
VII [Sh g7]

STRONG COVERING LEMMA AND CH IN V [R]

§0 Introduction

We prove a strengthening of the covering lemma, not using the fine struc-
ture theory (only some well known consequences, see Theorem 0.2). We
prove it essentially in all cases in which the covering lemma holds.

This, essentially, is Chapter XIII, sections 1-4 of “Proper Forcing” [Sh-b]
(the other sections, 5, 6, are superseded by the other material in this book).
My interest in the subject stems from Abraham’s (see below), and the
last spark were discussions with Harrington and Woodin; and Harrington’s
willingness to hear the proof while being done. When revising [Sh-b], I
was told it does not fit there (though see remark below on connection
with properness), not to say that the proof of ℵℵ0

ω < ℵ[2ℵ0 ]+ in [Sh-b,

XIII,§5,§6] was misplaced. As the proofs here inspire the proof of ℵℵ0
ω <

ℵ[2ℵ0 ]+ (i.e. reconstructing a submodel M by the characteristic function)
and are combinatorial in character, we hope it will be more welcomed here.
Note that the main problem here is very close to

min{|S| : S ⊆ S<κ(λ) is stationary},

which plays an important role in the rest of the book, but is not identical.
The characteristic function of a model which has a major role here is used,
also for example in [Sh371,§1], a difference being that here we use squares,
in other places in the book we use weaker principles which holds in more
general circumstances.
The changes compared with [Sh-b, XIII,§1-4] are minor — local improve-
ment in presentation (hopefully) and adding 0.5, 4.18.

The neatest case of the strong covering lemma is

Theorem 0.1 Assuming 0# does not exist (in V ), A ⊆ OrdV . If ℵV
2 =

ℵL[A]
2 , M a model in V with countably many finitary functions whose set

of elements is an ordinal α then for every b ⊆ α there is a set a ⊆ α, which
belongs to L[A] and is closed under the functions of M , b ⊆ a ⊆ α, and in
V , |a| ≤ |b|.

The theorem is really much more general, it speaks on a pair of uni-
verses W ⊆ V , and uses three hypotheses which are known to hold in the
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276 VII: Strong Covering Lemma and CH in V [r]

case above: the usual covering lemma, the existence of squares and the exis-
tence of scales (for successor of singular cardinals, see §1 for the definitions;
follows from GCH in the smaller universe). Also the conclusion is stronger:
for regular κ < λ < λ∗, (κ > ℵ0 for simplicity) and ordinal α player I has
a winning strategy in the following game of length λ :

in the ith move, player I chooses ai ⊆ α, |ai|V < λ∗,
⋃

j<i bj ⊆ ai and

player II chooses bi ⊆ α, |bi|V < λ∗,
⋃

j≤i aj ⊆ bi.
In the end player I wins the play if for some closed unbounded C ⊆ λ

we have: δ ∈ C & cfδ = κ ⇒
⋃

i<δ ai ∈ W .

We can conclude that for example, if 0# /∈ V , then any forcing notion
satisfies quite strong properness condition. I.e. let G ⊆ P be generic over
V ; we know that, for given cardinal χ and x ∈ HV [G](χ), there are (quite
many) N ≺ (HV [G](χ)),∈, <∗

χ, H
V (χ)) such that x ∈ N , N ∩HV (χ) ∈ V ,

so there is q ∈ G which forces this and forces a value to N ∩HV (χ); hence
in V , q is (N∩HV (χ), P )-generic. (Of course, this does not say that for any
N ′ ≺ (H(χ)V ,∈, <∗

χ) we can find such a condition q). For example there is

such an N which in V [G] has cardinality ℵV [G]
2 . This was the rationale for

putting this in [Sh- b].
The problem arises as follows: Jensen and Solovay [JS] asked how adding

a real can affect a universe.
Now adding 0# to L causes the collapsing of many cardinals, and they

knew that adding some real by forcing may collapse many cardinals; (later
in Beller, Jensen and Weltch [BJW] much more radical results were proved:
if V satisfies GCH, then there is a generic extension of V (by a class forcing)
which preserves cardinalities and has the form L[a]) (first it was assumed
0# /∈ L). See more on this in Shelah Stanley [ShSt340]. Still L[a] always
satisfies GCH. So it was natural to ask, which Jensen and Solovay [JS] do:

Problem 0.2 If W satisfy GCH, V = W [r], r a real, V and W have the
same cardinals, does V satisfy CH?

There are also several other variants; for example,

Problem 0.3 (1) If W satisfies CH, V = W [r], r a real and ℵV
1 = ℵW

1

then does V satisfy CH?

(2) Ask in addition that V , W have the same cardinals < 2ℵ0 , and/or W
satisfies GCH

Abraham [A] was interested in this problem, he proved that the con-
clusion of 0.1 implies a positive answer to the question 0.2, and the author
notes 0.1 if α < ℵω. Harrington and Van Liere have similar results, par-
allely. Abraham [A] have conjectured 0.1 when V and L have the same
cardinals. He also gave another application:

If L[A], L[B] have no non-constructible reals then L[A,B] have no non-

constructible reals provided that ℵL[A,B]
1 = ℵV

1 .
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Just before the present work was done Shelah and Woodin [ShWo159]
proved the consistency of negatives answer of problems 0.2, 0.3. For ex-
ample adding a real to a universe V satisfying GCH may blow up the
continuum while not collapsing cardinals, starting with a universe W with
enough measurable cardinals; hence, answering 0.2 negatively; the other
extreme variant is from the consistency of ZFC we can get V = W [r],

with W satisfying CH, ℵV
1 = ℵW

1 and
(
2ℵ0

)V
arbitrarily large, (i.e, answer-

ing problem 0.3(1)). Here, using the strong covering lemma we get several
complimentary results, so we know which large cardinals are necessary for
which variant; for some variants we know exactly, and for some reasonable
lower and upper bound. This is done in section 4, and one of the cases (see
4.11) involve proving somewhat more than the strong covering lemma.

The cases in which we do not have exact results are:

(A) For the first result, (for 0.2) a measurable cardinal is necessary, but

Shelah and Woodin [ShWo159] use
(
2ℵ0

)V
many; we need a suitable

inner model so maybe Mitchell [Mi] work can help to close the case.

(B) The existence of V = W [r], ℵV
1 = ℵW

1 , W satisfies GCH, but in V , CH
fails. We need an inaccessible, and a 2-Mahlo cardinal suffices.

(C) For problem 0.2 when W satisfies GCH, 2ℵ0 = ℵn in V , 2 < n < ω,
0# is necessary but ℵn measurables suffices.

The obvious approach to the strong covering lemma seemed to be to
redo the covering lemma more carefully (and so it was thought); however,
this is not our solution. We rather prove by induction on α the statement
described above, using only some principles which follows and holds in
many other situations.

After this work, two beautiful related covering theorems were proved.
Carlson proved a stronger theorem from a stronger assumption: if 0# /∈ V ,
any increasing sequence of uncountable regular length of sets of ordinals
from L belongs to L. Magidor [Mg3] proved that any somewhat closed
submodel of (Lα,∈) is the union of ≤ ℵ0 sets from L if 0# /∈ V or at least
the core model, K, has no Erdös cardinal.

∗ ∗

Another question is due to Mathias [M2].

Question 0.4 Can V satisfy GCH, A ⊆ ℵω1
, V [A] has the same cardinals

as V and in V [A], 2ℵ0 > ℵω1
, ℵV [A]

1 = ℵV
1 ?

Note that if we replace ℵω1 by a regular cardinal, the answer is negative,
and if we replace it by a singular cardinality of cofinality ℵ0, such as ℵω,
the answer is positive. By the strong covering lemma if 0# /∈ V , or even
if V has no inner model with a measurable the answer is no. In fact even
if 0# /∈ L[A], V |=“(∀α < ω1)ℵℵ1

α < ℵω1
”, ℵV

α = ℵV [A]
α for α = ω1, and for
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278 VII: Strong Covering Lemma and CH in V [r]

arbitrarily large α < ℵω1
, then V [A]|=“2ℵ0 ≤ ℵω1

”. It seemed very persua-
sive that using the inner models for hyper-measurable (see Mitchell [Mi])
we can get stronger inner models for that question (and get the relevant
exact equi-consistency result for the question of violating CH by adding a
real mentioned above).

Recently by [Sh400], if we replace ω1 by ω4, the answer is no. Really a
negative answer of 0.4 follows if we can prove in ZFC:

(∀δ < ω1)(δ limit ⇒ ppℵδ < ℵω1 ].

Both follows, by the next theorem (see more in [Sh400,§3]).

Theorem 0.5 (1) Assume V a model of set theory satisfying the GCH, λ
a strong limit cardinal, A ⊆ λ (not in V ) and V [A] a model of set
theory with the same cardinals ≤ λ+ and

(∗) In V [A], there is a stationary S ⊆ S≤ℵ0(λ) such that |S| ≤ λ.

Then in V [A], 2ℵ0 ≤ λ.

(2) Assume V a model of set theory, λ a strong limit cardinal, κ < λ, A ⊆ λ
(not in V ), V [A] is a model of set theory and (κ+)V , λ, (λ+)V are
cardinals also in V [A] and

(∗) in V [A], there is a stationary subset of S≤κ(λ) of cardinality ≤ λ.

Then in V [A], λκ ≤ λ.

Remark 0.5A The assumption (∗) holds for example λ = ℵω4 by [Sh400,
4.4 + 3.7]. The proof is similar to that of 4.10.

Proof: 1) Let A =
(
H(λ+)V [A], H(λ+)V , A,∈, <∗

λ

)
(where <∗

λ+∈ V is a

well ordering of H(λ+)V
)
.

We can represent A (in V [A]) as an increasing continuous chain Ai

(for i < λ+), ∥Ai∥V [A] < λ+, (because V [A]|=2λ ≤ λ+). Similarly in V ,
H(λ+) =

⋃
i<λ+ Wi, Wi increasing continuous, |Wi| = λ < λ+,

⟨Wi : i < λ+⟩ ∈ V.

In V [A] the set {i < λ+ : H(λ+)V ∩Ai = Wi} is a club of λ+, so for some
club E ∈ V [A] of λ+ for every i ∈ E, Ai ≺ A and H(λ+)V ∩Ai = Wi. Let
f̄ = ⟨fi : i < λ+⟩ ∈ V be such that fi is a one to one function from λ onto
Wi.
Now for every r ∈ (ω2)

V [A]
we can find ir ∈ E such that r ∈ Air , and a

countable elementary submodel (Nr, f
r) of (Air , fir ) to which r belongs,

and Nr ∩ λ ∈ S. Let µr < λ be such that Nr ∩H(λ)V [A] ⊆ H(µr)
V [A], let

Mr be the elementary sub-model of
(
H(λ+)V , fir ,∈, <∗

λ+

)
with universe

the Skolem Hull of H(µr)
V ∪ {fir} (note: <∗

λ+∈ V is a well ordering of
H(λ+)V ). Clearly Mr ∈ V , and ∥Mr∥ ≤ |H(µr)

V | < λ; as in V , λ is
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The Strong Covering Lemma: Definition and implications 279

strong limit the number of isomorphism types of possible Mr is ≤ λ. Also
the number of possible Nr ∩ λ is ≤ |S| ≤ λ (and the number of possible
µr’s is ≤ λ) so if the conclusion fails for some real r the following set has
cardinality λ+ (in V [A]):

R =:
{
s ∈ (ω2)V [A] : Ms

∼= Mr, µs = µr, Ns ∩ λ = Nr ∩ λ
}

So it is enough to prove (remember Nr is countable):

(∗) if s ∈ R, then s ∈ Nr.

As s ∈ R there is an isomorphism gs from Mr onto Ms, it is unique as Mr

satisfies extensionality
(
being ≺

(
H(λ+)V , fir ,∈, <∗

λ+

))
, and belongs to

V as Mr, Ms belong to V . Clearly gs is necessarily the identity on H (µr)
V

(as it is a transitive subset of Mr ∩Ms). Also as

(α) Nr ∩ λ = Ns ∩ λ ⊆ H(µr)
V (an assumption) and

(β) Nr ∩ H(λ+)V = {fir (α) : α ∈ Nr ∩ λ} (as (Nr, f
r
i ) ≺ (Air , fir ) and

choice of fir )

clearly gs maps H (λ+)
V ∩Nr onto H (λ+)

V ∩Ns.
Also gs

(
ANr

)
= ANs as A ⊆ λ. Now Nr being

≺ A =
(
H(λ+)V [A], H(λ+)V , A,∈, <∗

λ+

)
,

“think” that “H(λ+)V [A] is H(λ+)V [A]”. But constructing H(λ+)V [A] as
H(λ+)V extended by A is a unique process, so gs can be extended to an
isomorphism from Nr onto Ns, but necessarily s = g−1

s (s), so s = g−1
s (s) ∈

Nr as required.
2) Similarly (note that w.l.o.g. V = L[B] for some B ⊆ λ+, hence V , V [A]
satisfy 2λ = λ+). □0.5

See more in [Sh410].

§1 The Strong Covering Lemma: Definition and implications

This section defines our central notions and gives the easy relevant facts.

Context 1.1 Let V be a universe (of set theory), W a transitive class of V
which is a model of ZFC (with the same ordinals) so that W ⊆ V . Writing
for example, W0 ⊆ W1 we implicitly assume the corresponding hypothesis.

