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2 SAHARON SHELAH

§ 0. INTRODUCTION

We show that any superatomic Boolean Algebra has an automorphism moving
uncountably many atoms if it is large enough (really, > Jy); similarly replacing N
by 6;

[Replacing Xy where? The only cardinals in the previous sentence were
J4 and ‘uncountable.’]

(an automorphism moves an atom if its image is not itself). We then show
that those results are essentially the best possible. Recall that many other natural
classes of Boolean Algebras behave differently; there are arbitrarily large members
with few automorphisms (and even endomorphisms). Of course, we can express
those results in topological terms. (See [Mon] and [Mon90] on Boolean Algebras.)

Rubin and Koppleberg [RK01] have proved the following: if {y+ + 23 = AT+
then there is a superatomic Boolean Algebra B of cardinality ™" with A atoms
and exactly A automorphisms answering Question 80 of Monk [Mon96] (i.e. in a
preliminary version asking for a consistent example).

By [She01, §1], provably in ZFC, there is a superatomic Boolean Algebra B such
that |[Aut(B)| < |End(B)| answering Question 96 of Monk [Mon96, p.291].

By [She01, §2], provably in ZFC, there is a superatomic Boolean Algebra B such
that |Aut(B)| < |B|, answering Problem 80 of [Mon96, p.291].

[So both this and [RKO01] answer Problem 807 (For reference, #80 in
Monk reads “Is Length;4 (A) = t(A) - Length(A) for every infinite Boolean
Algebra A?”)]

In fact, if p is strong limit, g > cf(u) = N and A = min{\ : 2* > 2#}, then
there is a Boolean Algebra B with 2# atoms, 2* elements and every automorphism
of B moves < p atoms (so |Aut(B)| < 2# < 27).

NOTATION

Definition 0.1. 1) For a Boolean Algebra B, its operations are denoted by x Ny,
xUy, x —y, and —z, and Op is its zero. Let us define the ideal id,(B) by induction:

e ido(B) := {0}
e idg(B) :=
{xlu...u:zcn :n <wand foreach £ =1,...,n, x, € B and for some a < 3,
either z; € idy(B) or 2¢/idq(B) is an atom of B/ida(B)}.
Hence for limit § we have

o ids(B) = 595 ids(B).
Let idoc(B) == |ida (B).

2) For z € idoo(B) let rk(z,B) := min{a : z € ida41(B)}.
3) B is superatomic if B = idoo (B).
[The rank] rk(B) is the ordinal « such that B/id, (B) is a finite Boolean Algebra
(so B =idy41(B)).
4) For a Boolean Algebra B and x € B, let
Bla:=B[{yeB:y<paz}.
It is a Boolean Algebra.

5) Define the following by induction on n =1,2,...:
[So, on n < w?]
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Ji(<h) =20 =3 2
k<O
Jns1(<6) =27 (<0,

Observation 0.2. If B is a superatomic and D, is an ultrafilter of B for n < w,
then for some infinite u C w the sequence (D, : n € u) converges to some ultrafilter
of D of B. (Le. for every x € B, for all but finitely many n € u, we have
xe€D, s xeD.)

Proof. Among the pairs
{(z,a): 2z €B, tk(z,B) = a and (3%n)[x € D]},

choose one (z, ) with x minimal. Without loss of generality z/id,(B) is an atom.
Let u:={n < w:z € D,} and check that D = {y € B : rk(y Nz,B) = a} is as
required. Uo.2



Paper Sh:704, version 2024-11-09. See https://shelah.logic.at/papers/704/ for possible updates.

4 SAHARON SHELAH

§ 1. SUPERATOMIC BOOLEAN ALGEBRAS HAVE NONTRIVIAL AUTOMORPHISMS

Theorem 1.1 (Main Theorem). Assume
(a) B is a superatomic Boolean Algebra with no automorphism moving > 6
atoms; that is, if ™ is an automorphism of B then
|{z € atom(B) : 7(z) # }| < 6.
(b) 0 is reqular uncountable.
Then |B| < 34(<0), soif 6 = o then |B| < J4(o).

Remark 1.2. If |B| is close to J4(< ), then the proof says much on the structure
of B.

Proof. Let B be the Boolean algebra satisfying clause (a) and let p be the number
of atoms of B. Without loss of generality

X; B is a Boolean Algebra of subsets of 1 and its atoms are the singletons {«a}
forao<p. (Soeg. BE‘a—-b=ciff a\b=rc.)
Let I :=[u]< "B = {z € B:|z| < 0}; clearly I is an ideal of B. Let
Y:={reB:x/Iis an atom of B/I}.
We shall prove (after some preliminary matters) that:
My If 2 € Y then |z| < Ja(< 6); i.e. 227,
We shall say that a set a C p is B-autonomous if (Vy € I)[y Na € B]. In this case

we let B [ a := B N P(a); this notation is compatible with 0.1(4).
Clearly

@1 The family of B-autonomous subsets of p is a Boolean ring and even a
Boolean algebra of subsets of p (i.e. closed under a Nb,a U b,a \ b), and
includes I and even B.

@2 For a B-autonomous set a, B [ a := {z € B: 2 C a} is a Boolean ring of
subsets of a which include {{a} : a € a}.
Also,

@3 If ag,a; are B-autonomous subsets of u, x € Y, ag C z, a; C z, and
B ag =B | ay over B | (a1 Naz) := BN P(a; Nas), then there is an
automorphism h of B such that h maps ag to a1, a; to ag and

a € (p\ag) \ a1 = h({a}) = {a}.

[Why? Let g be an isomorphism from B | ag onto B [ a; over B | (ap Nay). Now
we define a permutation h of atom(B) := {{a} : o < u}; let

a € ap = h({a}) = g({a}) Ah(g({a})) = {a}
and a € (p\ag)\a1 = h({a}) = {a}. By the demands on g clearly h is a well defined
permutation of atom(B). Now h can be naturally extended to an automorphism h
of P(1) as a Boolean Algebra: it is of order two. We have to check that A maps B
onto itself (even into itself will suffice, because of “order two”). Clearly h(z) =
and b | (B | (1 \ x)) is the identity, so it is enough to check thath | (B | z) is an
automorphism of B [ . But I N (B | z) is a maximal ideal of the Boolean Algebra
B |z (as 2 € Y), hence it is enough to check that » maps I N (B | z) into itself. As

belINBlz)=b=((b\ag\a1)UbNaNa)UdNag\a)U(dNas\ap)
and all four [subsets]| are in I, clearly it is enough to check the following statements:

belIANbCax\ap\ar = h(b)el,
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(<2NbeIAbCzNar\ai_g= hb)el,
and lastly, b€ I AbC agNa; = h(b) € 1.
The second implication holds by the choice of g, the first as iz(b) = b in this case,
and the last one as h | {{a}: a € agNay} is the identity (so again h(b) =b).]

@4 Ifb C pwith [b] < 2<% then for some B-autonomous set ¢ we have b C ¢ C
and |c| < 2<9.
[Why? Find c satisfying b C ¢ C p and |¢| < 2<? such that
(Vyeld<)[(Fze)lyCzl= (3 Cc)lyCzell.

(Just close 6 times, recalling 6 is regular.) Now if y € I then |y| < 6 hence
yNee€ <Y, so there is z such that yNecC 2z €T AzC ¢ hence yNc=yNzel.
This proves that ¢ is B-autonomous, as required.]

Now we return to the promised Xs.

Proof. Proof of Xy:
Toward contradiction, assume z € Y and |z| > Ja(< ). Let

<ozi 1 < 32(< 9)+>
be a sequence of elements of x without repetition. Let a; be a B-autonomous set of
cardinality < 2<% such that {a;;. : € < 2<%} C q; (this exists! by @), and without

loss of generality a; C . (Just use a; N x; it is as required by @®;.)
For some club C of Jo(< 6)" we have

i<jeC=a;N{aj:e<2"% =g,

hence i < j € C = |a; \ a;] > 2<%. Now I NP(a;) has cardinality < |a;|<¢ < 2<¢
(as 6 is regular) hence B | a; has cardinality < 2<?. It follows that there are a
stationary S C {6 < Ja(< )T : cf(6) = (2<9)*} and a* such that
,jeESNi#j=a;Na;=a"

(the A-system lemma). Also, as a; C X € Y and |a;| = 2<% and |B; | a;| = 2<Y,
[Are these supposed to be i-s or j-s? Also, B; hasn’t been defined any-
where.]

the number of isomorphism types of (B | a;,{a})acqa+ is at most < Tp(<9).
Hence for some ¢ < j from C' NS, we have B [ a; = B | a; over B [ a* but

la; \ a;| > 2<% > 6. Hence by @3 there is an automorphism h of B which moves

> 2<% atoms, a contradiction. O,

Next,
Xs |Y/I| < 33(<0).

