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Abstract. Assume κ = ℵ0 or κ = κ<κ > ℵ0, usually an inaccessible.
We shall deal with iterated forcings preserving κ>Ord and not collapsing

cardinals along a linear order. The aim is to have homogeneous ones, so that

for some natural ideals on κ2, we get a model of ZF + DCκ + “modulo this
ideal, every set is equivalent to a κ-Borel one.”

The main application is improving the consistency result of Kellner and

Shelah [KS11], and Horowitz and Shelah [HS] on saccharinity. But presently,
the homogeneity is only forcing (Qt,q � Lq,t).

§ 0. Introduction

§ 0(A). Aim. Fix κ = κ<κ (maybe ℵ0) and we consider homogeneous iteration of
(<κ)-complete forcing notions, with a version of κ+-cc, preserving those properties.

To get homogeneity we intend to iterate along a linear order which is quite
homogeneous (and so not well-ordered).

Ever since Solovay’s celebrated work [Sol70], we know about the connection
between the following two issues:

•1 Forcing notions P with lots of automorphisms. E.g. for small P′ l P and
two relevant P-names η

˜
1, η

˜
2, generic for the same relevant forcing Q over

VP′ , there is an automorphism of P over P′ mapping η
˜

1 to η
˜

2.

•2 Models of ZF+DC+ “every set of reals is equivalent to a Borel set modulo
the null ideal (or other reasonable ideal)”. (The relevant forcing Q was
Random Real forcing for the null ideal — and e.g. for the meagre ideal,
Cohen forcing.)

Concerning the classical case of Lebesgue measurability, another formulation is “no
non-measurable set is easily definable,” formulated1 in L[R]. See the history and
more in [RS04], [RS06].
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2 SHELAH

This applies to other ideals id(Q, η
˜

) for a definable forcing notion Q (mainly a ccc
one) and a Q-name η

˜
of a real. Generally, it was not so easy to build such forcing

notions: it required one to prove the existence of amalgamation in the relevant
class of forcings. In Kellner-Shelah [KS11] it was suggested to look at so-called
saccharine pairs (Q, η

˜
), where Q is very non-homogeneous. (E.g. forcing with Q

adds just one (Q, η
˜

)-generic, so we have few cases we need to build automorphisms
for.)

Notation 0.1. 1) id∂(Q, η
˜

) = id<∂(Q, η
˜

) is the ideal consisting of the union of < ∂
Borel sets B such that Q “η

˜
/∈ B”.

2) Let id≤∂(Q, η
˜

) be id<∂+(Q, η
˜

).

3) α, β, γ, δ, ε, ζ will denote ordinals; δ will be a limit ordinal if not stated otherwise.

4) Sλκ
..= {δ < λ : cf(δ) = κ}

5) Recall that Lσ,σ is defined like first-order logic, but allowing
∧
i<α

ϕi for α < λ

and (∃ . . . xi . . .)i∈Iϕ with I of cardinality < σ.

Comparing [KS11] to the older results:

•1.1 The forcing Q collapsed no cardinal, but was not ccc; this2 we consider a
drawback.

•1.2 The model, as in those older results, does satisfy ZF + DC.
•1.3 The iteration was along a homogeneous linear order.

•1.4 We get only a weak version of measurability, the ideal being id≤ℵ1(Q, η
˜

)
instead of id<ℵ1(Q, η

˜
).

Alternatively,

•′1.4 Use id<ℵ1(η
˜
,Q)+X, where X is the set {η

˜
[G] : G ⊆ QL is generic over L}.

The next step was Horowitz-Shelah [HS], where:

•2.1 The forcing is ccc, which is a plus.

•2.2 The model only satisfies ZF; we do not get DC or even ACℵ0 — not so good.
•2.3 Again, the iteration is along a homogeneous linear order.

•2.4 This ideal is again id≤ℵ1(η
˜
,Q) (or as in •′1.4 above).

Here (in 4.1) we regain both ccc (as in •2.1) as well as DC (as in •1.2). Moreover,
we can demand DCℵ1 (or more — see §1) which is a significant plus.

We continue [She04b], [She], but do not rely on them. Instead of defining iter-
ations we introduce them axiomatically and allow κ > ℵ0 (in the support), but it
suffices here to demand that the memory is a set, not an ideal. Unlike [She04b],
the present paper does not address forcing a > d. Earlier continuations of [She04b],
[She] were the parallels [S+a] and [S+b] (and later, their descendants [S+c], [S+d] —
all in preparation). There, as in [She04b], we sometimes replace the set Iss (see 1.1)
by an ideal (sometimes the whole) and use more general definable forcing notions.

In our iteration we are allowed to replace ℵ0 by some κ = κ<κ, so the forcing
notions are (<κ)-complete κ+-cc. But we need a forcing notion analogous to the
one in [HS]: this will hopefully be done in [S+e].

2Note that Solovay uses Levy collapse of an inaccessible, but the later versions use ccc ones.
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HOMOGENEOUS FORCING 1257 3

§ 0(B). Preliminaries.

Hypothesis 0.2. 1) κ = κ<κ (mainly ℵ0 or an inaccessible).

2) ∂ is a regular cardinal > κ.

3) D a normal filter on κ+ such that Sκ
+

κ
..= {δ < κ+ : cf(δ) = κ} ∈ D.

Definition 0.3. Let Q be a forcing notion.

1) We say Q is a strong κ-forcing (or ‘(κ, 1)-forcing’) when:

(A) If κ = ℵ0, then Q is Knaster (and hence ccc).

(B) When κ > ℵ0:
•1 Q satisfies ∗1κ,D (which means a strong version of the κ+-cc; see below

in 0.3(4) and more in [She22, 0.2(B)(2)a=Lx2]).

•2 Q is (<κ)-complete.

•3 Any increasing sequence of length < κ has a lub.3

2) Q is a weak κ-forcing (or ‘(κ, 2)-forcing’) when:

(A) If κ = ℵ0, then Q is a ccc forcing.

(B) As in (1)(B).

3) Whenever we write ‘a κ-forcing,’ we mean the strong version.

4) For D a normal filter on κ+ containing Sκ
+

cf(κ), we say the forcing notion Q satisfies

∗1κ,D when:

κ = ℵ0 and Q is ccc, or κ > ℵ0 and

∗a Given a sequence 〈pi : i < κ+〉 of members of P, there is a set C ∈ D and
a regressive function h on C such that

α, β ∈ C ∧ h(α) = h(β)⇒ ‘pα and pβ have a lub.’

Notation 0.4. 1) Here s will denote a combinatorial template (that is, a member of
T — see Definition 1.1).

2) Here q, r,p will denote ATIs (abstract template iterations); i.e. members of Qpre

(the weakest version — see Definition 1.4).

3) L is a linear order (usually L ⊆ Ls) and r, s, t ∈ L.

L+ is derived from L, with ∞, t, t(+) ∈ L+ for t ∈ L. (See below in 1.1(2).)

4) Ls or Lq will be the relevant linear order for s or q, etc.

5) P,Q,R denote forcing notions as in Definition 0.3 (which means quasi-orders).

3 It seems sufficient to just demand

•′1 Instead of clause (2)a of [She22, 0.2(B)=Lx2], we use the game of length ε of [She00] (with
ε a limit ordinal < κ; the natural choice is ε = ∂).

•′2 Q strategically ζ-complete for every ζ < κ.

•′3 Any increasing ∂-sequence has a lub, for one ∂ = cf(∂).
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4 SHELAH

§ 1. The frame

Definition 1.1. 0) Let T be the class of (∂, κ)-combinatorial templates (defined
below), assuming ∂ = cf(∂) > κ. If ∂ =∞ we may omit it.

1) A (κ, ∂)-CT (a (κ, ∂)-combinatorial template) s consists of:

(a) A linear order L (we could have used ‘partial’; it does not really matter for
our purposes).

We may write x ∈ s instead of x ∈ L, or x <s y instead of x <L y.