Definition 1.2 The pair (W,V ) satisfies the λ-covering lemma (λ a car-
dinal of V ) if for every set a ∈ V , a ⊆ λ (or a ⊆ W ) of power < λ (in V ),
there is a set b ∈ W such that a ⊆ b and V |=“|b| < λ”.
If we omit λ this means “for every λ ≥ ℵV

2 ”. Without loss of generality a,
b are sets of ordinals.
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280 VII: Strong Covering Lemma and CH in V [r]

Definition 1.3 The pair (W,V ) satisfies the strong (λ, α)-covering lemma
(λ regular cardinal of V , α an ordinal) if for every model M in V with
universe α (always with countably many finitary functions and relations)
and a ⊆ α, |a| < λ (in V ), there is b ∈ W , a ⊆ b ⊆ α, b an elementary
submodel of M (i.e., the set of elements of such a submodel) and

V |=“|b| < λ”.

Instead of saying for every α, we write ∞ instead of α, or write “the strong
λ-covering”.

Of course, we can replace α by any set in W of the same power, so w.l.o.g.
α is a cardinal of W ; and assume M has Skolem functions so it is enough
that b is a submodel.

Definition 1.4
(1) The pair (W,V ) satisfies the strong (λ∗, λ, κ, α)-covering lemma (where
κ ≤ λ ≤ λ∗ are regular cardinals in V , α an ordinal) if player I wins the
following game (in V , i.e., has a winning strategy) which we call

“the (λ∗, λ, κ, α)-covering game”:
The play last λ moves, in the ith move, player I chooses ai ∈ V , a subset
of α of power < λ∗ (in V ), which includes

⋃
j≤i bj , and player II chooses

bi, a subset of α of power < λ∗ which include
⋃

j≤i aj .
Player I wins if there is a a closed unbounded subset C ⊆ λ such that for
every i ∈ C ∪ {λ}, cf(i) = κ ⇒

⋃
j<i aj ∈ W (if κ = λ, only i = λ count).

We omit α if we mean “for every α”.
(2) Let D be a filter on {i : i ≤ λ} i.e., on λ+1 and λ∗, λ, α are as before.
The pair (W,V ) satisfies the strong (λ∗, λ,D, α)-covering lemma if player
I wins in the following game (i.e. I has a winning strategy in V ) which we
call

“the (λ∗, λ,D, α)-covering game”:
The play last λ moves; in the ith move player I chooses ai ∈ V a subset of
α of power λ∗ (in V ) which includes

⋃
j<i bj and then player II chooses bi

a subset of α of power < λ∗ which include
⋃

j≤i aj . Player I wins the game

if
{
i ≤ λ :

⋃
j<i aj ∈ W

}
∈ D.

Remark 1.4A The two popular cases are

D = {A ⊆ λ+ 1 : λ ∈ A}

(then we get the (λ∗, λ, λ, α)-covering game) and

D =
{
A ⊆ λ+1 : there is a club C ⊆ λ such that {δ ∈ C : cfδ = κ} ⊆ A

}
(then we get the (λ∗, λ, κ, α)-covering game).
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The Strong Covering Lemma: Definition and implications 281

Claim 1.5 (1) The strong (λ∗, λ, κ, α)-covering lemma implies the strong
(λ∗, α)- covering lemma when [λ∗ > λ or λ > κ] and it implies
the strong ((λ∗)+, α)-covering lemma when λ∗ = λ = κ (λ+-in V ’s
sense).

(2) The strong (λ∗, λ, κ, α0)-covering lemma implies the strong (λ∗, λ, κ, α1)-
covering lemma when α0 ≥ α1.

(3) If W1 ⊆ W ⊆ V ⊆ V1 are universes of set theory with the same ordinals
then:
(a) The strong (λ, α)-covering lemma for (W1, V1) implies the strong

(λ, α)-covering lemma for (W,V ).
(b) The strong (λ∗, λ, κ, α)-covering lemma for (W1, V ) implies the

strong (λ∗, λ, κ, α)-covering lemma for (W,V ) (see 1.5A).

(4) In the (λ∗, λ, κ, α)-covering game, it does not hurt any player to choose
bigger sets as long as they are subsets of α of power < λ∗ (i.e., if he
has a winning strategy, increasing the sets he still wins).

(5) If λ1 ≤ λ2 ≤ λ3, and (W,V ) satisfies the [strong] (λ1, λ)-covering
lemma for every λ < λ2, and also the [strong] (λ2, λ3)-covering lemma
then (W,V ) satisfies the [strong] (λ1, λ3)-covering lemma.

(6) If (W1,W2) satisfies the (λ1, λ3)-covering lemma, and (W2,W3) satis-
fies the (λ1, λ3)-covering lemma, then (W1,W3) satisfies the (λ1, λ3)-
covering lemma. (Where W1 ⊆ W2 ⊆ W3, λ1 ≤ λ3).

(7) We can replace κ by a filter D on λ+ 1 in parts 1), 2), 3), 4).

Proof: Left to the reader being trivial.

Remark 1.5A Why in 1.5(3)(b) we speak on (W1, V ) and not (W1, V1)?
The winning strategy may be missing from V1 (also the club C).

Definition 1.6 We say W has a square if for any cardinal µ there are sets
Cδ(δ < µ, δ singular limit) such that:

(a) Cδ is a closed unbounded subset of δ of order type < δ.

(b) If γ is a limit ordinal and is in Cδ, then

sup(Cδ ∩ γ) = γ and Cγ = Cδ ∩ γ.

Claim 1.7 If W has square, λ ≤ µ, let Sµ
<λ = {δ < µ : δ > λ, cfδ < λ},

then we can find ⟨Cδ : δ ∈ Sµ
<λ⟩ such that:

(a) Cδ is a closed unbounded subset of δ of order type < λ.

(b) If γ is a accumulation point of Cδ then Cδ ∩ γ = Cγ .
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282 VII: Strong Covering Lemma and CH in V [r]

Proof: Let ⟨Cδ : δ < µ a singular, limit ordinal⟩ be as in Definition 1.6.
W.l.o.g. δ > λ ⇒ Cδ ∩ λ = ∅. For each δ for which Cδ is defined, let fδ be
the function with domain Cδ, defined by fδ(α) = otp(α ∩ Cδ). Define C1

δ

by induction on δ < µ: if Cδ is not defined also C1
δ is not defined, if Cδ is

defined but Cotp(Cδ) is not defined or otp(Cδ) < λ let C1 = Cδ, and if Cδ,
Cotp(Cδ) are defined but otp(Cδ) ≥ λ, we let

C1
δ = {α ∈ Cδ : fδ(α) ∈ C1

otp(Cδ)
}.

Now check that ⟨C1
δ : δ ∈ Sµ

<λ⟩ is as required. □1.7

Definition 1.8 If the conclusion of 1.7 holds, (for every µ) we say W has
λ-squares, and if this holds for every λ ≥ ℵ2, we say W has squares.

Claim 1.9 (1) If the pair (W,V ) satisfies the λ-covering lemma, (λ a car-
dinal in V ) then for every limit ordinal δ : if its cofinality in W is ≥ λ
then its cofinality in V is ≥ λ (the inverse is trivial).

(2) If W has λ-squares, W ⊆ V and (W,V ) satisfies the λ-covering lemma,
then V has λ-squares.

Definition 1.10 We say that the universe W has scales if for every sin-
gular cardinal χ, there is a set G of χ+ functions, with domain

Rχ = {θ : θ < χ regular},

g(θ) < θ for g ∈ G, such that for every function f satisfying

Dom f ⊆ Rχ, |Dom f | < χ and (∀θ)f(θ) < θ,

there is g ∈ G, f <∗ g i.e.,

(∃σ ∈ Rχ)(∀θ)
(
σ < θ ∈ Dom f → f(θ) < g(θ)

)
.

If we restrict ourselves to one such χ, we call this property “have χ+-scale”.

Remark 1.10A It is easy to verify that if W |=GCH, then W has scales.

Claim 1.11 Let (W,V ) satisfy the covering lemma.

(1) If W has λ-squares, λ ≥ ℵV
2 regular in V , then V has λ-squares.

(2) If W has χ+-scale, χ a cardinal in V (hence χ is singular in W , and
χ+ in W ’s sense is the successor of χ also in V ) then V has χ+-scale.

(3) If W has squares then V has squares.

(4) If W has scales then V has scales.
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Remark 1.11A (1) The aim of 1.11 is that we will be able to get a strong
covering lemma; for example for (W,V ) where 0# /∈ V , and not just for
(L, V ).
(2) In 1.11 we can replace ℵ2 by any other regular uncountable cardinal κ
of V (if (W,V ) satisfies the λ-covering lemma for λ ≥ κ regular in V ) and
have other obvious variants.

Proof: Trivial.
For part 3) note that any universe W has ℵ1-squares: for every limit δ of
cofinality ℵδ choose Cδ ⊆ δ an unbounded subset of order type ω.

Definition 1.12 Let D be a filter on λ+ 1, cfλ > ℵ0 and always

[α < λ ⇒ λ+ 1\α ∈ D].

(1) D is called weakly normal = satisfies the (λ∗, λ)-demand 0 when:
if Aζ ∈ D for ζ < λ and ζ < ξ < λ ⇒ Aξ ⊆ Aζ

then {ζ ≤ λ : (∀ξ < ζ)[ζ ∈ Aξ]} belongs to D.

(2) D satisfies the (λ∗, λ)-demand 1 if: for every club C of λ, C ∪ {λ} ∈ D
and λ∗ > λ ⇒ C ∈ D.

(3) D satisfies the (λ∗, λ)-demand 2 when: if Cδ is a club of δ for every
limit ordinal δ ≤ λ of uncountable cofinality then

∪{Cδ ∪ {δ} : δ ≤ λ, ℵ0 < cfδ < λ∗} ∪ {α < λ : cfα > ℵ0} ∈ D.

(4) D is said to satisfy the (λ∗, λ)-demand 3 when for every κ = cfκ < λ
we have: {δ : δ < λ, cfδ ̸= κ} ∈ D or λ∗ > λ or if Cδ is a club of δ for
each limit δ < λ then ∪{Cδ ∪ {δ} : δ < λ, cfδ ̸= κ} ∈ D.

Fact 1.13 Let κ ≤ λ ≤ λ∗ be regular and λ > ℵ0.

(1) If D = {A ⊆ λ + 1 : λ ∈ A} then D is a filter, λ-complete satisfying
the (λ∗, λ) demand 0 and: D satisfies the (λ∗, λ)-demand 1 iff λ∗ = λ
and D satisfies the (λ∗, λ)-demand 2 iff λ∗ > λ.

(2) If κ = cfκ < λ and

Dλ,κ =
{
A ⊆ λ+ 1 : A ∪ {δ < λ : cfδ ̸= κ} contains a club of λ

}
then

(α) D is normal and (λ-complete) and it satisfies the (λ∗, λ)-demands
0, 1.

(β) D satisfies the (λ∗, λ)-demand 2 if λ∗ > λ or κ > ℵ0 or every
stationary S ⊆ {δ < λ : cfδ = κ} reflect in some δ < λ.

(γ) D satsifies demand 3 if λ∗ > λ or every stationary S ⊆ {δ < λ :
cfδ = κ} reflect in some δ < λ.
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284 VII: Strong Covering Lemma and CH in V [r]

(3) If λ∗ > λ and D satisfies (λ∗, λ)-demand 1 then D satisfies (λ∗, λ)-
demand 2.

(4) If λ > ℵ1, and
D =

{
A ⊆ λ+ 1 : for some club C of λ for every δ ∈ C of

uncountable cofinality we have δ ∈ A
}

then D satisfies the (λ∗, λ)-demands 0, 1, 2.

(5) Let (W,V ) be a pair. Assume D is as in (2), for every α, we have:
(W,V ) satisfies the strong (λ∗, λ, κ, α)-covering lemma iff it satisfies
the (λ∗, λ,D, α)-covering lemma.

§2 Proof of the Strong Covering Lemma

This section is the crux of the chapter. Our aim is, essentially to prove that
strong covering lemmas hold when the covering lemma holds. We can get
more from the proofs. We prove trivial cases of the strong covering lemma
(2.1) and two inductive lemmas, aim at enabling us to prove the strong
covering by induction on cardinals of W . The first (2.2) saying that we can
advance from µ to µ+, and the second (which is the main proof) saying
that we can advance to a limit cardinal µ (really the proof split to cases by
cfV (µ), so in some cases we get a little more).

Lemma 2.1 (1) Suppose χ is a regular cardinal in V , (W,V ) satisfies the
strong (λ, µ)-covering lemma for every µ < χ, µ > λ. Then (W,V )
satisfies the strong (λ, χ)-covering lemma.

(2) If κ ≤ λ < λ∗ are regular cardinals in V , then (W,V ) satisfies the
strong (λ∗, λ, κ, λ∗)-covering lemma.

Proof:
(1) If λ = χ, M a model with universe χ and countably many functions,
then in V , for some α < χ, α is closed under the functions of M , so it
exemplifies the conclusion of the strong covering lemma.
If λ > χ the strong (λ, χ)-covering lemma is trivial.
If λ < χ we can deduce the desired conclusion by 1.5(5) and the case λ = χ
above.
(2) The proof is similar. □2.1

Lemma 2.2 Suppose:

(1) (W,V ) satisfies the λ∗-covering lemma and W has λ∗-squares.

(2) (W,V ) satisfies the strong (λ∗, λ,D, µ)-covering lemma28

(3) D satifies the (λ∗, λ)-demand 2 (see Definition 1.12(3)).

(4) λ uncountable (in V ).

Then (W,V ) has the strong (λ∗, λ,D, µ+)-covering lemma (µ+ - in W ).

28hence in V λ ≤ λ∗ are regular
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Remark: Remember λ∗ ≥ λ > ℵ0 are regular cardinals in V , D a filter on
λ+ 1 and without loss of generality µ ≥ λ∗, (by 2.1(2), 1.5(2)).

