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Abstract. We show that, consistently, there exists a Borel set B ⊆ ω2
admitting a sequence ⟨ηα : α < λ⟩ of distinct elements of ω2 such that
(ηα + B) ∩ (ηβ + B) is uncountable for all α, β < λ but with no perfect
set P such that |(η + B) ∩ (ν + B)| ≥ 6 for any distinct η, ν ∈ P . This
answers two questions from our previous works.

1. Introduction

In the series of articles [4, 5, 6] we investigated the existence of Borel
sets with many, but not too many pairwise non-disjoint translations. For
instance, in [5], for a countable ordinal ε < ω1 and an integer 2 ≤ ι < ω we
constructed a Σ0

2 set B ⊆ ω2 with the following property.

In some ccc forcing extension there is a sequence ⟨ρα : α < ℵε⟩
of distinct elements of ω2 such that∣∣(ρα +B) ∩ (ρβ +B)

∣∣ ≥ 2ι for all α, β < λ

but in no extension there is a perfect set of such ρ’s.

Similar resuts for the general case of perfect Abelian Polish groups were
presented in [6]. However, in all those cases when discussing nonempty in-
tersections we considered finite intersections only. It seemed that our argu-
ments really needed a finite enumeration of “witnesses for nondisjointness”.
So in [4, Problem 5.1] and [6, Problem 7.6] we asked if there is a ccc forcing
notion P adding a Σ0

2 subset B of the Cantor space ω2 such that

for some H ⊆ ω2 of size λ, the intersections (B+h)∩(B+h′)
are infinite (uncountable, respectively) for all h, h′ ∈ H, but
for every perfect set P ⊆ ω2 there are x, x′ ∈ P with the
intersection (B+x)∩ (B+x′) finite (countable, respectively).

In the present paper we answer the above two questions positively. Our
forcing construction slightly generalizes and simplifies that of [4, 5]. This
allows us to show a stronger result:

If λ < λω1 then some ccc forcing notion adds a Σ0
2 set B

which has λ translations with pairwise uncountable intersec-
tions, while for every perfect set P ⊆ ω2 there are x, x′ ∈ P
with |(B + x) ∩ (B + x′)| < 6.
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The article is organized as follows. First, in Section 2, we recall the splitting
rank from Shelah [7]. This rank was fundamental for the question of no per-
fect squares and it is fundamental for problems of nondisjoint translations
as well. Then, in the third section we introduce nice indexed bases Ō and we
define when translations of a Σ0

2 set have Ō–large intersection. This allows
us to put in the same framework sets with finite, infinite and uncountable
intersections. We also analyze when a Σ0

2 set may have a perfect set of trans-
lations with Ō–large intersections and we introduce a non-disjointness rank
on finite approximations. Our main consistency theorem is presented in the
fourth section. In the final part of the paper we summarize our results and
pose a few relevant problems.

Notation: Our notation is standard and compatible with that of classical
textbooks (like Jech [2] or Bartoszyński and Judah [1]). However, in forcing
we keep the older convention that a stronger condition is the larger one.

(1) For a set u we let u⟨2⟩ = {(x, y) ∈ u× u : x ̸= y}.
(2) The Cantor space ω2 of all infinite sequences with values 0 and 1 is

equipped with the natural product topology and the group operation
of coordinate-wise addition + modulo 2.

(3) Ordinal numbers will be denoted be the lower case initial letters of
the Greek alphabet α, β, γ, δ, ε, ζ as well as ξ. Finite ordinals (non-
negative integers) will be denoted by letters a, b, c, d, i, j, k, ℓ,m, n,M
and ι.

(4) The Greek letters κ, λ will stand for uncountable cardinals.
(5) For a forcing notion P, all P–names for objects in the extension via

P will be denoted with a tilde below (e.g., τ
˜
, X
˜
), and G

˜
P will stand

for the canonical P–name for the generic filter in P.
We fully utilize the algebraic properties of (ω2,+), in particular the fact
that all elements of ω2 are self-inverse.

2. The splitting rank

In this section we recall some basic facts from [7, Section 1] concerning
a rank (on models with countable vocabulary) which will be used in the
construction of a forcing notion in the fourth section. This rank and relevant
proofs were also presented in [4, Section 2].

Let λ be a cardinal andM be a model with the universe λ and a countable
vocabulary τ .

Definition 2.1. (1) By induction on ordinals δ, for finite non-empty
sets w ⊆ λ we define when rk(w,M) ≥ δ. Let w = {α0, . . . , αn} ⊆ λ,
|w| = n+ 1.
(a) rk(w) ≥ 0 if and only if for every quantifier free formula φ ∈

L(τ) and each k ≤ n, if M |= φ[α0, . . . , αk, . . . , αn] then the set{
α ∈ λ : M |= φ[α0, . . . , αk−1, α, αk+1, . . . , αn]

}
is uncountable;

(b) if δ is limit, then rk(w,M) ≥ δ if and only if rk(w,M) ≥ γ for
all γ < δ;
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(c) rk(w,M) ≥ δ+ 1 if and only if for every quantifier free formula
φ ∈ L(τ) and each k ≤ n, if M |= φ[α0, . . . , αk, . . . , αn] then
there is α∗ ∈ λ \ w such that

rk(w ∪ {α∗},M) ≥ δ and M |= φ[α0, . . . , αk−1, α
∗, αk+1, . . . , αn].

(2) The rank rk(w,M) of a finite non-empty set w ⊆ λ is defined by:
• rk(w,M) = −1 if ¬(rk(w,M) ≥ 0), and
• rk(w,M) = ∞ if rk(w,M) ≥ δ for all ordinals δ, and
• for an ordinal δ: rk(w,M) = δ if rk(w,M) ≥ δ but ¬(rk(w,M) ≥
δ + 1).

Definition 2.2. For an ordinal ε and a cardinal λ let NPrε(λ) be the follow-
ing statement:1 “there is a model M∗ with the universe λ and a countable
vocabulary τ ∗ such that sup{rk(w,M∗) : ∅ ≠ w ∈ [λ]<ω} < ε.”

Prε(λ) is the negation of NPrε(λ).

Observation 2.3. If λ is uncountable and NPrε(λ), then there is a model
M∗ with the universe λ and a countable vocabulary τ ∗ such that

• rk({α},M∗) ≥ 0 for all α ∈ λ and
• rk(w,M∗) < ε for every finite non-empty set w ⊆ λ.

Proposition 2.4 (See [7, Claim 1.7] and/or [4, Proposition 2.6]).

(1) NPr1(ω1).
(2) If NPrε(λ), then NPrε+1(λ

+).
(3) If NPrε(µ) for µ < λ and cf(λ) = ω, then NPrε+1(λ).

Proposition 2.5 (See [7, Conclusion 1.8] and/or [4, Proposition 2.7]). As-
sume β < α < ω1, M is a model with a countable vocabulary τ and the
universe µ, m,n < ω, n > 0, A ⊆ µ and |A| ≥ ℶω·α. Then there is w ⊆ A
with |w| = n and rk(w,M) ≥ ω · β +m 2.

Definition 2.6. Let λω1 be the smallest cardinal λ such that Prω1(λ).

Corollary 2.7. (1) If α < ω1, then NPrω1(ℵα).
(2) Prω1(ℶω1) holds true.
(3) ℵω1 ≤ λω1 ≤ ℶω1.

Corollary 2.8 (See [4, Proposition 2.10 and Corollary 2.11]). Let µ =
ℶω1 ≤ κ. If P is a ccc forcing notion, then ⊩P Prω1(µ). In particular, if Cκ

is the forcing notion adding κ Cohen reals, then ⊩Cκ λω1 ≤ µ ≤ c.

3. Spectrum of translation non-disjointness

We want to analyze sets with many non-disjoint translations in more
detail, restricting ourselves to Σ0

2 subsets of ω2. In this section we will keep
the following assumptions.

1The notation Pr(λ)/NPr(λ) was introduced in [7]. It originated in asserting that the
cardinal λ has or does not have the PRoperty under consideration. It is somewhat unfor-
tunate that as a result of not choosing better names in the past, today many properties
are called PR.

2“ · ” stands for the ordinal multiplication
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Assumptions 3.1. Let T̄ = ⟨Tn : n < ω⟩, where each Tn ⊆ ω>2 is a tree
with no maximal nodes (for n < ω). Let B =

⋃
n<ω

lim(Tn).

Definition 3.2. (1) Let L consist of all non-empty sets u ⊆ ω>2 such
that u ⊆ ℓ2 for some ℓ = ℓ(u) < ω.

(2) A simple base is a (strict) partial order O = (O,≺) such that O ⊆ L
and for u, u′ ∈ O:
(a) if u ≺ u′ then ℓ(u) < ℓ(u′) and u = {η↾ℓ(u) : η ∈ u′},
(b) there is a v ∈ O such that u ≺ v,
(c) if ρ ∈ ℓ(u)2 then u + ρ ∈ O, and if ρ ∈ ℓ(u′)2 and u ≺ u′ then

u+ ρ↾ℓ(u) ≺ u′ + ρ.
(3) Let (O,≺) be a simple base. An O–tower is a ≺–increasing sequence

ū = ⟨un : n < ω⟩ ⊆ O (so un ≺ un+1 for all n < ω). The cover of an

O–tower ū is the set C(ū) def
=

{
η ∈ ω2 :

(
∀n < ω

)(
η↾ℓ(un) ∈ un

)}
.

(4) An indexed base is a sequence Ō = ⟨Oi : i < i∗⟩ where 0 < i∗ ≤ ω
and each Oi is a simple base.

Definition 3.3. Let Ō = ⟨Oi : i < i∗⟩ be an indexed base.

(1) We say that two translations B + x and B + y of the set3 B (for
x, y ∈ ω2) have Ō–large intersection if for some ⟨ūi : i < i∗⟩ for
every i < i∗ we have:

• ūi is an Oi–tower,
• for some n1, n2 < ω,

C(ūi) ⊆
(
lim(Tn1) + x

)
∩
(
lim(Tn2) + y

)
,

• C(ūi) ∩ C(ūj) = ∅ whenever j < i∗, j ̸= i.
In the above situation we may also say that (B + x) ∩ (B + y) is
Ō–large.

(2) We say that B is perfectly orthogonal to Ō–small (or a Ō–pots–set)
if there is a perfect set P ⊆ ω2 such that the translations B + x,
B + y have a Ō–large intersection for all x, y ∈ P .
The set B is a Ō–npots–set if it is not Ō–pots.

(3) We say that B has λ many pairwise Ō–nondisjoint translations if for
some set X ⊆ ω2 of cardinality λ, for all x, y ∈ X the translations
B + x, B + y have a Ō–large intersection.

(4) We define the spectrum of translation Ō–nondisjointness of B as

stndŌ(B) =
{
(x, y) ∈ ω2× ω2 : the translations B + x,B + y

have a Ō–large intersection
}
.

Example 3.4. (1) Let 6 ≤ ι ≤ ω. Put O0 = {u ∈ L : |u| = 1} and let
a relation ≺0 be defined by:
u ≺0 v if and only if ℓ(u) < ℓ(v) ∧ u = {η↾ℓ(u) : η ∈ v}.

