i < .
LykE“si<s’fori<j<a.
wi={j<i:sj€lqys}

8We may just demand that for g-closed L, we have that
{p € Pq,1, : s € dom(p) = trg, (p(s)) is an object}

is dense. In this case, if K > X then this follows.
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(e) Qgqs, is definable from 7; = (1, : j € u;) (say we have a definition
@; 5 for any 7 € X; == ] S22, where S. = Sq.s.)-
e€cu;
(B) P5:=Pq | L, where
L:={pePq:dom(p) C{s;:i<a}, andif s; € dom(p)
then supp(p(s;)) € {s; : j € ui}}.

Claim 3.4. 1) For k = Ry and q,n,5, X; (for i < «) as in 3.3(A)(e), we have
Py,s <Pq when

B, Ifi < a then the demand on Qg, 5 holds absolutely (i.e. even after forcing
by any k-forcing).
By Assuming G C Pq is generic over V and ) = (n;[G] : t € Lq), we have:

if V[(ns, 1 j € ug)] | “T is a mavimal antichain of Q[(ns; : j € u;)]” then
V(i | Lqs;] E “T is a mazimal antichain of Q[fj | Lq,s,]” fori < a.

2) Q2 from [HS, Defs. 2,4,5] satisfies the criteria above. Moreover, so does any
Suslin ccc forcing.

3) Similarly to parts (1),(2) for 5 = (sq : @ < ay), where s € Lq is <q-increasing.
Proof. 1,2) By (3).

3) Straightforward by induction on a. O34
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§ 4. A CONSEQUENCE

We prove the result promised in the introduction, continuing Kellner-Shelah
[KS11] and Horowitz-Shelah [HS].

Theorem 4.1. Let k = Ry, 0 = (28" (or just & = 0% = cf(9), 9 > 2% for
simplicity), and X = \<9.

Let n € N be special, in the sense of [HS, Definitions 2,4] (and so Ty, is a finite-
branching subtree of “”w as defined there). Let (Qa,nn) be as in [HS, Definition
5], except that we restrict ourselves to the (dense) subset of p € Q2 such that for
some m < Lg(trp(ay),

1
v € p(a) = nor(suc,, (v)) > 1+ —
m

(as done in the proof of [HS, Claim 21]).
Then there is a q € Qi,a such that:
(a) Lq has cardinality X, cf(Lq) = cf(N), andt € Lq = |Iq:] < A.

(b) For everyt € Lq, Qq: = QA[VT], s0 ne € im Ty is 0} (recalling [HS] —

that is, 3.4(2)).
(c) q is strongly (< d)-homogeneous (see 2.5).
(d) Letting Vo =V, Vo = VFa_ and Vi = HOD ({7 | w: u € [Lq]<?}):

(a) Vi |= ZF + DC.p

(8) In Vi, modulo the ideal

J = Jn<o = id<s(Qa,m2),
we have:
o) lim(Ty,) = {ﬁt :t € Lg} mod J

ey Fuvery subset of im(Ty,) is equivalent to a Borel set modulo J.

Remark 4.2. 1) The difference with the results in [HS] is that there we do not have
“V; satisfies ACy,” (to say nothing of DC), whereas here we have DC (even DC.y,
with 9 > Nl).g

2) In id<p(QZ, n3), is the ‘< @ necessary? ([HS, Definition 18] uses id<y, , in our
notation.) That is, can we use id<x,(Q3,73)?

For this we have to use “amoeba for Qn,” hence we have to prove stronger
amalgamation (which is far from clear). But see 4.5 below.
Proof. Let Qy, be the set of q € Q which satisfy 4.1(b). Now we can replace Q by
Qn in 2.6, and we rely on 4.3, 4.4, and 4.5 below. O
Claim 4.3. For q as in 4.1,

IFp, “if n € im(Ty) is (@i,g%)-genem’c over V then n € {ns : s € Lq}".

Proof. We continue [HS, p.15, Claim 21] (but there it sufficed to consider iterations
of finite length).

So assume

($)1 ps IFp, “n € im(Th)”.

9As wrongly stated in [JS93], for the ideal of meagre sets.
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()2 For n < w, let Py, := (pne¢ : £ < w) be a maximal antichain of Pq such that
Pn,e I+ 7] f N ="UVne.