Proof: Before really proving 2.2, we shall give two facts, which are trivial
but basic for our proofs: an observation, and a claim. We shall use assump-
tion (2) only in the actual proof of 2.2.

Fact 2.2A In W for each ordinal α there is a model M0
α = (α, F 0

α, G
0
α,

S0
α, CF 0

α, H
0
α, 0), F

0
α is a two place function from α to α, such that for every

β < α, F 0
α(β,−) is a one to one mapping from β onto |β|W (its cardinality

in W ); G0
α(β,−) is its inverse (on |β|W ), S0

α is the successor function,
CF 0

α is a one place function giving the cofinality for limit ordinals, and
predecessors for successor ordinals; H0

α is a two place function, such that
for β limit ⟨H0

α(β, i) : i < CF 0
α(β)⟩ is an increasing continuous sequence

converging to β; 0 is an individual constant denoting 0, i.e. a zero-place
function; for β successor, H0

α(β, 0) = |β|, H0
α(β, 1) = (|β|+)W if this value

is < α and 0 otherwise.

Notation: We say a ⊆ α is a submodel of M0
α if it is closed under the

functions of M0
α; and cl(a,M0

α) is the closure of a ∩ α under the functions
of M0

α; similarly for M1
α which is defined below.

Fact 2.2B If W has λ∗-squares (remember, λ∗ is a regular cardinal in V )
then there is M1

α = (M0
α, C

1,α), C1,α a two place function such that:
there is (in W ) a sequence ⟨C1

β : β < α, cfβ < λ∗⟩ as in Claim 1.7 (with
λ∗, α here standing for λ, µ there), such that:

C1,α(β, β) is the order type of C1
β (if defined)

C1,α(β, i) is the ith element of C1
β (if it exists).

C1,α(β + 1, C1,α(β, i)) = i.

Notation: We usually omit the subscript α in the above functions.

Observation 2.2C If µ is a cardinal of W , µ+ its successor in W , a ⊆ µ+

a submodel of M0
µ+ and b ⊆ a is unbounded in a (i.e. , (∀ζ ∈ α)(∃ξ ∈ b)

[ζ ≤ ξ]), then:

(1) a = cl
(
[a ∩ µ] ∪ b,M0

µ+

)
hence

(2) if a ∩ µ ∈ W , b ∈ W then a ∈ W .

Proof:
(1) As a ∩ µ ⊆ a, b ⊆ a and a is a submodel of M0

µ+ , trivially

cl
(
[a ∩ µ] ∪ b,M0

µ+

)
⊆ a.

For the other inclusion assume ζ ∈ a, hence there is ξ ∈ b, ζ ≤ ξ; if ζ = ξ
there is nothing to prove, so let ζ < ξ. Hence F 0(ξ, ζ) < µ (as |ξ| ≤ ξ < µ+)

Paper Sh:E114, version 1994-04-11. See https://shelah.logic.at/papers/E114/ for possible updates.



286 VII: Strong Covering Lemma and CH in V [r]

and F 0(ξ, ζ) ∈ a (as a is a submodel of M0
µ+) hence F 0(ξ, ζ) ∈ a ∩ µ. But

G0(ξ, F 0(ξ, ζ)) = ζ, and ξ ∈ b, so ζ ∈ cl
(
[a ∩ µ] ∪ b,M0

M+

)
, as required.

(2) Easy.

Claim 2.2D Suppose D is a filter on λ + 1 which satisfies the (λ∗, λ)-
demand 2 (see Definition 1.12(3)) and λ, λ∗ are regular cardinals (in V ),
λ ≤ λ∗ ≤ α, α an ordinal and W has λ∗-squares (so C1

α, M
1
α are well

defined). Suppose further that (in V ) ⟨aζ : ζ ≤ λ⟩ is an increasing con-
tinuous sequence of subsets of α, ζ < λ∗ ⇒ |aζ | < λ∗, each aζ a sub-
model of M1

α, sup(aζ ∩ λ∗) ⊆ aζ+1.Lastly suppose the closure (in the or-
der topology on the ordinals) of aζ is included in aζ+1 or at least (for
a fixed δ ≤ α)

∧
ζ<λ sup(δ ∩ aζ) ∈ aζ + 1. If δ ∈ aλ, cf(δ) ≥ λ∗ then

S = {ζ ≤ λ : C1
sup(δ∩aζ)

⊆ aζ} belongs to D.

Proof: Let δ(ζ) = sup(aζ ∩ δ) for ζ ≤ λ.

Assume λ∗ > cfζ > ℵ0 and ζ ≤ λ. Now clearly ⟨δ(i) : i < ζ⟩ is a
(strictly) increasing continuous sequence converging to δ(ζ), so as C1

δ(ζ)

is a closed unbounded subset of δ(ζ), C1
δ(ζ) ∩ {δ(i) : i < ζ} is a closed

unbounded subset of δ(ζ). But δ(i) ∈ ai+1 ⊆ aζ (for i < ζ). Hence for a
closed unbounded set of i < ζ, δ(i) ∈ C1

δ(ζ) ∩ aζ . But aζ is a submodel

of M1
α, and aζ ∩ λ∗ is an initial segment of λ∗ (see assumptions on ai :

sup(λ∗ ∩ aξ) ⊆ aξ+1). So by the definition of M1
α, for a closed unbounded

set E of limit i < ζ, C1(δ(i), δ(i)) belongs to ai+1 ⊆ aζ , hence (see M1’s
definition)

{γ : γ < the order type of C1
δ(i)} ⊆ ai+1 ⊆ aζ ,

hence (using C1(δ(i), γ)), C1
δ(i) ⊆ ai+1 ⊆ aζ , and of course, δ(i) ∈ C1

δ(ζ)

and is even an accumulation point of C1
δ(ζ). By the definition of squares

C1
δ(ζ) ⊆ aζ , and for i an accumulation point of E, C1

δ(i) ⊆ ai. So ζ ≤ λ,
ℵ0 < cfζ < λ∗ implies: ζ ∈ S and a club of i < ζ belongs to S. This clearly
suffices.

So we have proved 2.2D. □2.2D

Proof of 2.2: By the hypothesis, player I has a winning strategy in the
(λ∗, λ,D, µ)-covering game, which we denote by Ki(i < λ); i.e., if bi ⊆ µ
for i < λ, |bi|V < λ∗, then ai = Ki(b0, b1, ..., bj · ··)j<i is a subset of µ of
cardinality < λ∗, bj ⊆ ai for j < i, and if in addition for i < λ we have⋃

j≤i aj ⊆ bi then: {
δ ≤ λ :

⋃
j<δ

aj ∈ W
}
∈ D.

Let us describe the winning strategy of player I in the (λ∗, λ,D, µ+)-
covering game.
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In the ζ-th move, aj ⊆ bj ⊆ ai(j < i < ζ) are given, player I let:
(i) a0ζ =

⋃
j<ζ bj

(ii) a1ζ = Kζ(b0 ∩ µ, b1 ∩ µ, ..., bi ∩ µ, · · ·)i<ζ

(iii) a2ζ = a0ζ ∪ a1ζ ∪ {sup(a0ζ)} ∪ {γ : γ < sup(a0ζ ∩ λ∗)}
and he chooses aζ = cl

(
a2ζ ,M

1
µ+

)
. Note that sup(a0ζ) < (µ+)W as |a0ζ |V < λ∗

because (W,V ) satisfies the λ∗-covering lemma.
Let us show that this strategy is a winning one, so let ⟨ai, bi : i < λ⟩ be

a play in which player I uses the strategy described above. Clearly by the
choice of the Kζ ’s, there is C ∈ D such that if ζ ∈ C then

a0ζ ∩ µ =
⋃
i<ζ

bi ∩ µ ∈ W.

Let δ(i) = sup(a0i ).
For any limit ζ ∈ C, clearly a0ζ is a submodel of M1

µ+ , hence by Ob-

servation 2.2C, part 2 in order to prove a0ζ ∈ W it is enough to find an

unbounded subset b ⊆ a0ζ as there i.e., b ∈ W ; our b here will be C1
δ(ζ) from

Fact 2.2B. Hence it suffices to prove that for some C ′ ∈ D, (C ′ ⊆ C) and
for every ζ ∈ C ′ we have: C1

δ(ζ) is a subset of a0ζ . By 2.2D we finish. □2.2

Remark 2.2F Note that if there are λ∗-squares then for each µ there is
⟨C1

δ : λ∗ < δ < µ, cfδ < λ∗⟩ as required, with: otp C1
δ not divisible by ω2

implies C1
δ include some end segment of δ.

Lemma 2.3 Suppose

(A) (1) (W,V ) satisfies the λ∗-covering lemma, and W have λ∗-squares
and have scales (at least for θ ≥ λ∗ > cfθ, θ a W -cardinal).

(2) µ > λ∗ is a limit cardinal (in W ).
(3) (W,V ) satisfies the strong (λ∗, λ,D, α)-covering lemma for every

α < µ (where D is a filter on {ζ : ζ ≤ λ} and ℵ0 < λ ≤ λ∗

are regular cardinals in V ).

(B) At least one of the following holds:
(4) cfµ < λ∗ and D satisfies the (λ∗, λ)-demands 0, 1, 2, 3 and is

λ-complete.
(5) cfµ ≥ λ∗, and D satisfies demands 0, 1, 2 and ℵ0 < λ < λ∗,

{ξ : ζ < λ, cfζ > ℵ0} ∈ D, D is normal

[i.e., if Sζ ∈ D for ζ < λ then {ζ : (∀ξ < ζ)ζ ∈ Sξ} ∈ D] and
(W,V ) satisfies the λ-covering lemma and W has λ-squares.

Then (W,V ) satisfies the strong (λ∗, λ,D, µ+)-covering lemma (µ+ in W ’s
sense).

Paper Sh:E114, version 1994-04-11. See https://shelah.logic.at/papers/E114/ for possible updates.



288 VII: Strong Covering Lemma and CH in V [r]

Remark:

(1) Suppose λ = λ∗. If λ has the same successor in V and W , the situation
is much simpler as for example we can use λ∗-squares with every Cδ

of order type ≤ λ (see 4.17).

(2) This lemma is the heart of the matter.

(3) The proof is broken to smaller parts. Part (A) of the assumption (i.e.
(1), (2), (3)) is used freely but we shall say when we use an assumption
from (B).

We work for a while in W , present some definitions and facts, and only
later return to the lemma.

Notation 2.3A We let R denote the class of regular cardinals of W ,
R(µ1, µ) = {χ ∈ R : µ1 < χ < µ}.
Let T be (the class of) functions f , with domain a subset of R, f(χ) < χ.
We have two natural relations on T :

(1) f < g if Dom f ⊆ Dom g and f(χ) < g(χ) for χ ∈ Dom f (similarly
f ≤ g). This is a partial order.

(2) f <∗ g if Dom f ⊆ Dom g, Dom f has no last element, and for some
χ0 ∈ Dom f , and for every χ ≥ χ0,

[χ ∈ Dom f ⇒ f(χ) < g(χ)]

(<∗ is a partial order on each TI (see below)).

(3) If I ⊆ R is a set with no last element,

TI = T (I) = {f ∈ T : Dom f ⊆ I and supDomf = sup I}

and T (µ1, µ) = T (R(µ1, µ)).

Fact 2.3B In the universe W :

(1) If fj ∈ TI for j < δ, δ < min I, then there is fδ ∈ TI , such that fi < fδ
for every i < δ.

(2) Assume fj ∈ TI for j < δ, I has no last element and one of the
following holds: δ < (sup I)+ and sup(I) is singular or δ < sup(I)
or δ = sup(I), sup(I) is regular but I is a non-stationary subset of
sup(I). Then there is fδ ∈ TI such that fi <

∗ fδ for every i < δ.

Fact 2.3C In the universe W suppose θ = sup(I), I ⊆ R, θ a singular
cardinal of cofinality < λ∗ (remember that by clause (1) of 2.3, W have a
θ+-scale if θ ≥ λ∗ > cfθ). Then:

(1) there are functions fi ∈ TI(i < θ+) such that for every i < j < θ+,
fi <∗ fj and for every f ∈ TI for some i, f <∗ fi, provided that
|Dom f | < θ.
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(2) If in addition ⟨Cδ : δ ∈ Sθ+

<λ∗⟩ is a λ∗-square, λ∗ < θ, we can in part
(1) demand that:
(a) if i < j < θ+, i ∈ Cj and χ ∈ I, χ ≥ λ∗ and χ is regular

then fi(χ) < fj(χ).

(b) if j < θ+, j is a limit ordinal and j ∈ Sθ+

<λ∗ , then for χ ∈ I,
χ ≥ λ∗ we have fj(χ) = sup{fi(χ) + 1 : i ∈ Cj}.

Definition 2.3D (1) For every α we can define a model M2
α ∈ W , an

expansion of M1
α by the functions F 2 = F 2

α, where:
for each singular cardinal θ of W , such that cf(θ) < λ∗ < θ, θ+ ≤ α,

let f2,θ
i (i < θ+) be as in Fact 2.3C (for I = R∩ θ, and the λ∗-squares

⟨C1
δ : δ ∈ Sα

<λ∗⟩ we have used in the definition of M1
α), and

F 2(θ, i, χ) = f2,θ
i (χ).

Of course, {(i, θ, f2,θ
i ) : i < θ+, θ+ < α} ∈ W ).