Then (O0,≺0) is a simple base and Ōι = ⟨O0 : i < ι⟩ is an indexed
base. Two translations B + x and B + y of the set B (for x, y ∈ ω2)
have Ōι–large intersection if and only if (B + x) ∩ (B + y) has at
least ι members.

3Remember Assumptions 3.1
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(2) Let Oper = {u ∈ L : |u| ≥ 3} and let a relation ≺per be defined by
u ≺per v if and only if
u = {η↾ℓ(u) : η ∈ v} ∧ (∀ν ∈ u)(|{η ∈ v : ν ◁ η}| ≥ 2).

Then (Oper,≺per) is a simple base and Ōper = ⟨Oper⟩ is an indexed
base. Two translations B + x and B + y of the set B (for x, y ∈
ω2) have Ōper–large intersection if and only if (B + x) ∩ (B + y) is
uncountable.

Proposition 3.5. Let Ō be an indexed base and let T̄ , B be as in Assump-
tions 3.1.

(1) The set B is a Ō–pots–set if and only if there is a perfect set P ⊆ ω2
such that P × P ⊆ stndŌ(B).

(2) The set stndŌ(B) is Σ1
1.

(3) Let c < λ ≤ µ and let Cµ be the forcing notion adding µ Cohen reals.
Then, remembering Definition 3.3(2),

⊩Cµ “ if B has λ many pairwise Ō–nondisjoint translations,
then B is a Ō–pots–set ”.

(4) Assume Prω1(λ). If B has λ many pairwise Ō–nondisjoint transla-
tions, then it is a Ō–pots–set.

Proof. (1,2) Straightforward; in evaluation of the complexity of stndŌ(B)
note that for Oi–towers ūi = ⟨uin : n < ω⟩, x ∈ ω2 and k < ω:

C(ūi) ⊆ lim(Tk) + x if and only if (∀n < ω)(uin ⊆ Tk + x), and
C(ūi1)∩C(ūi2) = ∅ if and only if (∃ℓ < ω)(∀n1, n2 > ℓ)(ui1n1

↾ℓ∩ui2n2
↾ℓ = ∅).

(3) This is a consequence of (1,2) above and Shelah [7, Fact 1.16].

(4) By [7, Claim 1.12(1)]. □

To carry out our arguments we need to assume that our indexed base Ō
satisfies some additional properties.

Definition 3.6. An indexed base Ō = ⟨Oi : i < i∗⟩ is nice if it satisfies the
following demands (i)–(v).

(i) Either i∗ ≥ 6 or for some i < i∗ we have(
∀u ∈ Oi

)(
∃v ∈ Oi

)
(u ≺ v ∧ |v| ≥ 6

)
.

(ii) If i < i∗, u ≺i v ≺i v
′ ≺i v

′′, and ℓ(v) ≤ ℓ ≤ ℓ(v′), then {η↾ℓ : η ∈
v′} ∈ Oi and u ≺i {η↾ℓ : η ∈ v′} ≺i v

′′.
(iii) If i < i∗, u ≺i v, ℓ(v) < ℓ and v′ ⊆ ℓ2 is such that for each ν ∈ v

the set {η ∈ v′ : ν ◁ η} has exactly one element, then v′ ∈ Oi and
u ≺i v

′.
(iv) Suppose u ≺i v and u′ ⊆ u is such that u′ ∈ Oi. Let v

′ = {η ∈ v :
η↾ℓ(u) ∈ u′}. Then v′ ∈ Oi and u

′ ≺i v
′.

(v) If i∗ = ω, then for each i < i∗ there are infinitely many j < i∗ such
that Oi = Oj.
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Observation 3.7. The indexed bases Ōι (for 6 ≤ ι ≤ ω) and Ōper intro-
duced in Example 3.4 are nice.

Proposition 3.8. Suppose an indexed base Ō = ⟨Oi : i < i∗⟩ is nice. Then:
(⊛) If 2 ≤ K < ω and ūk (for k < K) is an Oi(k)–tower for some

i(k) < i∗, then there are Oi(k)–towers v̄
k = ⟨vkn : n < ω⟩ (for k < K)

such that
• C(v̄k) = C(ūk), vk0 = uk0 and
•

⋂
k∈K

{ℓ(vkn) : n < ω} is infinite.

Proof. Induction onK. ForK = 2 we proceed as follows. Let ū0 be an Oi(0)–
tower and ū1 be an Oi(1)–tower. Choose inductively a sequence ⟨nk : k < ω⟩
so that

• 5 < n0 < n1 < n2 < n3 < . . .,
• ℓ(u15) < ℓ(u0n0

),
• if ℓ(u1j) ≤ ℓ(u0nk

) < ℓ(u1j+1), then ℓ(u
1
j+5) ≤ ℓ(u0nk+1

).

For k < ω let j(k) be such that ℓ(u1j(k)) ≤ ℓ(u0nk
) < ℓ(u1j(k)+1). Put vk =

{η↾ℓ(u0nk
) : η ∈ u1j(k)+1}. By 3.6(ii), vk ∈ Oi(1) and u1j(k)−1 ≺i(1) vk ≺i(1)

u1j(k)+2. The rest should be clear. □

For the rest of this section we will be assuming the following.

Assumptions 3.9. (1) T̄ = ⟨Tn : n < ω⟩, B are as in Assumptions 3.1,
(2) Ō = ⟨Oi : i < i∗⟩ is a nice indexed base with Oi = (Oi,≺i),
(3) there are distinct x, y ∈ ω2 such that (B + x) ∩ (B + y) is Ō–large.

Definition 3.10. Let MT̄ ,Ō consist of all tuples

m = (ℓm, ιm, um, h̄m, ḡm) = (ℓ, ι, u, h̄, ḡ)

such that:

(a) 0 < ℓ < ω, u ⊆ ℓ2 and 2 ≤ |u|, and ι = i∗ if i∗ < ω, and 3 ≤ ι < ω
otherwise;

(b) ḡ = ⟨gi : i < ι⟩, where4 gi : u⟨2⟩ −→ Oi is such that gi(η, ν) = gi(ν, η)
and ℓ

(
gi(η, ν)

)
= ℓ for each (η, ν) ∈ u⟨2⟩;

(c) if (η, ν) ∈ u⟨2⟩ and i < i′ < ι, then gi(η, ν) ∩ gi′(η, ν) = ∅,
(d) h̄ = ⟨hi : i < ι⟩, where hi : u⟨2⟩ −→ ω;
(e) for each (η, ν) ∈ u⟨2⟩, if σ ∈ gi(η, ν) then η + σ ∈ Thi(η,ν).

Definition 3.11. Assume m = (ℓ, ι, u, h̄, ḡ) ∈ MT̄ ,Ō and ρ ∈ ℓ2. We define
m+ ρ = (ℓ′, ι′, u′, h̄′, ḡ′) by

• ℓ′ = ℓ, ι′ = ι, u′ = {η + ρ : η ∈ u},
• ḡ′ = ⟨g′i : i < ι′⟩, where g′i : (u′)⟨2⟩ −→ Oi : (η + ρ, ν + ρ) 7→
gi(η, ν) + ρ,

• h̄′ = ⟨h′i : i < ι′⟩, where h′i : (u′)⟨2⟩ −→ ω are such that h′i(η + ρ, ν +
ρ) = hi(η, ν) for (η, ν) ∈ u⟨2⟩.

Also if ρ ∈ ω2, then we set m+ ρ = m+ (ρ↾ℓ).
4remember u⟨2⟩ = {(η, ν) ∈ u× u : η ̸= ν}
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Observation 3.12. (1) If m ∈ MT̄ ,Ō and ρ ∈ ℓm2, then m+ρ ∈ MT̄ ,Ō.
(2) For each ρ ∈ ω2 the mapping MT̄ ,Ō −→ MT̄ ,Ō : m 7→ m + ρ is a

bijection.

Definition 3.13. Assume m,n ∈ MT̄ ,Ō. We say that n strictly extends m
(m ⊏ n in short) if and only if:

• ℓm < ℓn, ιm ≤ ιn, um = {η↾ℓm : η ∈ un}, and
• for every (η, ν) ∈ (un)⟨2⟩ such that η↾ℓm ̸= ν↾ℓm and each i < ιm we
have

– gmi (η↾ℓm, ν↾ℓm) ≺ gni (η, ν), and
– hmi (η↾ℓm, ν↾ℓm) = hni (η, ν).

Definition 3.14. (1) By induction on ordinals α we define DT̄ (α) ⊆
MT̄ ,Ō. We declare that:

• DT̄ (0) = MT̄ ,Ō,

• if α is a limit ordinal, then DT̄ (α) =
⋂
β<α

DT̄ (β),

• if α = β + 1, then DT̄ (α) consists of all m ∈ MT̄ ,Ō such that
for each for each ν ∈ um there is an n ∈ MT̄ ,Ō satisfying

– m ⊏ n and n ∈ DT̄ (β), and if i∗ = ω then ιm < ιn, and
– the set {η ∈ un : ν ◁ η} has at least two elements.

(2) We define a function5 ndrkT̄Ō = ndrk : MT̄ ,Ō −→ ON ∪ {∞} as
follows.
If m ∈ DT̄ (α) for all ordinals α, then we say that ndrk(m) = ∞.
Otherwise, ndrk(m) is the first ordinal α for which m /∈ DT̄ (α+1).

(3) We also define

NDRKŌ(T̄ ) = NDRK(T̄ ) = sup{ndrk(m) + 1 : m ∈ MT̄ ,Ō}.
Lemma 3.15. (1) The relation ⊏ is a strict partial order on MT̄ ,Ō.

(2) If m,n ∈ MT̄ ,Ō and m ⊏ n and n ∈ DT̄ (α), then m ∈ DT̄ (α).

(3) If α < β then DT̄ (β) ⊆ DT̄ (α). Hence for m ∈ MT̄ ,Ō, m ∈ DT̄ (α)
if and only if α ≤ ndrk(m).

(4) If m ∈ MT̄ ,Ō and ρ ∈ ω2 then ndrk(m) = ndrk(m+ ρ).
(5) If m ∈ MT̄ ,Ō and ndrk(m) ≥ ω1, then there is an n ∈ MT̄ ,Ō such

that m ⊏ n, |{η ∈ un : ν ◁ η}| ≥ 2 for each ν ∈ um, if i∗ = ω then
ιm < ιn, and ndrk(n) ≥ ω1.

(6) If m ∈ MT̄ ,Ō and ∞ > ndrk(m) = β > α, then there is n ∈ MT̄ ,Ō
such that m ⊏ n and ndrk(n) = α.

(7) If NDRK(T̄ ) ≥ ω1, then NDRK(T̄ ) = ∞.
(8) Assume m ∈ MT̄ ,Ō and u′ ⊆ um, |u′| ≥ 2. Put ℓ′ = ℓm, ι′ = ιm,

and for i < ι′ let h′i = hmi ↾(u′)⟨2⟩ and g′i = gmi ↾(u′)⟨2⟩. Let m↾u′ =
(ℓ′, u′, i′, h̄′, ḡ′). Then m↾u′ ∈ MT̄ ,Ō and ndrk(m) ≤ ndrk(m↾u′).