[Why? If not, we can find z; € Y for i < J3(<6)* such that
As |z;| < Ja(<0) by Ky, by the A-system lemma, for some unbounded A C
J3(<0)T the set {x; : i € A) is a A-system, hence without loss of generality
(x; : 1 € A) are pairwise disjoint (by substruction — not really needed, just clearer).

As B | z; is a Boolean Algebra of cardinality < Jo(< 6) (as I N P(x;) is a
maximal ideal of B | 2; and I NP(x;) C [2;]<Y, and |z;| < Ja(< ) by Ky) there
are at most J3(< ) isomorphism types of B | x;. So for some i # j in A we have
B[ x; 2B [ z;, so as in the proof of @3 there is an automorphism A of B mapping
x; to xj, x; to x;, and h | (B | (1g — z; — x;)) is the identity. Hence h moves
> |z; \ z;| > 0 atoms, because z; # x; mod I.]

1 We can also use {a; . : e < 6}.
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Choose a set {4 : o < a* < J3(< )} of representatives of Y/I, and let * :=
U 2o (so z* C pand |z*] < J3(< 0)).

ala*

Define J := {a € B: aNaz* = &}.
X, JCI.
[Why? If not, there is « € J \ I such that z/I is an atom of B/I, so
x/I € {za/]:a<a}.

So z/I = x4 /I for some «, hence |z \ zo| < 6 hence |z N xy| > 6 hence z Na* # &
hence x ¢ J, a contradiction.

Define an equivalence relation £ on B: y; £ ys iff y1 Nz™ = yo N ™.
Clearly € has < 2/*"| equivalence classes and 21#"1 < J4(< ). Also,

1 EyY2 = y1 \ Y2 € J;

in fact, y1 Ey2 < (y1 Aya € J) (see the definition of .J).

Choose a set of representatives {y, : v < v*} for € (so |y*| < 34(<6)) and let
B* be the subalgebra of B generated by {y, : v < v*}. So [B*| < J4(<0), and
(being superatomic) the number of ultrafilters of B* is also < J4(<#). Next, B is
generated by J U B* because for cach y € B there is v such that y £y, y, € B,
y—1yy €J,and y, —y € J. Hence y € (JUB*). For D an ultrafilter of B*, let

Zp={a<p:(VyeB)|acysyec D]}
Clearly,
X5 For every a € pu\ z* there is a unique ultrafilter D = D[a] on B* such that
a € Zp (and the number of such ultrafilters is < J4(< 6)).
Now

X w< 34(< 9)

[Why? Assume not. By @4, for each ¢ < p we can find a B-autonomous a; such
that |a;| < 2<% and [i,i +2<%) C a;. Let {Bic 1 € < g;} enumerate q; in increasing
order. Clearly for some unbounded A C 34(< 0)7, for all i € A, the following does
not depend on i: ¢; and D[f; .| for ¢ < &; (use Xj5),

[How is it that both ¢; and (D[B;.] : ¢ < ¢;) don’t depend on i? I could
be mistaken, but this absolutely doesn’t look right to me.]

and {u € [g,]<% : {Bic e €u} € I}. And for ¢ < 2<% & = £(i,¢) will denote the
unique € such that 5, . = i + ¢, and without loss of generality a; N [i,7 + 2<0) = &
for j <iin A.

[Isn’t this covered by ‘a; Na; = &’ below?]

By the A-system lemma, without loss of generality for some a* we have a;Na; =
a* for i < j in A. So by @1, the set a* is B-autonomous as well as a; \ a*, so we
can use a; \ a*. So without loss of generality a; Na; = @ for ¢ # j in A, and as
|o*| < 34(< 0) clearly without loss of generality i € A = a; N2* = @.

[Isn’t this the method by which you get ‘a; Na; = @7’]

So for ¢ # j in A there is a permutation g of order two of u interchanging a,
and a;. That is, g(Bi,c) = Bj.e, 9(Bjc) = Bie, and g({B}) = B for B € (u\ a;) \ a;.
Clearly g can be extended to an automorphism § of P(u), and § [ B* is the identity.
(The proof is like that proof of @3, using “B is generated by J UB*” and “D[f; ]
does not depend on i.”) So we get a contradiction.|

So as |J| < |[u]<9’ =p<? < 34(<6)<? = J4(<0) and |B*| < |B/E| < u(<0)
and B is generated by J U B*, together we get the desired conclusion.
This completes the proof of 1.1. Oia
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Discussion 1.3. 0) We can strengthen the conclusion of 1.1 to:

@ One of the following occurs (where I is as in the proof):
(a) There is a € B\ I such that aNa = 0.
[Is that even possible in a Boolean Algebra? Doesn’t it just
imply a = 0p?]
(b) There is an ideal J C I containing 2<% pairwise disjoint elements such
that a,b € J = an f(b) = Op.
[What’s f? I don’t see it defined anywhere. Do you mean ‘for all/for
some automorphism of B?’]
1) We can weaken the assumption “B is superatomic” to “B/I.,[B] is superatomic,”
where:
(*)1 For a Boolean Algebra B and infinite cardinal 6, we define
ILy[B] := {z € B: B | z has (algebraic) density < 6}
(see [She92, §1] for a little bit more about this). For B superatomic, this is
the I in the proof of 1.1 on such Boolean Algebras.
[We can choose a maximal set Z of pairwise disjoint elements of

{zeB\ {0} : (B | z) <6}

Now without loss of generality B is a Boolean subalgebra of P(u) such that
r € Z = x € [u<? and continue as in the proof of 1.1.]

2) What if we just assume “B/I.¢[B] is atomic?” One point in the proof may
fail: the number of ultrafilters of B* is not necessarily < |B*| < J4(<6) but is
< 2B < 22" < 35(< 0), so we should replace 34 (< 6) by J5(< ) in the conclusion
in parts (1),(2).
[This notation hasn’t been defined, and conflicts with earlier usage. Up
to now 7 has denoted an arbitrary automorphism of B.]
3) In parts (1) and (2) we may replace “m(B [ z), the algebraic density, is < 0”
by “d(B | z); i.e. B | = has topological density < 6” (recalling that any Boolean
Algebra B’ can be embedded into a Boolean subalgebra of P(d(B’)). However, the
bound is seemingly bigger.

So we use I2,[B] :={z € B:d(B | z) < 0}. Note IL,[B] C IZ,[B].
4) In both parts (1)-(3) we have to make easy changes to adapt the proof of 1.1.
Let k =1 and py = 2<Y for parts (1),(2), and py = [?], J3(< 0), k = 2 for part (3).
We try to indicate some changes and we redefine I as I*,[B].

X7 Without loss of generality B C P(u) and a € I = I% [B] < |a| < 6.

[Why? Let Z be a maximal set of pairwise B-disjoint members of I%,[B] \ {0g}.
For each z € I%,[B], let D, be a dense subset of ultrafilters (z,B) = {D : D an

ultrafilter of B be such that z € D} of cardinality < §. Let p = |J D, and let
z2€Z

D = (D, : o < p) list this set. There is a natural mapping h = h from B to P(u)
defined by h(a) = {a < p:a € Dy}.]