(b) A sequence 〈It : t ∈ L〉 = 〈Ist : t ∈ Ls〉 = 〈It[s] : t ∈ L[s]〉, where
It = Ist ⊆ {s ∈ L : s <L t} ⊆ Ls has cardinality < ∂.

(c) A set St = Ss
t (say, of ordinals) for t ∈ L.

2) We define t(+), Lx, and so forth as follows:

(a) For x = t ∈ L, let Lx = {s ∈ L : s <L t}.
(b) For t ∈ L and x = t(+), let Lx ..= {s ∈ L : s ≤L t}.
(c) Naturally, 〈t : t ∈ L〉ˆ〈t(+) : t ∈ L〉ˆ〈∞〉 is without repetition.

(d) L+ = L+
s

..= {t, t(+) : t ∈ L} ∪ {∞}
(e) <L+

is the closure, to a linear order, of the set{
t < t(+) : t ∈ L

}
∪
{
s(+) < t : s <L t

}
∪
{
t(+) <∞ : t ∈ L

}
.

(f) Let Ls,∞ ..= Ls.

3) For L ⊆ Ls, we define s � L ∈ T as follows.

•1 Ls�L
..= L

•2 Is�Lt
..= Ist ∩ Ls.

4) For s ∈ Ls, let s � s ..= s � Ls,s.

5) We call L ⊆ Ls closed (really, ‘s-closed’) when t ∈ L⇒ Ist ⊆ L (e.g. LE Ls).

6) We say s is closed when Ist is s-closed for every t ∈ Ls.

7) Let σ(s) ..= min
{
∂ > κ+ : ∂ = cf(∂) and s ∈ Ls ⇒ |Iss | < ∂

}
.

8) We say π is an isomorphism from s1 onto s2 (for s1, s2 ∈ T) when

π : Ls1 → Ls2

is an order-preserving function mapping Is1t onto Is2π(t) for each t ∈ Ls1 .

Definition 1.2. We define a two-place relation ≤T (obviously a partial order) on
the class of combinatorial templates by:

s1 ≤T s2 iff

(a) Ls1 ⊆ Ls2 as linear orders.

(b) If s ∈ Ls1 then Is1s = Is2s .

Claim 1.3. 1) ≤T is indeed a partial order on T.

2) If 〈sε : ε < δ〉 is ≤T-increasing then
⋃
ε<δ

sε (naturally defined) exists, is a ≤T-lub,

and is unique.

Proof. Easy. �1.3
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HOMOGENEOUS FORCING 1257 5

Definition 1.4. 1) Qwk
s is the class of weak s-ATIs (see below), and

Qwk
..=
⋃
s∈T

Qwk
s .

(ATI stands for abstract template iterations.)

2) For s a combinatorial template, we say q is a weak s-ATI when it consists of:4

(A) s ∈ T (We may write Lq for Ls, etc.)

(B) (a) A weak κ-forcing notion P = Pq (as in Definition 0.3(2)).

(b) For t ∈ L, Pt l Pt(+) l P are weak κ-forcing notions. (This includes
t =∞, in which case Pt = P.)

(c) For t ∈ L, Q˜ t is a Pt-name of a weak κ-forcing with set of elements
St = S(t).

(d) (See 0.3(1)(B)•3.) If κ > ℵ0 and t ∈ L, then there is Ht : κ>(St)→ St
such that:
•1 Pt “if η ∈ κ>(St) is ≤Q˜ t-increasing then Ht(η) is a lub of{

η(i) : i < g̀(η)
}

”.

•2 If η ∈ 2St and {η(0), η(1)} has a ≤Qt-lub then Ht(η) is that lub.

(e) If p ∈ P then p is a function with domain dom(p) ∈ [Ls]
<κ and support

supp(p) ∈ [Ls]
≤κ, with supp(p) ⊇ dom(p). (See more in clause (E)(c).)

(C) (a) [Notation:] If L ⊆ Ls then PL ..= P � {p : supp(p) ⊆ L}.
(b) If L is s-closed then PL is a weak κ-forcing and PL l P.

(c) For t ∈ L+
q , let Pt ..= PLq,t .

(D) η̄
˜

..= 〈η
˜
t : t ∈ L〉 with η

˜
t a Pt(+)-name of a member of S(t)2, but we identify

η
˜
t ∈ S(t)2 with {α : η

˜
t(α) = 1} such that:

(a) η
˜
t(a) = 1⇔ a ∈ G˜ P, where G˜ P is a Pt(+)-generic over V.

(b) For s-closed L, η̄
˜
� L is a generic of PL.

(E) (a) p ∈ P iff
(α) p is a function.

(β) dom(p) ∈ [Ls]
<κ

(γ) For s ∈ dom(p), p(s) is a Ps-name of a member of Q˜ s.More specifically, it is of the form B(. . . , η
˜
tj (εj), . . .)j<jp(s) , where

•1 tj ∈ Is
•2 εj ∈ Stj
•3 jp(s) ≤ κ
•4 B is a κ-Borel function5 from (jp(s))2 into some
Up(s) ∈ [Ss]

≤κ.

(b) The truth value of p ≤P q is computed in V[η̄
˜
� A], where

A = dom(q) ∪
⋃{

Is : s ∈ dom(q)
}
.

(c) supp(p) ..= dom(p) ∪ {γp(s),j : s ∈ dom(p), j < jp(s)}
(d) η

˜
s

..={
p(s)(. . . , η

˜
tp(s),j (εp(s),j , . . .)j<jp(s) [G], . . .) : p ∈ G˜ Pt(+)

, t ∈ dom(p)
}

exists and is well-founded, noting that p(s) ∈ Ss is computed from〈
η
˜
t[G˜ PL(s)

] : t ∈ Is
〉
.

4So P = Pq, etc. We may omit s or q when it is clear from context.
5The point is absoluteness.
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6 SHELAH

(e) For x ∈ L+, Px |= ‘p ≤ q’ iff
•1 dom(p) ⊆ dom(q) ⊆ Lx
•2 If s ∈ dom(p) then p � Ls Ps ‘p(s) ≤Q˜ s q(s)’.

(f) Similar to clause (e), but for P. (This actually follows by setting
x =∞.)

Definition 1.5. 1) We define Qst
s , Qst, and say ‘strong ATI’ when we replace

“weak κ-forcing” by “strong κ-forcing” in 1.4, clauses (B)(a), (C)(a).

2) We define Qpre, Qpre
s as in Definition 1.4, replacing “weak κ-forcing” by “forcing”

in clauses (B)(a), (C)(a).

3) Let Q0,Q1,Q2 be shorthand for Qpre,Qwk, and Qst, respectively.

4) When we omit the subscripts, we mean ‘pre.’ (But not in 1.8(2) below, however.)

5) If q ∈ Qpre and L ⊆ Lq, then p = q � L is defined by sp ..= sq � L and
Pp

..= Pq,L.

6) We define “π is an isomorphism from q onto p” naturally.

Remark 1.6. 1) Recall that Lq is just a linear order and not necessarily a well-
ordering.

2) As a consequence, for a given q, 〈Q˜ s : s ∈ Lq〉 does not necessarily determine
Pq, but if s is as in [She04b, §2] then it is unique.

Observation 1.7. Let q ∈ Qpre.

1) If L ⊆ Lq is q-closed, p ∈ Pq, and p � L ≤Pq q ∈ Pq,L, then

r ..=
(
p � (dom(p) \ L)

)
∪ q

is a lub of p and q.

2) For q-closed L, we have Pq,L |= “p ≤ q” iff

•1 dom(p) ⊆ dom(q) ⊆ L
•2 If s ∈ dom(p) then for some q-closed L1 satisfying Iqs ⊆ L1 ⊆ L∩Lq,s, we

have q � L1 PL1
“p(s) ≤Q˜ s q(s)”.

3) Like (2)•2, replacing “for some” with “for every.”

4) If q is closed, then in (2)•2 we can choose L1 = Iqs .