Proof. Exactly the same as for [4, Lemma 3.10]. □

Proposition 3.16. For a nice indexed base Ō the following conditions (a)
– (d) are equivalent.

5ndrk stands for nondisjointness rank
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(a) NDRKŌ(T̄ ) ≥ ω1.
(b) NDRKŌ(T̄ ) = ∞.
(c) B is perfectly orthogonal to Ō–small (see 3.3(2)).
(d) In some ccc forcing extension, the set B has λω1 many pairwise Ō–

nondisjoint translations (see 3.3(3)).

Proof. The proof follows closely the lines of [4, Proposition 3.11].
(c) ⇒ (d) Assume (c) and let P ⊆ ω2 be a perfect set such that the
translations B + x, B + y have Ō–large intersection for all x, y ∈ P . Let
κ = ℶω1 . By Corollary 2.8, ⊩Cκ λω1 ≤ c. By Proposition 3.5(2), the formula
“P ×P ⊆ stndŌ(B)” is Π1

2, so it holds in the forcing extension by Cκ. Now
we easily conclude (d).

(d) ⇒ (a) Assume (d) and let P be the ccc forcing notion witnessing this
assumption, G ⊆ P be generic over V. Let us work in V[G].

Let ⟨ηα : α < λω1⟩ be a sequence of distinct elements of ω2 such that(
∀α < β < λω1

)(
(B + ηα) ∩ (B + ηβ) is Ō–large

)
.

Remember Definition 3.2(3): an Oi–tower is an ≺i–increasing sequence ū =
⟨un : n < ω⟩ and its cover C(ū) is the set {η ∈ ω2 : (∀n < ω)(η↾ℓ(un) ∈ un)}.

Let τ = {Rm : m ∈ MT̄ ,Ō} be a vocabulary where each Rm is a |um|–
ary relational symbol. Let M =

(
λω1 ,

{
RM

m

}
m∈MT̄ ,Ō

)
be the model in the

vocabulary τ , where for m = (ℓ, ι, u, h, g) ∈ MT̄ ,Ō the relation RM
m is defined

by

RM
m =

{
(α0, . . . , α|u|−1) ∈ (λω1)

|u| : {ηα0↾ℓ, . . . , η|u|−1↾ℓ} = u and

for each distinct j1, j2 < |u| and every i < ι
there is an Oi–tower ū

i(j1, j2) = ⟨uin(j1, j2) : n < ω⟩ such that
gi(ηαj1

↾ℓ, ηαj2
↾ℓ) = ui0(j1, j2) and C

(
ūi(j1, j2)

)
is included in

[lim(Thi(ηαj1
↾ℓ,ηαj2

↾ℓ)) + ηαj1
] ∩ [lim(Thi(ηαj2

,ηαj1
)) + ηαj2

]
}
.

Claim 3.16.1. (1) If α0, α1, . . . , αj−1 < λω1 are distinct, j ≥ 2, then
for infinitely many k < ω there is m ∈ MT̄ ,Ō such that

ℓm = k, um = {ηα0↾k, . . . , ηαj−1
↾k} and M |= Rm[α0, . . . , αj−1].

(2) Assume that m ∈ MT̄ ,Ō, j < |um|, α0, α1, . . . , α|um|−1 < λω1 and
α∗ < λω1 are all pairwise distinct and such that

• M |= Rm[α0, . . . , αj, . . . , α|um|−1] and
• M |= Rm[α0, . . . , αj−1, α

∗, αj+1, . . . α|um|−1].
Then for infinitely many k < ω there is an n ∈ MT̄ ,Ō such that
m ⊏ n and ℓn = k, un = {ηα0↾k, . . . , ηα|um|−1

↾k, ηα∗↾k} and M |=
Rn[α0, . . . , α|um|−1, α

∗], and if i∗ = ω then also ιm < ιn.
(3) If m ∈ MT̄ ,Ō and M |= Rm[α0, . . . , α|um|−1], then

rk({α0, . . . , α|um|−1},M) ≤ ndrkT̄Ō(m).

Proof of the Claim. (1) It is a simpler version of the proof below.
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(2) By the definition ofRM
m, sinceM |= Rm[α0, . . . , αj−1, α

∗, αj+1, . . . α|um|−1]
and M |= Rm[α0, . . . , αj, . . . , α|um|−1], we may choose a sequence

⟨ūi(j1, j2) : (j1, j2) ∈
(
|um|+ 1

)⟨2⟩ ∧ i < ιm⟩

satisfying the following demands. Letting α|um| = α∗, for (j1, j2) ∈
(
|um| +

1
)⟨2⟩

and i < ιm:

• ūi(j1, j2) = ūi(j2, j1) is a Oi–tower,
• if {j1, j2} ≠ {j, |um|}, then ui0(j1, j2) = gmi (ηαj1

↾ℓm, ηαj2
↾ℓm),

• if i1 < i2 < ιm, then C
(
ūi1(j1, j2)

)
∩ C

(
ūi2(j1, j2)

)
= ∅,

• if {j1, j2} ≠ {j, |um|}, then C
(
ūi(j1, j2)

)
is included in

[lim(Thm
i (ηαj1

↾ℓm,ηαj2
↾ℓm)) + ηαj1

] ∩ [lim(Thm
i (ηαj2

↾ℓm,ηαj1
↾ℓm)) + ηαj2

],

• for some N ′
i , N

′′
i we have

C
(
ūi(j, |um|)

)
⊆ [lim(TN ′

i
) + ηαj

] ∩ [lim(TN ′′
i
) + ηα∗ ].

Since Ō is nice (and ιm and um are finite), we may use 3.8(⊛) and modify
ūi(j1, j2) (without changing u

i
0(j1, j2)) and demand that the set

A =
⋂
i<ιm

⋂
j1<j2≤|um|

{
ℓ
(
uin(j1, j2)

)
: n ∈ ω

}
is infinite. Let ℓ0 ∈ A \ (ℓm + 1) be bigger than the second element of
A \ (ℓm + 1) and such that ηα|um|↾ℓ0 ̸= ηαj

↾ℓ0, and x↾ℓ0 ̸= y↾ℓ0 whenever

x ∈ C(ūi1(j1, j2)), y ∈ C(ūi2(j1, j2)), (j1, j2) ∈
(
|um|+1

)⟨2⟩
and i1 < i2 < ιm.

Let ι = ιm = i∗ if i∗ < ω and let ι = ιm+1 otherwise. In the latter case we
also have to chooseOιm–towers ū

ιm(j1, j2), but to ensure the demand 3.10(c)
we will have to modify the already chosen towers ūi(j1, j2) (for i < ιm). Fix

(j1, j2) ∈
(
|um|+ 1

)⟨2⟩
for a moment. Let

K =
∑{∣∣uin(j1, j2)∣∣ : ℓ(uin(j1, j2)) = ℓ0 ∧ i < ιm ∧ n < ω

}
.

By 3.6(v) and the assumptions on ⟨ηα : α < λω1⟩, there are infinitely many
Oιm–towers v̄

k such that their covers are pairwise disjoint and included in(
lim(Tk1) + ηαj1

)
∩
(
lim(Tk2) + ηαj2

)
for some k1, k2.

Choose ℓ(j1, j2) ∈ A \ (ℓ0 + 1) so large, that there are more than K + 1
many k’s for which the sets {η↾ℓ(j1, j2) : η ∈ vkn} are pairwise disjoint (for
large n) and ℓ(vk5) < ℓ(j1, j2) for all those k’s. For i < im let n(i),m(i) be
such that ℓ(uin(i)(j1, j2)) = ℓ0 and ℓ(uim(i)(j1, j2)) = ℓ(j1, j2), and let vi ⊆
uim(i)(j1, j2) be such that for each ν ∈ uin(i)(j1, j2) the set {η ∈ vi : ν ◁ η}
has exactly one element. By 3.6(iii) we have

vi ∈ Oi and uin(i)−1(j1, j2) ≺i v
i.

Hence, using repeatedly 3.6(iv), we may modify the towers ūi(j1, j2) (for
i < im) and demand that

• for each i < ιm, for some n∗(i),

ℓ(uin∗(i)(j1, j2)) = ℓ(j1, j2) and
∣∣uin∗(i)(j1, j2)

∣∣ = ∣∣{η↾ℓ0 : η ∈ uin∗(i)(j1, j2)}
∣∣.
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Looking back at the towers v̄k, we may choose one, v̄k
∗
= v̄(j1, j2), which

has the property that for all large n

{η↾ℓ(j1, j2) : η ∈ vn(j1, j2)} ∩
⋃{

uin∗(i)(j1, j2) : i < ιm} = ∅.

Now unfix (j1, j2) and set ℓ = max{ℓ(j1, j2) : (j1, j2) ∈ (|um|+ 1)⟨2⟩}.
Suppose j1 < j2 ≤ |um| and let n be such that ℓ(vn−1(j1, j2)) < ℓ ≤

ℓ(vn(j1, j2)). By 3.6(ii), we may let

• uιm0 (j1, j2) = uι
m

0 (j2, j1) = {η↾ℓ : η ∈ vn(j1, j2)},
• uιmm (j1, j2) = uι

m

m (j2, j1) = vn+m(j1, j2) for m > 0,

getting a Oιm–tower ū
ιm(j1, j2). We also fix k(j1, j2), k(j2, j1) such that

C(ūιm(j1, j2)) ⊆
(
lim(Tk(j1,j2) + ηαj1

)
∩
(
lim(Tk(j2,j1) + ηαj2

)
.

If i∗ = ιm < ω, then the procedure leading to the choice of ūι
m
(j1, j2) is not

present and we just let ℓ = min(A \ (ℓ0 + 1)).

Let u =
{
ηα0↾ℓ, . . . , ηα|um|−1

↾ℓ, ηα∗↾ℓ
}
.

For each i < ι and (j1, j2) ∈
(
|um| + 1)⟨2⟩ put gi(ηαj1

↾ℓ, ηαj2
↾ℓ) =

uin(j1, j2), where n is such that ℓ
(
uin(j1, j2)

)
= ℓ. This defines gi : u

⟨2⟩ −→ Oi

for i < ι. For (ν1, ν2) ∈ u⟨2⟩ we also set

hi(ν1, ν2) =


hmi (ν1↾ℓm, ν2↾ℓm) if ν1↾ℓm ̸= ν2↾ℓm, i < ιm,
N ′

i if ν1 ◁ ηαj
, ν2 ◁ ηα∗ , i < ιm,

N ′′
i if ν1 ◁ ηα∗ , ν2 ◁ ηαj

, i < ιm,
k(j1, j2) if ν1 ◁ ηαj1

, ν2 ◁ ηαj2
, i = ιm < ι.

It should be clear that n = (ℓ, ι, u, g, h) ∈ MT̄ ,Ō is as required.

(3) By induction on β we show that

for every m ∈ MT̄ ,Ō and all α0, . . . , α|um|−1 < λω1 such that
M |= Rm[α0, . . . , α|um|−1]:
β ≤ rk({α0, . . . , α|um|−1},M) implies β ≤ ndrk(m).

Steps β = 0 and β is limit: Straightforward.