(2) If (W,V ) has λ-squares (see clause (5) of 2.3) and satisfies the λ-
covering lemma then M3

α is the expansion of M2
α by C2,α, where

C2,α is like C1,α (see 2.2B), but using a λ-square ⟨C2
i : i < α and

W |= cf(i) < λ⟩.
(3) Without loss of generality C1

δ are as in 2.2F.

Fact 2.3E Let µ be singular cardinal of W,µ ≥ λ∗ > cfµ, we let M2 =
M2

µ+ , etc. Suppose a ⊆ M2 is an elementary submodel in V , µ ∈ a, A ⊆ a

is unbounded, χ0 < µ, and for every χ ∈ R ∩ α ∩ (χ0, µ), sup(a ∩ χ) ≤
supi∈A f2,µ

i (χ). Then:
(1) a = cl

(
[α ∩ χ0] ∪A,M2

)
, hence

(2) if a ∩ χ0, A ∈ W then a ∈ W .

Proof:
(1) Let b =: cl

(
[a ∩ χ0] ∪ A,M2

)
, so clearly b ⊆ a; suppose b ̸= a and

eventually we shall get a contradiction. Let ζ be the first element in a\b
and ξ the first element in b\ζ (it exists as by assumption A is unbounded in
a); so there is no member of b in the interval [ζ, ξ) and ζ < ξ (so b∩ ξ ⊆ ζ).

Case I: Let ξ be a successor ordinal.
Then as ξ ∈ b also ξ − 1 ∈ b (as CF 0 is one of the functions even of M0

µ+ ,

CF 0(ξ) = ξ − 1, see Fact 2.2A), but ζ ≤ ξ − 1 < ξ, contradiction.
Case II: Let ξ be a limit ordinal, singular in W (i.e. in W either, |ξ| < ξ,
or ξ is a singular cardinal).
Then as CF 0(ξ) < ξ, and ξ ∈ b ⇒ CF 0(ξ) ∈ b, clearly CF 0(ξ) < ζ. Now

M2|=“(∃x)(x < CF 0(ξ) & ζ < H0(ξ, x) < ξ)”
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(by H0’s choice, see 2.2A) hence as ζ, ξ ∈ a :

M2↾a |=“(∃x)(x < CF 0(ξ) & ζ < H0(ξ, x) < ξ)”.

So let α ∈ a be such that

α < CF 0(ξ) & ζ < H0(ξ, α) < ξ.

As CF 0(ξ) < ζ (see above) α < ζ; but by the choice of ζ, α ∈ a implies
α ∈ b. As α ∈ b, H0(ξ, α) ∈ b, but ζ < H0(ξ, α) < ξ, contradiction to the
choice of ξ.

Case III: Let ξ be a regular cardinal in W .
Then ξ > χ0 as ζ ≥ χ0, as a ∩ χ0 ⊆ b. So

sup(a ∩ ξ) ≤ sup
i∈A

(
f2,µ
i (ξ)

)
= sup

i∈A

(
F 2(µ, i, ξ)

)
≤ sup(b ∩ ξ).

The last inequality holds as µ ∈ b, ξ ∈ b, A ⊆ b (why? µ ∈ b as there
is γ ∈ A & µ < γ (as sup(A) = sup(a), and µ ∈ a by a hypothesis of the
Fact) hence µ = |γ| = H0

µ+(γ, 0) ∈ b; ξ ∈ b by the choice of ξ, A ⊆ b by the

definition of b).
As trivially b ⊆ a we can conclude sup(a ∩ ξ) = sup(b ∩ ξ); however,

we know that ζ ∈ a ∩ ξ hence ζ + 1 ∈ a ∩ ξ hence ζ < sup(a ∩ ξ) whereas
b ∩ ξ ⊆ ζ hence sup(b ∩ ξ) ≤ ζ. Contradiction.
(2) Follows from part (1) of 2.3E. □2.3E

Proof of Lemma 2.3: By the hypothesis of the Lemma, for every α < µ,
player I has a winning strategy in the (λ∗, λ,D, α)-covering game, which
we denote by K̄α = ⟨Kα

i : i < λ⟩; i.e., if bi ⊆ α for i < λ, |bi|V < λ∗ then
ai = Kα

i (b0, b1, ..., bj , · · ·)j<i is a subset of α, of V -cardinality < λ∗, bj ⊆ ai
for j < i; if in addition ai ⊆ bi for i < λ then:{

δ ≤ λ :
⋃
j<δ

aj ∈ W
}
∈ D.

Defining the Strategy 2.3F Let us describe a winning strategy of player
I in the (λ∗, λ,D, µ+)-covering game.
In the ζ-th move, aj ⊆ bj ⊆ ai ⊆ bi (for j < i < ζ) are given, player I let:
(i) a0ζ =

⋃
j<ζ bj

(ii) a1ζ = ∪
{
Kα

ξ (bj ∩ α, bj+1 ∩ α, ..., bi ∩ α, · · ·)j≤i<ζ : for some j < ζ,

we have ζ = j + ξ, α ∈ aj\
⋃

γ<j aγ and α < µ
}

(iii) a2ζ = a0ζ ∪ a1ξ ∪ {sup(a0ζ)} ∪ {γ : γ < sup(a0ζ ∩ λ∗)}.
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As (W,V ) satisfies the λ∗-covering lemma, and the set a0ζ has cardinality

< λ∗ (in V ), there is a3ζ such that:

(iv) a3ζ ∈ W , a0ζ ⊆ a3ζ , |a3ζ |V < λ∗; moreover a3ζ is an elementary submodel

of M2
µ+ (remember M2

µ+ ∈ W ), (and of M3
µ+ if well defined) and

include the topological closure of a0ζ (in the order topology on the
ordinals).
Let Chζ be a function, with domain a0ζ∩(R\λ∗), Chζ(χ) = sup(a0ζ∩χ) <

χ (remember that by the λ∗-covering lemma χ ∈ R\λ∗ implies cfV (χ) ≥ λ∗

as: λ∗ is a regular cardinal in V , χ regular cardinal in W , hence if a ∈ V ,
a ⊆ χ |a|V < λ∗, then there is b ∈ W , a ⊆ b ⊆ χ, |b|V < λ∗, hence otp(b) <
λ∗ so |b|W < λ∗ but W |= “χ = cfχ ≥ λ∗, so a ∩ χ is a bounded subset of
χ). By the λ∗-covering lemma there is a function fζ ∈ (TR∩µ)

W , Dom(fζ)
a subset of R ∩ µ of cardinality < λ∗, Chζ < fζ , i.e., Chζ(χ) < fζ(χ)

when χ ∈ a0ζ ∩ R, χ ≥ λ∗. Let, for each cardinal θ of W , Chθξ = Chζ↾θ.

For θ ∈ (λ∗, µ] singular in W , by the choice of ⟨f2,θ
i : i < θ+⟩, for some

iθ(ζ) < θ+ we have fζ↾[λ∗, θ) <∗ f2,θ
iθ(ζ)

or (Dom fζ)∩θ is a bounded subset

of θ.
Lastly player I chooses

aζ = cl
(
a2ζ ∩a3ζ ∪

{
iθ(ζ) : θ ≤ µ, θ ∈ a0ζ and θ is singular in W

}
, M2

µ+

)
.

∗ ∗ ∗

The “only” thing left is to show that this strategy is a winning one; i.e.:

Framework and Notation 2.3G Let ⟨ai, bi : i < λ⟩ be a play in which
player I uses the strategy described above. Let a0λ =:

⋃
i<λ a

0
i . Note: for

limit ζ < λ, a0ζ =
⋃

ξ<ζ aξ, and ⟨aξ : ζ < λ⟩ is increasing and ⟨a0ζ : ζ ≤ λ⟩
is increasing continuous, a0ζ ⊆ aζ ⊆ a0ζ+1.

Let us introduce some more notations. For θ ∈ (λ∗, µ], a singular car-
dinal of W which belong to a0λ and for an ordinal ζ ≤ λ let

δθ(ζ) = δ(ζ, θ) = sup(a0ζ ∩ θ+),

so δθ(ζ) = Chζ(θ
+) if θ ∈ Dom(Chζ). If x ∈ a0λ, let

j(x) = min{j < λ : x ∈ a0j} < λ.

If θ ∈ a0λ and cfW θ < λ∗ (equivalently, cfV θ < λ∗), clearly θ ∈ a0j(θ)
and a0j(θ) ∩ θ is an unbounded subset of θ. Let Θ [let Θ∗] be the set of

all W -cardinals θ ∈
⋃

ζ<λ aζ\λ∗ for which cfθ < λ [for which cfθ < λ∗].
Note that ⟨δθ(ζ) : j(θ) ≤ ζ ≤ λ⟩ is strictly increasing continuous (see (iv)
above) hence for limit ζ, cfV (δθ(ζ)) = cfV (ζ). Note also that θ ∈ a0ζ ⇒
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δθ(ζ) ∈ a0ζ+1 (remember that a3ζ contains the topological closure of a0ζ and

obviously δθ(ζ) is in the closure of a0ζ by its definition).

Subfact 2.3H For each α ∈ a0λ∩µ for theD-majority of i ≤ λ, a0i ∩α ∈ W .

Proof: This is by (ii) (of the definition of the strategy of player I; i.e. in
2.3F) as a1ξ ⊆ aξ+1, and as Kα

ξ (ξ < λ) is a winning strategy of player I in
the strong (λ∗, λ,D, α)-covering game. □2.3H

Subfact 2.3I (1) Suppose θ ∈ Θ∗, j(θ) ≤ ζ ≤ λ (on j(θ) − see above
2.3G), ℵ0 < cfV ζ < λ∗. Then for some closed unbounded subset C
of ζ, for every ξ ∈ C ∪ {ζ}, the set C1

δ(ξ,θ) (is defined and) is an

unbounded subset of a0ξ ∩ θ+.

(2) If D satisfies (λ∗, λ)-demand 2 then for θ ∈ Θ∗, we have:
{ζ ≤ λ : C1

δ(ξ,θ) is an unbounded subset of a0ξ ∩ θ+} ∈ D.

Proof:
(1) We can prove this as in the proof of 2.2D.
(2) For each θ ∈ Θ∗, j(θ) < λ, and by (1) and “D satisfies the (λ∗, λ)-
demand 2” the conclusion follows. □2.3I

Fact 2.3J If θ ∈ Θ∗, θ ∈ a0j(θ), j(θ) < ζ < ξ < λ then:

(1) Chθζ < Chθξ ,

(2) f2,θ
δθ(ζ)

<∗ f2,θ
δθ(ξ)

(3) f2,θ
δθ(ζ)

↾a0ξ < Chθξ

(4) Chθζ <∗ f2,θ
δθ(ξ)

(5) if i ≤ λ, cfi < λ∗, i a limit ordinal, C1
δ(i,θ) ⊆ a0i then f2,θ

δ(i,θ)↾a
0
i ≤ Chθi .

Proof: This can be proved quite easily. The first part holds as a0ζ+1 ⊆ a0ξ
as ζ < ξ and the definition of aζ+1 above (as the closure of a0ζ in the order

topology of ordinals is a subset of a3ζ ⊆ a0ζ+1 hence of a0ξ). The second part

by the choice of the f2,θ
i (see 2.3(C)(1)) as [j(θ) ≤ ζ < ξ ⇒ δθ(ζ) < δα(ξ)].

The third part is true as δθ(ζ) ∈ a0ζ+1 ⊆ a0ξ (as δθ(ζ) is in the topological

closure of a0ζ which is a subset of a3ζ ⊆ a0ζ+1) hence

[σ ∈ R ∩ aξ ∩ θ ⇒ f2,θ
δθ(ζ)

(σ) ∈ aξ ∩ σ].

The fourth part holds as Chζθ <∗ f2,θ
iθ(ζ)

(by the choice of iθ(ζ) in 2.3F)

and iθ(ζ) ∈ aζ+1 ⊆ a0ξ (see choice of aζ+1) hence iθ(ζ) < δθ(ξ) and so
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f2,θ
iθ(ζ)

<∗ f2,θ
δθ(ξ)

(see 2.3C(1)). As <∗ is transitive, we finish proving (4). As

for the fifth, we know that, for every χ ∈ R ∩ θ ∩ a0i \ λ∗,

f2,θ
δ(i,θ)(χ) = sup{f2,θ

j (χ) + 1 : j ∈ C1
i } = sup{F 2(θ, j, χ) + 1 : j ∈ C1

i }

≤ sup(a0i ∩ θ+) = Chθi (χ).

□2.3J

Fact 2.3K Suppose θ ∈ Θ∗.
Notation: For ζ ≤ λ, j(θ) < ζ let χθ(ζ) = χ(ζ, θ) ∈ θ ∩ R ∩ a0ζ be the
minimal cardinal ≥ λ∗ of W satisfying (∗)ζ,θ below (if there is one):

(∗)ζ,θ (∀χ)
[
χθ(ζ) ≤ χ < θ & χ ∈ R ∩ a0ζ ⇒ Chθζ(χ) = f2,θ

δ(ζ,θ)(χ)
]
.

Now we claim:

(1) If ζ ≤ λ is a limit ordinal, cfV (ζ) ̸= cfV (θ) and cfV (ζ) < λ∗ then χθ(ζ)
exists.

(2) If ζ ≤ λ, ℵ0 < cfV (ζ) < λ∗, θ ∈ a0ζ and cfθ ̸= cfζ then for a closed
unbounded set of ξ < ζ, (∗)ξ,θ above is satisfied for χ = χθ(ζ) (so
χθ(ξ) ≤ χθ(ζ)).

(3) If θ ∈
⋃

ζ<λ a
0
ζ and D satisfies the (λ∗, λ)-demands 1,3 then the set

{ζ < λ : χθ(ζ) well defined} belongs to D.