Easily,

(¥); h embeds B into P(u).
[Why? h is trivially a homomorphism. If ¢ € B\ {0}, then for some a € Z we have
a N ¢ > 0p hence for some o < D,, € D, we have a € D. Let D = D,, for a < p so
a € a. So the kernel of « is {Op}, so we are done.]
[Very little in the last few paragraphs made sense to me. D is an ultra-
filter and D, is a collection of ultrafilters, but so is (z,B)7]

(*)2 h maps I% ,[B] into [p]<?.
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[Why? Let b € I%,[B], and define Z,, := {a € Z : bNa > 0}; it is a subset of Z.
Now, for each D € D, we have |Z, N D| < 1; in fact, |[ZND| < 1. Soif |Z,] > 6
then | Zy| > |Dy|, so for some ¢ € Z;, we have (VD € Dy)[c ¢ D], but this contradicts

the choice of Zy. So |Zy| < 0,0 U{D :b€ D and D € |J D} has cardinality
cEZy

> |De| < 0 and is a subset of h(b).]
ceEZy

(*)3 h maps IX )[B] onto [1]<? Nrang(B) [(?7)].
[Why? [Doubtful.]]
So without loss of generality,
@ h is the identity.
So the rest is easier.
Now
@ if we assume B/I¥,[B] is superatomic [. . . then what?]
Otherwise we have just
® B C P(u), I is an ideal of B C [1]<Y, and B/I is atomic.
So the assumption toward contradiction is
@ |B| > 35(<0) and —(a), ~(b) where

(a) There is an automorphism f of B such that for some ¢ € B\I, f(cONc =
Op.

(b) There is a permutation 7 of p inducing an automorphism of B such
that for some X C p of cardinality < 2%, the union of I NP (z) such
that 7(X)NX = @.

We add:
®y If b eI then |B | b| <2 for some o < 0
[Nothing here depends on ¢.]
@ If v € [u] < 257 then | X| < ) (so for k = 2 let ), be the bound [End of
Line]
®)] We say that X is B-autonomous when X is a sub-Boolean ring of I and
(VaeI)(Fbe X)[b<gaA (Vce X)anc< bl
®% if X1, Xo C I are B-autonomous, z € Y, X; U X2 CB | z, and X3, X5 are
isomorphic over X; N X5, then there is an automorphism of B over X; N X5
mapping X; onto Xs.
®) if X C I, |X| < py then there is a B-autonomous X’ C T of cardinality
< p1 such that X C X'.
[Why? If & = 1 we can find X’ of cardinality < 2<%, if there is b’ € I above ever
member of U, then there is such ¥’ € X’; now check as there. [FILL.]]

Theorem 1.4. The pair B, I) satisfies © if the Boolean Algebra B and ideal I
satisfies: if X below holds when:
[Unreadable. I note there are two ©s and zero Xs below.]
© (a) B has cardinality < J5(< 0),]I] < 34(<0)
(a)* if in ? is strengthened to B [ b has algebraic density < 0 then |B| <
Ju(<0), 1| <?
(b) add on s a (<), . . . see end of §3
©® (a) B is a Boolean algebra.
(b) I is an ideal of B.
(¢) ifbe I\ {0} then d(B [ b) (the topological density) is < 0.
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(d) B/I is an atomic Boolean algebra.

(e) For allb € B\ I and all automorphisms m of B, we have 7(b)Nb # Op.

(f) For no ideal J C I of cardinality 2<% with 2<9 pairwise disjoint non-
zero members does B has an automorphism mw such that

bce J=bnNmr(c) = 0p.

Discussion 1.5. 1) We can adapt 2.1 from §2 below to the case of 1.3(2); i.e.
show that J5(< 6) cannot be improved in general. E.g. let (d¢ : ¢ < A =2*) be an
independent family of subsets of p (so any finite Boolean combination of them is
infinite) and let B* be the Boolean subalgebra of P(u) generated by

{do o< X=2" U {{i} i< p}.
We let {c} : v < 22} be an independent family of subsets of A, and let X* :=
U XoU{z} :y < 2*}. We ignore A’ (and omit clause (k) of the assumption) and
a<p
among the generators of B, clause (i), (ii) remains and
(ili)’ ¢c = {x € X : for some a € d¢ we have z € X, }U{z? : ( € ¢k, v € [u,2Y) }.
[Isn’t that first part just a long way of saying ¢ |J X,7’]
aed;
2) We may consider replacing automorphism by monomorphisms. The problem is
only in the proof of 2.1, “f maps J; into J;” does not seem to follow.
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§ 2. CONSTRUCTING COUNTEREXAMPLES

We would like to show that the bound 34(< ) from 1.1 is essentially the best
possible. The construction (in 2.1) is closely related to the proof in §1, but we need
various assumptions. So in particular, x here corresponds to

sup{|B [ a|: a € Y} < Ds(<0)

there, p here corresponds to Y| < Js(< ) there, and X here corresponds to
latom(B)| < J4(< ) there. We shall deal with them later.

Lemma 2.1. Assume
(a) Ry <O=cf(@) <k <pu<N <A
(b) There is an A C [u]¥° of cardinality p, almost disjoint (i.e. A+ B € A=
|AN B| < Xg), such that (VA € [u]?)(3B € A)[B C* A].
(c) E:<Ba:a<ﬂ>
(d) By is a superatomic Boolean Algebra with < k atoms, such that |B,| < A
and any automorphism of B, moves < 0 atoms; moreover, if c1,co € I,
(see below) and f is an isomorphism from B, [ (1 —c1) onto B, | (1 —ca),
then
|{z € atom(By) : & <p, c1 or f(z) # x}| < 6.
(e) In = {beBy: |{z € atom(B,) : < b}| < 0} is a mazimal ideal of B,.
(f) There is an infinite set {a% : n < w} of distinct atoms of B, such that for
every a € I, the set {n <w:al < a} is finite.
(9) If a # B then for no an € I and ag € Ig do we have
[Ba [ (1Ba — aa) = Bﬂ [ (1]13;‘3 — ag).
B* is a superatomic Boolean Algebra.
B* has p atoms.
B* has \ elements.?
If N > p then we have x, A, I* satisfying:
(a) A" C [N} is a MAD family of cardinality x.
(B) I* is an ideal of B* containing idi(B*), included in ids)(B*), such
that the Boolean algebra B* /I* is isomorphic to
{aCxlal <RV Ix\al < No}
(so x < |B*| = A follows).
() If 7 is a partial® permutation of N, Z; == X'\ dom(r),
Zy = N \rang(n), and Z = Zy U Zy € [N]<Y satisfies
Ac A = |(AAT"(A))\ Z| < Ry,
then the support of m has cardinality < 0 (where the support of a
permutation is {a < X : w(a) # a}). ¢
Then we can find B such that:

(o) B is a superatomic Boolean Algebra.
(8) B has X' atoms and X elements.
(v) every automorphism g of B moves < 0 atoms; i.e.
[{x € atom(B) : g(z) # x}| < 6.
2 If there is a tree 7 with < p nodes and > A branches (= maximal linearly ordered subsets)

then such B* exists.
3 Le. 7 is one-to-one such that dom(w) C A’ and rang(w) C N.
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Proof. Without loss of generality B* is a Boolean Algebra of subsets of
{wi,a:a < p} with {wia} :a < p}

being the atoms of B*.

[I have no idea what’s going on there. There are more right braces
than left.]

N =plet A :=2, x =0, and I* = B*.

Without loss of generality, B, is a subalgebra of P(X,) and the set of atoms of
B, is {{z} : 2 € Xo}. Also without loss of generality, o # 8 = X, N X5 = @, and
we define X = (J X,.

a<p

IfXN =plet Y* = g;if N > pu, let Y* C B* be such that |Y*| = x and
{y/I* : y € Y*} is the set of atoms of B*/I* with no repetitions. Without loss of
generality:

Ko For every y € Y*, for some «, y/id,(B*) is an atom of B*/id,(B*) and
(Vz <p~ y)[z € ido(B*) & z € T"].
[Why is this possible? For each y € B* \ I*, let

a=a(y) = min{rkg«(y —x) :x € I"}

and choose ) exemplifying it, so (y — zJ)/id,(B*) is the union of finitely many

atoms of B*/id,, (B*) — say, y1/ida (B*), ..., yn/ids(B*), where n > 1 and (without
loss of generality) yo <p» y. So {y1,...,yn} cannot be all in I* and there cannot be
two y, € B*\I*, so there is a unique £ = ¢, such that y, ¢ I*. Let a7 = (1—y, )Uz);
now {y — x, : y € Y*} is as required.|

Let Y be such that Y™ C B*, (y/idyk(yp)(B*) : y € Y'T) list
{y/ldrk(yIB*) : y/idrk(y,]B*) (B*) is an atom of B*/ldrk(y,B*)(B*>}

[That doesn’t look right. I see y/idy.n(B*) everywhere else, but never
y/idpian. If that’s a typo, then why not write atom(B*/id,x(, z~)(B*))?]
with no repetitions, and Y := {y € Y™ : rk(B*) > rk(y, B*) > 0}.

