Paper Sh:482, version 2021-09-10. See https://shelah.logic.at/papers/482/ for possible updates.

COMPACTNESS OF THE QUANTIFIER ON “COMPLETE
EMBEDDING OF BA’S”
SH482

SAHARON SHELAH

ABSTRACT. We try to build, provably in ZFC, for a first order 7" a model in
which any isomorphism between two Boolean algebras is definable (i.e. by a
first order formula with parameters in the model). The problem, compared
to [Shed], is with pseudo-finite Boolean algebras. A side benefit is that we
do not use Skolem function (which do not matter for proving compactness of
logics but still their elimination is of interest). Let A be 2* if regular and
its successor otherwise. Model theoretically we investigate notions of bigness
of types, usually those are ideals of the set of formulas in a model, definable
in appropriate sense. We build a model of cardinality AT by a sequence of
models M, of cardinally A for @« < AT, each M, equips with a sequence
(Mayisaa,i, Qayi) 0 € Sa C A), with M, ; being of cardinality < X, <-
increasing continuous with 4,2, ; a bigness notion defined using parameters
from M, ; and a,; realized in My ;41 over My ; a Qg ;-big type. As «
increase, not only M, increase, but this extra structure increasing modulo a
club of A, this is why we have insisted on A being regular.

This can be considered as a way to omit types of cardinality A, which in
general is hard. The fact that A is not too much larger than p help us to
guarantee that any possible automorphism of structures be defined in M =
U{Mq : a < At} by approximations of cardinality u and so we can enumerate
them all.

The bigness notions involved has to relate to the kind of structures we
are interested in interpreting in M, e.g. for linear orders being dense and
for pseudo finite Boolean algebras, subsets of #(n) of large cardinality for n
pseudo finite. During the construction for each «, some bo € M1 realizes
a big type over M, for an appropriate bigness notion. We have to guarantee
that the bigness notions used in the horizontal direction (that is o < A1) and
the bigness notions used in the vertical direction (that is for ¢ < \) do not
interact. This will mean we have to prove that enough pairs of bigness notions
are so called orthogonal: if py(z¢) € S(M) is a Q-big for £ = 1,2 then we can
find p(zo,21) € S?2(M) extending both such that it says that “x, is Q-big
over M +xq1_p” for £ =1,2.
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§ 0. INTRODUCTION

We continue here the attempt of extracting and strengthening the purely com-
binatorial content of building “many complicated models” in [She78a, §2,Ch.VIII]
= [She90, §2,Ch.VIII] (i.e., many models for unsuperstable theories), as done in
[Sheh, §2], [Shea, §1,82] (and [Shea, §3]); (so also [She83a]) or [Shef]) and more
specifically later see [Shed] and history there.

More specifically, our main theory is

Theorem 0.1. For every first order theory T and X\ = (2°)*,k > |T|, then for
some T D T thereis a k+-saturated model M of Ty of cardinality AT which satisfies:

e if By, By are Boolean algebras (first order with parameters) definable in M
and ™ an isomorphism from By, By then 7 is definable in M.

In [Shed] we succeed to get “complicated models” by omitting small (e.g. countable)
types, so that building a model of size AT by a sequence of AT approzimation each
of size A\, \ regular we suffice to guess countable elementary submodels, e.g. when
A = XY This works, e.q. for atomless Boolean Algebras. But we have been
stuck on the problem of automorphism of pseudo finite Boolean algebras. Here we
use a different approach, building a model of size \*,\ is, e.g. (25)T; so we can
enumerate all subsets of size k, and instead of guessing automorphism on B, we
try to make the model code them by a subset of size Kk, so we can enumerate them.
See general construction in §4, our specific construction in §5.

The model B, 1 is build over B, as an increasing sequence of length A of ap-
prozimations, each a type py((T; : j < 1)) over By of cardinality < X for i < A,
restricted by being “big” in appropriate sense. Bigness notions are defined in §1,
bigness notion of general type are investigated in §2 and more specific ones in §3.