Proof. 1) Note

(∗)1 r ∈ Pq

[Why? First, r is a well-defined function. Second, dom(r) ∈ [Lq]<κ, and third
s ∈ dom(r) ⇒ ‘r(s) is as required in 1.4(2)(E)(a)(γ).’ So by 1.4(2)(E)(a) we are
done.]

(∗)2 Pq |= ‘p ≤ r’

We have to check 1.4(2)(E)(e). Now •1 is trivial, as dom(p � L) ⊆ dom(q) ⊆ L; as
for •2, let s ∈ dom(r) and exactly one of the following cases will occur.

Case 1: s ∈ dom(p) \ L.
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HOMOGENEOUS FORCING 1257 7

In this case, r(s) = p(s), so

r � Ls PLs “p(s) ≤Q˜ s
r(s)”

holds trivially.

Case 2: s ∈ dom(p) ∩ L.

Recalling PL |= “(p � L) ≤ q” and PL l P (by 1.4(2)(C)(b)), we have

q � Is PIs “p(s) ≤Q˜ s
r(s)”,

so as r(s) = q(s) we are done.

Case 3: s ∈ dom(q) \ dom(p).

Also in this case, r(s) = q(s) is well-defined (and there is no demand on q(s)) so
we are done.

(∗)3 Pq |= ‘q ≤ r’

As r � dom(q) = q, this is trivial.

(∗)4 If Pq |= “p ≤ r′ ∧ q ≤ r′” then Pq |= r ≤ r′.

Easy as well.

2,3,4) Also straightforward. �1.7

Definition 1.8. 1) Let q1 ≤Q q2 (or q1 ≤wk
Q q2) mean:

(a) q` is a weak s`-ATI for ` = 1, 2 (where s` = sq` ; recall that q` determines
s`).

(b) s1 ≤T s2

(c) Pq1
l Pq2

(d) Q˜ q1

t = Q˜ q2

t for t ∈ Ls1 .

(e) Pq2
“η
˜

q1

t = η
˜

q2

t ” (and so Sq1(t) = Sq2(t)) for t ∈ Ls1 .

2) We define ≤pre
Q as above, changing clause (a) to ‘q` ∈ Qpre’ and omitting clause

(c). (I.e. we do not require Pq1
l Pq2

.)

We define ≤Q2
..= ≤Q � Q2.

2A) If r ≤pre
Q q and p ∈ Pq, then we define q ..= p � r as follows:

•1 dom(q) = dom(p) ∩ Lr

•2 If s ∈ dom(q) then q(s) = p(s) (recalling 1.2(b)).

3) If 〈qα : α < δ〉 is ≤Q-increasing then “q ..=
⋃
α<δ

qα” will mean the following:

(a) q ∈ Q

(b) sq ..=
⋃
α<δ

sqα

(c) qα ≤Q q for all α < δ.

(d) [Follows] If s ∈ Lqα then Q˜ q
s = Q˜ qα

s and η
˜

q
s = η

˜

qα
s .

4) We say q = 〈qα : α < α∗〉 is ≤Q-increasing continuous if it is ≤Q-increasing and
qδ =

⋃
α<δ

qα for every limit δ < α∗.
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Remark 1.9. 1) Note that in parts (3),(4) of Definition 1.8, for a given 〈qα : α < δ〉,
it is not a priori clear that such q exists — and even if it does, whether it is unique.

2) Regarding 1.8(1)(c), does “Pq1 lPq2” follow by 1.4(2)(C)(a), as Ls1 is q2-closed
by Definition 1.2? This is not clear. (See 1.6(2).)

We can only show that given q2 and a q2-closed L ⊆ Lq, we have (q2 � L) ≤Q q2.

Observation 1.10. 1) Assume q1 ≤pre
Q q2.

(A) If p ∈ Pq1
and q ∈ Pq2

, then we have (a)⇔ (b), where:
(a) Pq2

|= “p ≤ q”
(b) If s ∈ dom(p) then s ∈ dom(q) ∧ q � Lq1,s Pq1,s

“p(s) ≤Q˜ s q(s)”.

(B) If Pq2
|= “p 6≥ q” and s ∈ dom(p) ∩ Lq1

, then

q � Lq1,s Pq1,s
“p(s) ≤Q˜ s q(s)”.

(C) Assume
(a) L2

1 C L
2
2 E Lq2

(b)
2∧
`=1

[L1
` = L2

` ∩ Lq1 ]

(c) p ∈ Pq2�L2
1

and q ∈ Pq1�L1
2
.

(d) Pq2,L2
1
|= q � L1

1 ≤ p+.

If in addition, p+ ∈ Pq2�L1
1

is ≤Pq2
-above q � Lq1�L1

1
and p � Lq1�L1

1
, then

{p, p+, q} have a common upper bound in Pq2�L2
2
.

2) If x ∈ L+
s then s � Lx ∈ T and

q ∈ Qs ⇒ q � Lx ∈ Qsq�x. (See 1.1(4) and 1.4(3).)

3) Assume q1 ≤Q q2.

Then

(a) If L ⊆ Lq1 then L is q1-closed iff L is q2-closed.

(b) If L1 ⊆ L2, L1 is q1-closed, and L2 is q2-closed (so Lι ⊆ Lqι for ι = 1, 2)
then
•1 Pq1,L1

l Pq2,L2

•2 If pι ∈ Pqι,Lι for ι = 1, 2 and p1 = p2 � L1 then

Pq1,L1
|= “p1 ≤ q”⇒ p2 and q are compatible in Pq2,L2

.

Proof. 1A) First assume Pq2 |= “p ≤ q” (i.e. clause (A)(a)). Then for every s ∈
dom(p), we have s ∈ dom(q) (by 1.4(2)(E)(a) and 1.2) and

Pq1,s
“q � Lq1,s  ‘p(s) ≤Q˜ s q(s)’ ”

by 1.7(3). Together we get clause (A)(b).

[No clue why this is in red. Just say ‘ok’ and I’ll revert it.]

Now assume clause (A)(b). So dom(p) ⊆ dom(q), and by 1.7(2) we get Pq2
|=

“p ≤ q”.

1B) Similar proof.

1C) Use the proof of 1.7(1).

2),3) Easy. �1.10
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Claim 1.11. If 〈qα : α < δ〉 is ≤Q-increasing continuous (Note: when κ > ℵ0 this
does NOT mean that 〈Pqα : α < δ〉 is ⊆-increasing continuous!) and cf(δ) ≥ κ,
then

⋃
α<δ

qα exists and is unique.

Proof. Straightforward — anyhow, we shall use 2.1. �1.11

Claim 1.12. [Assume κ = ℵ0.]

1) In the definition of Qwk ( 1.4(2)), we may omit clause (B)(b).

2) Similarly in 1.5(1), replacing ‘weak’ by ‘strong.’

Remark 1.13. See more in the proof of 2.6; in particular, proving 1.12(2) for κ > ℵ0.

Proof. 1) The ⇐ direction is obvious. For ‘⇒,’ let 〈pα : α < κ+〉 ∈ κ+Pq.

Without loss of generality, 〈dom(pα) : α < κ+〉 is a ∆-system with heart
u ∈ [Lq]<ℵ0 . Let t0 <Lq . . . <Lq tn−1 list u, and let tn ..=∞.

We choose p` ∈ Pq,t` increasing with ` such that

p` Pq,t`

(
∃κ

+

α < κ+
)[
pα � Lq,t` ∈ G˜ Pq,t`

]
.

2) For the strong case, recall 0.3(1)(B)•3. �1.12
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§ 2. Unions

Claim 2.1. 1) If q = 〈qα : α < δ〉 is ≤Qwk
-increasing continuous (see 1.8(4)) then

qδ ..=
⋃
α<δ

qα exists and is unique, belongs to Qwk, and qˆ〈qδ〉 is ≤Q-increasing

continuous.

2) Similarly for ≤Qst
.