Proof:
(1) As cfV (ζ) < λ∗, ζ a limit ordinal, clearly cf(δθ(ζ)) = cf(ζ) < λ∗, hence
C1

δ(ζ,θ) is defined. Let ξ(ϵ) < ζ (for ϵ < cfV (ζ)) be increasing continuous,⋃
ϵ<cfζ ξ(ϵ) = ζ and be such that for each ϵ for some α(ϵ), a limit ordinal

from C1
δ(ζ,θ), we have δθ(ξ(ϵ)) < α(ϵ) < δθ(ξ(ϵ+1)), and let ξ(cfζ) = δθ(ζ)

(remember 2.2F, 2.3D(3)). For each ϵ < cfζ, by 2.3J,

Chθξ(ϵ) ≤∗ f2,θ
δ(ξ(ϵ+1),θ)↾a

0
ξ(ϵ+2) ≤

∗ f2,θ
α(ε+1)↾a

0
ξ(ϵ+2)

≤∗ f2,θ
δθ(ξ(ϵ+3)↾a

0
ξ(ϵ+3) ≤ Chθξ(ϵ+3)

hence for some χϵ < θ :

(∗) Chθξ(ϵ)↾[χϵ, θ) ≤ f2,θ
δ(ξ(ϵ+1),θ)↾([χϵ, θ) ∩ a0ξ(ϵ))

≤ f2,θ
α(ϵ+1)↾([χϵ, θ) ∩ a0ξ(ϵ))

≤ Chθ
ξ(ϵ+3)↾([χϵ, θ) ∩ a0ξ(ϵ)).
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As cfθ ̸= cfζ, there is χ∗ = χ(ζ, θ) < θ such that

S = {ϵ < cfζ : χϵ ≤ χ∗}

is an unbounded subset of cf(ζ). Without loss of generality

ϵ ∈ S ⇒ ϵ+ 1, ϵ+ 2, ϵ+ 3 /∈ S.

Now notice:

(a) For each χ ∈ [χ∗, θ) ∩ a0ζ the sequence

⟨Chθξ(ϵ)(χ) : ϵ ≤ cf(ζ) and ξ(ϵ) ≥ j(χ)⟩

is strictly increasing and continuous (as ⟨ξ(ϵ) : ϵ ≤ cf(ζ)⟩ and ⟨a0ξ(ϵ) :
ϵ ≤ cf(ζ)⟩ are increasing and continuous and see 2.3J).

(b) For each χ ∈ [χ∗, θ) ∩ a0ζ ,

⟨f2,θ
β (χ) : β ∈ {ξ(ϵ+ 1), α(ϵ+ 1) : ϵ ∈ S and ξ(ϵ) ≥ j(χ)}⟩

is increasing (by (a) and the inequalities above).

(c) For each ϵ1 < ϵ2 from S and χ ∈ [χ∗, θ) ∩ a0ξ(ϵ) we have

Chθξ(ϵ1)(χ) < f2,θ
ξ(ϵ1+2)(χ) < Chθξ(ϵ2)(χ)

(by (∗) above).
(d) For each χ ∈ [χ∗, θ) ∩ a0ζ we have

f2,θ
δ(ζ,θ)(χ) = sup{f2,θ

α(ϵ+1)(χ) + 1 : ϵ ∈ S} = sup{f2,θ
α(ϵ+1)(χ) : ϵ ∈ S}

(by 2.3C(2)).

As S ⊆ cf(ζ) is unbounded, a), b), c), d) together give the desired result.
(2) By subfact 2.3I C1

δ(ζ,θ) ⊆ a0ζ and for some closed unbounded C ⊆ ζ,

(∀ξ ∈ C ∪ {ζ})[C1
δ(ξ,θ) = δθ(ξ) ∩ C1

δ(ζ,θ) ⊆ a0ξ ],

and let ξ(ϵ) in the proof of (1) be such that δθ(ξ(ϵ)) ∈ C, and let χ∗, S
be as there. Now if ϵ∗ < cf(ζ) is a limit ordinal and S ∩ ϵ∗ an unbounded
subset of ϵ∗, the proof there gives the results for ξ = ξ(ϵ∗), but the set of
such ξ(ϵ∗) is a closed unbounded subset of ζ (as cfζ > ℵ0). So χθ(ξ) is well
defined and ≤ χθ(ζ) for a closed unbounded set of ξ < ζ.
(3) Should be clear (see 1.12). If λ∗ > λ, cf(θ) ̸= λ we can apply part
2 to ζ = λ, and get a club C of λ such that ξ ∈ C ⇒ (∗)ξ,θ, by part
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1 we know (∗)λ,θ, so it is enough to have C ∪ {λ} ∈ E which holds by
“D satisfies the (λ∗, λ)-demand 1”. If λ∗ = λ, let κ for 1.12(4) be cf(θ):
for every ζ ∈ {δ < λ : cfV (δ) ̸= cf(θ)} as above for some club Cδ of δ
[ζ ∈ Cδ ∪ {δ} ⇒ (∗)ζ,θ], and apply “D satisfies (λ∗, λ)-demand 3.” We are
left with the case λ∗ > λ = cfθ which is like the second case but easier (use
for example κ = ℵ0; note that in this case λ ∈ D as in 1.12(4) we have
three possibilities; the second is excluded, the first and third imply λ ∈ D).

□2.3K

Fact 2.3L For the D-majority of ζ ≤ λ, a0ζ ∈ W , provided that cfV (µ) <
λ∗ (assuming (4) of (B) of 2.3).

Proof of 2.3L: The proof is split into cases (they cover more than de-
manded in (4) of 2.3; (5) of 2.3 is irrelevant).
Case A: λ < λ∗, cfµ ̸= λ and D satisfies the (λ∗, λ)-demands 1, 2.

First, by Fact 2.3K(2) (applied with µ, λ here standing for θ, ζ there) as
λ < λ∗, there is a closed unbounded C ⊆ λ, and χ∗ < µ such that for every
ζ ∈ C ∪ {λ}, (∗)ζ,µ holds for χ(ζ, µ) ≤ χ∗. Note that by the hypothesis of
this case (A), demand 1 (see 1.12(2)) holds hence C∪{λ} ∈ D and without
loss of generality every member of C is a limit ordinal.

Secondly by Subfact 2.3H the set S = {ζ ≤ λ : a0ζ ∩ χ∗ ∈ W} belongs
to D.

Lastly, by Subfact 2.3I(2), for some set C1 ∈ D, for every ζ ∈ C1,
C1

δ(ζ,µ) is an unbounded subset of a0ζ .

As D is a filter, S∗ = (C ∪ {λ}) ∩ S ∩ C1 belong to D, and we shall
prove that for every ζ ∈ S∗, a0ζ ∈ W , thus proving 2.3L,Case A. Let

A = cl
(
(a0ζ ∩ χ∗) ∪ C1

δ(ζ,µ),M
2
µ+

)
. As ζ ∈ C ∪ {λ}, ζ is a limit ordinal.

As ζ ∈ S, a0ζ ∩ χ∗ ∈ W , and obviously C1
δ(ζ,µ) ∈ W , hence A ∈ W , so it

is enough to prove A = a0ζ . As a0ζ ∩ χ∗ ⊆ a0ζ , and C1
δ(ζ,µ) ⊆ a0ζ (because

δ ∈ C1) and as a0ζ is a submodel of M2
µ+ , clearly A ⊆ a0ζ . We shall prove

the other inclusion by Fact 2.3E, so we have just to check that for every
χ ∈ R ∩A ∩ a0ζ ∩ (χ∗, µ),

sup(a0ζ ∩ χ) ≤ sup{f2,µ
i (χ) : i ∈ A}.

For this remember that ζ ∈ C ∪ {λ}, χ(ζ, µ) ≤ χ∗, so by (∗)ζ,µ (from Fact

2.3K) Chµζ (χ) = f2,µ
δ(ζ,µ)(χ). So

sup(a0ζ ∩ χ) = (by Chµζ (χ)’s definition)

Chµζ (χ) = (by (∗)ζ,µ)
f2,µ
δ(ζ,µ)(χ) = (by the definition of f2,µ

i , see 2.3D and 2.3D(2)(1))

sup{f2,µ
i (χ) : i ∈ C1

δ(ζ,µ)} ≤ sup{f2,µ
i (χ) : i ∈ A}
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So we have proved the inequality required for applying Fact 2.3E, hence
A = a0ζ , hence a0ζ ∈ W . As this holds for every ζ ∈ S∗ and S∗ ∈ D, we
finish the proof of Fact 2.3K, Case A.

Case B: D is (cfµ)+-complete (or at least closed under intersection of de-
creasing sequences of length cf(µ)) and satisfies the (λ∗, λ)-demands 1,2,3
(3: for κ = cfµ).

As “D satisfies (λ∗, λ)-demands 1,3 (for κ = cfµ)”, by 2.3K(3) for some
C ∈ D, for every ζ ∈ C, χµ(ζ) is well defined (this is a weaker conclusion
than in the first paragraph of the proof of Case A, so we strengthen the
conclusion of the second paragraph). Define for χ < µ,

Sχ =: {ζ ≤ λ : a0ζ ∩ χ ∈ W}.

Now define S, S =
⋂

χ<µ Sχ.

Note that χ1 ≤ χ2 < µ ⇒ Sχ2 ⊆ Sχ1 . Hence as D is (cfµ)+-complete,
S ∈ D.

Lastly, by 2.3I, as D satisfies the (λ∗, λ)-demand 2 for some C1 ∈ D,
we have [ζ ∈ C1 ⇒ C1

δ(ζ,µ) is an unbounded subset of a0ζ ]. We can continue
as in Case A.

Case C: cf(µ) = λ, λ ∈ D and D satisfies the (λ∗, λ)-demands 0, 1, 2.
Note — necessarily λ = cfµ < λ∗. We define C as in Case B, and

also Sχ(χ < µ). Let ⟨θζ : ζ < λ⟩ be an increasing continuous sequence of
cardinals < µ, µ =

⋃
ζ<λ θζ ; and without loss of generality

∧
ζ θζ ∈ a0ζ+1.

Let

S =
{
ζ ≤ λ : (∀ξ < ζ)[ζ ∈ Sθξ ]

}
;

as [χ1 < χ2 < µ ⇒ Sχ1 ⊆ Sχ2 ] and each Sχ is in D, and D weakly normal
(i.e. satisfies demand 0 from 2.12(1)) we get S ∈ D. For each ζ < λ,

Chµζ ↾[θζ , µ) = f2,µ
δ(ζ,µ)↾

(
[θζ , µ) ∩ a0ζ

)
(note: λ < λ∗ hence sup(a0ζ ∩ µ) = µ).
The rest is as in Case A. □2.3L

So without loss of generality we could have assumed (5) of 2.3 hence:

Hypothesis 2.3M cfµ ≥ λ∗ and {ζ ≤ λ : cfζ > ℵ0} ∈ D, λ < λ∗.

Fact 2.3N We can find θ(ζ) ∈ Θ for ζ < λ such that:
(a) ⟨θ(ζ) : ζ < λ⟩ is strictly increasing continuous.
(b)

⋃
ζ<λ θ(ζ) = sup(a0λ ∩ µ)

(c) cfV [θ(ζ)] < λ
(d) θ(ζ) = sup(a0ζ ∩ µ).
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We leave the proof of this fact to the reader. (Note: the non-limit ζ are not
important).

Fact 2.3P If (W,V ) satisfies λ-covering, W has λ-squares, λ < λ∗ ≤ cfµ,
D a normal filter on λ + 1, so λ ∈ D, satisfying the (λ∗, λ)-demands 0, 1,
2 then for the D-majority of ζ, a0ζ ∩ µ+ ∈ W .

Proof: By Fact 2.3K(2) (with ζ there standing for µ here) for each θ ∈ Θ
(i.e. cfV θ < λ hence cfW θ < λ by λ-covering hence θ ∈ Θ∗) there is
a closed unbounded subset E0

θ of λ such that for every ξ ∈ E0
θ ∪ {λ},

χθ(ξ) ≤ χθ(λ) < θ and by 2.3I, (using “D satisfies (λ∗, λ)-demand 2”) we
get: for some Y ∈ D, for every ξ ∈ Y also C1

δ(ξ,θ) = C1
δ(λ,θ) ∩ a0ξ is an

unbounded subset of a0ξ ∩ θ+. Let E1
ζ = ∩{E0

θ : θ ∈ C2
θ(ζ) ∩ Θ}, which is

also a closed unbounded subset of λ, (remember C2
θ(ζ) has power < λ) and

at last

E2 =
{
ζ < λ: (i) for every ξ < ζ, ζ ∈ E1

ξ and

(ii) θ(ζ) = sup(a0ζ ∩ µ) (use 2.3N(d))
}
,

which again is a closed unbounded subset of λ, hence E2 ∈ D (as D satisfies
(λ∗, λ)-demand 1, λ ∈ D). Similarly as D satisfies the (λ∗, λ)-demands 0,
2 and by Subfact 2.3H and a variant of Subfact 2.3I (for C2

i instead C1
i )

we have:

E3 =
{
ζ ∈ E2 : for every θ ∈ C2

θ(ζ) ∩Θ, a0ζ ∩ θ+ ∈ W and C2
θ(ζ) ⊆ a0ζ

}
belongs to D (weak normality suffices as an initial segment of b ⊆ α, b ∈ W
is in W ). We shall prove now that for each ζ ∈ E3 : if cfζ > ℵ0, ζ ∈ Y then
a0ζ ∈ W . By the proof of Lemma 2.2 (i.e. 2.2C(2)) it is enough to prove

that a0ζ ∩ µ ∈ W .
Clearly there is ϵ < λ such that χθ(ϵ)(λ) < θ(ζ) ≤ θ(ϵ) (for example

ϵ = ζ, but even if we want to use χθ(ϵ)(λ) for some stationary set of ϵ’s,

we can use Fodor’s Lemma decreasing a little E3). As cfV ζ > ℵ0, and
χσ(λ) (with σ varying) is a regressive function on C2

θ(ζ) ∩ Θ, for some χ∗,

χθ(ϵ)(λ) ≤ χ∗ < θ(ζ) and χ∗ ∈ C2
θ(ζ) and S =: {θ ∈ C2

θ(ζ) ∩ Θ : χθ(λ) ≤
χ∗ < θ} is a stationary subset of θ(ζ).