Without loss of generality

yme .= {y e YT :1k(y,B) = rk(B) }
is a partition of 1. For y € Y, let D, be the ultrafilter on B* generated by
{ypu{l—2:2eB* rk(z,B*) <rk(y,B*)}

for each y € Y.

[Which is it? y € YT, or y € Y7]

Without loss of generality, Y* C Y and we have (Vy € Y 1)[y < y™*] for some
ymax g Yymax - Also, as B*/I* is isomorphic to the Boolean Algebra of finite and co-

finite subsets of x, y € Y = rk(y,B) < rk(B), and clause (k)(8) of the assumption
of 2.1, clearly

yeY\Y* = {zeY": 2z -y €iduq 5 (B")} is finite.

So without loss of generality, those sets are empty for y € Y\ Y* (and are singletons
for y € Y*, of course). Note that if ' > p then Y* is of cardinality |.A’|, and without
loss of generality |Y \ Y*| = .

Let g : p — X be one-to-one and onto, and for A € A (from clause (b)), let
{74 : k < w} list A without repetition. Let ¢* : 4 — p map an ordinal +y to the
unique o < p such that g(vy) € X,.

For B < u, let i(8) be the unique ¢ < wy such that (Ja)[wia < 8 = wia+1]. For
A € A we define i(A) := min{i < w; : i(g*(y)) < i for every v € us}.
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X; We have (a4 : A € A, uy well-defined) such that:
[Hasn’t been defined yet. Reading ahead, u4 should be defined
whenever i(A) < w;.]
(1) aa<p
(17) aa €{w—1+1i: 8 < pand i(4) <i<wi}
[No idea what that is.]
(ZZZ) ap, = Qp, = A1 = A2
(v) {aa: A€ A rang(g* | A) infinite} = {wia+i:a < p, i <wi}
Now, by induction on ¢ < wy, we choose y, when i(a)) < i and ua,ya when i(A4) <1
such that:
K11 (a) yo €Y or z, is an atom of B*.
(b) If rang(g* [ A) is finite then uy = @.
(c) If rang(g* | A) is infinite then
() wy is an infinite subset of A.
(8) g* | ua is one-to-one.
(7) za€Y
[What are z, and z4 supposed to be?]

(6) (Dg, : B € ua) converges to D, , . By this we mean that for
every x € B, for all but finitely many 58 € ua, we have

reD. , oDy,

This is easy by Observation 0.2.
For oo < p, let an be {g(7) : v € ua} if @ = ay for some A € A, and @ if there
is no such A. Note that if uy = @ (i.e. rang(g [ A) is finite) then a, = @.
Toward defining our Boolean Algebra, let {:zti; Dy € [, N )} be pairwise distinct
elements not in X. Let

Al ={{p+iiec A} : Ae A'};
it is a maximal almost disjoint family of countable subsets of [u, \'), as in clause
(k) of the assumption. So if g = X then A” = A’ = @ and [Y*| = (N — p)*° =0,
and if X > p then |A”| = |A| = [Y*| = x. Let (d, : y € Y*) list . A” with no
repetitions.
Now we define our Boolean Algebra B. It is the Boolean Algebra of subsets of
X*=XU {xfy :7 € [, X)} generated by the following sets:*
Ko (i) The sets {a € By : |a| <0} U{aUaq :a € B,,|a| > 0} for a < p.
(i) {3} for 7 € 1, X).
(¢43) The sets ¢, (for y € Y'), where
oy ={reX:(Fa<plreXaAyeD.]}
U{z:vew)n U dy}.
yey*

[Aren’t these guys already included by clause (ii)? Also, check-
ing the previous paragraph, I see that “y ¢ d, for some y € Y*” is
just a circuitous way of saying v € |J.A".]

Clearly,

®2.0 B is a subalgebra of P(X™*) which includes all the singletons (and hence is
atomic). It has A" atoms and A elements.

4 Recall that aq may be empty, and that X := |J Xa.
a<p
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[Why? The least trivial is z € X = {x} € B, but if x € X, then {z} is an atom
of B, hence it belongs to B.]
Note that
®2.1 (i) For o, 8 < p, Xo Nap has at most one element.
(17) XoNXpgis| | (except when a = f3).
(#91) aq Nag is finite (when o # ), as A is MAD.
(1v) (Xa Uaq) N (XpUag) is finite for & # g < p. (This follows from
clauses (i)-(iii).)
(v) f @ < pand y € Y, then either the set (X, Uaq) \ ¢y is finite or
(Xa Uaq) Ney is finite.
[Why? Recalling B* is a subalgebra of P(u) and the definition of ¢,, clearly

cy N X,y € {Xa, @}

Also, X, C ¢y, so if a, = & we are done. Assume o = a4 (so uy is infinite) and
it suffices to prove that for all but finitely many 8 € a,, we have

B €cy e Xa Coy.

But a, = {g(y) : v € ua}, so this means “for all but finitely many v € uy we
have g(7) € ¢, & X, C ¢,.” But the definition of ¢, and g* this means: for all but
finitely many v € ua we have g*(y) €y &y € D, . & y€ D, . But 2, =24
and (D, :7 € ua) converges to D,_, , so we are done.|

[Again, no idea what the z-s were intended to be.]

®s9.2 For a < p, we have
a€B,ANla|<b8d=>aceBAB[a=B, |a.

But B, [ a is superatomic for all @ € B,, so {a € B, : |a| < 8} C ids (B).

[Why? For the first implication we should check that for every one of the generators
of B listed in Xy (7)-(4i7) above, its intersection with a belongs to B,, | a. For Ky (i7)
this is trivial, for Xs(7) use ®2.1(i)-(iv), and for Kg(i#ii) use ®q1(v). The rest
follows.]

®9o.3 For a < pu, let
It ={aeB:aC X,Ua, and |a| < 0}.
Then
(i) I ={aUb:a €B,, |a] <0, and b C a, is finite}
(it) I is a maximal ideal of B | (X, U ag).
[Why? Easy. The main point concerns (X, Uaqs) N (Xg U ag) satisfying clause (i)
[Clause (i) of what?]
when it has cardinality < 6; this holds by ®21(iv). [The second point is]
(Xa Uaq) Ney has cardinality < 6 or (X4 U aq) \ ¢y has cardinality < 6, which
holds by ®2.1(v).]
®o4 a < p= X,Ua, €1do(B)
[Why? First, X, Ua, € B by clause (i) of Ky above; second, if X, U a, ¢ ide(B)
then by ®2.9
() [a € Ba Alal < 0= acide(B)].
Hence by ®2.3 above, (X4 U aq) is an atom of B/id¢(B) for ¢ large enough, hence
Xo Uag belongs to id¢41(B): a contradiction.]
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®o5 B[ (XaUaqs) 2B, for a < pu. Hence, if o < 8 < p then for no ¢, € B,
such that ¢, <p Xo U o and |co| < 6 and cg € B with ¢g <g X3 U ag,
leg| < 6 do we have

Bl (XaUaq\cy) =B f(XﬂUag\Cﬂ).
[Why? By clauses (f)+(e) of the assumption, the first phrase holds. The “hence”
follows by clause (g) of the assumption.]

Let J; be the ideal of B generated by
U IFu{al v epN)}

a<p
(We will see that J; is I from the proof of 1.1, positive part, i.e. J; = [N]<¢ N B).
Let Jy be the ideal of B generated by J; U {X, Uas : a < u}. Let Jj be the
ideal of the Boolean Algebra P(u) generated by Jj.
®26 (i) J1 Cido(B)
(ii) J1 C [X*]<? is a (proper) ideal.
(#i1) J1 C Jo C ideo(B) and Jo/J; is the ideal of B/J; generated by its
atoms; i.e. id;(B/J1), where the atoms are (X, Uaq)/J1.
[Why? For clause (i), note that id.(B) is an ideal of B, which contains the gener-
ators of J; by ®5.4° and the atomicity of the {#2}. Clause (ii) is obvious. Clause
(iii) follows by J; C Jo C B[, which| holds by the choice of J. By ®as3, each
(XaUag)/Jy is an atom of B/.J;.
But are there more atoms? If not, then by the definition of a B as generated

by ..., we can find n; < ne < w and yo,...,Yn,—1 € Y U Y™ guch that ¢ =
ni—1 neg—1 m—1 no—1

N ¢y, — U ¢y, satisfies ¢, /J; isan atom of B/J;. Let y = () ¢v— |J ¢y, €B.
Z:O é:nl EZO Z:’I’Ll

Case 1: y € id1(B).
Say y = {a; : £ < n} € [u]<™ is such that i(ay) = 0 for £ < n. Let

Bep\{aw: < pul;

what is ¢ N X3? We can prove that it is empty by induction on i(/). Similarly,
cN S = &, so necessarily ¢ € Jy as required.