Remark 2.2. Note that this is not a repeat of 1.11, as we have dropped the assump-
tion on cf(δ).

Proof. 1) Let sα ..= sqα and Lα ..= Lsα for α < δ.

Note that s = sq ..=
⋃
α<δ

sα is well defined, but when cf(δ) < κ we cannot choose

Pq
..=

⋃
α<δ

Pqα . We have to choose q = qδ as follows:

(∗)1 (a) sq = sδ ..=
⋃
α<δ

sα, and let Lδ ..= Ls,δ.

(b) p ∈ Pq iff
•1 dom(p) ∈ [Ls,δ]

<κ

•2 If s ∈ dom(p) then p � {s} ∈
⋃
α<δ

Pqα .

(c) ‘p ≤Pq q’ is defined by 1.7(2); that is,(
∀s ∈ dom(p)

)[
q � Lqβ Pqβ

“p(s) ≤Q˜ s q(s)”
]
,

where β = β(s) ..= min{α < δ : s ∈ Lα}.

Let q = 〈qα : α ≤ δ〉. Easily,

(∗)2 (a) α < δ ⇒ Pqα ⊆ Pq (As partial orders, of course.)

(b) If β < δ and L ⊆ Lβ is sδ-closed, then Pq,L = Pqβ ,L.

(c) L ⊆ Lδ is q-closed iff L ∩ Lα is qα-closed for every α < δ.

(d) If L is sδ-closed then Pq,L =
⋃
α<δ

Pqα,L∩Lα (defined as above).

Why? Obvious, but we will elaborate.

Clause (a): Let α < δ.

First, if p ∈ Pα, then by (∗)2.1+(∗)2.2 below we have p ∈ Pδ.

(∗)2.1 dom(p) ⊆ Lqα is of cardinality < κ, by 1.4(2)(E)(a)(α), (β). Lα ⊆ Lqδ by
(∗)1(a), so p satisfies (∗)1(b)•1.

(∗)2.2 If s ∈ dom(p) then p � {s} ∈ Pα by 1.4(2)(E)(a), hence p � {s} ∈ Pδ.

Second, assume p, q ∈ Pα. Then

Pα |= “p ≤ q”⇒ Pδ |= “p ≤ q”
by (∗)2(b) and 1.10(1)(B).

Clauses (b)-(d): Similarly.

(∗)3 (a) α < δ ⇒ Pqα l Pq

(b) If L ⊆ Lq is q-closed then Pq,L l Pq.

(c) 〈η
˜
s : s ∈ Lδ〉 is a generic for Pδ.
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(d) If L ⊆ Lδ is s-closed then 〈η
˜
s : s ∈ L〉 is a generic for Pqδ�L.

To prove clause (a), let p ∈ Pq. Now by the assumptions 〈sqβ : β < δ〉 is increasing.
So by the choice of sq, if s ∈ dom(p) then there is an αs < δ such that s ∈
Lαs \

⋃
β<αs

Lβ . So easily, recalling (∗)1(c), pα ..= p � (dom(p) ∩ Lα) satisfies

Pqα |= “pα ≤ q”⇒ p and q are compatible in Pq.

(See 1.7(1). Even their union, as defined as in 1.7(1), is okay.)

So clause (a) holds. The proof of clause (b) is similar.

As for (c), let Gδ ⊆ Pδ be generic over V. By clause (a), Gα
..= Gδ ∩ Pα

is a generic subset of Pα for α < δ. So p ∈ Gδ ⇒ p � Lα ∈ Gα, recalling
p ∈ Pδ ⇒ p � Lδ ≤Pδ p.

Also,

p ∈ Pδ ∧
∧
α<δ

[
p � Lα ∈ Gα

]
⇒ p ∈ Gδ

because Pδ is (<κ)-complete, and Pδ |= “
∧
α<δ

[p � Lα ≤ q]” implies Pδ |= “p ≤ q”.

So clause (c) holds. Clause (d) is proved similarly.

Next,

(∗)4 If L is sδ-closed then Pqδ,L is a weak κ-forcing.

Why? If κ = ℵ0 then 〈Pqα,L∩Lα : α < δ〉 is a l-increasing continuous sequence
of ccc forcing notions with union Pqδ,L, and so this is known. Therefore assume
κ > ℵ0 and then prove that Pqδ,L satisfies ∗1κ,D for D and κ as in 0.3(4).

Let 〈pi : i < κ+〉 ∈ κ+

(PL) be given. First, let ui ..= dom(pi), so ui ∈ [L]<κ. As
κ = κ<κ, there are C and h such that:

(∗)4.1 (a) C ∈ D and α ∈ C ⇒ cf(α) = κ.

(b) h is a regressive function on C.

(c) If ζ ∈ rang(h), then for some vζ ⊆ L we have

i 6= j ∈ C ∧ h(i) = h(j) = ζ ⇒ ui ∩ uj = vζ .

(∗)4.2 (a) Without loss of generality ζ ∈ rang(h)⇒ Cζ ..= h−1({ζ}) ∈ D+.

(b) For s ∈ Lqδ let α(s) ..= min{α : s ∈ Lqα}.

[Why? For clause (a) recall that D is a normal filter on κ+.]

The proof splits into cases.

Case 1: cf(∂) ≤ κ.

Without loss of generality δ ≤ κ, hence there is a function g : κ+ → κ ∩ (δ + 1)
such that i < κ+ ⇒ pi ∈ Pqg(i)

. Without loss of generality, dom(pi) = g(i) and

g(i) is a limit ordinal (recalling κ = cf(κ) > ℵ0).

Now, using qα ∈ Qwk for α < δ, consider 〈pi � Lqα : i < κ+〉. There are Cα ∈ D
and hα (a regressive function on Cα) as follows from ‘Pqα satisfies ∗1κ,D.’

Now, recalling κ = κ<κ and (∀γ ∈ C)[cf(γ) = κ], we can find C∗ and h∗ such
that
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(∗)4.3 (a) C∗ ∈ D and

C∗ ⊆
{
j ∈ C : i < j ∧ s ∈ ui ⇒ j ∈ Cα(s) ∧ (∃k ∈ C ∩ j)[h(j) = h(k)]

}
.

(b) h∗ is a regressive function on C∗.

(c) If j ∈ C∗ and ζ ≤ g(j), then h∗(j) codes hζ(j).

(d) If j1, j2 ∈ C∗, h∗(j1) = h∗(j2), and g(j1) = ζ then g(j2) = ζ and
hζ(j1) = hζ(j2).

[Why? Easy, but we elaborate.

Let C∗1
..=
{
δ < κ+ : δ a limit ordinal, α < δ ⇒ δ ∈ Cα

}
. So C∗1 ∈ D, as Dα

is a normal filter on κ+ and every Cα belongs to D by our choices. As C∗1 and C
belong to the filter D, clearly C∗2

..= C∗1 ∩ C does as well.

As κ = κ<κ, there is a one-to-one function from κ>(κ+) ∪
⋃
α<κ

α(κ+) into κ+

such that

β < κ+ ∧ η ∈ κ>(β + κ)⇒ cd(η) < β + κ.

[No idea what ‘cd’ is; it hasn’t been defined anywhere]

Let C∗3
..=
{
δ < κ+ : α < δ ∧ η ∈ 2β ⇒ h(η) < δ

}
; it is a club of κ+, hence

C∗ ..= C∗2 ∩ C∗2 ∈ D.

Lastly, define the function h∗ with domain C∗ by δ 7→ pr(〈h∗(pδ � ε) : ε < g(δ)〉).
It is easy to check that C∗ and h∗ are as desired. ]

(∗)4.4 If p, q ∈ Pδ, α1 < α2 < δ, α2 ⊆ dom(p) ∩ dom(q) (for transparency), and
for ` = 1, 2, {p � α`, q � α`} has a ≤Pα` -lub r`, then r1 and r2 � α1 are not
equivalent.

(That is, γ < α1 ⇒ r1(γ) ≤Q˜ ∂ r2(γ) ≤Q˜ ∂ r2(γ).)