Step β = γ + 1: Suppose m ∈ MT̄ ,Ō and α0, . . . , α|um|−1 < λω1 are such
that M |= Rm[α0, . . . , α|um|−1] and γ+1 ≤ rk({α0, . . . , α|um|−1},M). Let ν ∈
um, so ν = ηαj

↾ℓm for some j < |um|. Since γ+1 ≤ rk({α0, . . . , α|um|−1},M)
we may find α∗ ∈ λω1 \ {α0, . . . , α|um|−1} such that

M |= Rm[α0, . . . , αj−1, α
∗, αj+1, . . . , α|um|−1]

and rk({α0, . . . , α|um|−1, α
∗},M) ≥ γ. By clause (2) we may find n ∈ MT̄ ,Ō

such that m ⊏ n and un = {ηα0↾ℓ
n, . . . , ηα|um|−1

↾ℓn, ηα∗↾ℓn}, ηαj
↾ℓn ̸=

ηα∗↾ℓn, and if i∗ = ω then ιm < ιn, and M |= Rn[α0, . . . , α|um|−1, α
∗]. Then

also |{η ∈ un : ν ◁ η}| = 2. By the inductive hypothesis we have also
γ ≤ ndrk(n). Now we may easily conclude that γ + 1 ≤ ndrk(m). □

By the definition of λω1 ,

(⊙) sup{rk(w,M) : ∅ ≠ w ∈ [λω1 ]
<ω} ≥ ω1
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Now, suppose that β < ω1. By (⊙), there are distinct α0, . . . , αj−1 < λω1 ,
j ≥ 2, such that rk({α0, . . . , αj−1},M) ≥ β. By Claim 3.16.1(1) we may
find m ∈ MT̄ ,Ō such that M |= Rm[α0, . . . , αj−1]. Then by Claim 3.16.1(3)

we also have ndrkT̄Ō(m) ≥ β. Consequently, NDRK(T̄ ) ≥ ω1.
All the considerations above where carried out in V[G]. However, the

rank function ndrkT̄Ō is absolute, so we may also claim that in V we have
NDRKŌ(T̄ ) ≥ ω1. □

4. The main result

In this section we construct a forcing notion adding a sequence T̄ of sub-
trees of ω>2 such that NDRKŌ6(T̄ ) < ω1 and yet with many Ō–nondisjoint
translations (for a nice Ō). The sequence T̄ will be added by finite approx-
imations, so we will need a finite version of Definition 3.10.

Definition 4.1. Assume that

(a) 0 < n,M < ω, t̄ = ⟨tm : m < M⟩, and each tm is a subtree of n≥2 in
which all terminal branches are of length n,

(b) Tj ⊆ ω>2 (for j < ω) are trees with no maximal nodes, T̄ = ⟨Tj :
j < ω⟩ and tm = Tm ∩ n≥2 for m < M ,

(c) MT̄ ,Ō6 is defined as in Definition 3.10 for Ō6 introduced in Example
3.4(1).

We let Mn
t̄,Ō6 consist of all tuples m = (ℓm, 6, um, h̄m, ḡm) ∈ MT̄ ,Ō6 such

that ℓm ≤ n and rng(hmi ) ⊆M for each i < 6.
The extension relation ⊏ on Mn

t̄,Ō6 is inherited from MT̄ ,Ō6 (see Defini-

tion 3.13).

Observation 4.2. (1) The Definition of Mn
t̄,Ō6 does not depend on the

choice of T̄ , as long as the clause 4.1(b) is satisfied.
(2) If m ∈ Mn

t̄,Ō6 and ρ ∈ ℓm2, then m+ρ ∈ Mn
t̄,Ō6 (remember Definition

3.11).

Lemma 4.3 (See [3, Lemma 2.3].). Let 0 < ℓ < ω and let B ⊆ ℓ2 be a
linearly independent set of vectors (in (ℓ2,+) over Z2). If A ⊆ ℓ2, |A| ≥ 5
and A+A ⊆ B + B, then for a unique x ∈ ℓ2 we have A+ x ⊆ B.

Theorem 4.4. Assume that an uncountable cardinal λ satisfies NPrω1(λ)
and suppose that Ō = ⟨Oi : i < i∗⟩ is a nice indexed base. Then there is a
ccc forcing notion P of size λ such that

⊩P “ for some Σ0
2 Ō6–npots–set B =

⋃
n<ω

lim(Tn) ⊆ ω2 there is

a sequence ⟨ηα : α < λ⟩ of distinct elements of ω2 such that
all intersections (ηα +B) ∩ (ηβ +B) are Ō–large for α, β < λ ”.

Proof. Fix a countable vocabulary τ = {Rn,ζ : n, ζ < ω}, where Rn,ζ is an
n–ary relational symbol (for n, ζ < ω). By the assumption on λ, we may fix
a model M = (λ, {RM

n,ζ}n,ζ<ω) in the vocabulary τ with the universe λ and
an ordinal α∗ < ω1 such that:
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12 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(⊛)a for every n and a quantifier free formula φ(x0, . . . , xn−1) ∈ L(τ)
there is ζ < ω such that for all a0, . . . , an−1 ∈ λ,

M |= φ[a0, . . . , an−1] ⇔ Rn,ζ [a0, . . . , an−1],

(⊛)b sup{rk(v,M) : ∅ ≠ v ∈ [λ]<ω} < α∗,
(⊛)c the rank of every singleton is at least 0.

For a nonempty finite set v ⊆ λ let rk(v) = rk(v,M), and let ζ(v) < ω and
k(v) < |v| be such that R|v|,ζ(v), k(v) witnesses the rank of v. Thus letting
{a0, . . . , ak, . . . an−1} be the increasing enumeration of v and k = k(v) and
ζ = ζ(v), we have

(⊛)d if rk(v) ≥ 0, then M |= Rn,ζ [a0, . . . , ak, . . . , an−1] but there is no
a ∈ λ \ v such that

rk(v ∪ {a}) ≥ rk(v) and M |= Rn,ζ [a0, . . . , ak−1, a, ak+1, . . . , an−1],

(⊛)e if rk(v) = −1, then M |= Rn,ζ [a0, . . . , ak, . . . , an−1] but the set{
a ∈ λ : M |= Rn,ζ [a0, . . . , ak−1, a, ak+1, . . . , an−1]

}
is countable.

Without loss of generality we may also require that (for ζ = ζ(v), n = |v|)
(⊛)f for every b0, . . . , bn−1 < λ

if M |= Rn,ζ [b0, . . . , bn−1] then b0 < . . . < bn−1.

Now we will define a forcing notion P. A condition p in P is a tuple(
wp, np, ιp,Mp, η̄p, t̄p, r̄p, h̄p, ḡp,Mp

)
=

(
w, n, ι,M, η̄, t̄, r̄, h̄, ḡ,M

)
such that the following demands (∗)1–(∗)11 are satisfied.

(∗)1 w ∈ [λ]<ω, |w| ≥ 5, 5 ≤ n,M < ω, ι < ω and if i∗ < ω then ι = i∗.
(∗)2 η̄ = ⟨ηα : α ∈ w⟩ ⊆ n2.
(∗)3 t̄ = ⟨tm : m < M⟩, where ∅ ≠ tm ⊆ n≥2 for m < M is a tree in

which all terminal branches are of length n and tm∩ tm′ ∩ n2 = ∅ for
m < m′ < M .

(∗)4 r̄ = ⟨rm : m < M⟩, where 0 < rm ≤ n for m < M .
(∗)5 h̄ = ⟨hi : i < ι⟩, where hi : w⟨2⟩ −→ M are such that hi(α, β) =

hi(β, α).
(∗)6 ḡ = ⟨gi : i < ι⟩, where gi : w⟨2⟩ −→ Oi are such that ℓ

(
gi(α, β)

)
= n,

gi(α, β) = gi(β, α) and, for each (α, β) ∈ w⟨2⟩,
∣∣ ⋃
i<ι

gi(α, β)
∣∣ ≥ 6.

(∗)7 For each m < M ,

tm ∩ n2 =
⋃{

ηα + gi(α, β) : (α, β) ∈ w⟨2⟩ and i < ι and hi(α, β) = m
}
.

(∗)8 The family{
ηα : α ∈ w

}
∪
⋃{

gi(α, β) : (α, β) ∈ w⟨2⟩ ∧ i < ι
}

is a linearly independent set of vectors in n2 (over the field Z2); in
particular there are no repetitions in the representation above and
all elements are non-zero vectors.

(∗)9 M consists of all triples d = (ℓd, vd,md) = (ℓ, v,m) such that
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(∗)a9 0 < ℓ ≤ n, v ⊆ w, 5 ≤ |v|, and ηα↾ℓ ̸= ηβ↾ℓ for distinct α, β ∈ v,
(∗)b9 m ∈ Mn

t̄,Ō6 , ℓ
m = ℓ, um = {ηα↾ℓ : α ∈ v},

(∗)c9 for each (α, β) ∈ (v)⟨2⟩ and i < 6 we have rhm
i (ηα↾ℓ,ηβ↾ℓ) ≤ ℓd,

(∗)d9
(
∀(α, β) ∈ v⟨2⟩

)(
∀i < 6

)(
∃j < ι

)(
hmi (ηα↾ℓ, ηβ↾ℓ) = hj(α, β)

)
.

(∗)10 If d0, d1 ∈ M, ℓd0 = ℓd1 = ℓ, ρ ∈ ℓ2, and md1 = md0 + ρ, then
rk(vd0) = rk(vd1), ζ(vd0) = ζ(vd1), k(vd0) = k(vd1) and if α ∈ vd0 ,
β ∈ vd1 are such that |α ∩ vd0| = k(vd0) = k(vd1) = |β ∩ vd1|, then
(ηα↾ℓ) + ρ = ηβ↾ℓ.

(∗)11 Suppose that
• d0, d1 ∈ M, md0 ⊏ md1 and vd0 ⊆ vd1 , and
• α0 ∈ vd0 , |α0 ∩ vd0 | = k(vd0), rk(vd0) = −1.

Then |{ν ∈ um
d1 : (ηα0↾ℓ

d0) ⊴ ν}| = 1.

To define the order ≤ of P we declare for p, q ∈ P that p ≤ q if and only if

• wp ⊆ wq, np ≤ nq, Mp ≤M q, ιp ≤ ιq and
• tpm = tqm ∩ np≥2 and rpm = rqm for all m < Mp, and
• ηpα ⊴ ηqα for all α ∈ wp, and
• hqi ↾(wp)⟨2⟩ = hpi and gpi (α, β) ⪯i g

q
i (α, β) for i < ιp and (α, β) ∈

(wp)⟨2⟩.

Claim 4.4.1. (1) (P,≤) is a partial order of size λ.
(2) For each β < λ and n0,M0 < ω the set

Dn0,M0

β =
{
p ∈ P : np > n0 ∧ Mp > M0 ∧ β ∈ wp

}
is open dense in P.

(3) If i∗ = ω, then for each ι < ω the set Dι = {p ∈ P : ιp ≥ ι} is open
dense in P.