Case 2: y € id;(B). [Presumably one of these is a ‘¢.’]
Then we can find distinct 5,, < p for n < w such that
n<w= B, €yni(8,) =0.
Then |J Xg, C ¢, hence ¢ ¢ Jy. So we are done.]

n<w

We shall prove

®9.7 B/J3 is isomorphic to a homomorphic image of B*.
Toward proving ®q.7, let S := {xi : 7y € [u, ')} and define a function h as follows:
its domain is {¢, : y € Y UY™*} and h(cy) =y for y € Y UY™?* 50 h is injective
into B*.

Now,

() ng <n<w m <m< w, and yo,...,Yn—1 € Y U Y™™ ig without
repetitions, then:®
= () ¢y — nUI ¢y, belongs to Jy in B if

<ny l=nq

5 For Xq U aq; that is, for the members of It
6 Really, we get “iff;” but no need.
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n—1
To 1= ﬂ ye — U Ye c ldl(B) m B*
{<ny l=nq

[Why? First, assume that the second statement holds (so 72 C {ay : £ < m} €
[1]<®). Then, by the choice of the c,-s, trivially

A= ) e\ 9) — U (e \ ) =
<nq l=n,

U{Xﬁ SYos -y Yng—1 € D25, Ynys ooy Yny—1 ¢ D25} =

U{XB 1 J =179 € ng} - U X(M Uaq,-

£<m
But (1 A7) CSU U aa,,s07 €S mod J; .
£<m
Now assume 71 NS is infinite, hence X > p. Recall A” = {d, : z € Y*} is

a MAD family of subsets of A\ . Hence {{z% : v € d.} : z € Y*} is a MAD
family of subsets of S = {:c; Dy € p, )\’)}. So necessarily, for some z € Y*, the set
TlﬂSﬁ{xi'; : v € d,} is infinite. As TlﬂSﬂ{a:i‘; :y €d,} Cey, for £ < nqg and
id; (B*/J1) is a maximal ideal, and by the choice of ¥ and Y™, necessarily y, = z;
hence yo = z and ny = 1. Similarly ¢ € [n1,n2) = ye # 2z, hence

(€ ny,n) =y Nyo =y Nz € idzp)(BY) = [{2f 1y €d.} Ny, | <Ro.

Hence clearly ¢ € [ny,n) = ye ¢ D,, but yo € D, and a < p = {a} ¢ D, (as z €
Y'!) hence B* ¢ id; (B*) (in contradiction to our present assumption), so necessarily
71 N S is finite. Therefore 7, NS € J'. Together with the previous paragraph,
71 € J5, but 71 € B hence 71 € J, as required. That is, 7o € id;(B) = 7, € Ja.

So we have proved (*)2.]

As B* is superatomic and by the choice of Y U Y™#* ®, - clearly follows from
(*); in fact, h induces an isomorphism h from B /J2 onto B*. But B* is superatomic
and Jo C ide (B) by ®2.6(4), hence

®9.8 B is superatomic.

Now as {{a} : & < p} are the atoms of B* — and recall {X, Uas/J1 : @ < p} are
the atoms of B/J; by ®¢(iii) — and J; C [X*]<? while | X, Uas| > 6, clearly

®o9 J1 =BN [X*}<0.

For the rest of the proof, let f € Aut(B), and toward contradiction we assume
supp(f) := {z € atom(B) : f(x) # x} has cardinality > 0.

Recall that J; = {a € B : [a| < 0} and {{z} : # € X*} are the atoms of B, so
necessarily f maps J; onto itself. Note that {(X,Uaq)/J1 : o < p} lists the atoms
of B/J1 by ®2.6 + ®2.7. Assume f(X,Uaq)/J1 = (XgUag)/J1 and a # 3; let

c1 = (XaUay) — fHXpUag) and ¢ == (Xg Uag) — f(Xo Uay).

Both (being the difference of two members of B) are in B and ¢; < X, Uag,

co < XgUag, and by the present assumption, of course ¢, c2 € Ji, hence |e1, [ea] <
. Now ¢; < X, Ua, and |c1| < 0 implies ¢; € I}, so c1 N X, € I, and ¢1 \ X, is
finite. Similarly, co N X3 € Ig and ¢3 \ X3 is finite. Clearly

f1 (B (XaUaq —c1))

is an isomorphism from B [ (X, Uaq —¢1) onto B [ (X5 Uag — ¢z), contradicting
®9.5 by the “moreover” in clause (d) of the assumption of Lemma 2.1. Hence the
automorphism which f induced on B*/J; maps each atom to itself, hence it is the
identity. Also, for o < p we have (X, U aq) A f(Xo Uay) € Jp: that is, it has
cardinality < 6. So
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X3 For each a < p, letting
el = (XaUay) — fH(XaUan) € 11
and 2 = (Xa Uaa) — f(XaUaq) € J, we have that f | (B, | (1—¢)) is
an isomorphism from B | (X, Ua, — cl) onto B | (X, Uas — 2).
Hence
Xy Z, = {x € atom(B,) : z <p, ¢l V f(x) # z} has cardinality < 6.
(Why? By clause (d) of the assumptions on B,,.) Let

vi={a<p:(@re Xo)|[f({z}) #{z}]}.
Assume, toward contradiction, that
|Z|5 |’U| > cf(@)
For o € v, choose z, € X, such that f({zs}) # {za}, and (possibly shrinking
v) without loss of generality a, 8 € v = {zo} # f({zs}). Let ¢’ : v — p+ 1 be
such that f({za}) € Xy (a), where we stipulate X, := S. Applying the above to
=1, we could have chosen (x;,a;,7;) by induction on i < cf() such that «; € v,

F{@:) # {ai}, @ € Xy F({@:}) © Xy, and a5 & faz,m; 05 < i} \ {u}. Let
v={a; 11 <cf(0)}.

Without loss of generality, either ¢’ is one-to-one into p or ¢’ is constantly u.
Now by clause (b) of the assumption, without loss of generality, for some A € A
we have {z, : @ € v} D A. So ay < u is well defined and

{x € XopaUagpa) : f({z}) <B Xapa) U daga)}
does not belong to I;'[A]; so by K3 (applied to @« = a4 and the properties of
Chja) Caa)) We obtain an easy contradiction.
We can conclude -5, hence v has cardinality < cf(f), hence

{z € X : f(z) # x}| < 6.

If 4 = X then we are done, so assume p < \. Now
S={a:vepN)}=X"\XCX"

satisfies:
X (a) (Yo € B)[bN S infinite A A [bN X, = @] = 1k(b/J1, B/J1) > 1]

(8) If S’ satisfies the propertyeof S in clause («), then |S”\ S| < 6.
[Why? Clause («) is proved by inspecting the definition of B. As for clause (), if
S\ S| > 6, as S’\ S C X, clearly then there is A € A such that
{g9(i) :ie A} C* S\ S.
First, if o := a4 is well-defined then X, Ua, € B and
tk((XoUas)/J1,B/J1)=0<1

but (XoUas)NS’ D a, is infinite; a contradiction. Second, if « 4 is not well defined,
then for some a < p we have {g(i) : i € A} N X, is infinite, and we get a similar
contradiction. ]

Hence for ¢ = 1, —1 the set
Syo={at 1y e XN), f({z3}) C X}
has cardinality < 6. Let S} := S;l U S}.
Also for every y € Y*, letting « := rk(y, B*), we have ¢, A f(cy) € J1.
(Just recall that the automorphism that f induced on B/J; is the identity, and

recall that
dC SAde J = dis finite
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by ®¢, hence the symmetric difference of {{z%} : vy € dy} \ S% and
{f{zz}) : v edy}\ S7 is finite.