[r2(γ) ≤Q˜ ∂ r2(γ) is true, but uninteresting. I don’t see any-

thing else this could have been referring to, and can probably be
deleted.]

[Why? Easy.]

(∗)4.5 If i, j ∈ C∗ with g∗(i) = g∗(j), then

(∀α < δ)[pi � α, pj � δ has a ≤Pα -lub],

hence pi, pj have a ≤Pδ -lub.

[Why? Easy.]

Together we are done. That is, C∗ and h∗ are as required.

Case 2: cf(δ) > κ+.

For some α < δ, {pi : i < κ+} ⊆ Pqα so the conclusion is obvious.

Case 3: cf(δ) = κ+.

Without loss of generality δ = κ+; hence

(∗)4.5 In clause (∗)4.1, without loss of generality, for each ζ ∈ rang(h) and i ∈ C
satisfying h(i) = ζ, we have
• vζ ⊆ Lqi and i < j ∈ C ⇒ pi ∈ Pqj .

• C∗ and h∗ are as in (∗)4.3.
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Now easily i, j ∈ C∗ ∧ h∗(i) = h∗(j)⇒ “pi and pj are comparable.”

So clearly we have proved (∗)4.

(∗)5 q ∈ Qwk

[Why? We have to check all clauses of Definition 1.4; this is straightforward by
(∗)1–(∗)4.]

(∗)6 qα ≤Q qδ for α < δ.

[Why? We should check Definition 1.8(1). Clause (a) holds by (∗)5. Clause (b)
holds by (∗)1(a) (recalling p ≤Q q ⇒ sp ≤T sq and 1.3(2)). Clause (c) is covered
by (∗)3(a), and clauses (d) and (e) are obvious.]

(∗)7 qδ =
⋃
α<δ

qα

[Why? We should check Definition 1.8(3):

Clause (a): (q ∈ Q)

Holds by (∗)5.

Clause (b): (sqδ =
⋃
α<δ

sqα)

Holds by (∗)1(a), recalling qα ≤Q qβ ⇒ sα ≤T sβ and Claim 1.3(2).

Clause (c): (qα ≤Q q)

Holds by (∗)6.]

2) Similarly, as the Knaster condition is preserved by the union of l-increasing
continuous chains.

So we are done proving 2.1. �2.1

Claim 2.3. 1) We have ‘(A) implies (B),’ where:

(A)(a) r ∈ Qst

(b) Q˜ is a Pr-name of a strong κ-forcing.

(b)+ Moreover, it is a Pr�L0
-name, where L0 ⊆ LE Lr is r-closed.

(B) There are q ∈ Qst and t∗ ∈ Lq \ Lr such that
(a) r ≤Q q

(b) Lq = L+ {t∗}+ (Lr \ L) as linear orders.

(c) Q˜ q,t∗ = Q˜ and Iqt∗ = L0.

2) Identical to part (1), but replacing ‘strong’ by ‘weak’ everywhere (so of interest
only when κ = ℵ0) and adding to the antecedent:

(A)(c) L0 is q-closed and Pr,L0
≺Lσ,σ Pr, where σ = (2κ)+. (See 0.1(5).)

3) In part (2) we can weaken (A)(c) to

(A)(c)′ If κ = ℵ0 then Pq,L0
“MAℵ1”.

Proof. Easy, recalling 1.12. �2.3
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Claim 2.4. 1) For every r ∈ Qst and6 ∂ = cf(∂) ≥ σ(r) (see 1.1(7)) satisfying
(∀α < ∂)

[
|α|2κ < ∂

]
, there is a q ∈ Qst such that:

(A)1
∂ (a) r ≤Q2 q

(b) ‖Pq‖ =
∥∥Pr

∥∥<∂
(B)1

∂ (a) q satisfies cf(Lq) ≥ ∂.

(b) If t ∈ Lq then cf(Lq,t) ≥ ∂.

(c) If LC Lq is of cofinality ≥ ∂, L0 ⊆ L is q-closed, Q˜ is a Pq,L0
-name

of a weak κ-forcing of cardinality < ∂, and
[As I said, the clause that L0 ⊆ L is q-closed had already been
added. It needs to be mentioned before you start talking about
Pq,L0

-names.]

κ = ℵ0 ⇒ Pr,L0 ≺Lσ,σ Pr

(where σ ..= (2κ)+) then
• For some s ∈ L, Q˜ is a Pq,s-name and

Pq,s “Q˜ q,s and Q˜ are isomorphic”.

2) Similar to part (1), but r,q ∈ Qwk, (∀α < ∂)
[
|α|κ < ∂

]
, and

(A)2
∂ (a) r ≤Q q

(b) As above.

(B)2
∂ (a) As above.

(b) As above.

(c) Like (B)1
∂(c), but replacing ‘weak κ-forcing’ by ‘strong κ-forcing’ and

omitting Pr,L0 ≺Lσ,σ Pr.

3) Like part (1), but replacing

“κ = ℵ0 ⇒ Pr,L0 ≺Lσ,σ Pr”

by Pr,L0
“MAℵ1”.

(We shall call the resulting clauses (A)0.5
∂ and (B)0.5

∂ .)

Proof. 1) We shall prove more. Let Q∗ be the class of q ∈ Q2 satisfying (A)1
∂ .

Consider the statement

� If p ∈ Q∗ then there exists q ∈ Q∗ such that:
(a) p ≤Q2

q

(b) There is t ∈ Lq such that s ∈ Lp ⇒ s <Lq t.

(c) If t ∈ Lp, L0 ⊆ L is q-closed, and Q˜ is a Pq,L0
-name of a weak κ-forcing

of cardinality < ∂, then •1 or •2 holds, where
•1 For some s ∈ Lq,t we have

Pq “Q˜ q,s and Q˜ are not isomorphic”.

•2 Pq “Q˜ is not ccc”.

6 If we omit “∂ = cf(∂) ≥ σ(r),” then in 2.3 we need to expand by S′
s ⊆ Sq,s of cardinality

< ∂ for s ∈ L, and make further changes.
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We shall prove that � is both true and sufficient, together proving part (1).

Why � is true:

Let

Y ..=
{

(t, L,Q˜ ) : t ∈ L ∪ {∞}, L a p-closed subset of Lp,t of cardinality

< ∂, and Q˜ a Pq,L-name of a forcing notion with set

of elements an ordinal < ∂
}
.

Easily, |Y| ≤ ‖Pp‖<∂ , hence we can find a sequence
〈
(tα, Lα,Q˜ α) : α < |Y|

〉
listing

Y.

Now we choose pα by induction on α ≤ |Y| such that

⊕1
α (a) pα ∈ Q∗

(b) p0
..= p

(c) 〈pβ : β ≤ α〉 is ≤Q-increasing continuous.

(d) If α = β + 1, then one of the following hold:
•1 Ppβ

“Q˜ β is not ccc” and pα = pβ .

•2 For some sβ , Lpα \ Lpβ = {sβ}, Lpβ ,tβ < sβ <Lpα
tβ , and

Q˜ pα,sβ = Q˜ .

Why can we carry the induction? The base case is covered by clause (b), and for
α a limit ordinal we use Definition 2.1. For α ≤ |Y| successor let α = β + 1.

So � does indeed hold.

Why � is sufficient:

We choose qα by induction on α ≤ ∂ such that

⊕2
α (a) qα ∈ Q∗

(b) q0
..= p

(c) 〈qβ : β ≤ α〉 is ≤Q-increasing continuous.

(d) If α = β + 1 then � is satisfied, with (qβ ,qα) standing in for (p,q).

We can carry the induction, using � for α a successor. Now,

⊕3 q∂ is as required.

Why? We shall check 2.4(1)(A),(B).

Clauses (A)(a),(b): This means q∂ ∈ Q∗, which holds by ⊕2
∂ .

Clause (B)(a): This says cf(Lq) ≥ ∂.