But how do we omit types? Generally we do not know how to omit types of
cardinality X (as we know for the case A = Rg), but we know how to omit types of
some special forms: we represent B, as (@ : i < A), and demand that for a club
of < A, in By the type tp(ag, U (aF UT$), Bat1) is big in appropriate sense.

j<i

To a large extent here we continue [She78b], [She78c¢| rather than [She83b]. In the
later we use a general omitting types theorem for A*, quite powerful but it depends

n (D1)y (hence necessarily A = A\<*). In [She78b], [She78c] we use a special way
to omit types: we build a model of cardinality AT, by an increasing chain of B,
for a < X, and the omitting of types in stage « has the following form: the type
is represented by a stationary S C A and ((af i< w): B eS) with a? € B,
and we “promise” that for every f > « and finite A C B, {f € S : (a? D < w)
is not discernible over A} is not stationary. Such properties are preserved in any
limit stage, even of small cofinality, the problematic case. For wider framework
we use “bigness of types” as in [She83b], but here the restriction of bigness act in
two ways: “horizontally”, building B, by a sequence of Q,-big types over B, and
“vertically”, preserving: for a < B8 < AT and any finite A C B, for a club of
i < A, the element a$ realizes a I'}-big type over A. To be able to do it we need the
so called “orthogonality”. See more in [Shei] and see history in [Shed, §0].

This paper was supposed to be Ch.XI to the book “Non-structure” and probably
will be if it materializes, it has been circulated and lectured on since 1993.
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Our main results are on models of T" which is first order complete, first order
thoery, usually coding enough set theory, see clause (B) of 1.1. This is enough for
proving compactness of first order logic extended by suitable second order quantifiers.
Probably we can get all those results for any (first order complete) T, i.e. as in
1.1(A), using reducts of global bigness notions but this is delayed.

The intentions were [Sheg] (revising [She86a]) for Ch.I, and [AGS] for Ch.II
and [Sheh] for Ch.III and [She22] for Ch.IV and [Shej] for Ch.V and [Shea] for
Ch.VI and [Sheb] for Ch.VII and [Shef], a revision of [She85], for Ch.VIII, and
[Shec], for the appendiz and [She04], [Shed], [Shee] and [Shei], for Ch. IX, X, XI,
XII respectively. References like [Shec, 3.7=Lc2] means that c2 is the label of 3.7
in [Shec], will only help the author if changes in the paper [Shec| will change the
number.

Notation 0.2. 1) Let A+ a be AU Rang(a), similarly A+a, A+a+b+C.
2) Let £ denote a logic, T a vocabulary, Z(7) the language i.e. the set of Z-
formulas in the vocabulary 7, 7/ is the vocabulary of the model M; £ (7, A) means
we add all members of A as individual constants to the vocabulary 7.
3) Let L be first order logic.
4) .Z(Q) means we add to to the logic % the quantifier Q.
5) Let T denote a theory, first order if not said otherwise, usually complete, € is
a monster for T
6) For a theory T, 7(T) = 7r is its vocabulary, Z(T) = Z(7(T)) the corresponding
language (first order for L(T) = L(7r))
NIEACM,MET then:
(a) T[A] = {p(a) :a €“~A, M [ pla]}
(b) soT(T[A) =1(TH)UA
(c) acl(A,M) = {b € M : tp(b, A, M) is algebraic, i.e. some formula in it is
realized by only finitely many elements}
(d) Tp = (x5 = s € I) and for a formula ¢(Z[7,a),a a sequence from M let
o(M,a) ={be M : M |= ¢[b,a]}.
8) We say p is a type definition over N when one of the following occurs (with
T=(x;: 1<)
(a) p is an ultrafilter on *N, and if N € A C M, N < M then p4 = {¢(Z,a) :
ac“>Aand {b€*N: Mk pbal} €p}, sop? € S¥(A)
(b) p is a function from {{p(Z,7), ¢(¥)) : ¢ a formula, ¢(y) a complete type over
N} to {truth,false} and if N € A C M and N < M then p? := {o(Z,a) :
a € “> A and p({¢(,7),tp(a, N, M))) = truth} so again p* € S¥(A).
8A) Above we say p is of kind (|J or of kind || respectively. In the first section we

fs nsp
use an arbitrary compact logic .Z but the reader may concentrate on I, first order

logic.
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§ 1. BIGNESS NOTIONS: BASIC DEFINITIONS AND PROPERTIES.