As A" :={d, : y € Y*} is a MAD family of subsets of A"\ p as in clause (k)(a)
of the assumption, the set

{7y el ) f({3}) # {23} }

is of cardinality < 6, so we are done . . .

Not exactly: we have assumed X!

To eliminate this extra assumption we make some minor changes. First, without
loss of generality B* is a Boolean Algebra of subsets of {a : o < p even} with the
singletons being its atoms. Second, for A € A, we choose u = uy as follows (if
possible). As we can replace u4 by any infinite subset, without loss of generality:”

(A) Either (@) or (8), where
(o) g*(va,k) is odd for every k € w.

(8) g*(va,) is even for every k € u.
(B) If case («) occurs then (¢*(yax) : k € u) is without repetitions.

(C) If case (B) occurs in clause (A), then there is a unique y = ya € Y such
that ({g*(ya,k)} : k € u) converges to D, .

Note
() If uy is not well defined, then for some finite W C u we have
{g('YA,k) k< w} C U X,.
aeW
Now we choose (a4 : A € A, us well defined) such that:

(#%) (aa : A € A ,ua well defined) is with no repetitions, each a4 is an odd
ordinal < p and if possible it lists all of them.

Clearly without loss of generality B*/id; (B*) is nontrivial hence Y # & so choose
y* €Y. Now we define a function g from B* into P(u) as follows:

glx)={a€puna: aiseven}
U{a<p:a=aa forsome A€ A, ua, ya are well-defined,
and z Nya ¢ idgy, ) (B*)}
U {oz <p:aisodd, but o ¢ {aa: A€ A, ua,ya well-defined}
and 2 Ny* ¢ idyy-5)(B*)}.

Easily, g is a homomorphism from B* into P(u) as B* is superatomic. Let B**
be the Boolean Algebra of subsets of p generated by rang(g) U {(a) : @ < u}. Now
we just replace B* by B** C P(u). 0o 4

Discussion 2.2. Why do we use MAD families A C [p]¥ and not C [u]? If we
use the latter, we have to take more care with superatomicity, as the intersections
of such members may otherwise contradict superatomicity.

7 Clause (C) is possible as in the justification of Xy above.
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§ 3. SUFFICIENT CONDITIONS FOR THE CONSTRUCTION’S ASSUMPTIONS

Here we shall show that the assumptions of 2.1 are reasonable. Now in 3.2 we
shall reduce clause 2.1(k) to Pr()\,6), where Pr formalizes clause (b) there. In
3.3, 3.5 we give sufficient conditions for Pr(u,o). In fact, it is clear that ([for
1,0 large| enough) it is not easy to fail it. In 3.10 we give a sufficient condition
for a strong version of clauses (e)-(f) of 2.1 (and earlier deal with the conditions
appearing in it). So at least for some cardinals 6, the statement “not having the
assumptions of 2.17 (with § := o™ for simplicity, x := Ja(o), p = J3(0), and A
such that (h)+(i)+(j) of 2.1 holds) has large consistency strength.

Definition 3.1. 1) Pr(x, u,6) means that 1 > 0 and for some A we have:
(a) AC [
(b) A is almost disjoint; i.e. A# B € A= |AN B| < N.
(c) [Al=x
(d) (VB € [u]?)(3A € A)[A C* B].
2) If we omit x we mean “for some x.”

3) We call A C [A]®0 saturated if every A € [A]N0 is either almost contained® in a
finite union of members of A or almost contains a member of A.

Fact 3.2. 1) Clause (b) of the assumption of 2.1 is equivalent to Pr(u, i, cf(6)).
2) Clauses (k)(a), () of the assumption of 2.1 follow from
Pr(x/, N,0) A x = X' +2%.
3) If A C [ is almost disjoint and saturated, then Pr(|.Al, i, Ry).
4) Tf pp = R0 > 6 then Pr(p, 0) < Pr(u, p,0) and x # p = ~Pr(x, 1, 6).
5) If 0 < p1 < po and Pr(uz, 6) then Pr(uy,0).
Proof. 1) Read the two statements.
2) Let A C [N]®0 exemplify Pr(x’, X, ). For each A € A, we can find
(Bagc: ¢ < 2%)
such that:
(*) (i) Bag € [A]%
(17) ( #¢e = BacN By, is finite.
(7i1) If 7 is a partial one-to-one function from A to A such that
x € dom(7) = x # 7(x),
then for some ¢ < 2% we have
a€Bac=a¢dom(n)Vm(a) ¢ Bac.

[(Why? First find (B, . : ¢ < 2%) satisfying (i), (ii). Let (m¢ : ¢ < 2%0) list the 7-s
from (#4i), and choose Ba ¢ € [B;LC]NU to satisfy clause (i4i) for m¢. Lastly, let A’
be any MAD family of subsets of A extending {Ba¢: A€ A, (<2%0}]

Having found (Ba ¢ : ¢ < 2%), we let A" := {Ba¢: A € A, ( < 2%}, It has
cardinality |A| + 2% = x/ + 2% and is as required in clauses (k)(a), (y) of 2.1.
3-5) Easy. Us.2

8 A C* B (i.e. “A is almost contained in B”) means that A\ B is finite.
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Claim 3.3. 1) Assume
(@) Bn < Bpg1 < K< fin < i1 < i forn < w.
(b) K= Kn, = tin, and maxpcf{r, : n <w} > pu.
(¢c) k is strong limit and 2% > p*.
(d) (pn = n < w) satisfies the requirements from [She02, §1], or at least the
conclusion — i.e.

© For every X > u, for somen, if a C Reg N A\ p and |a| < p then

sup pCf;Ln-complete(a) < A
Then for every X\ > k:

@z, We can find {A, :a < a*} such that
(o) Each A, has the form (A n 2 n < w), it belongs to [] [N\, and for

n<w
each a the members of A, are pairwise disjoint.

(B) If a # B, then A, and Ag are almost disjoint; by this we mean that
fe H Aan Nf € H Ag = |rang(f) Nrang(f’)| < No.
n<w n<w

(v) [If A € TI [\", then] for some a < a* and one-to-one functions
n<w
hl,hg S ww, we have lim ‘A(th(n) M Aa,hg(n)| = K.
n— oo

[A doesn’t depend on o here. I think the bracketed phrase
should be deleted.]

2) If k =R, kip =1, f < fngr < = >, pn < 2% and we have ® of (1)(d),
n<w

then the conclusion of (1) holds.

3) We can conclude in (1) that there is A C [A\]®0, an almost disjoint family, such

that (VB € [A\]*)(3A € A)[A C B].

Proof. By [She00], [She04, §3] (even more). Os.3

Remark 3.4. 1) Are the hypotheses of 3.3(1) reasonable?

la) Assume that  is strong limit of cofinality Ng < s and 2% > xT. We let
pn = kT There is a sequence & = (k,, : n < w) as in clauses (a)-(c) of 3.3(1);
such % exists (by [She94, Ch.IX,§5]) and it is hard not to satisfy clause (d) (see
[She02]).

1b) Clause (c) (i.e. ‘x is strong limit’) is just needed to start the induction.
2) Similarly for 3.3(2).

We quote Goldstern, Judah, and Shelah [GJS91], which implies 3.5(1),(2).
Claim 3.5. Assume
CH + SCH + (Y > 2%0)[ef () = Ro = O,+].

Then there is a saturated MAD family Ay C [N (of cardinality \*0) for every
uncountable \.

Proof. This is the main result of Goldstern, Judah, and Shelah [GJS91]. Os 5
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Definition 3.6. Let u > 6.
1) Let Sp be the class of a = (a,, : n < w) such that |a,| <0, a, C apn41,

cf(0) = Ng = |ay| < 6,
and limsup |ap41 \ an| = 6. Let Sp = {d c€Sp:a, € [,u]ge}.
2) For a € Sy, let

set(a) == {W el U an]NO n<w= |Wna,\ U al < NO}.
n<w I<n

3) For @,b € Sy, let @ <* b mean set(a) 2 set(b).

4) We say a,b € Sy are compatible if

(FeeSpla<renb<*eAlUen CUan NUb,.