Let L, :== |J supp(pn,) Usupp(ps); it is a countable subset of L.
nl<w

(¥)3 (a) For n € Ty, define:
Wy = {w C sucr, (1) : norp(w) > 2}.
(b) For n < w define A, :=={n € Ty : lg(n) <n},s0 Ty = |J Ap.

n<w
(c) Define
o, Sp={w0=(w,:ne€N,):w, €Wy} forn<w.
(D) S = U Sn

n<w

o3 (5,<) is a tree with w levels such that each level is finite.
o, Iim(S) ={w=(w,:n€Tn): @A, €S, for every n}.
(d) For w € lim(S) let
By = {p € lim(T},) : for every n large enough, p [ (n+1) € wyn }-

(¥)4a So Bz = |J Bgm, where

m<w
Bam = {p€lim(Tn): (Vn>m)[p | (n+1) € wy,]}
is a closed subset of lim(7},).
As proved there,
()5 For v =1,2, kg, “nk € Bg” for every @ € lim(5)V”.
Hence as in [HS],

B By (x)1, it suffices to prove p, I/, “n € By for some @ € lim(S)V".

Toward contradiction, assume
Ik, “n is generic for (Q3,n5) over V7,

or we just choose (pgz : @ € lim(S)) such that p. < pz and pz - n € Bg. Note that
for 7 € dom(pg), tr(pw(r)) is an object (not just a Pq -name) because q € Q3 ..
We continue as there. Uas

Claim 4.4. 1) Forcing with Q% adds a Cohen real.

2) If Q adds a Cohen real then I-q “(lim )V € id<y, (Q3,72)".

Proof. See [HS, Claim 19]. Oiq

Claim 4.5. In the conclusion of Claim 4.1, we can replace id<a(Qi,7~7i) by the
ideal J' = id<y,(QZ,n3) + Y, where in Vy we define

Y = U {BV1 : B is a Borel subset of Ty defined in Vo such that I-gz “17?1 ¢ B}

Proof. The same proof as in 4.1; that is, in clause (d)(8) we use the ideal J’ above
instead of J, <o. Oas
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Definition 4.6. 1) Let @, be the set of pairs (@, v) such that

(a) @ is a definition of a x*-cc forcing notion Q; = Qp; in H(x") from a
parameter i € "H(k).

(b) IFq,, “v € "H(x)"; naturally the generic, but this is not necessary.

(¢) Moreover, any k-forcing preserves the properties of (a) and (b), and

“p€ Qpir P <Qu. @ (Pe:€ <ex)isaQp-MAC”
will be absolutely between VP and VP2, where P, := Pq., 91 <q 92, and
c; € V[qu].
- 1s a maximal antichain of the the forcing notion Q.
A Q-MAC i imal ichain of the the forci ion Q

2) For (g,v) € ®,, and 9 > &, we define the ideal id(@,v) on P(*H(k)) as usual.
Claim 4.7. Assume A\ = A<9 and 0 = cf(0) > 2%. Then there is q such that

(A) 9 € Qx,0, Lq has cardinality X, and cf(Lq) = cf(N).
(B) For everyt € Ly there are (g,,v) € @ and ¢, (a Pq 1,-name of a member
of "H(k)) such that Qqs = (@@,gt)v["], and let vy be chosen naturally.
(C) For every ¢ (a Pq-name of a member of "H(k)), letting
X:={teLq: (Bpct)=(7,0)} andY :={vy:t € X}, we have
(a) e, ¥ ¢ id<o(Qy,.v)
[Don’t recall coloring in this subscript, but it’s probably be-
cause t isn’t defined in clause (C), and only appears as a
bound wvariable in the definitions of X and Y. If you meant
this as a continuation of ‘for allt € Ly,” I can just repeat
that phrase again and change the indices to something else.]

(b) Letting Vo =V, Vo = VFa_ and
Vi =HODY*({ [ L: L € [L,)<?},{Y},V)

then Vi is a model of ZF + DC.g + “every Z CY C "H(k) is equal
to a k-Borel set modulo the ideal generated by
id<o(Qpev) U {"H(m) \ Y} U {"H(s) VI 1t € Lo},

(¢) If (Qg,c,v) does not commute with itself (see below) then we can use
the ideal id<5(Qgp ¢, v) U {"H(r) \ Y'}.

(d) If we restrict the parameter ¢; to be from V, we can use Vi for all
(@,0).

Remark 4.8. In 4.7(C)(c) the assumption is very weak. It fails for Cohen reals and
Random reals. By [She94], [SheO4a], among ccc Suslin forcings Q (see [JS88]) if Q
is not bounding then only Cohen forcings do not commute with themselves.

Probably among the bounding ones, ‘Random real’ is the only one.

Proof. Straightforward. g7
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