Proof of the Claim. (1) First let us argue that P ̸= ∅. Let ι = i∗ if it is
finite, and ι = 6 if i∗ = ω. Let w = {α0, α1, α2, α3, α4} be any 5 element
subset of λ. Using 3.2(2b)+3.6(ii) we may find v(i, b) for i < ι and b < 2
such that for some ℓ < ω for all i < ι and b < 2 we have

v(i, b) ∈ Oi, v(i, 0) ≺i v(i, 1), and ℓ
(
v(i, 1)

)
= ℓ.

By 3.6(i), we may also require that if i∗ < 6 then for some i < ι we have
|v(i, 1)| ≥ 6. Fix an enumeration{
(σa, ia, ja, ka) : a < A

}
=

{
(σ, i, j, k) : j < k < 5 ∧ i < ι ∧ σ ∈ v(i, 1)

}
.

Choose n > ℓ+ 5 and a sequence ⟨ρa : a < A+ 5⟩ ⊆ n2 so that

• ⟨ρa↾[ℓ, n) : a < A+ 5⟩ is linearly independent in [ℓ,n)2 over Z2, and
• σa ◁ ρa for each a < A.

Put

• ηαb
= ρA+b (for b < 5) and η̄ = ⟨ηαb

: b < 5⟩,
• gi(αj, αk) = gi(αk, αj) =

{
ρa : a < A ∧ j = ja ∧ k = ka ∧ ia = i

}
(for i < ι and j < k < 5) and ḡ = ⟨gi : i < ι⟩.
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It follows from Definition 3.6(iii) that gi(αj, αk) ∈ Oi.
We also let M = 10 · ι and we fix a bijection φ : [w]2 × ι −→ M . Then

for j < k < 5 and i < ι we set hi(αj, αk) = hi(αk, αj) = φ
(
{αj, αk}, i

)
. In

this way we have defined h̄ = ⟨hi : i < ι⟩.
We put rm = n for m < M and we let tm ⊆ n≥2 be trees in which all

terminal branches are of length n and such that

tm ∩ n2 =
⋃{

ηα + gi(α, β) : (α, β) ∈ w⟨2⟩ and i < ι and hi(α, β) = m
}
.

Finally, M is defined by clause (∗)9.
One easily verifies that (w, n, ι,M, η̄, t̄, r̄, h̄, ḡ,M) ∈ P.
We see from the arguments above that |P| ≥ λ and since there are only

countably many elements p of P with wp = w, we get |P| = λ.
Clearly, ≤ is a partial order on P.

(2) Let p ∈ P, β ∈ λ \ wp.
We will define a condition q in a manner similar to the construction in

(1) above. Let α− = min(wp) and α+ = max(wp).
Set wq = wp ∪ {β}, ιq = ιp.
For (α0, α1) ∈ (wq)⟨2⟩ and i < ιq pick v(i, α0, α1) ∈ Oi so that: for some

ℓ, for all i < ιq and (α0, α1) ∈ (wq)⟨2⟩ we have

• ℓ
(
v(i, α0, α1)

)
= ℓ,

• if α0, α1 ∈ wp then gpi (α0, α1) ≺i v(i, α0, α1) = v(i, α1, α0),
• if α0 ∈ wp then gpi (α

+, α−) ≺i v(i, α0, β) = v(i, β, α0).

Fix an enumeration{
(σa, ia, αa

0, α
a
1) : a < A

}
=

{
(σ, i, α0, α1) : α0 < α1 are from wq and

i < ιq ∧ σ ∈ v(i, α0, α1)
}
.

Choose n > ℓ+ |wp|+ 1 and a sequence ⟨ρa : a ≤ A+ |wp|⟩ ⊆ n2 so that

• ⟨ρa↾[ℓ, n) : a ≤ A+ |wp|⟩ is linearly independent in [ℓ,n)2 over Z2,
• σa ◁ ρa for each a < A, and
• if α ∈ wp is such that |wp ∩ α| = k then ηpα ◁ ρA+k.

Put

• ηqβ = ρA+|wp|, and if α ∈ wp is such that |wp∩α| = k then ηqα = ρA+k

and η̄q = ⟨ηqα : α ∈ wq⟩,
• gqi (α0, α1) = gqi (α1, α0) =

{
ρa : a < A ∧ i = ia ∧ α0 = αa

0 ∧ α1 = αa
1

}
(for i < ιq and α0 < α1 from wq) and ḡq = ⟨gqi : i < ιq⟩.

It follows from Definition 3.6(iii) that gqi (α0, α1) ∈ Oi and if (α0, α1) ∈
(wp)⟨2⟩ then gpi (α0, α1) ≺i g

q
i (α0, α1).

We also let M q =Mp + ιq · |wp| and we define mappings hqi : (w
q)⟨2⟩ −→

M q so that:

• if (α0, α1) ∈ (wp)⟨2⟩ and i < ιq, then hqi (α0, α1) = hpi (α0, α1),
• if α ∈ wp and i < ιq, then hqi (α, β) = hqi (β, α) =Mp+ |α∩wp| · ι+ i.

In this way we have defined h̄q = ⟨hqi : i < ιq⟩.
We put rqm = rpm for m < Mp and rqm = n for Mp ≤ m < M q. We let

tqm ⊆ n≥2 be trees in which all terminal branches are of length n and such
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that

tqm∩ n2 =
⋃{

ηqα+g
q
i (α, β) : (α, β) ∈ (wq)⟨2⟩ and i < ιq and hqi (α, β) = m

}
.

[Note that by our definitions above and by clause (∗)7 for p we have tpm ∩
np
2 = tqm ∩ np

2 for all m < Mp.] Naturally we also set nq = n and we define
Mq by clause (∗)9.

We claim that q =
(
wq, nq, ιq,M q, η̄q, t̄q, r̄q, h̄q, ḡq,Mq

)
∈ P. Demands

(∗)1–(∗)9 are pretty straightforward.

RE (∗)10 : To justify clause (∗)10, suppose that d0, d1 ∈ Mq, ℓd0 = ℓd1 = ℓ,
ρ ∈ ℓ2 and m = md0 = md1 + ρ, and consider the following two cases.

Case 1: β /∈ vd0 ∪ vd1
If ℓ ≤ np then rhm

i (ηα0↾ℓ,ηα1 ↾ℓ)
≤ np, so hmi (ηα0↾ℓ, ηα1↾ℓ) < Mp for all

(α0, α1) ∈
(
vd0

)⟨2⟩
. Hence also d0, d1 ∈ Mp and clause (∗)10 for p applies. If

ℓ > np then the sequence ⟨ηqα↾ℓ : α ∈ vd0 ∪ vd1⟩ is linearly independent and

{(ηqα↾ℓ) + ρ : α ∈ vd0} = {ηqα↾ℓ : α ∈ vd1}.
Since |vd0| ≥ 5 we immediately conclude ρ = 0, and therefore also vd0 = vd1

(remember ℓ > np).

Case 2: β ∈ vd0 ∪ vd1
Say, β ∈ vd0 . If α ∈ vd0 \ {β}, then hqj(α, β) ≥ Mp for all j < ι, and

hence rqhm
i (ηα↾ℓ,ηβ↾ℓ)

= nq (remember (∗)d9). Consequently, ℓ = nq. Since the

sequence ⟨ηqα : α ∈ vd0∪vd1⟩ is linearly independent, like before we get ρ = 0
and vd0 = vd1 .

RE (∗)11 : Assume towards contradiction that for some d0, d1 ∈ Mq we
have:

• vd0 ⊆ vd1 and without loss of generality |vd1 | = |vd0|+ 1,
• α0 ∈ vd0 , |α0 ∩ vd0| = k(vd0), rk(vd0) = −1, and md0 ⊏ md1 , and
• there is α1 ∈ vd1 such that ηqα0

↾ℓd0 = ηqα1
↾ℓd0 but ηqα0

↾ℓd1 ̸= ηqα1
↾ℓd1 .

Let ℓ0 = ℓd0 , ℓ1 = ℓd1 .
Suppose β ∈ vd0 and take β′ ∈ vd0 \ {β}. Then hqj(β, β

′) ≥ Mp for all
j < ι. Hence, for some j < ι,

rq
hmd0
0 (ηβ↾ℓ0,ηβ′ ↾ℓ0)

= rq
hq
j (β,β

′)
= nq = ℓ0 = ℓ1,

contradicting the last item in our assumptions.
If we had vd1 = vd0 ∪ {β}, then considering a β′ ∈ vd0 \ {α0} would give

us
Mp > hm

d0

0 (ηα0↾ℓ0, ηβ′↾ℓ0) = hm
d1

0 (ηβ↾ℓ1, ηβ′↾ℓ1) ≥Mp,

a contradiction.
Therefore the only remaining possibility is that β /∈ vd1 .
If ℓ1 ≤ np, then d0, d1 ∈ Mp and clause (∗)11 for p gives us a contradic-

tion. So assume ℓ1 > np. Since {ηqγ↾np : γ ∈ vd1} are all pairwise distinct,
we conclude ℓ0 < np and md0 ∈ Mp. We define n ∈ Mn

t̄,Ō6 by setting:

• ℓn = np, un = {ηqγ↾np : γ ∈ vd1} = {ηpγ : γ ∈ vd1}, ιn = 6,

and for (γ, γ′) ∈ (vd1)⟨2⟩ and i < 6:
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16 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

• if {γ, γ′} ≠ {α0, α1}, then

gni (η
p
γ, η

p
γ′) = {σ↾np : σ ∈ gm

d1

i (ηqγ↾ℓ1, η
q
γ′↾ℓ1)}

and hni (η
p
γ, η

p
γ′) = hm

d1

i (ηqγ↾ℓ1, η
q
γ′↾ℓ1),

• if {γ, γ′} = {α0, α1}, then we fix distinct σ0, . . . , σ5 ∈
⋃
j<ιq

gpj (α0, α1)

(remember (∗)6 for p), and we let gni (η
p
α0
, ηpα1

) = gni (η
p
α1
, ηpα0

) = {σi}
and hni (η

p
α0
, ηpα1

) = hni (η
p
α1
, ηpα0

) = m where ηpα0
+ σi, ηα1 + σi ∈ tpm

(for i < 6).

Since md0 ⊏ md1 , in the case when {γ, γ′} ≠ {α0, α1} we have

gm
d0

i (ηpγ↾ℓ0, η
p
γ′↾ℓ0) ≺O0 gm

d1

i (ηpγ↾ℓ1, η
p
γ′↾ℓ1)

and hence gni (η
p
γ, η

p
γ′) ∩ gnj (η

p
γ, η

p
γ′) = ∅ whenever i < j < 6. Hence 3.10(c)

is satisfied. Other cases and other conditions of 3.10 follow immediately by
our choices, and hence

n = (np, 6, un, h̄n, ḡn) ∈ Mn
t̄,Ō6 .

Moreover, md0 ⊏ n and d∗ = (np, vd1 ,n) ∈ Mp. However, then d0, d∗ con-
tradict clause (∗)11 for p.