(If cf(8) = Xy < 0, this is equivalent to “ |J a, N |J b, has cardinality 6.”)

n<w nw

Definition 3.7. For 6 < u:
1) Let My, ,, be the following.
X, There is §* C &y, such that:
(a) For every a € Sy, there is b € S* compatible with a.
(b) If @ # b € S* then set(a) Nset(b) = @.
2) Let Xj , mean the following.
C Sy as cardinality < p then we can fin C Sy, such that:
Xp, HSCSpuh dinali h find §* C Sy, h th
(a) For every a € S there is b € S* such that b <* a.
(b) For every b € S* there is @ € S such that b <* a.
(c) (set(b) : b € S*) are pairwise disjoint.
3) We may replace p by a set A (but obviously Xy 4 is equivalent to Xy |4 and
Xp 4 to gl&lAl)'

Fact 3.8. 1) Assume 6 > cf(f) = Ny is strong limit, § = > 6, with 6, < 6,41,

n<w

and b € Sy ,. Then we can find A C Sy such that:
(a) If @ € A then (Vn)(3m)[a, C by] (so @ < b).

b) If a € A then |a,| = 0,; moreover, otp(a,) = 6, and a,y1 is an end
+
extension of a,,.
¢) If a € A then {(a,, : n < w) is [strictly?| C-increasing.
) g
[If we don’t say strictly increasing, this is redundant by the
definition.]

(d) If @' # a2 then set(al) Nset(a?) = @.
(e) If ¢ € Sy is compatible with b then it is compatible with some a € A.
2) If (Voo < 6,,)[|ae|” < 0, = cf(6,,)] and <, is a well ordering of |J b, for a < o,

n<w
then we can strengthen (b) to
(b)t For a < 0, a € A and n < w, otp(by, <q| bn) = Oy; and if ¢ < Ry then
bn+1 is a <4-end extension of b,,.
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3) a@,b € Sy 4 are incompatible iff |J a,N |J by has cardinality < 6 (cf(0) = Rg < 60
n<w n<w
will suffice).

4) (a) KX, implies Xj .
(b) Xy, is equivalent to Xy, if = ul.

Proof. As in 3.9 below. Uss

Claim 3.9. Assume 0 is strong limit, 0 > cf(0) = No.

1) If u € (6,2%) then Xy . from 8.7 holds.

2) Also, if 6 < i < (20)*2" then X5 .-

3) If 2° < p and (VA € (2%, p)) [cf(X) = Ro = A®0 = AT + [,] then ) .

[Is that ‘4’ denoting cardinal addition, or a conjunction?]

Proof. 1) Straight, as |Sy | = u? = 2% we can find (@ : o < 27) listing Sp,,,. Now
we choose () and b by induction on a < 2¢ such that

(a) b S 89;/1

(b) B < a = set(b’) Nset(b*) = @

(c) & < a(®

(d) y(a) = min{~y : @ is incompatible with b° for every 8 < a}.
Arriving to « in the induction, choose y(«) by clause (d). We note that

B <y(a)=cj:= U a) @ n U b2 has cardinality < 6,

hence we can find b, . < @@ for ¢ < _2‘9 with (set(ba.c) : € < 2%) pairwise disjoint.
So for all but < 6 + || of the e < 29, b, = ba.e is as needed.

2) After reading [She00] this is easy: and anyhow, in subsequent works we give
fuller answers.

Claim 3.10. 1) Assume

Xo o,u O is strong limit, Rg = cf(f) < § < K < 229, w=2% and Ry, (from 3.7)
holds (so = pXe).

Then some B = (B, : a < u) satisfies clauses (c)-(g) of 2.1; in fact, B, is a

subalgebra of P(k) with two levels and id< o (By) is included in [k]<®', hence

B, C {a C & : a countable or co-countable}.

2) As above, except that instead of “6 strong limit, cf(0) = Ry < 0”7 we demand
20 = g0 > Mo A9 > cf(f) = Ry or § = Ng A “there is no infinite MAD family
A C w0 of cardinality < the continuum”.

Proof. 1) Let 0 = > 0,, 0, < 0,41 <80.

n<w
Fact 3.11. Letting a* = (0, : n < w) (i.e. a = 0,) we can find
" =(tyo:0<3,a< 2%)
such that:
(1) te,o € set(a*) has order type w.
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(1) We will fix a bijection 7 : 2¢ x 2¢ — 29 and write t5 o g for t2 r(a,8)-
(130) If (€1, 1) # (€2, o) then ty, o, Ntey 0, is finite.
(iv) Ifa € S, and |J a, C 0, then for some o < 29 we have

n<w
B <2’ =ty4p € set(a).
(v) I a,b € Spr, U anU U bn C 0, set(a) Nset(b) = @, and

n<w n<w

h: U an— U bn

nw n<w

is one-to-one and maps a,, onto b,, then for some «, too € set(a) and

t1 o € set(b) and h maps t , into a co-infinite subset of ¢1 4.

Proof. Proof of the fact: Straightforward. Osz.11

Construction: Let §* := {@” : v < 7"} exemplify Ky ., (so [v*| < x%). Without
loss of generality

a€S*An<w= otp(a,) A aps1 is an end-extension of a,,.
[What about otp(a,)?]
[Why? By 3.8; i.e. by replacing a” by a suitable family C {b: b < a"}.]
Let {X, : v < r} be a sequence of subsets of 2¢ such that

1 F e =X, \ Xy, | = 29;

let (Y; : j < p) be a sequence of subsets of x such that j1 # jo = |Yj, \ Y| = &;

let g, be a one-to-one mapping from 6 into |J ) mapping 6,, onto a7; and lastly,
n<w

let t; ., = g7 (te,a) = {9+(C) : ( € tya} for £ <3 and o <A+
[What’s that double-prime doing? From what you wrote, that should be
the image of ¢, , under g, — if you’re worried about it getting confused
for something else, you could write it g-[t¢ o].]
(hence t3 , 5 = g5(t3 , 5))- Let
t30p = {g1(¢) : € € to,0,5 and [ta,a,5 Ne| is even}.
For j < p, let A; be the following family of subsets of &:
{t&a,tia Ty <Y, a< 29} U
{t;,a,H»B Y <y, B¢ X, a< 20} U
{tg,a,1+ﬁ Yy <y, peXy, a< 29} U
{Bapv<v,a<2 72V} U{tlao7 €Y}
Clearly,
©1 S#tEAj=>|sﬂt| <N0=|S|.

Let .A;r be a maximal almost disjoint family of countable subsets of x extending

A;. Let I; be the Boolean ring of subsets of x generated by Aj U{{e} : e < K}
and B; be the Boolean algebra of subsets of x generated by I;. Now,

®g Ifig, iy < p, bo, by € [K)%, and h : by — by is bijection such that
(Vo € dom(h)) [h(a) # o,

then for some t9 € AZ) and t' € A', we have t° C* by, t! C* by, and h

117
maps t0 into a co-infinite subset of 1.
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[Why? For some g < k, the set by N |J aJ® has cardinality 0, so without loss of

n<w
generality by € |J a)°; and similarly, for some v; < &, without loss of generality,
n<w
by € U a)t. For £ =0,1, let b, € [0)° be such that g,, maps b, onto by. Now

n<w

without loss of generality by Nb] = @ or by = by . (Recall that we have to preserve
“h maps by onto by,” as welll) If by Nb; = @ then by clause (v) of Fact 3.11, some
t0, € Aiy € A% and tJ', € A;; € A will be as required in the conclusion of ®s.

So assume b; = by and let b} := {a € by : ho gy (@) # gy, (a)}. If b has
cardinality 0, we get the desired conclusion (in ®3) as above, so assume |bj| < 0;
hence without loss of generality b = @. Also, if 79 # 71 then | X, \ X,,| = 27,
hence we can find a non-zero ordinal 8 € X, \ X,,. By clause (i) of the fact we

can find an ordinal o < 2% such that

(98 < ) [ €
hence we can use t;a,ﬂ, t;/,a,ﬁ' So we have to assume g = 7;; but then g,, = g4,
so h | (bo \ bf) is the identity, a contradiction.

O3 Ifig #iy <pand® Z € [k]<" and h: K\ Z — k \ Z is a bijection, then for
some t° € A} satisfying t° C* dom(h) and t' € A, we have: n”(t%) C* ¢!
and ¢!\ A" (V) is infinite.