It holds because 〈Lqα : α < ∂〉 is increasing continuous and Lqβ is bounded in

Lqβ+1
, by �(b) and ⊕2

α(d).

Clause (B)(b):

Similarly, using �(c) we can find L0 ⊆ Lq∂ ,t as required, because

κ = ℵ0 ⇒ (∀α < ∂)
[
|α|ℵ1 < ∂

]
,

because necessarily L0 ⊆ Lqβ for some β < ∂, and by our choice of qβ+1.

Clause (B)(b): Similarly to (B)(b).
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So we are done proving part (1).

2) Repeat the proof of part (1) using Q2.

3) Straightforward. �2.4

Definition 2.5. We say q is strongly (<∂)-homogeneous when

• If L` ⊆ Lq is q-closed for ` = 1, 2 and π1 is an isomorphism from L1 onto
L2 mapping q � L1 to q � L2, then there is an automorphism π2 of Lq

extending π1 and mapping q to itself. Hence it induces an automorphism
π̂2 of Pq (e.g. mapping η

˜
t to η

˜
π2(t)).

Claim 2.6. 1) If q ∈ Q` for ` ∈ {1, 2} and L ⊆ Lq is q-closed, then Pq/Pq,L is a
(κ, `)-forcing. (See 0.3.)

2) (Qst,≤Qst
) satisfies amalgamation.

3) For κ = ℵ0, Q1 satisfies a weak version of amalgamation:7

(∗) If q0 ∈ Q1, q0 ≤Q q` for ` = 1, 2, Lq1
∩Lq2

= Lq0
, and Pq0

“MAℵ1” then
there is a q3 ∈ Q1 such that q` ≤ q3 for ` = 0, 1, 2.

4) In (3)(∗) above, we may replace Pq0
“MAℵ1” with the demand “q0 ≺Lσ,σ q1, ”

where σ ..= (2ℵ0)+.

Proof. 1) Case 1: κ > ℵ0 (so the choice of ` is immaterial).

Proving “Pq/Pq,L is (<κ)-complete” is easy, when κ > ℵ0. So it suffices to do
the following:

� (a) Assume p∗ Pq,L “q
˜
α ∈ Pq/G˜ Pq,L for α < κ+”.

(b) Now find p∗∗ ∈ Pq,L above p∗ and Pq,L-names C˜ , h
˜

as required in
∗κ,D.

Now

(∗)1 For each α < κ+, we can choose 〈pα,ι, qα,ι : ι < ι(α) ≤ κ〉 such that
(a) For ι < ι(α), pα,ι ∈ Pq,L is above p∗, and

pα,ι Pq,L “q
˜
α = q∗α,ι”.

(b) Without loss of generality, Qq,L |= ‘(q∗α,ι � L) ≤ pα,ι’ for ι < ι(α).

(c) Therefore, rα,ι ..= pα,ι ∪ (q∗α,ι � (Lq \ L)) is a ≤Pq-lub of pα and q∗α.

(d) 〈pα,ι : ι < κ〉 is a maximal antichain of Pq,L.

Next,

(∗)2 There are C, h, and ū such that
(a) C ∈ D
(b) h is a pressing-down function on C

(c) ū = 〈uζ : ζ ∈ rang(h)〉
(d) If ζ ∈ rang(h) then

•1 The set Sζ ..= h−1({ζ}) belongs to D+, and ι(α) = j(ζ) for
α ∈ Sζ .

•2 〈dom(rα) : α ∈ Sζ〉 is a ∆-system with heart uζ .

7For κ > ℵ0 this is not interesting, and is already covered by 2.10(1).
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Next,

(∗)3 For each ζ ∈ rang(h), ι < j(ζ), and t ∈ uζ , recalling Pq,t “Q˜ t satisfies
∗κ,D”, there are Pq,t-names C˜ ζ,t,ι and h

˜
ζ,t witnessing ∗κ,D.

Let (e.g.) ε ..= ω. We repeat the process ε times, and then we use H˜ q,t from
1.4(2)(B)(d) and ‘κ<κ = κ,’ and we get

(∗)4 There are C∗, h∗, ū
∗, and S

∗
= 〈S∗ζ : ζ ∈ rang(h∗)〉 as in (∗)2, but for

〈r∗α,ι : α ∈ S∗ζ , ι < j(ζ) ≤ κ〉 such that (repeating ourselves a bit)

(a) r∗α,ι ∈ Pq, and r∗α,ι � L Pq,L “q
˜
α ≤ r∗α,ι in Pq/Pq,L”.

(b) For α ∈ S∗ζ , the sequence 〈r∗α,ι : ι < j(ζ)〉 is a maximal antichain of Pq

above p∗.

(c) If ζ ∈ rang(h∗), t ∈ u∗ζ , and α1, α2 ∈ S∗ζ , then

Pq,t “r∗α1
(t), r∗α1

(t) have a lub in Q˜ q,t”.

The rest of the proof of part (1) for κ > ℵ0 should be clear.

Case 2: κ = ℵ0 and ` = 1.

Well known.

Case 3: κ = ℵ0 and ` = 2.

Like Case 1, but simpler.

2) So assume

(∗)0 for ` = 0, 1, 2,
(a) q` ∈ Q2

(b) q0 ≤Q2 q`

(c) Lq1 ∩ Lq2 = Lq0 for transparency.

(∗)1 Let L be a linear order with set of elements Lq1 ∪ Lq2 , and Lq` ⊆ L as
linear orders.

(∗)2 We define s ∈ T such that Ls = L and Is,t = Isq0
,t for t ∈ Lq` .

(∗)3 We define q ∈ Q2
s above q` (for ` ≤ 2) naturally.

We have to prove that q ∈ Q2; being (<κ)-complete (with κ > ℵ0) is easy, satis-
fying ∗κ,D is a consequence of 2.6(1), and being closed under finite products and
composition.

3) Like part (1), but easier.

4) The point here is proving the implication ‘(A) ⇒ (B),’ where

(A) (a) P0 l P` (for ` = 1, 2) are ccc forcing notions.

(b) P0 ≺Lσ,σ P1

(B) P ..= P1 ∗P0 P2 is ccc.

Why does this hold?

Assume (pα,1, pα,2) ∈ P1 ∗P0
P2 for α < ω1, and let 〈qα,i : i < ια ≤ ω〉 be a

maximal antichain of P0 such that each qα,i forces a truth value to ‘pα,1 ∈ P1/G˜ P0
’

and to ‘pα,2 ∈ P2/G˜ P0 .’ Similarly, for α, β < ω1, let 〈qα,β,i : i < ι(α, β) ≤ ω〉 be a
maximal antichain of P0 such that each qα,β,i forces a truth value to “pα,i and qβ,i
are compatible in P`/G˜ P0

for ` = 1, 2.”
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Now, finding a sequence 〈p′α,1 : α < ω1〉 ∈ ω1P0 similar enough to 〈pα,1 : α < ω1〉
over {

qα,ι : α < ω1, ι < ι(α)
}
∪
{
qα,β,i : α, β < ω1, i < ι(α, β)

}
will contradict “P2 satisfies the ccc.” �2.6

Claim 2.7. 1) Assume p ∈ Q2, L` is a p-closed subset of Lp (for ` = 1, 2), and
π : L1 → L2 is an isomorphism which induces an isomorphism π̂ : Pp,L1

→ Pp,L2
.

Then we can find q, π1, L+
1 , L+

2 such that

(a) p ≤Q2 q

(b) For ` = 1, 2, L` ⊆ L+
` ⊆ Lq, L+

` is q-closed, and Lp ⊆ L+
1 .

(c) π1 ⊇ π is an isomorphism from L+
1 onto L+

2 which induces an isomorphism
π̂1 : Pp,L+

1
→ Pp,L+

2
.

2) ‘If (A) then (B),’ where

(A) (a) q = 〈qα : α ≤ δ∗〉 is ≤Q-increasing continuous.