(3) Let p ∈ P. Set wq = wp and ιq = ιp + 1. For (α0, α1) ∈ (wq)⟨2⟩ and
i < ιq we use Proposition 3.8 to pick v(i, α0, α1) ∈ Oi so that: for some ℓ,
for all i < ιq and (α0, α1) ∈ (wq)⟨2⟩ we have

• ℓ
(
v(i, α0, α1)

)
= ℓ,

• if i < ιp then gpi (α0, α1) ≺i v(i, α0, α1) = v(i, α1, α0),
• for some v ∈ Oιp , v ≺ιp v(ι

p, α0, α1) = v(ιp, α1, α0).

Fix an enumeration{
(σa, ia, αa

0, α
a
1) : a < A

}
=

{
(σ, i, α0, α1) : α0 < α1 are from w and

i < ιq ∧ σ ∈ v(i, α0, α1)
}
.

Choose n = nq > ℓ and a sequence ⟨ρa : a < A+ |wp|⟩ ⊆ n2 so that

• ⟨ρa↾[ℓ, n) : a < A + |wq|⟩ is linearly independent in [ℓ,n)2 over Z2,
and

• σa ◁ ρa for each a < A, and
• if α ∈ wq is such that |wq ∩ α| = k then ηpα ◁ ρA+k.

Put

• if α ∈ wq is such that |wq ∩ α| = k then ηqα = ρA+k and η̄q = ⟨ηqα :
α ∈ wq⟩,

• gqi (α0, α1) = gqi (α1, α0) =
{
ρa : a < A ∧ i = ia ∧ α0 = αa

0 ∧ α1 = αa
1

}
(for i < ιq and α0 < α1 from wq) and ḡq = ⟨gqi : i < ιq⟩.

It follows from Definition 3.6(iii) that gqi (α0, α1) ∈ Oi and if (α0, α1) ∈
(wp)⟨2⟩ then gpi (α0, α1) ≺i q

q
i (α0, α1).

We also let M q = Mp + |[wq]2| and we fix a bijection ψ : [wq]2 −→
[Mp,M q). Then we define mappings hqi : (w

q)⟨2⟩ −→M q so that for α0 < α1

from wq we have

• if i < ιq, then hqi (α0, α1) = hqi (α1, α0) = hpi (α0, α1),
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• hqιp(α0, α1) = hqιp(α1, α0) = ψ({α0, α1}).
This way we defined h̄q = ⟨hqi : i < ιq⟩.

We put rqm = rpm for m < Mp and rqm = n for Mp ≤ m < M q. We let
tqm ⊆ n≥2 be trees in which all terminal branches are of length n and such
that

tqm∩ n2 =
⋃{

ηqα+g
q
i (α, β) : (α, β) ∈ (wq)⟨2⟩ and i < ιq and hqi (α, β) = m

}
.

[Note that by our definitions above and by clause (∗)7 for p we have tpm ∩
np
2 = tqm∩np

2 for allm < Mp.] We defineMq by clause (∗)9. Like previously,
one easily verifies that q =

(
wq, nq, ιq,M q, η̄q, t̄q, r̄q, h̄q, ḡq,Mq

)
∈ P. [The

crucial point is that if d ∈ Mq, η, ν ∈ um
d
and hm

d

i (η, ν) ≥ Mp, then
ℓd = nq.] □

Claim 4.4.2. The forcing notion P has the Knaster property.

Proof of the Claim. Suppose that ⟨pξ : ξ < ω1⟩ is a sequence of pairwise
distinct conditions from P and let

pξ =
(
wξ, nξ, ιξ,Mξ, η̄ξ, t̄ξ, r̄ξ, h̄ξ, ḡξ,Mξ

)
where η̄ξ = ⟨ηξα : α ∈ wξ⟩, t̄ξ = ⟨tξm : m < Mξ⟩, r̄ξ = ⟨rξm : m < Mξ⟩, and
h̄ξ = ⟨hξi : i < ιξ⟩, ḡξ = ⟨gξi : i < ιξ⟩. By a standard ∆–system cleaning
procedure we may find an uncountable set A ⊆ ω1 such that the following
demands (∗)12–(∗)15 are satisfied.

(∗)12 {wξ : ξ ∈ A} forms a ∆–system with the kernel w∗.
(∗)13 If ξ, ς ∈ A, then |wξ| = |wς | , nξ = nς , ιξ = ις ,Mξ =Mς , and t

ξ
m = tςm

and rξm = rςm (for m < Mξ).
(∗)14 If ξ < ς are from A and π : wξ −→ wς is the order isomorphism,

then
(a) π(α) = α for α ∈ w∗ = wξ ∩ wς ,
(b) if ∅ ≠ v ⊆ wξ, then rk(v) = rk(π[v]), ζ(v) = ζ(π[v]) and k(v) =

k(π[v]),
(c) ηξα = ηςπ(α) (for α ∈ wξ),

(d) gξi (α, β) = gζi (π(α), π(β)) and hξi (α, β) = hζi (π(α), π(β)) for
(α, β) ∈ (wξ)

⟨2⟩ and i < ιξ, and
(∗)15 Mξ = Mς (this actually follows from the previous demands).

Note that then also

(∗)16 if ξ ∈ A, v ⊆ w∗ and δ ∈ wξ \ w∗ are such that rk
(
v ∪ {δ}

)
= −1,

then k
(
v ∪ {δ}

)
̸= |δ ∩ v|.

[Why? Suppose rk
(
v∪{δ}

)
= −1 and k = k

(
v∪{δ}

)
= |δ∩v|, j = j

(
v∪{δ}

)
.

For ς ∈ A let πς : wξ −→ wς be the order isomorphism and let δς = πς(δ).
By (∗)14 we know that k = k

(
v ∪ {δς}

)
= |δς ∩ v| and j = j

(
v ∪ {δς}

)
.

Therefore, letting v ∪ {δ} = {a0, . . . , an−1} be the increasing enumeration,
for every ς ∈ A we have M |= Rn,j[a0, . . . , ak−1, δς , ak+1, . . . , an−1]. Hence
the set

{b < λ : M |= Rn,j[a0, . . . , ak1 , b, ak+1, . . . , an−1]}
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18 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

is uncountable, contradicting (⊛)e from the beginning of the proof of the
theorem.]

We will show that for distinct ξ, ς from A the conditions pξ, pς are com-
patible. So let ξ, ς ∈ A, ξ < ς and let π : wξ −→ wς be the order iso-
morphism. We will define q =

(
w, n, ι,M, η̄, t̄, r̄, h̄, ḡ,M

)
where η̄ = ⟨ηα :

α ∈ w⟩, t̄ = ⟨tm : m < M⟩, r̄ = ⟨rm : m < M⟩, and h̄ = ⟨hi : i < ι⟩,
ḡ = ⟨gi : i < ι⟩.

We set

(∗)17 ι = ιξ and w = wξ ∪ wς .

Similarly to the arguments in previous claims, we first pick

⟨v(i, α0, α1) : (α0, α1) ∈ w⟨2⟩ ∧ i < ι⟩
and an ℓ such that for all i < ι and (α0, α1) ∈ w⟨2⟩ we have

• v(i, α0, α1) = v(i, α1, α0) ∈ Oi, ℓ
(
v(i, α0, α1)

)
= ℓ,

• if α0, α1 ∈ wξ then g
ξ
i (α0, α1) ≺i v(i, α0, α1) = v(i, α1, α0), and

• if α0, α1 ∈ wς then g
ς
i (α0, α1) ≺i v(i, α0, α1) = v(i, α1, α0).

Then we fix an enumeration{
(σa, ia, αa

0, α
a
1) : a < A

}
=

{
(σ, i, α0, α1) : α0 < α1 are from w and

i < ι ∧ σ ∈ v(i, α0, α1)
}

and we choose n > ℓ and ⟨ρa : a < A+ |w|⟩ ⊆ n2 so that

• ⟨ρa↾[ℓ, n) : a < A+ |w|⟩ is linearly independent in [ℓ,n)2 over Z2, and
• σa ◁ ρa for each a < A, and
• if α ∈ wξ is such that |wξ ∩ α| = k then ηξα ◁ ρA+k,
• if α ∈ wς \ wξ is such that |(wς \ wξ) ∩ α| = k then ηςα ◁ ρA+|wξ|+k.

Put

(∗)18 n is the one chosen right above,
(∗)19 η̄ = ⟨ηα : α ∈ w⟩, where

• if α ∈ wξ is such that |wξ ∩ α| = k then ηα = ρA+k,
• if α ∈ wς \wξ is such that |(wς \wξ)∩α| = k then ηα = ρA+|wξ|+k,

(∗)20 ḡ = ⟨gi : i < ι⟩, where for i < ι and α0 < α1 from w we put

gi(α0, α1) = gi(α1, α0) =
{
ρa : a < A ∧ i = ia ∧ α0 = αa

0 ∧ α1 = αa
1

}
.

As before, by 3.6(iii), we know that gi(α0, α1) ∈ Oi and if (α0, α1) ∈ (wξ)
⟨2⟩

then gξi (α0, α1) ≺i gi(α0, α1) and similarly for ς in place of ξ.
Let

(∗)21 M =Mξ + |wξ \ wς |2

and let ψ : (wξ \wς)× (wς \wξ) −→ [Mξ,M) be a bijection. Then we define

(∗)22 h̄ = ⟨hi : i < ι⟩, where mappings hi : w
⟨2⟩ −→ M are such that for

distinct α0, α1 ∈ w and i < ι we have
• hi(α0, α1) = hi(α1, α0),

• if α0, α1 ∈ wξ, then hi(α1, α0) = hξi (α1, α0),
• if α0, α1 ∈ wς , then hi(α1, α0) = hςi(α1, α0),
• if α0 ∈ wξ \ wς and α1 ∈ wς \ wξ, then hi(α1, α0) = ψ(α0, α1).
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(∗)23 t̄ = ⟨tm : m < M⟩, where tm ⊆ n≥2 are trees in which all terminal
branches are of length n (see (∗)18) and such that

tm ∩ n2 =
⋃{

ηα + gi(α, β) : (α, β) ∈ w⟨2⟩ and i < ι and hi(α, β) = m
}
,

(∗)24 r̄ = ⟨rm : m < M⟩, where rm = rξm for m < Mξ, rm = n if Mξ ≤
m < M .

(∗)25 M is defined by (∗)9 (for the objects introduced in (∗)17–(∗)24).
In clauses (∗)17–(∗)25 we defined all the ingredients of

q =
(
w, n,M, η̄, t̄, r̄, h̄, ḡ,M

)
.

We still need to argue that q ∈ P (after this it will be obvious that it is a
condition stronger than both pξ and pς).

It is pretty straightforward that q satisfies demands (∗)1–(∗)9.

RE (∗)10 : To justify clause (∗)10, suppose that d0, d1 ∈ M, ℓd0 = ℓd1 = ℓ
and ρ ∈ ℓ2 and md1 = md0 + ρ, and consider the following three cases.