For a complete first order theory T', a ¢-bigness notion I" (¢ for local) is a scheme
defining for every model M of T, an ideal of the (Boolean Algebra consisting of
the) formulas ¢(Zr,a), a C M up to equivalence.

We are interested in such ideals preserved by elementary embedding. Such no-
tions play crucial role in our construction of models. This section is soft - just
giving definitions and easy applications. If this section is too abstract, the reader
can read parallelly §2, §3 which deal with examples of bigness notions.

The reader may concentrate on the case ¢ = (K, <) is the class of models of
a complete first order theory T with Skolem functions, <==<,€ = € a monster
model and on the case of simple ¢-bigness notion.

Context 1.1. Let 7 be a vocabulary, ¢ = (K¢, <;) = (K, <) a class of 7-models
so M means M € K, (usually the class of models of a fixed first order theory,
M < Niff M < N), Z alogic. Always satisfaction of Z-formulas is preserved by
extensions and the pair (¢,.%) is compact; see below. Usually (¢,.%¢) is one of the
following:

(A) (a) T is complete first order, K the class of models of T i.e. K = Mod(T)

(of course 7-models = 7(T)-models) and M <, N & M < N

(b) £ =L first order logic

(¢) €= ¢€r is a monster model
(d) S*(A,M,t) =S¢(A,M)={p:pa complete type over A in M}

(B) like (A), but we may denote T' by T* and it has a model €*, an expansion
of (A(x*), €, <*) where x* is strong limit cardinal, <* a well ordering of
H(x), see [Shed, 2.1]. Then € denote a “monster” model of T* and é
denote the membership inside it, i.e. ¢¢° =€ [#(x). We call such T' “of
set theory character”. Saying “n” we mean a true natural number but also
its interpretation in €, we use n, 1, k for members of N¢. So many times
it is better to deal with “sets” not classes.

(C) (a) T isauniversal first order theory with amalgamation, K = Mod(T), <,
is being a submodel (so ¢ = (Modr, C))

b)) =L
() S*(A,M,K) = {tpy(a,A,N): M < NN T,a € “N}

(D) (a) T is a universal first order theory, K is the family of existentially
closed models of T', <; is being a submodel,

(b) let Z(1) = (1) = {¢ : ¢ an existential first order formula in the
vocabulary 7}

(¢) Sg(A,M)= {tpE(T)(d7N7N) M < NNNET,a€*N}.
Definition 1.2. 1) For A C M, a a sequence from a model M let

(a) tpg(a, A, M) = {p(Z,b) : b € “> A, lg(z) = Lg(a), M | pla,b] and ¢ €
Z(m)}

(b) SL(A, M) = {tpy(a, A,N): M <¢ Nanda € “N} C {p: pis a set of
Z(ar)-formulas with free variables among Z = (x; : i < «) and parameters
from A; if 2 = L we may omit it; the length of a, i.e. of Z is not necessarily
finite. Writing p € S (A, M) means for some « clear from the context.

See https://shelah.logic.at/papers/482/ for possible updates.
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2) (¢,%¢) is Z-compact means:

(a) € has amalgamation

(b) if A is a set of .Z-formulas with parameters from M € K and is finitely
satisfiable in M or just any finite subset is realized in some N satisfying
M < N, then it is realized in some N, M <y N € K.