Let A = (a0ζ ∩ χ∗) ∪
⋃
{C1

δ(ζ,θ) : θ ∈ S ∩ Θ} ∪ C1
δ(ζ,θ(ζ)), then clearly

A ⊆ a0ζ (note: C1
δ(ζ,θ) ⊆ a0ζ by Subfact 2.3I as cfV ζ > ℵ0). For each θ ∈ S,

θ+ ∩ cl
(
(a0ζ ∩ χ∗) ∪ C1

δ(ζ,θ),M
2
µ+

)
is equal to θ+ ∩ a0ζ as ζ ∈ E3, θ ∈ C2

θ(ζ)

(as in the proof of 2.3L). As S is unbounded (in C2
θ(ζ)), it follows that

a0ζ ∩ θ(ζ) ⊆ cl(A,M2
µ+) ⊆ a0ζ . As cfV µ ≥ λ∗, by 2.3N(d) we have θ(ζ) =

sup(a0ζ ∩µ), so a0ζ ∩µ = cl(A,M3
µ+)∩µ. So it suffices to prove that A ∈ W ,

and for this it suffices to prove that S and ⟨δθ(ζ) : θ ∈ S ∩ Θ⟩ belongs to
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W . Note that C2
θ(ζ) ∩Θ = {θ : θ ∈ C2

θ (θ), W |= “θ a cardinal of cofinality

< λ} hence C2
θ(ζ) ∩Θ belongs to W .

Why S ∈ W?
Remember θ(ϵ), χθ(ϵ)(λ) used above and compare for θ ∈ C2

θ(ζ)∩Θ\χ∗, the

functions f
2,θ(ϵ)
δ(λ,θ(ϵ)) and f2,θ

δ(λ,θ). We know that f
2,θ(ϵ)
δ(λ,θ(ϵ))↾

(
[χ∗, θ(ϵ)) ∩ a0λ

)
is

equal to Ch
θ(ϵ)
λ ↾[χ∗, θ(ϵ)). So for ξ ∈ [ζ, λ) we have

f∗
ξ =: f

2,θ(ϵ)
δ(λ,θ(ϵ))↾

(
[χ∗, θ(ζ)) ∩ a3ξ

)
∈ W

(see clause (iv) in the definition of the first player’s strategy, a0ξ ⊆ a3ξ ⊆
a0ξ+1, a

3
ξ ∈ W ), and f∗

ξ is equal to

Ch
θ(ζ)
λ ↾

(
[χ∗, θ(ζ)) ∩ a3ξ

)
.

Now if θ ∈ S and ξ ∈ [ζ, λ) then f2,θ
δ(λ,θ)↾

(
[χ∗, θ) ∩ a3ξ

)
is equal to

Chθλ↾
(
[χ∗, θ) ∩ a3ξ

)
= f∗

ξ ↾[χ
∗, θ). But if θ ∈ C2

θ(ζ) ∩ Θ\χ∗\S, then by the

definition of χθ(λ), as χθ(λ) > χ∗, for every ξ < λ large enough

f∗
ξ ↾[χ

∗, θ) ̸= f2,θ
δ(λ,θ)↾

(
[χ∗, θ) ∩ a3ξ

)
.

As |C2
θ(ζ)| < λ = cfV λ, one ξ(∗) ∈ [ζ, λ) is large enough for all. Also, by

the choice of ϵ, for θ ∈ C2
θ(ζ) ∩Θ we have

δθ(λ) = Chµλ((θ
+)W ) = f∗

ξ(∗)((θ
+)W )

so as f∗
ξ(∗) ∈ W the function

⟨δθ(λ) : θ ∈ [χ, θ(ζ)) ∩Θ and cfW θ < λ and θ ∈ C2
θ(ζ)⟩

belongs to W . So we have a definition of S in W , hence S ∈ W .
Why ⟨δθ(ζ) : θ ∈ S ∩Θ⟩ belongs to W?

For each θ ∈ S ∩Θ, δθ(ζ) ∈ C1
δ(ζ,λ) (as ζ ∈ E0

ζ ). We know that ⟨f2,θ
i (χ∗) :

i ∈ acc C1
δ(λ,θ)⟩ is strictly increasing, and is continuous. Now ⟨δθ(λ) : θ ∈ S⟩

(as a function) belong to W (as f∗
ξ(∗) ∈ W ), hence

δθ(ζ) = min{γ : γ ∈ C1
δ(λ,θ) and f2,θ

γ (χ∗) ≥ sup(a0ζ ∩ χ∗)}.

This definition can be carried in W hence ⟨δθ(ζ) : θ ∈ S ∩Θ⟩ ∈ W . So we
finish the proof of 2.3P. □2.3P

End of the Proof of 2.3: It is easy to check that 2.3L, 2.3P proved 2.3
(see 2.3(4), 2.3(5)). □2.3
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Remark 2.4 If we want to get the result for κ = ℵ0 < λ < λ∗ (for exam-
ple, for λ = ℵ1, λ

∗ = ℵ2 when 0# /∈ V ) we can drop from the hypothesis
on λ (i.e., λ-covering and λ-squares) and add that the λ+-squared scales
(defined below) exists for W .
It was not clear whether they exist when [Sh- b, XIII]’s writting was es-
sentially finished (early 1981). Later Abraham who was converging toward
it and the author looked at it and tried to develop it and with Stanley
seemingly proves its consistency. Subsequently Donder, Jensen and Stan-
ley [DJS] proved it.

Definition 2.5 W has λ∗-squared scales, if there are for each singular θ,
a scale ⟨fθ

i : i < θ+⟩, and a λ∗-square ⟨C2,θ
δ : δ < θ+, cfδ < λ∗⟩ , and a

λ∗-square C3
θ (θ a cardinal in W , θ > λ∗ > cfθ) such that:

(∗) if θ(1) ∈ C3
θ , ζ ∈ C2,θ

δ then fθ
ζ (θ(1)

+) ∈ C2,θ
ξ when ξ = fθ

δ (θ(1)
+)

Remark 2.5A We can restrict ourselves to θ < α∗ for any fixed α∗.

Theorem 2.6 Suppose (V,W ) is a pair of universes of set theory, ℵ0 <
κ < λ < λ∗ are regular cardinals in V , W have square (or just λ∗-squares
and λ-squares) and scales.
Then (V,W ) satisfies the strong (λ∗, λ, κ,∞)-covering lemma, if it satisfies
the λ∗-covering lemma and the λ-covering lemma.

Proof: Let D be as in 1.13(2), by which it satisfies demand 0,1,2,3. As the
strong (λ∗, λ, κ,∞)-covering lemma is equivalent to the strong (λ∗, λ,D,∞)-
covering lemma, it suffices to prove the later. We prove by induction on µ
( a cardinal in W ) that (V,W ) has the strong (λ∗, λ, κ, µ)-covering lemma.
For µ ≤ λ∗ see 2.1 for successor µ (in W ) use 2.2 and for limit µ use 2.3.

□2.6

Conclusion 2.7 If in V , 0# does not exist, then (L, V ) satisfies the strong
(ℵV

3 ,ℵV
2 ,ℵV

1 ,∞)-covering lemma.

Theorem 2.8 Suppose (W,V ) satisfies the λ∗-covering lemma, W has
square and has scales. If there is no cardinal µ of W , λ < µ < λ∗ and
κ < λ < λ∗ are regular cardinals of V then (W,V ) has the (λ∗, λ, κ,∞)-
strong covering property.

Proof: Note that if V |=“cfα = λ” then W |=“λ ≤ cfα < (λ+)V ”, hence
in our case W |=“cfα = λ”. So we can strengthen a little the Claim 1.7
demanding: if cfδ = λ then C1

δ has order type λ. Now repeat the proofs of
2.2, 2.3 (or see 4.17). □2.8
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Conclusion 2.9 If 0# /∈ L, and there is no cardinal µ of L for which
ℵV
1 < µ < ℵV

2 then (L, V ) satisfies the strong ℵ2-covering lemma and the
strong ℵ1-covering lemma.

Proof: The strong ℵ2 covering is by 2.8, the strong ℵ1-covering follows
immediately. □2.9

§3 A counterexample

The following lemma says that even if V and L have the same cardinals,
except ℵL

2 and cfV (ℵL
2 ) = ℵ1, the strong ℵ1-covering lemma may fail. It

uses forcing but its role is just to show some theorems cannot be proved.

Lemma 3.1 Assume V satisfies CH, then there is a forcing notion R,
of power ℵ2, which does not collapse ℵ1 (and even satisfies the condition
from [Sh- b, XI]; better see [Sh-f,XI,XV]) and does not collapse any ℵα >
ℵ2, such that (V, V R) does not satisfy the strong (ℵ1,ℵV

2 )-covering lemma
(note: if V satisfies GCH, W satisfies GCH, too).

Proof: Let P be for example, the forcing of adding a Cohen real. In V P

we define a forcing notion Q :

Q =
{
f : f is a function, with domain an ordinal α < ℵ1, and range

included in ℵ2, and for every limit δ ≤ α, Rang(f↾δ) /∈ V
}

Q is ordered by inclusion.
First note that Q ̸= ∅ (as the empty function belongs to Q) and we shall

prove that for every p ∈ Q and β < ℵ1 there is q ∈ Q, p ≤ q, β ⊆ Dom q.
Let Dom p = α, and choose i > sup Rang(p) (and i < ℵ2) and choose
A ⊆ [i, i + β + ω] such that: for every limit δ if i < δ < i + β + ω then
A ∩ [δ, δ + ω] /∈ V and so A has order type β + ω (easy as P add reals).
Now define q : Dom q = α + β, q(j) = p(j) for j < α and q(α + j) is the
j-th element of A. Also trivially for every i < α2 {p ∈ Q : i ∈ Rang(p)} is
a dense subset of Q.
We work for a while in V P .

As V P satisfies 2ℵ0 = ℵ1, clearly Q has power ℵ2 and it is easy to check
P ∗Q

˜
has power ℵ2, and it will be our R. It suffices to prove that Q does not

add reals hence does not collapse ℵ1, as the generic function from ℵ1 to ℵ2

will be the evidence of the failure of the strong (ℵ1,ℵV
2 )-covering lemma.

So let h
˜

be a Q-name (in V P ), and p ∈ Q force that it is a function
from ω into ℵ1. We define by induction n < ω for every η ∈ n(ω2) (i.e., a
sequence of ordinals < ω2 of length n) a condition pη ∈ Q such that:
(1) p<> = p, pη↾ℓ ≤ pη for ℓ ≤ ℓg(η)
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(2) pη⊩Q“h
˜
(m) = γη” when ℓg(η) = m+ 1, for some γη < ω1

(3) Rang η ⊆ Rang pη, moreover if ℓg(η) = m+ 1 then

pη(sup Rang pη↾m) = η(m).

There are no problems in the definition.
By Rubin and Shelah [RuSh117] (the theorem on ∆-systems) there is

T ⊆ ω>(ω2) such that:

(α) <>∈ T and for every η ∈ T the number of ηˆ < α > ∈ T is ℵ2 and T
closed under initial segments

(β) Dom pη = δℓg(η) < ω1, (i.e. Dom pη depends on the length of η only)

(γ) there are countable sets aη ⊆ ω2, for η ∈ T such that: (for η, ρ ∈ T ) we
have Rang pη ⊆ aη and if η↾ℓ = ρ↾ℓ, η(ℓ) ̸= ρ(ℓ) then aη ∩ aρ = aη↾ℓ.

Let αη = sup(aη), so pηˆ⟨β⟩(αη) = β (see (3) above) and without loss of
generality

(∗) if α < β, ηˆ < α >∈ T , ηˆ < β >∈ T then min(aηˆ<β>\aη) > α.

Let C =
{
ζ < ℵ2 : for every η ∈ (ω>ζ) ∩ T we have aη ⊆ ζ and

{α < ζ : ηˆ < α >∈ T} is unbounded in ζ
}
.

Clearly it is a closed unbounded subset of ℵ2, hence it contains a closed
unbounded subset C which belongs to V (we are working in V P ). As the
cardinality of P is ≤ ℵ1 < ℵ2, there is ⟨ζn : n < ω⟩ ∈ V increasing and
included in C.