Case 1: vd0 ⊆ wξ

Then for each (δ, ε) ∈ (vd0)⟨2⟩ and i < ι we have hi(δ, ε) < Mξ, and con-

sequently rng
(
hm

d0

j

)
⊆ Mξ (for j < 6). Hence also rng

(
hm

d1

j

)
⊆ Mξ (for

j < 6). But looking at (∗)22 (and remembering (∗)d9) we now conclude
hi(δ, ε) < Mξ for (δ, ε) ∈ (vd1)⟨2⟩ and i < ι. Consequently, either vd1 ⊆ wξ

or vd1 ⊆ wς .
If vd1 ⊆ wξ and ℓ ≤ nξ, then d0, d1 ∈ Mξ and clause (∗)10 for pξ can be

used to get the desired conclusion.
If vd1 ⊆ wξ and ℓ > nξ, then {ηα↾ℓ : α ∈ vd0∪vd1} is linearly independent

and hence ρ = 0 and vd0 = vd1 .
If vd1 ⊆ wς and ℓ ≤ nξ, then consider v = π−1[vd1 ] ⊆ wξ and d =

(ℓ, v,md1). Clearly, d ∈ Mξ and we may use (∗)10 for pξ to conclude that
rk(v) = rk(vd0), ζ(v) = ζ(vd0), k(v) = k(vd0), and if α ∈ vd0 , β ∈ v are such
that |α∩ vd0 | = k(vd0) = k(v) = |β ∩ v|, then (ηα↾ℓ)+ ρ = ηβ↾ℓ. Now we use
the properties (∗)14(b,c) of π to get a similar assertions with vd1 in place of
v.

If vd1 ⊆ wς and ℓ > nξ, then we consider v = π−1[vd1 ] ⊆ wξ and use
the linear independence of {ηα↾ℓ : α ∈ vd0 ∪ v} to conclude that ρ = 0 and
vd0 = v = π−1

[
vd1

]
. Finally we use the properties (∗)14(b,c) of π to get the

desired assertions.

Case 2: vd0 ⊆ wς

Same as the previous case, just interchanging ξ and ς.

Case 3: vd0 \ wξ ̸= ∅ ≠ vd0 \ wς

Then for some (δ, ε) ∈ (vd0)⟨2⟩ we have hi(δ, ε) ≥ Mξ for all i < ι, so
necessarily ℓ = n. Now, the linear independence of η̄ implies ρ = 0 and
vd0 = vd1 and the desired conclusion follows.

RE (∗)11 : Let us prove clause (∗)11 now. Suppose that d0, d1 ∈ M, δ ∈ vd0 ,
|δ ∩ vd0| = k(vd0), rk(vd0) = −1, and vd0 ⊆ vd1 and md0 ⊏ md1 . Assume
towards contradiction that there is an ε ∈ vd1 such that
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(∗)26 ηε↾ℓd1 ̸= ηδ↾ℓd1 but ηε↾ℓd0 = ηδ↾ℓd0 .

Without loss of generality vd1 = vd0 ∪ {ε}. Since we must have ℓd0 < n,
for no α, β ∈ vd0 can we have (∀i < ι)(hi(α, β) ≥ Mξ). Therefore either
vd0 ⊆ wξ or vd0 ⊆ wς . By the symmetry, we may assume vd0 ⊆ wξ. Note
that

(∗)27 if (α, β) ∈ (vd1)⟨2⟩ \ {(ε, δ), (δ, ε)} then hi(α, β) < Mξ for all i < ι.

Now, if vd1 ⊆ wξ and ℓ
d1 ≤ nξ, then d0, d1 ∈ Mξ and they contradict clause

(∗)11 for pξ. Let us consider the possibility that vd1 ⊆ wξ but ℓ
d1 > nξ. Since

ηε↾ℓd0 = ηδ↾ℓd0 but (as ε, δ ∈ wξ) ηε↾nξ ̸= ηδ↾nξ, we also have ℓd0 < nξ.
Define n ∈ Mn

t̄,Ō6 by:

• ℓn = nξ, u
n = {ηγ↾nξ : γ ∈ vd1} (note ηε↾nξ ̸= ηδ↾nξ), ι

n = 6, and
for (γ, γ′) ∈ (vd1)⟨2⟩ and i < 6:

• if {γ, γ′} ≠ {ε, δ}, then

gni (ηγ↾nξ, ηγ′↾nξ) = {σ↾nξ : σ ∈ gm
d1

i (ηγ↾ℓ
d1 , ηγ′↾ℓd1)}

and hni (ηγ↾nξ, ηγ′↾nξ) = hm
d1

i (ηγ↾ℓd1 , ηγ′↾ℓd1), and
• for {γ, γ′} = {δ, ε} we fix any distinct σ0, . . . , σ5 ∈

⋃
j<ι

gξj (δ, ε) and we

let gni (ηδ↾nξ, ηε↾nξ) = gni (ηε↾nξ, ηδ↾nξ) = {σi} and hni (ηδ↾nξ, ηε↾nξ) =
hni (ηε↾nξ, ηδ↾nξ) = m where (ηδ↾nξ)+σi, (ηε↾nξ)+σi ∈ tξm (for i < 6).

Since md0 ⊏ md1 , in the case when {γ, γ′} ≠ {δ, ε} we have

gm
d0

i (ηγ↾ℓ
d0 , ηγ′↾ℓd0) ≺O0 gm

d1

i (ηγ↾ℓ
d1 , ηγ′↾ℓd1),

and hence gni (ηγ↾nξ, ηγ′↾nξ) ∩ gnj (ηγ↾nξ, ηγ′↾nξ) = ∅ whenever i < j < 6.
Hence 3.10(c) is satisfied. Other cases and other conditions of 3.10 follow
immediately by our choices, and hence

n = (ℓn, 6, un, h̄n, ḡn) ∈ Mn
t̄,Ō6 .

Moreover, md0 ⊏ n and d∗ = (nξ, v
d1 ,n) ∈ Mξ. However, then d0, d∗ con-

tradict clause (∗)11 for pξ.
Consequently, vd1 \ wξ ̸= ∅, so necessarily ε /∈ w∗.
Suppose |vd0\w∗| ≥ 2, say α0, α1 ∈ vd0\w∗. Then hi(ε, α0), hi(ε, α1) ≥Mξ

for all i < ι. But md0 ⊏ md1 implies that for α ∈ vd0 \ {δ} we have

hm
d1

0 (ηε↾ℓ
d1 , ηα↾ℓ

d1) = hm
d0

0 (ηδ↾ℓ
d0 , ηα↾ℓ

d0) < Mξ,

so we arrive at a contradiction.

If we had vd0 ⊆ w∗, then vd1 ⊆ wς and we could repeat the earlier
arguments with ς in place of ξ to get a contradiction. Thus the only pos-
sibility left is that |vd0 \ w∗| = 1. Let {α} = vd0 \ w∗. If α ̸= δ, then
hm

d1

0 (ηα↾ℓd1 , ηε↾ℓd1) = hm
d0

0 (ηα↾ℓd0 , ηε↾ℓd0) < Mξ gives a contradiction like
before. Therefore, vd0 = (vd0 ∩w∗)∪{δ}. But now our assumptions on vd0 , δ
contradict (∗)16. □

Claim 4.4.3. Assume p =
(
w, n, ι,M, η̄, t̄, h̄, ḡ,M

)
∈ P. If m ∈ Mn

t̄,Ō6 is

such that ℓm = n and |um| ≥ 5, then for some ρ ∈ n2 and v ⊆ w we have(
n, v, (m+ ρ)

)
∈ M.
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Proof of the Claim. Let m ∈ Mn
t̄,Ō6 be such that ℓm = n. Suppose (η, ν) ∈(

um
)⟨2⟩

.
Let gmj (η, ν) = {σj} for j < 6. Then σjs are pairwise distinct, and if

η + σi = ν + σj then

η + σk, ν + σk /∈ {η + σi, ν + σi} = {η + σj, ν + σj}
whenever k /∈ {i, j}. Hence we may pick j0 < j1 < j2 < 6 such that

η + σj0 , ν + σj0 , η + σj1 , ν + σj1 , η + σj2 , ν + σj2

are all pairwise distinct. Just to simplify notation let us assume that j0 = 0,
j1 = 1 and j2 = 2.

For each j < 3 we have η + σj, ν + σj ∈
⋃

m<M tm. By clause (∗)7 there

are (αj, βj), (α
′
j, β

′
j) ∈ w⟨2⟩ and ρj ∈

⋃
i<ι

gi(αj, βj) and ρ
′
j ∈

⋃
i<ι

gi(α
′
j, β

′
j) such

that η + σj = ηαj
+ ρj and ν + σj = ηα′

j
+ ρ′j for j < 3.Then η + ν =

ηαj
+ ηα′

j
+ ρj + ρ′j for all j < 3. We will consider 3 cases, and the first two

of them will be shown to be impossible.

Case 1: ηαj
= ηα′

j
for some j < 3.

Then, by the linear independence demanded in (∗)7, ηαj
= ηα′

j
for all j <

3 and {ρ0, ρ′0} = {ρ1, ρ′1} = {ρ2, ρ′2}. But gi(α, β)’s are disjoint, so each
ρ ∈

⋃{
gi(α, β) : (α, β) ∈ w⟨2⟩ ∧ i < ι

}
uniquely determines α, β such

that ηα + ρ, ηβ + ρ ∈
⋃

m<M

tm. Therefore, |{α0, α1, α2}| ≤ 2 in the current

case. Since η + σj, ν + σj are all pairwise distinct (for j < 3), this gives an
immediate contradiction.

Case 2: ηαj
̸= ηα′

j
and ρj ̸= ρ′j for some (equivalently: all) j < 3.

Then {ηα0 , ηα′
0
} = {ηα1 , ηα′

1
} = {ηα2 , ηα′

2
} and {ρ0, ρ′0} = {ρ1, ρ′1} = {ρ2, ρ′2}.

However, this again contradicts η + σj, ν + σj being pairwise distinct.

Thus the only possible case is the following:
Case 3: ηαj

̸= ηα′
j
and ρj = ρ′j for all j < 3.

Then η + ν = ηα0 + ηα′
0
.

Consequently we have shown that

um + um ⊆ {ηα + ηβ : α, β ∈ w}.
By Lemma 4.3 for some ρ we have um+ρ ⊆ {ηα : α ∈ w}. Let v = {α ∈ w :
ηα ∈ um + ρ}. Let us argue that

(
n, v, (m + ρ)

)
∈ M: demands (∗)a9–(∗)c9

are immediate consequences of our choices above. Let us verify (∗)d9.
Suppose that (α, β) ∈ v⟨2⟩ and i < 6. Let η = ηα + ρ, ν = ηβ + ρ (so

they are in um) and let {σi} = gmi (η, ν). Then η + σi, ν + σi ∈
⋃

m<M

tm, so

we may choose (α′, β′), (α′′, β′′) ∈ w⟨2⟩ and j′, j′′ < ι and ρ′ ∈ gj′(α
′, β′) and

ρ′′ ∈ gj′′(α
′′, β′′) such that η + σi = ηα′ + ρ′ and ν + σi = ηα′′ + ρ′′. Then

ηα + ηβ = η + ν = ηα′ + ηα′′ + ρ′ + ρ′′.