(b) 〈αε = α(ε) : ε < ζ〉 is an increasing continuous sequence of ordinals
with limit δ∗.

(c) L1
α(ε) and L2

α(ε) are qα(ε)-closed subsets of Lα(ε).

(d) πε : L1
α(ε) → L2

α(ε) is order-preserving and onto.

(e) πε is an isomorphism from qα(ε) � L1
α(ε) onto qα(ε) � L2

α(ε).

(f) L1
α(ε), L

2
α(ε), πε are increasing continuously with ε.

(g) For ` = 1, 2, if Lqα(ε)
6⊆ L`α(ε)+1 then Lqα(ε)+1

⊆ L`α(ε)+2.

(B) π ..=
⋃
ε<ζ

πε is an automorphism of qδ∗ .

Proof. 1) By 2.6(2).

2) Easy. �2.7

Definition 2.8. 1) For ι = 1
2 , 2, we say q is (∂, ι)-saturated when it satisfies

2.4(ι)(B)ι∂ .

2) We say q = 〈qα : α < α∗〉 is (∂, ι)-saturated when:

(a) q is ≤Qι
-increasing continuous, recalling 1.5(3) and 1.8(2).

(b) qα is (∂, ι)-saturated for α < α∗ non-limit.

Remark 2.9. Recall 1.5(3), so e.g. we denote Qst and Qwk by Q1,Q2, respectively.
We may replace them by other classes.

Claim 2.10. 1) If λ = λ<∂ and ∂ = cf(∂) > κ (recalling Qst = Qst
κ,∂) then there

is a q ∈ Qst
κ,∂ such that

(a) Lq and Pq have cardinality λ.

(b) q is strongly homogeneous.

(c) q is (∂, 1)-saturated.

2) We can combine part (1) with 2.6(3); that is, if ∂ = cf(∂) > κ = ℵ0 and λ = λ<∂ ,
then there exists a q ∈ Qwk

κ,∂ such that

(a) Lq has cardinality λ.
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(b) q is strongly homogeneous, when we restrict ourselves to an L ⊆ Lq such
that Pq,L “MAℵ1”.

(c) q is (∂, 1
2 )-saturated.

3) Similarly for the ≺Lσ,σ -version.

Proof. 1) By 2.7.

2,3) Easy as well. �2.10
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§ 3. More on the iteration

Definition 3.1. 1) For ι ≤ 5, we say Q is a (κ, ι)-forcing when

(A) (a) If ι = 0 it is a forcing.

(b) If ι = 1 it is a weak κ-forcing.

(c) If ι = 2 then it is a strong κ-forcing.

(B) If ι = 3 then Q = (Q,≤, tr) = (Q,≤Q, trQ) satisfies the following.
(a) It is a strong κ-forcing. (Of course, clauses (b),(c) restrict it even

further.)

(b) trQ is a function Q→ H(κ).

(c) For each x ∈ H(κ), for some ∂(x) = ∂Q(x) ∈ [2, κ], any < 1 + ∂(x)
members of {p ∈ Q : tr(p) = x} have a common upper bound.

(C) If ι = 4 then as in (B), but we add
(d) If σ < κ then {p ∈ Q : ∂(tr(p)) ≥ σ} is dense.

(D) If ι = 5 then as in (B), but ∂(x) = κ for every x ∈ Q.

2) For ι ≤ 5, let Qι be the class of q such that8

(A) q ∈ Qpre

(B) If t ∈ Lq then Pq,t “Q˜ t is an ι-forcing”, and if L ⊆ Lq is q-closed then
Pq,L is a (κ, ι)-forcing.

(C) If ι = 3, 4, 5 then
•1 If p ∈ Pq and s ∈ dom(p), then trQs(p(s)) is an object, not just a

name.

•2 If L ⊆ Lq is q-closed then Pq,L is a (κ, 2)-forcing.

(D) If ι = 4 then in addition to •1 and •2,
•3 If ∂ < κ and L ⊆ Lq is q-closed then{

p ∈ Pq :
(
∀s ∈ dom(p)

)[
∂Qs(p(s)) ≥ ∂

]}
is dense in Pq,L.

3) For ι ≤ 5, let Qι∂,κ be the class of q ∈ Qι such that t ∈ Lq ⇒ |Iq,t| < κ and q is

strongly (<∂)-homogeneous.

Claim 3.2. For ι = 3, 4, 5, we can repeat the work done for ι = 2 (i.e. Q2) in §1-2.

Proof. Repeating previous proofs, using Definition 3.1. �3.2

Definition 3.3. If clause (A) holds, then we define Ps̄ as in clause (B), where:

(A) (a) q ∈ Q1 and κ = ℵ0.

(b) s̄ ∈ α(Lq) and ui ⊆ α for i < α.

(c) Lq |= “si < sj” for i < j < α.

(d) ui ..= {j < i : sj ∈ Iq,si}

8We may just demand that for q-closed L, we have that

{p ∈ Pq,L : s ∈ dom(p)⇒ trQs (p(s)) is an object}

is dense. In this case, if κ > ℵ0 then this follows.
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(e) Qq,si is definable from η̄
˜
i = 〈η

˜
sj : j ∈ ui〉 (say we have a definition

ϕi,η̄ for any η̄ ∈ Xi
..=

∏
ε∈ui

Sε2, where Sε ..= Sq,sε).

(B) Ps̄ ..= Pq � L, where

L ..=
{
p ∈ Pq : dom(p) ⊆ {si : i < α}, and if si ∈ dom(p)

then supp(p(si)) ⊆ {sj : j ∈ ui}
}
.

Claim 3.4. 1) For κ = ℵ0 and q, n, s̄, Xi (for i < α) as in 3.3(A)(e), we have
Pq,s̄ l Pq when

�1 If i < α then the demand on Qϕi,η̄
˜

holds absolutely (i.e. even after forcing

by any κ-forcing).

�2 Assuming G ⊆ Pq is generic over V and η̄ = 〈η
˜
t[G] : t ∈ Lq〉, we have:

if V[〈ηsj : j ∈ ui〉] |= “J is a maximal antichain of Q[〈ηsj : j ∈ ui〉]” then
V[η̄ � Lq,si ] |= “J is a maximal antichain of Q[η̄ � Lq,si ]” for i < α.

2) Q2
n from [HS, Defs. 2,4,5] satisfies the criteria above. Moreover, so does any

Suslin ccc forcing.

3) Similarly to parts (1), (2) for s̄ = 〈sα : α < α∗〉, where sα ∈ Lq is <q-increasing.

Proof. 1,2) By (3).

3) Straightforward by induction on α∗. �3.4
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§ 4. A consequence

We prove the result promised in the introduction, continuing Kellner-Shelah
[KS11] and Horowitz-Shelah [HS].

Theorem 4.1. Let κ = ℵ0, ∂ = (2ℵ0)+ (or just ∂ = ∂ℵ0 = cf(∂), ∂ > 2ℵ0 for
simplicity), and λ = λ<∂ .

Let n ∈ N be special, in the sense of [HS, Definitions 2,4] (and so Tn is a finite-
branching subtree of ω>ω as defined there). Let (Q2

n, η
˜

2
n) be as in [HS, Definition

5], except that we restrict ourselves to the (dense) subset of p ∈ Q2
n such that for

some m� g̀(trp(α)),

ν ∈ p(α)⇒ nor(sucpw(ν)) ≥ 1 +
1

m

(as done in the proof of [HS, Claim 21]).

Then there is a q ∈ Q2
κ,∂ such that:

(a) Lq has cardinality λ, cf(Lq) = cf(λ), and t ∈ Lq ⇒ |Iq,t| < λ.

(b) For every t ∈ Lq, Qq,t = Q2
n[Vη̄

˜
�It ], so η

˜
t ∈ limTn is η

˜

2
n (recalling [HS] —

that is, 3.4(2)).

(c) q is strongly (<∂)-homogeneous (see 2.5).