Now let a = {n(ℓ) : ℓ < ω} /∈ V (but ∈ V P ), n(ℓ) < n(ℓ+1). We define
by induction on ℓ, an ordinal αℓ such that:
(1) ζn(ℓ) < αℓ < ζn(ℓ)+1

(2) ⟨α0, ..., αℓ⟩ ∈ T , a⟨α0,...,αℓ+1⟩ ∩ ζn(ℓ+1) ⊆ ζn(ℓ)+1.
This is easy by (∗) above. Let p∗ =

⋃
ℓ p⟨α0,...,αℓ⟩. Now p∗ is a function from

δ =
⋃

ℓ δℓ to ω2; if b = Rang p∗ ∈ V , then a = {ℓ : (ζℓ, ζℓ+1) ∩ b ̸= ∅} ∈ V
as ⟨ζℓ : ℓ < ω⟩ ∈ V , contradiction. Hence b /∈ V , and it is easy to check
p∗ ∈ Q, and clearly p∗ forces a value to h

˜
, so we finish to prove that Q does

not add reals, hence does not collapse ℵ1, hence we finish the proof of 3.1.
□3.1

Remark 3.2A The choice of “P ia cohen forcing” is as it is the simplest.
For example, assume κ = κℵ0 , P is a forcing notion of cardinality at most
κ adding a new real and Q is the forcing defined in the proof of 3.1 with κ+

replacing ℵ2. Then the forcing by P ∗Q
˜

collapse κ to ℵ1, collapse no other
cardinality (nor change cofinality) (in particular do not collapse ℵ1), has
cardinality κ+, all the reals of V P∗Q

˜ are from V P . So if P is ωω-bounding
(for example Sacks forcing) then so is P ∗Q. On the other hand, the strong
(ℵ1, κ

+)-covering lemma fails i.e. the family of old countable subsets of κ+

is not stationary; this answer a question of Kamburelis. Really assuming
CH, any proper forcing adding a new real of cardinality ℵ1 is OK. The
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proof give more than stated in 3.1, in particular answering a question of
Kamburelis.

§4 When adding a real cannot destroy CH

Here we draw conclusions concerning consistency strength, but the section
is not used later, so knowledge of inner model is required.

On core models see Dodd and Jensen [DJ1]; they prove

Theorem 4.1 For every model (of set theory) V there is a core model
K(V ) ⊆ V , such that:

(1) K(V ) is a transitive class containing all ordinals, and W ⊆ V implies
K(W ) ⊆ K(V ).

(2) K(V ) satisfies GCH (hence has scales), has squares; let Kλ(V ) be the
family of sets in K(V ) of hereditary power < λ.

(3) If in V there is no inner model with a measurable cardinal, then
(K(V ), V ) satisfies the covering lemma (see Definition 1.2).

(4) K(V ) has a definable well ordering (hence definable Skolem functions).

The following is known:

Theorem 4.2 (1) Suppose W ⊆ V have the same cardinals, then they
have the same core model.

(2) Moreover, if W ⊆ V have the same cardinals ≤ λ, where λ is a limit
cardinal (in both) then Kλ(V ) = Kλ(W ) (see 4.1(2)).

Proof:
(1) Suppose K(W ) ̸= K(V ): clearly K(W ) ⊆ K(V ), so let A ⊆ α, A ∈
K(V ), A /∈ K(W ). So there is a mice of K(V ) to which A belongs, hence
there is such a mice of K(V )-power |α|; but we can extend it, hence for
every limit cardinal λ > α of V there is a mice with critical point λ, to
which A belongs, and the filter is generated by end segments of

{χ : χ < λ, χ a cardinal in V }.

But then this mice is in W hence in K(W ).
(2) The same proof. □4.2

Conclusion 4.3 Suppose in V there is no inner model with a measurable
cardinal. Then:

(1) (K(V ), V ) satisfies the strong λ-covering for every λ > ℵ2.

(2) If W ⊆ V have the same cardinals then (W,V ) satisfies the strong
λ-covering lemma for every cardinal λ ≥ ℵ1 of V .
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(3) If W ⊆ V have the same cardinals ≤ µ or even Kµ(W ) = Kµ(V ),
where µ is a limit cardinal (of V ) then (W,V ) satisfies the strong
(λ, µ)-covering lemma for any cardinal λ of V (λ > ℵ0).

Proof:
(1) By hypothesis (K(V ), V ) satisfies the λ-covering lemma for every λ ≥
ℵV
2 (cardinal in V ), by fine structure theory K(V ) has squares and scales.

So our main theorem 2.6 give the desired conclusion.
(2) K(V ) = K(W ) by the previous theorem, hence K(V ) ⊆ W . We can
finish by part (1) using 2.8.
(3) Similar proof. □4.3

Remember:

Theorem 4.4. (Magidor) If W ⊆ V , K(W ) ̸= K(V ) then for some
cardinal λ of K(V ) and A ⊆ λ, A ∈ K(W ), Kλ(W ) = Kλ(V ) but there is
a class C (in V ) of ordinals in K(W ), such that in K(W ), C is indiscernible
over A, and K(W ) is the Skolem Hull (see 4.1(4)) of A ∪ C.

Theorem 4.5
(1) If V = W [r], r a real and (W,V ) satisfies the strong λ-covering lemma
(λ a cardinal of V ) then:

(i)
∑

µ<λ(2
µ)V = |

∑
µ<λ (2

µ)
W |V and

(ii)
(
χ<λ

)V
= |

(
χ<λ

)W |V for every χ.
(iii) Assume λ is regular in V , A ∈ W , A ⊆ λ and H(λ)W ⊆ Lλ[A].

Then any bounded subset B of λ from V belongs to Lα[A ∩ α, r] for some
α < λ.
(2) For having (ii) it suffices to have the strong (λ, α)-covering lemma for

α <
([
(χ<λ)W

]+)V
; (note that (i) is a particular case (ii)).

Proof: Easy.

Conclusion 4.6 If V has no inner model with a measurable cardinal, V =

W [r], r a real, W , V have the same cardinals ≤ λ were
(
2ℵ0

)V ≥ λ ≥ ℵV
ω ,

λ a limit cardinal and W satisfies CH (but V does not) (or at least W |=
2ℵ0 < λ), then

Kλ(W ) = Kλ(V ), K(W ) ̸= K(V )

(this is stronger than 0# ∈ V , see 4.4).

Proof: We know that Kλ(W ) = Kλ(V ) by 4.2(2). On the other hand
if K(W ) = K(V ) then by 4.3(3) the pair (W,V ) satisfies the strong λ-

covering lemma. So by Theorem 4.5 (above)
(
2ℵ0

)V
=

(
2ℵ0

)W
, contradic-

tion to “W satisfies CH but V does not”. □4.6
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Conclusion 4.7 If V = W [r], r a real, W satisfies CH and in V , 2ℵ0 > ℵ2

then 0# ∈ V .

Proof: Suppose 0# /∈ V . We know λℵ0 ≤ λ+ + 2ℵ0 = λ+ for every λ.
By 2.5 (W,V ) satisfies the strong ℵV

3 -covering lemma, hence by 4.5 in V ,
2ℵ0 ≤ ℵ3 in V . To get the exact result we should use a finer theorem, 4.15
below. □4.7

Conclusion 4.8 If V = W [r], r a real, V and W have the same ℵ1 and
ℵ2, W satisfies CH but V does not then 0# ∈ V .

Proof: Use 2.9 and 4.5.

Lemma 4.9 Suppose W ⊆ V , λ a cardinal of W and
(a) (i) λ ∈ W is a regular cardinal in W , or

(ii) the square principle for λ holds in W , i.e., there are Cδ ⊆ δ for δ
limit < (λ+)W , Cδ closed unbounded and:

γ = sup(γ ∩ Cδ) ⇒ Cγ = (γ ∩ Cδ).

(b) V |=“cfV λ ̸= cfV (|λ|V )”.
Then in V the W -successor of λ is not a cardinal.

Remark 4.9A In (a), also “pp(λ) > λ+ & cfλ < λ” suffices (see [Sh355,
1.5A]).

Proof: By hypothesis (a) in W we can easily find ⟨Ai : i < λ+⟩ such
that: Ai ⊆ λ, Ai unbounded in λ, and for every i < λ+ there is a function
fi : i → λ, such that the sets Aj\fi(j) (for j < i) are pairwise disjoint. (If
λ regular: trivially (choose for i < λ Ai ⊆ λ pairwise disjoint of cardinality
λ, and then choose by induction on i ∈ [λ, λ+), Ai ⊆ λ pairwise disjoint
of cardinality λ such that j < i ⇒ |Aj ∩ Ai| < λ), if not: by Litman [Li],
using Jensen’s theorem on gap one transfer theorem (see Ben David [BD]),
or directly let ⟨λi : i < cfλ⟩ be an increasing sequence of regular cardinals
with limit λ; choose by induction on α < λ+, fα ∈

∏
i λi such that

α < β ⇒ fα < fβ mod Jbd
cfλ, α ∈ Cβ & |Cβ | < λi ⇒ fα(i) < fβ(i);

let Aα = Rang fα).
Suppose λ+ (in W ’s sense) is a cardinal of V . Let us work in V . Let

χ = cfV (|λ|), cfV (λ) = µ. So λ =
⋃

α<χ Bα, Bα increasing continuous
with α, |Bα| < |λ|, all in V . Now each Ai, as an ordered subset of λ, has
cofinality µ (as Ai is unbounded in λ) and by assumption (b), µ ̸= χ.
Hence for each i for some α(i) < χ, Ai ∩ Bα(i) is an unbounded subset of
Ai (if χ < µ, trivially, and if χ > µ remember Bα is increasing). We are
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assuming that (in V ) the number of Ai’s is λ
+, |λ+| > |λ|, hence for some

α, C = {i : α(i) = α} has power > |λ|. Let i be the λ-th member of C; so
{[Aj\fi(j)] ∩ Bα : j < i, j ∈ C} is a family of |λ| pairwise disjoint subsets
of Bα, each non-empty, contradiction to |Bα| < |λ|. □4.4

Theorem 4.10 Suppose W ⊆ V = W [r], r a real and
(a) in V the continuum hypothesis fails.
(b) In W , GCH holds.
(c) W has squares.
(d) (W,V ) satisfies the strong ℵ2-covering lemma.
Then in W there is an inaccessible cardinal, in fact ℵV

2 is inaccessible in
W .

Remark: Note, clause (c) really is not necessary (if the conclusion fails
then 0# /∈ V ).

Proof: Let κ =
(
2ℵ0

)V
, χ = ℵV

1 . By 4.7 without loss of generality κ ≤
(ℵ2)

V hence by clause (a) we know κ = ℵV
2 , hence κ is a regular cardinal in

V hence inW . If the conclusion of the theorem fails, κ is a successor cardinal
in W , so let it be κ = λ+. So by the previous lemma cfV λ = cfV (|λ|V ).
However, |λ|V is necessarily ℵV

1 = χ (as ℵV
1 ≤ λ < ℵV

2 ) hence cfV λ = ℵV
1 .

Let C̄ = ⟨Ci : i < κ⟩ ∈ W be a list of all bounded subsets of κ in W .
By 4.5(1)(iii), every real s of V is in Lα[C̄, r] for some α < κ (so really
we can replace W by L[C̄]). Let in V , λ =

⋃
i<χ Ai, |Ai|V < χ (remember

χ = ℵV
1 ), Ai(i < χ) increasing continuous. Let s be a real of V , then

s ∈ Lα(s)[C̄, r] for some α(s) < κ, without loss of generality α(s) ≥ λ. Let
fα(s) ∈ W be a one-to-one function from Lα(s)[C̄] onto λ. Still working in
V , Lα(s)[C̄, r] =

⋃
γ<χ Ns

γ , N
s
γ(γ < χ) an increasing continuous sequence

of countable elementary submodels of Lα(s)[C̄, r], closed under fα(s), f
−1
α(s).

So ⟨Ai : i < χ⟩ and ⟨Ns
γ ∩ λ : γ < χ⟩ are sequences (in V ) of countable

sets increasing, continuous with the same union: λ and of length χ = ℵV
1 .

Clearly for some γ(s), Ns
γ(s) ∩ λ = Aγ(s), and let δγ = sup Aγ < λ.

Now in V the continuum hypothesis fails, hence there is a list of κ
distinct reals, {sζ : ζ < κ}, and we can replace it by any subfamily of
power κ. So without loss of generality γ(sζ) = γ(∗) for every ζ < κ and for
each ζ < κ, let Aζ be the closure of δγ(∗) by fα(sζ), f

−1
α(sζ)

so Aζ ∈ W . Now

in W the number of possible isomorphism types of

Mζ =: (Aζ , fα(sζ), f
−1
α(sζ)

, <, “i ∈ Cj”, δγ(∗))

is ≤ 2|δγ(∗)| ≤ λ (as W satisfies GCH). So without loss of generality this
isomorphism type is the same for all ordinals ζ < κ.

Now we show that all N
sζ
γ(∗) (for ζ < κ) are isomorphic (in V ) : let ζ,

ξ < κ, now any isomorphism from Mζ onto Mξ is the identity on Aγ(∗) (as
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Aγ(∗) ⊆ δγ(∗) ⊆ Mξ), hence take N
sζ
γ(∗) ∩ λ = Aγ(∗) onto N

sξ
γ(∗) ∩ λ = Aγ(∗);

but |Nsℓ
γ(∗)| is the closure of Nsℓ

γ(∗) ∩ λ by fα(sζ), f
−1
α(sζ)

; so looking at the

definition of Mζ we see that the isomorphism takes N
sζ
γ(∗)∩κ onto N

sξ
γ(∗)∩κ

and preserve the relation “i ∈ Cj” and map r to r. But Nsℓ
γ(∗) “think” it is

Lα(s)[C̄, r], so the isomorphism can be extended to an isomorphism from

N
sζ
γ(∗) onto N

sξ
γ(∗), as promised. But N

sζ
γ(∗) is countable, and we have too

many reals, contradiction. □4.10

Conclusion 4.11 If there are universes W ⊆ V = W [r], r a real, W
satisfies GCH, and CH fails in V then in L there is an inaccessible cardinal,
in fact ℵV

2 is inaccessible in L.