By the linear independence stated in (∗)8 we get ρ′ = ρ′′ and {ηα′ , ηα′′} =
{ηα, ηβ}. Consequently also {α, β} = {α′, α′′} and {α′, β′} = {α′′, β′′} and
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j′ = j′′. Since α ̸= β we get α′ ̸= α′′ and thus α′ = β′′, α′′ = β′. Conse-
quently, {α′′, β′′} = {α′, β′} = {α′, α′′} = {α, β}. Hence η + σi = ηα′ + ρ′ ∈
thj′ (α,β)

= thj′ (β,α)
and ν + σi = ηα′′ + ρ′ ∈ thj′ (α,β)

= thj′ (β,α)
. Therefore,

hm+ρ
i (ηα, ηβ) = hmi (η, ν) = hj′(α, β) = hj′(β, α). □

Define P–names T
˜

m and η
˜
α (for m < ω and α < λ) by

⊩P“ T
˜

m =
⋃
{tpm : p ∈ G

˜
P ∧ m < Mp} ”, and

⊩P“ η
˜
α =

⋃
{ηpα : p ∈ G

˜
P ∧ α ∈ wp} ”.

Claim 4.4.4. (1) For each m < ω and α < λ,
⊩P“ η

˜
α ∈ ω2 and T

˜
m ⊆ ω>2 is a tree without terminal nodes ”.

(2) For all α < β < λ we have

⊩P “
(
ηα +

⋃
m<ω

lim(T
˜

m)
)
∩
(
ηβ +

⋃
m<ω

lim(T
˜

m)
)
is Ō–large ”.

(3) ⊩P“
⋃

m<ω

lim(T
˜

m) is a Ō6–npots set ”.

Proof of the Claim. (1, 2) By Claim 4.4.1 (and the definition of the order
in P).
(3) Let G ⊆ P be a generic filter over V and let us work in V[G]. Let
T̄ = ⟨(T

˜
m)

G : m < ω⟩.
Suppose towards contradiction that B =

⋃
m<ω

lim
(
(T
˜

m)
G
)
is an Ō6–pots

set. Then, by Proposition 3.16, NDRKŌ6(T̄ ) = ∞. Using Lemma 3.15(5),
by induction on j < ω we choose mj,m

∗
j ∈ MT̄ ,Ō6 and pj ∈ G such that

(i) ndrkŌ6(mj) ≥ ω1, |umj | > 5 and mj ⊏ m∗
j ⊏ mj+1,

(ii) for each ν ∈ um
∗
j the set {η ∈ umj+1 : ν ◁ η} has at least two

elements, and
(iii) pj ≤ pj+1, ℓ

mj < ℓm
∗
j = npj < ℓmj+1 and rng(h

mj

i ) ⊆ Mpj for all
i < 6, and

(iv) |{η↾npj : η ∈ umj+1}| = |umj | = |um∗
j |.

To carry out the construction we proceed as follows. Suppose we have deter-
minedmj so that ndrkŌ6(mj) ≥ ω1. Using densities given in Claim 4.4.1, we
find pj ∈ G stronger than pj−1 and such that npj > ℓmj and rng(h

mj

i ) ⊆Mpj

(for i < 6). Next we choose n such that mj ⊏ n, ndrkŌ6(n) ≥ ω1, and ℓ
n >

npj . Using Lemma 3.15(8) (for a u′ ⊆ un such that {η↾ℓmj : η ∈ u′} = umj ,
|u′| = |umj |) we may also demand that |un| = |umj |. Now we let

• ℓ = npj , u = {η↾ℓ : η ∈ un},
• h̄ = ⟨hi : i < 6⟩, where for i < 6 and (η, ν) ∈

(
un

)⟨2⟩
hi(η↾ℓ, ν↾ℓ) = hni (η, ν) = h

mj

i (η↾ℓmj , ν↾ℓmj),

• ḡ = ⟨gi : i < 6⟩, where for i < 6 and (η, ν) ∈
(
un

)⟨2⟩
gi(η↾ℓ, ν↾ℓ) =

{
ρ↾ℓ : ρ ∈ gni (η, ν)

}
.

Clearly, m∗
j = (ℓ, 6, u, h̄, ḡ) ∈ MT̄ ,Ō6 and mj ⊏ m∗

j . Finally use Lemma
3.15(5) to pick mj+1 ⊐ n such that ndrk(mj+1) ≥ ω1 and condition (ii) is
satisfied. Note that m∗

j ⊏ mj+1.
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Then, by (iii)+(iv), mj,m
∗
j ∈ Mnpj

t̄pj ,Ō6 . It follows from Claim 4.4.3 that

for some wj ⊆ wpj and ρj ∈ npj
2 we have (npj , wj,m

∗
j + ρj) ∈ Mpj .

Fix j for a moment and consider (npj , wj,m
∗
j + ρj) ∈ Mpj ⊆ Mpj+1 and

(npj+1 , wj+1,m
∗
j+1 + ρj+1) ∈ Mpj+1 . (Note that since (npj , wj,m

∗
j + ρj) ∈

Mpj , we know that r
h
m∗

j
i (η,ν)

≤ npj for all i < 6, (η, ν) ∈ um
∗
j .) Since

(m∗
j + (ρj+1↾npj)) ⊏ (m∗

j+1 + ρj+1), we may choose w∗
j ⊆ wj+1 such that

(npj , w∗
j ,m

∗
j + (ρj+1↾npj)) ∈ Mpj+1 . Since (m∗

j + ρj) + (ρj + ρj+1↾npj) =
m∗

j +(ρj+1↾npj), we may use clause (∗)10 for pj+1 to conclude that rk(w∗
j ) =

rk(wj).
Condition (ii) of the choice of mj+1 implies that

(∀γ ∈ w∗
j )(∃δ ∈ wj+1 \ w∗

j )(η
pj+1
γ ↾npj = η

pj+1

δ ↾npj).

Let δ(γ) be the smallest δ ∈ wj+1 \ w∗
j with the above property and let

w∗
j (γ) = (w∗

j \{γ})∪{δ(γ)}. Then, for γ ∈ w∗
j , (n

pj , w∗
j (γ),m

∗
j+(ρj+1↾npj)) ∈

Mpj+1 and therefore, by clause (∗)10 for pj+1, we get that for each γ ∈ wj:

rk(w∗
j (γ)) = rk(w∗

j ), ζ(w∗
j (γ)) = ζ(w∗

j ), and k(w∗
j (γ)) = k(w∗

j ).

Let n = |w∗
j |, ζ = ζ(w∗

j ), k = k(w∗
j ), and let w∗

j = {α0, . . . , αk, . . . , αn−1}
be the increasing enumeration. Let α∗

k = δ(αk). Then clause (∗)10 also gives
that w∗

j (αk) = {α0, . . . , αk−1, α
∗
k, αk+1, . . . , αn−1} is the increasing enumera-

tion. Now,

M |= Rn,ζ [α0, . . . , αk−1, αk, αk+1, . . . , αn−1] and
M |= Rn,ζ [α0, . . . , αk−1, α

∗
k, αk+1, . . . , αn−1],

and consequently if rk(w∗
j ) ≥ 0, then

rk(wj+1) ≤ rk(w∗
j ∪ {α∗

k}) < rk(w∗
j ) = rk(wj)

(remember (⊛)d from the very beginning of the proof of the Theorem).

Now, unfixing j, it follows from the above considerations that for some
j0 < ω we must have:

(a) rk(w∗
j0
) = −1, and

(b) (npj0 , w∗
j0
,m∗

j0
+(ρj0+1↾npj0 )), (npj0+1 , wj0+1,m

∗
j0+1+ρj0+1) ∈ Mpj0+1 ,

(c) for each ν ∈ um
∗
j0 the set {η ∈ um

∗
j0+1 : ν ◁ η} has at least two

elements.

However, this contradicts clause (∗)11 (for pj0+1). □

□

5. Conclusions and Questions

Corollary 5.1. Assume NPrω1(λ) and λ = λℵ0 < µ = µℵ0.

(1) Let Ō be a nice indexed base. Then there is a ccc forcing notion Q
of size µ forcing that 2ℵ0 = µ and

• there is a Σ0
2 set B ⊆ ω2 which has λ many pairwise Ō–nondisjoint

translates but does not have λ+ many pairwise Ō6–nondisjoint
translates.
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(2) In particular, there is a ccc forcing notion Q′ of size µ forcing that
2ℵ0 = µ and for some Σ0

2 set B ⊆ ω2:
• there are pairwise distinct ⟨ηξ : ξ < λ⟩ such that (B+ηξ)∩ (B+
ηζ) is uncountable for each ξ, ζ < λ, but

• for any set A ⊆ ω2 of size λ+ there are x, y ∈ A such that
|(B + x) ∩ (B + y)| < 6.

Proof. (1) Let P be the forcing notion given by Theorem 4.4 and let Q =
P ∗ Cµ. The set B added by P is a Ō6–npots–set in VP, so by Proposition

3.16 we got NDRKŌ6(T̄ ) < ∞. The rank ndrkT̄Ō6 is absolute, so in VQ we
still have NDRKŌ6(T̄ ) <∞ and thus B is a Ō6–npots–set in VQ. By 3.5(3)
this set cannot have λ+ pairwise Ō6–nondisjoint translates, but it does have
λ many pairwise Ō–nondisjoint translates (by absoluteness). □

Corollary 5.2. Assume MA and ℵα < c, α < ω1.

(1) Let Ō be a nice indexed base. Then there exists a Σ0
2 Ō6–npots–set

B ⊆ ω2 which has ℵα many pairwise Ō–nondisjoint translations.
(2) In particular, there exists a Σ0

2 set B ⊆ ω2 such that
• for some pairwise distinct ⟨ηξ : ξ < ℵα⟩ ⊆ ω2 the intersections
(B + ηξ) ∩ (B + ηζ) are uncountable for each ξ, ζ < ℵα, but

• for every perfect set P ⊆ ω2 there are x, y ∈ P such that |(B +
x) ∩ (B + y)| < 6.

Proof. Standard consequence of the proof of Theorem 4.4, using the fact that
“B is a Ō6–npots–set” is sufficiently absolute by Proposition 3.16. □

Problem 5.3. (1) Can one differentiate between various nice Ō in the
context of our results? In particular:

(2) Is it consistent that for some nice Ō there is a Σ0
2 Ō–npots–set which

has ℵα many pairwise Ō–nondisjoint translations, but for some other
nice Ō∗ every Σ0

2 set with ℵα many pairwise Ō∗–nondisjoint trans-
lations is automatically Ō∗–pots ?

(3) Is it consistent that there is a Σ0
2 set B ⊆ ω2 which is has ℵα many

pairwise Ōper–nondisjoint translations, is Ōper–npots, but is also
Ō6–pots?

Problem 5.4. (1) Consider the forcing notion P given by Theorem 4.4
for Ōper. In the forcing extension by P, the ranks NDRKŌ6(T̄ ) and
NDRKŌper(T̄ ) are both countable. Are they equal? What are their
values?

(2) Does there exist a sequence of trees T̄ ∗ (as in Assumptions 3.1) for
which the ranks NDRKŌper(T̄ ) and NDRKŌι(T̄ ) are different (for
some/all ι)?

(3) Generalize the construction of [5] to arbitrary nice Ō.
(4) Generalize the result of the present paper to the context of arbitrary

perfect Abelian Polish groups.
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