(d) Letting V0 = V, V2 = VPq , and V1 = HOD
({
η̄
˜
� u : u ∈ [Lq]<∂

})
:

(α) V1 |= ZF + DC<∂

(β) In V1, modulo the ideal

J = Jn,<∂ ..= id<∂(Q2
n, η

˜

2
n),

we have:
•1 lim(Tn) ≡ {η

˜
t : t ∈ Lq} mod J

•2 Every subset of lim(Tn) is equivalent to a Borel set modulo J .

Remark 4.2. 1) The difference with the results in [HS] is that there we do not have
“V1 satisfies ACℵ0” (to say nothing of DC), whereas here we have DC (even DC<∂ ,
with ∂ > ℵ1).9

2) In id<∂(Q2
n, η

˜

2
n), is the ‘<∂’ necessary? ([HS, Definition 18] uses id≤ℵ1 , in our

notation.) That is, can we use id≤ℵ0(Q2
n, η

˜

2
n)?

For this we have to use “amoeba for Qn,” hence we have to prove stronger
amalgamation (which is far from clear). But see 4.5 below.

Proof. Let Qn be the set of q ∈ Q which satisfy 4.1(b). Now we can replace Q by
Qn in 2.6, and we rely on 4.3, 4.4, and 4.5 below. �4.1

Claim 4.3. For q as in 4.1,

Pq “if η ∈ lim(Tn) is (Q2
n, η

˜

2
n)-generic over V then η ∈ {η

˜
s : s ∈ Lq}”.

Proof. We continue [HS, p.15, Claim 21] (but there it sufficed to consider iterations
of finite length).

So assume

(∗)1 p∗ Pq “η
˜
∈ lim(Tn)”.

9As wrongly stated in [JS93], for the ideal of meagre sets.
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(∗)2 For n < ω, let p̄n ..= 〈pn,` : ` < ω〉 be a maximal antichain of Pq such that
pn,`  η

˜
� n = νn,`.

Let L∗ ..=
⋃

n,`<ω

supp(pn,`) ∪ supp(p∗); it is a countable subset of Lq.

(∗)3 (a) For η ∈ Tn, define:

Wn,η
..=
{
w ⊆ sucTn(η) : nornη (w) ≥ 2

}
.

(b) For n < ω define Λn ..= {η ∈ Tn : g̀(η) < n}, so Tn =
⋃
n<ω

Λn.

(c) Define
•1 Sn ..= {w = 〈wη : η ∈ Λn〉 : wη ∈Wn,η} for n < ω.

•2 S ..=
⋃
n<ω

Sn

•3 (S,E) is a tree with ω levels such that each level is finite.

•4 lim(S) = {w = 〈wη : η ∈ Tn〉 : w � Λn ∈ Sn for every n}.
(d) For w ∈ lim(S) let

Bw
..= {ρ ∈ lim(Tn) : for every n large enough, ρ � (n+ 1) ∈ wρ�n}.

(∗)4 So Bw =
⋃
m<ω

Bw,m, where

Bw,m
..=
{
ρ ∈ lim(Tn) : (∀n ≥ m)[ρ � (n+ 1) ∈ wρ�n]

}
is a closed subset of lim(Tn).

As proved there,

(∗)5 For ι = 1, 2, Qιn “η
˜

ι
n ∈ Bw” for every w ∈ lim(S)V”.

Hence as in [HS],

� By (∗)1, it suffices to prove p∗ 6Pq “η
˜
∈ Bw for some w ∈ lim(S)V”.

Toward contradiction, assume

Pq “η
˜

is generic for (Q2
n, η

˜

2
n) over V”,

or we just choose 〈pw : w ∈ lim(S)〉 such that p∗ ≤ pw and pw  η
˜
∈ Bw. Note that

for r ∈ dom(pw), tr(pw(r)) is an object (not just a Pq,s-name) because q ∈ Q2
∂,κ.

We continue as there. �4.3

Claim 4.4. 1) Forcing with Q2
n adds a Cohen real.

2) If Q adds a Cohen real then Q“(limTn)V ∈ id≤ℵ0(Q2
n, η

˜

2
n)”.

Proof. See [HS, Claim 19]. �4.4

Claim 4.5. In the conclusion of Claim 4.1, we can replace id<∂(Q2
n, η

˜

2
n) by the

ideal J ′ ..= id≤ℵ0(Q2
n, η

˜

2
n) + Y , where in V1 we define

Y ..=
⋃{

BV1 : B is a Borel subset of Tn defined in V0 such that Q2
n

“η
˜

2
n /∈ B”

}
.

Proof. The same proof as in 4.1; that is, in clause (d)(β) we use the ideal J ′ above
instead of Jn,<∂ . �4.5

* * *
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Definition 4.6. 1) Let Φκ be the set of pairs (ϕ, ν
˜

) such that

(a) ϕ is a definition of a κ+-cc forcing notion Qi = Qϕ,i in H(κ+) from a
parameter i ∈ κH(κ).

(b) Qϕ,i “ν
˜
∈ κH(κ)”; naturally the generic, but this is not necessary.

(c) Moreover, any κ-forcing preserves the properties of (a) and (b), and

“p ∈ Qϕ,i, , p ≤Qϕ,i q, 〈pε : ε < ε∗〉 is a Qϕ,i-MAC”

will be absolutely between VP1 and VP2 , where P` ..= Pq` , q1 ≤Q q2, and
ci ∈ V[Pq1

].

(A Q-MAC is a maximal antichain of the the forcing notion Q.)

2) For (ϕ, ν
˜

) ∈ Φκ and ∂ > κ, we define the ideal id(ϕ, ν
˜

) on P(κH(κ)) as usual.

Claim 4.7. Assume λ = λ<∂ and ∂ = cf(∂) > 2κ. Then there is q such that

(A) q ∈ Qκ,∂ , Lq has cardinality λ, and cf(Lq) = cf(λ).

(B) For every t ∈ Lq there are (ϕt, ν
˜

) ∈ Φκ and c
˜
t (a Pq,It-name of a member

of κH(κ)) such that Qq,t = (Q˜ ϕt,c˜t)V[η], and let ν
˜
t be chosen naturally.

(C) For every c
˜

(a Pq-name of a member of κH(κ)), letting
X ..=

{
t ∈ Lq : (ϕt, c

˜
t) = (ϕ, c

˜
)
}

and Y ..= {ν
˜
t : t ∈ X}, we have

(a) Pt Y /∈ id<∂(Qϕc
˜

, ν
˜

)

[Don’t recall coloring in this subscript, but it’s probably be-
cause t isn’t defined in clause (C), and only appears as a
bound variable in the definitions of X and Y . If you meant
this as a continuation of ‘for all t ∈ Lq,’ I can just repeat
that phrase again and change the indices to something else.]

(b) Letting V0 = V, V2 = VPq , and

V1 = HODV2
({
η̄ � L : L ∈ [Lt]

<∂
}
,
{
Y
}
,V
)

then V1 is a model of ZF + DC<∂ + “every Z ⊆ Y ⊆ κH(κ) is equal
to a κ-Borel set modulo the ideal generated by

id<∂(Q˜ ϕ,c˜ , ν˜) ∪
{
κH(κ) \ Y

}
∪
{
κH(κ)V[η̄

˜
�Lt] : t ∈ Lq

}
”.

(c) If (Qϕ,c
˜
, ν
˜

) does not commute with itself (see below) then we can use

the ideal id<∂(Q˜ ϕ,c˜ , ν˜) ∪
{
κH(κ) \ Y

}
.

(d) If we restrict the parameter c
˜
t to be from V, we can use V1 for all

(ϕ, c).

Remark 4.8. In 4.7(C)(c) the assumption is very weak. It fails for Cohen reals and
Random reals. By [She94], [She04a], among ccc Suslin forcings Q (see [JS88]) if Q
is not bounding then only Cohen forcings do not commute with themselves.

Probably among the bounding ones, ‘Random real’ is the only one.

Proof. Straightforward. �4.7
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