[Why? Let Z; := {a € dom(h) : h(a) # a}; by ©2 we know |Z1| < 6. We know
that Y;, \ Y;, has cardinality p, hence for some v € Y;, \ ' Y;, we have

set(a,) N [ZU Z )™ = @.

S0 3 00 € Aiy € A and 3, o € Ai, C A, s0 13, is a co-infinite subset of
1300300 S K\ Z\ Zo and h maps t3 , o\ Z\ Zo to itself, a co-infinite subset of
t5,0,0°

Clearly (B, : j < p) is as required, so we are done.

2) Similar proof. Us.10

Conclusion 3.12. 1) Under the assumption Mg ., of 3.10, let
N = Ded+(u) = min{)\ : there is no tree with < p nodes and > A bmnches}

(equivalently, no linear order of cardinality A and density < p). Then for any
A € [, A*) there is a superatomic Boolean Algebra of cardinality A and p atoms
with no automorphism moving > 6 atoms.

2) Assume 0 is uncountable strong limit of cofinality Ro, pp jua(0) = 2¢ (see [She94,

Ch.IX,§5] for why this is reasonable), k = (20)*® < 22" o < (20)F, u = 2%, and

< A< Ded(n) (e.g. X\ = 2X for x = min{x’ : 2 > u}). Then there is a

superatomic Boolean Algebra of cardinality A and p atoms, with no automorphism

moving > 6 atoms.

3) In part (2) we can replace k = (2°)T by k = 226, if we are granted a very weak

pef hypothesis (whose negation is not known to be consistent and also of §4). E.g.
(x) If a is a countable set of reqular cardinals then pcf(a) is countable (or just

S Nn(*))
[n(x) isn’t defined anywhere. Do you just want ‘for some n < w?’]

9 By a little more care in indexing, Z € [u]<# is okay, and we can choose v such that |Ja,n C
n

k\ Z\ Zo.
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Proof. 1) We, of course, use Lemma 2.1 with 6% here standing for  there, so we
have to show that the assumptions there holds.

Clause (a) of 2.1 holds trivially.

Clause (b) of 2.1 follows from Ky, (every (VA € [u])(3B € A)[B C A] rather
than just ‘(VA € [)?")." There is a sequence (B, : a < p) satisfying clauses (c)-
(g) of 2.1 by 3.10. There is a Boolean Algebra B* satisfying clauses (h)-(j) of 2.1
because A < A*, so there is a tree 7 with p nodes and > X branches, let ) be a set
of X\ branches of 7 and let B be the Boolean Algebra of subsets of 7 generated by
{a C T :ais linearly ordered by <7 and x € a Ay <7 z = y € a and a is bounded
ona € Y}

[What does it mean for a to be bounded on a?]

Lastly, clause (k) of 2.1 holds vacuously, as we chose A" = p. Os.12

Claim 3.13. Assume

(a) Pr(3J3,Ny)

(b) X* :=min{)\ : there is a tree with I3 models of > X branches}

(c) X € [33, \%).
Then there is a superatomic Boolean Algebra with X\ elements, J3 atoms, and no
automorphisms moving uncountably many atoms.

Proof. The main new point is that we can prove a parallel of 3.10 noting that as
Pr(jg, Nl) holds also PI‘(:Q, Nl) holds. D3_13

Remark 3.14. 1) So clearly, in many models of ZFC we get that the bound in 1.1
cannot be improved.
2) The question is whether inductively we can get for many 6-s the parallel of 3.10.
3) We can (under weak assumptions) add A’ with g < X < (\)® < ), and demand
that the Boolean algebra has p/ atoms.

[What’s /7 On a perhaps related note, where is \' used?]

For this we need to check condition (k)(a)). We probably can omit the demand

“(N)Ro < A" in the generalization of 3.12 indicated above: for this we just need to
weaken “A is MAD” in 2.1.

Claim 3.15. 1) Let A > Ng. A sufficient condition for the existence of a saturated
MAD family A C [\X° is the following.
B [f 0 = min{|A| : A C [w]¥ is an infinite MAD family}, then for every
p € (280 AR] we have —=(a), o and
Rg <o =cf(o) <= ~(b)0,

where

(a)uo Thereis a set b C RegNp\ 2% of cardinality < 6 such that ITb/[b] <R
is p-directed. Moreover, for no sequence b = (b; : i < ) with each
b; C Reg N\ 280 finite [do we have]

cC U b; Amaxpef(c) < p = [{i <60:b; Cc}| <Ny
<6

(b).o p is regular, S C {6 < p:cf(d) = cf(0)} is stationary,

A=(As;:6€8), As C 9, otp(As) =0, and
09 # 09 = As, N As, finite.
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2) Similarly, concerning X .

Proof. As in [She04]. O
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§ 4. ON INDEPENDENCE

In the bound J4(o), the last ‘exponentiation’ was really the operation sa(pu),
where

Definition 4.1. 1) sa(u) :=

sup{|B| : B is a superatomic Boolean Algebra with p atoms}.

2) sat(u) := sup{|B|* : B is a superatomic Boolean Algebra with p atoms}.
3) sa(u, ) =
sup{|B| : B is a superatomic Boolean subalgebra of P (1)
extending {a C 4 : a finite or cofinite} such that
a€B=la| <OV|u\al <6}

4) sa™(u, 0) == sup{|B|" : B is as in (3)}.
5) sa*(6) ;== min{\ : cf(\) > 6, and p < A = sat(u,0) < A}

That is, by the proof of Theorem 1.1:

Claim 4.2. If 0 = cf(0) > Ny and B is a superatomic Boolean Algebra with no
automorphism moving > 6 atoms, then |B| < sa™(33(< 0)); moreover,

IB| < sa®(Jz(sa*(0))).

Discussion 4.3. 1) Now consistently sa(X;) < 2%, Why? Because [She99, 8.1]
shows the consistency of a considerably stronger statement. It proves that (e.g.)
if we start with V = GCH and P is adding ®,, Cohen Reals, then in V¥, (2% =
R, < 2% =R, 1 and) among any R, 1 members of P(w;), there are R, 1
which form an independent family. (IL.e. any finite nontrivial Boolean combination
of them is nonempty; in other words, “P(w;) has R,,, y1-free pre-caliber” in Monk’s
question definition.) Not surprising; this is the same model for “no tree with N;
nodes has 2™ branches” in [Bau70].

2) So the bound 34(6) is not always the right one, though this needs the use of
more complicated functions.

3) We have not looked at the question: does the use of sa*() in claim 4.2 really
help?

Claim 4.4. Assume
(@) Y="<Y < p=cf(u) <x
(b) cf(x) = p, (Va < x)[la]* < x], and (Vo < p)[|a<F < p].
(¢) Q is a forcing notion of cardinality < x such that in VO, u is a reqular
cardinal and (Va € [x]<*)(3b)[a C b € ([x]<")V].
(d) P:={f: f a partial function from x to {0,1} of cardinality < Y}, ordered
by inclusion (that is, adding a x Y-Cohen).
Then in VOF we have (27 = 2<+ = y, 2¢ = x* = (x*)Vm and) sa(u) = x < 2".
Moreover, the Boolean Algebra P(u) has xT-free pre-caliber.

Proof. Work in V@ like [She99, 8.1], not using “P is o-complete” (as it may fail in
V). Uaa

On the other hand,
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Claim 4.5. Assume A = (\, : n < w) satisfies Ap1 = min{\ : 2% > 2%}, Then
for infinitely many n-s, for some pin, € [An,Any1), we have sa(p,) = 2#n = 22,
(In fact, sa™ () = (2#7)F = (2*)F except possibly when cf(2*) < 2*n-1.)

Proof. By [She96, 3.4] we have p, € [\, A\n+1) for infinitely many n-s, and for
every regular y < 2* = 2#n a tree with < ji,41 nodes, A, levels and > y-many
An-branches. Uas

Conclusion 4.6. 1) Assume 0 is strong limit, 0 > cf(0) = Xy and Pr(229,9) and
A <sat(3J3(0)). Then
There is a superatomic Boolean Algebra without any automorphism
moving > 6 atoms such that B has cardinality A (and has J3(6)
atoms'?).

2) Assume Pr(32,N1) and X < sat(33). Then (x)g.x holds.

Proof. 1) Use 3.10 and 2.1.
2) Similarly, only replace 3.10 by a parallel claim. i
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