Proof: Suppose in L there is no inaccessible cardinal or just ℵV
1 is not

unaccessible in L. Then 0# /∈ V hence 0# /∈ W and as W satisfies GCH,
W has squares and scales. If (W,V ) satisfies the strong ℵV

2 -covering lemma,
then all the hypothesis of 4.10 are satisfied, hence its conclusion, which is
the conclusion of 4.11. Still by §2 we do not know that the strong ℵ2-
covering lemma holds. However, (letting χ = ℵV

1 , κ = ℵV
2 , κ = (λ+)κ)

by 4.15 below, we know that for every real s ∈ V , for some increasing
continuous sequence ⟨Ns

i : i < χ⟩ of countable models (in V , Ni ⊆ V ) we
have s ∈ Ns

i , N
s
i = (Ns

i ∩W )[r],
⋃

i<χ Ni ∩ κ is an ordinal> λ, and each
Ni is 2-trivially defined from Ni ∩ κ (see 4.12 for meaning). The rest is as
in the proof of 4.10. □4.11

Remark 4.11A (1) So why 4.10, 4.11 comes before 4.15? We think the
proof of 4.10 makes the understanding of 4.12 — 4.15 easier (using
the notation of the proof of 4.10).

(2) But 4.11 is later reproved (in 4.17).

Definition 4.12 LetW ⊆ V , A ∈ V , A ⊆ λ∗, α an ordinal, B ⊆ α, B ∈ V .
We define when “B is ℓ-trivially defined over (W,A,α)” or B ∈ W ℓ

tr[A,α)
for ℓ = 0, 1, 2 (where cl, M2

α, C
ℓ
α are as in §2, specifically see 2.3D, 2.2B,

2.2A).
ℓ = 0 : for some δ, B = cl

(
A ∪ {δ},M2

α

)
∩ C1

δ

ℓ = 1 : for some B1 ∈ W 0
tr[A,α), and a function f ∈ W,

B = cl
(
A ∪ {f(i) : i ∈ B1} ∪ (

⋃
i∈B1

C1
f(i)),M

2
α

)
ℓ = 2 : for some n < ω, B1, ..., Bn ∈ W 1

tr[A,α), and β ≤ α,

B = cl
(
(A ∪

⋃n
m=1 Bm),M2

α

)
∩ β.

Definition 4.13 In V letD be a filter on S<λ∗(λ∗), λ∗ be regular cardinal.
We define the strong (λ∗, D, α)-covering game; it last λ∗ moves; in the i-th
move, player I chooses ai ∈ V , a subset of α of power < λ∗ (in V ) and
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a function fi from an ordinal < λ∗ onto ai, such that ai ⊇
⋃

j<i bj and
fi ⊇

⋃
j<i gj and then player II chooses bi, a subset of α of power < λ∗ (in

V ) and a function gi from an ordinal < λ∗ onto bi, such that bi ⊇
⋃

j≤i aj ,
gi ⊇

⋃
j≤i fj .

In the end player I wins if the following set belongs to D :{
A ∈ S<λ∗(λ∗) : {fi(α) : i < λ∗, α ∈ A} ∈ W 2

tr[A,α)
}
.

(W,V ) has the (λ∗, D, α)-strong covering property if player I has a winning
strategy in the (λ∗, D, α)-strong covering game. We omit α if it is true for
every α.

Remark 4.13A Without loss of generality Dom fi = ai ∩ λ∗, Dom gi =
bi ∩λ∗. This definition does not contradict the earlier one as the filter here
is not on some cardinal (but on S<λ∗(λ∗)).

Definition 4.14 Suppose in V , λ∗ = λ+, λ (and λ∗) are regular. We shall
define a filter D[λ∗, λ].
Let for each α < λ∗, α =

⋃
i<λ A

α
i , A

α
i increasing continuous, |Aα

i | < λ.
D[λ∗, λ] = {S ⊆ S<λ∗(λ∗) : for some closed unbounded C ⊆ λ∗, for

every α ∈ C, if cfα = λ then
{i < λ : Aα

i ∈ S} ∈ Dλ

}
.

Remark 4.14A (1) This definition appears essentially in [Sh52, §3].

(2) The filter does not depend on the choice of the Aα
i ’s.

Theorem 4.15 Suppose in V , λ∗ = λ+ and λ, λ∗ are regular cardinals
λ > ℵ0 and let D = D[λ∗, λ]. If W has λ∗-squares, has scales, and (W,V )
satisfies the λ∗-covering lemma then (W,V ) has the (λ∗, D)-strong covering
property.

Proof: We just repeat the proof of 2.2, 2.3.
Note that we use β ∈ W 0

tr[A,α) for the parallel of “C1
δ(ζ,θ) ⊆ a0ζ” and

B ∈ W 1
tr[A,α) for the parallel of “

⋃
θ∈S C1

δ(ζ,θ)”. □4.15

Corollary 4.16 If the hypothesis of 4.15 holds and ℵW
2 = ℵV

2 then (W,V )
satisfies the strong ℵ2-covering lemma and the strong ℵ1-covering lemma.

∗ ∗ ∗

We have remarked that if λ∗ is the successor of λ in W , things are much
simpler. Let us present this

Paper Sh:E114, version 1994-04-11. See https://shelah.logic.at/papers/E114/ for possible updates.



308 VII: Strong Covering Lemma and CH in V [r]

Lemma 4.17 Assume W ⊆ V , λ a regular uncountable cardinal in V and

(λ+)
V
= (λ+)

W
and (W,V ) satisfies the λ+-covering lemma.

(1) If W has λ-squares, D = Dλ + {δ < λ : cfV δ > ℵ0} then (W,V )
satisfies the strong (λ, λ,D)-covering lemma.

(2) If W has (λ+)
W
-squares, D = Dλ, then (W,V ) satisfies the strong

(λ, λ,D)-covering lemma.
(3) If W has λ-squares,
D = {λ\A : {δ < λ : δ ∈ A or A ∩ δ is stationary in δ} is not stationary

}
.

Then (W,V ) satisfies the strong (λ, λ,D)-covering lemma.

Proof: For any ordinal we can find µ bigger than it, µ a regular cardinal

in W , V |=“µλ = µ”, and let α(∗) = (µ+)
W
. Clearly it suffices to deal

with subsets of α(∗) (in (1) — prove that player I wins the (λ, λ,D, α(∗))-
covering game).

We define a model Mα(∗). Let, in W , {fβ : β < α(∗)} ∈ W list all
functions f ∈ W such that: Dom f ⊆ {κ : λ ≤ κ ≤ µ, κ regular in W}
and W |=|Dom f | < λ and f(κ) < κ for κ ∈ Dom f (there is such a list as
V |=“µ<λ = µ”. For (1) let Mα(∗) be M0

α(∗) (from 2.2A) expanded by F , a

partial two place function, F (β, γ) = fβ(γ). For (2) , we replace

⟨C1
α : λ ≤ α < α(∗) and cfV (α) < λ⟩

(λ-square) by a λ+-square

⟨C1
α : λ ≤ α < α(∗), cfV (α) < λ+⟩,

otp C1
α ≤ λ (equality holds when cfV α = λ).

Note that (W,V ) satisfies the λ-covering lemma [if a ⊆ Ord, V |=“|a| <
λ” by assumption there is b ∈ W , V |=“|b| < λ+” and a ⊆ b. So |b|W <

(λ+)
V
= (λ+)

W
hence by an assumption W |=|b| ≤ λ. So in W we have an

increasing sequence ⟨bi : i < λ⟩, b =
⋃

i<λ bi, W |=|bi| < λ. Now for some
i, a ⊆ bi (as in V |a| < λ & cfλ = λ) so we finish]. Now let for any set
a ⊆ a(∗), Cha be the function with domain

{κ < α : κ regular uncountable in W, κ ∈ a},

Cha(κ) = sup(a ∩ κ).
We now define a strategy for player I in the (λ, λ,D, α)-covering game:

he chose ai ⊆ α such that: ai ∈ W , ai ⊆ α, µ ∈ ai, |ai| < λ and ai include
the closure in order topology of the Skolem Hull of

⋃
j<i bj in Mα, and for

each j < i for some βj < α(∗), Chaj = fβj and βj ∈ aj+1. Clearly this is
possible.

Let us show that this is a winning strategy. So let ⟨ai, bi : i < λ⟩ be a
play of the (λ, λ,D, α)-covering game in which player I uses his strategy.
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By the assumption [i.e. (W,V ) has λ+-covering, applied to the set
⋃

i<λ ai]
there is a set d ⊆ α, d ∈ W , |d| < λ+ and

⋃
i<λ ai ⊆ d. As before (because

(λ+)
V
= (λ+)

W
] we have W |=“|d| ≤ λ” so there is an increasing continu-

ous sequence ⟨di : i < λ⟩ ∈ W of subsets of d such that: d =
⋃

i<λ di and
[i < λ ⇒ W |=“|di| < λ”].

Clearly C0 =
{
δ < λ : δ a limit ordinal and dδ ∩

⋃
j<λ aj =

⋃
j<δ aj

}
is a club of λ. Also

C1 =
{
δ < λ : if β ∈ dδ and for some j < λ, fβ < fαj

(i.e. Dom fβ ⊆ Dom fαj and (∀κ ∈ Dom fβ)[fβ(κ) < fj(κ)]) then
there is such j < δ

}
is a club of λ. Hence it suffices to prove that for every δ ∈ C0 ∩C1 we have⋃

j<δ aj ∈ W . Let δ ∈ C0 ∩ C1, define Yδ =: {β ∈ dδ : fβ < fαδ
}.

Now for each ζ < δ, we know that

βζ ∈ aζ+1 ⊆
⋃
j<δ

a and fβζ
= Chaζ

< Chaδ
= fαδ

hence [ζ < δ ⇒ βζ ∈ Yδ].
On the other hand (as δ ∈ C1)

β ∈ Yδ ⇒ fβ < fβδ
⇒

∨
j<δ

fβ < fβj
.

Hence for every κ ∈
⋃

j<δ aj\λ regular in W

Ch⋃
j<δ

aj
(κ) = sup

j<δ
Chaj

(κ) = sup
β∈Yδ

fβ(κ).

So g∗δ , the function with domain

{κ : κ ∈ dδ\λ, κ ≤ µ, κ regular in W},

g∗δ (κ) = supβ∈Yδ
fβ(κ) belongs to W (as Yδ and dδ belongs) and

Ch⋃
j<δ

aj
⊆ g∗δ .

Proof of 4.17(1): Remember by assumption W has λ-square, say

⟨C1
δ : δ < α(∗), cfδ < λ⟩,

and they “appear” in Mα(∗). By the strategy for every j < λ of uncountable
cofinality and θ ∈ aj\λ (regular in W , ∈ [λ, µ]) C1

Chaj
(θ) ⊆ aj+2. Hence as

in 2.2(D) for limit δ ∈ C0 ∩ C1 of uncountable cofinality C1
Ch∪j<δaj

(θ) ⊆
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⋃
j<δ aj , so by 2.2 we finish similarly to 2.3E. I.e. define by induction on

n :
a0 is the Skolem Hull of ∅ in Mα(∗)
an+1 is the Skolem Hull in Mα(∗) of

an ∪
{
C1

g∗(θ) : θ ∈ an a regular cardinal ≥ λ of W , in the

domain of g∗
}
.

Clearly ⟨an : n < ω⟩ ∈ W hence aω =:
⋃

n<ω an ∈ W , and each an is a
subset of a so aω ⊆ a. Lastly aω = a similarly to 2.3E.

Proof of 4.17(2),(3):
Similar. □4.17

∗ ∗ ∗

Lemma 4.18 Suppose W ⊆ V = W [r], ℵV
1 = ℵW

1 , r a real, W satisfies
CH while V fails CH. Then ℵV

2 is inaccessible in L.

Proof: Assume the conclusion fails, so κ =: ℵV
2 = (λ+)

W
, λ a cardinal in

L. Let χ = ℵV
1 = ℵW

1 . By 4.9 cfV λ = ℵ1. Also as ℵV
2 is not inaccessible in L,

necessarily 0# /∈ V hence by 4.7 V |=2ℵ0 ≤ ℵ2 hence V |=2ℵ0 = ℵ2. Choose

A ∈ V , A ⊆ λ such that ℵL[A]
1 = ℵV

1 (= ℵW
1 ) and L[A]|=“|λ| = ℵ1”, (so

we cannot exclude the possibility “A /∈ W”). Now by Lemma 4.19 below,
L[A]|=“2ℵ0 = ℵ1”, (note L,L[A], λ, A here stand for W , V , λ, r there).

By 2.8 (with L[A], V , ℵV
1 , ℵV

2 , ℵ0 here standing forW , V , λ∗, λ, κ there)
the pair (L[A], V ) satisfies the strong ℵV

1 -covering lemma. As L[A]|=CH by
4.5 also V satisfies CH, contradiction. □4.18

Claim 4.19 Suppose W ⊆ V = W [r], r a subset of λ, λ a cardinal of W ,

(λ+)
W

= ℵV
2 and W satisfies GCH.

Then V satisfies CH.

Proof: Let κ =: ℵV
2 , χ = ℵV

1 , so W |=“κ = λ+”. Now V |=“cfλ = ℵ1” by
4.9; and assume V |=“2ℵ0 > ℵ1” and we shall get a contradiction.

Now repeat the proof of 4.10 (after the first paragraph). The additional
point is in proving N

sζ
γ , N

sξ
γ are isomorphic. We have to check that the

mapping preserves “i ∈ r”, but r ⊆ λ and N
sζ
γ ∩ λ = N

sξ
γ ∩ λ ⊆ Aδγ , and

the mapping is the identity on Aδγ . □4.19
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