3) We let € = €1 or € be a monster.
Discussion 1.3. We may consider several further general contexts:

(A) The class of models of T', a complete countable theory in . = L(Q) (with
the quantifier Qz interpreted as (32*z), usually A = ®;), with elimination
of quantifiers for simplicity, M < N if M < N and M E —Quzp(z,a) =
@(N,a) C M; so here we do not use a monster model

(B) T is first order complete, D C D(T) := {tp(a,0, M) : M =ET,a € “>M},
and D is good (see [She7l]), € a monster model, i.e. (D,R)-sequence-
homogeneous model, Ky = {M : M a model of T such that every finite
a C M realizes a type from D} and <,==; in this case as well as in
(C),(D),(E) we do not have compactness as in 1.2(2) hence it is natural to
use global bigness notions

(C) K is a universal class (i.e. M € ¢ iff for every a € “” M, M [ c¢ly(a) € K),
the relation < is being a submodel (i.e. locally finite models of a universal
theory),

S (A, M,€) = {tp,(a, A,N): M <y N € K,a C N}

SL(A,M,t)={tpy(a,A,N): M <, NeK,ac*N}
E.g. the class of locally finite groups (or existentially closed ones), see [Shel7]

(D) For some class K’ C K and partial order <’ on K’ the union of a <'-
directed system of models from K’ (were K’, <’ closed under isomorphism
satisfying natural conditions)

(E) Abstract elementary class (amalgamation is not demanded).

The contexts from 1.3 will not be used, but we may remark on them or give exam-
ples. We now introduce a major notion: local bigness.

Definition 1.4. 1) We call T a I-bigness (=local bigness) notion for (¢,.%) (with
set of parameters Ar C Mr € K; for simplicity, we usually restrict ourselves to
{M € K: Mr <¢ M} or € is a monster model for T, Ar C € is “small”) if (it gives
a sequence T = I of variables of length «(T"), in the usual case singleton z or at
least finite and):

(a) for every M € K (such that Mr <¢ M), I'}, = I'" (M) is a subset of the
family of formulas ¢(7,a), p € Z(1), a C M, and T'yy = T'}, = (M) is
the complement of I'~ (M) inside this family

(b) 'y, is preserved by automorphisms of M over Ar

(¢) I'y; is a proper ideal of formulas, i.e.

(o) if M = (V2)[p(z,a) — ¥(Z,b)] and 1(z,b) € 'y, then p(z,b) € I'y,

See https://shelah.logic.at/papers/482/ for possible updates.
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(B) if p1(z,a1), p2(T,a2) € I'y; then 1(Z,a1) V p2(7,a2) € T'y;
(7) Ty #0.
2) Assume Zr is finite then T'is called non-trivial if, when Mpr <, M € K.

(x) z=a€eTy,.

3) We call members of Iy, “I'-small in M”, members of I‘L, “I'-big in M”. We
may write M = (QY'Z)p(Z,a) for “p(z,a) is [-big in M” and M = (QrZ)p(Z,a)
for “p(z,a) is T-small in M”, (in this notation, I'y L I'y defined below essentially
means that Q't, QM2 commute).

4) A T-big type p(Z) is a set of formulas (%, a), any finite conjunction of which is
I'-big.

Example 1.5. Let x be an infinite cardinal, and let 32Xz (Z, %) be the formula
which says “at least x pairwise disjoint sequences Z satisfy ¢(Z,7)” and & =
L(32X). Consider a theory T in .Z(7), without loss of generality every formula is
equivalent to a predicate, and 77 = T N L(7) (so not exactly in the context 1.1(1)
for T'). This naturally defines a local notion I'r of bigness for T7’: for M a model

of T, p(z,a) is I-big iff M = R,(a) where (V§)(32Xz)(p(z,7) = R(Y)) € T.

Convention 1.6. 1) We will, abusing notation, first define bigness notions and
only then prove they are bigness notions.

2) As we shall deal here only with invariant bigness notions [see Definition 1.7(2)
below] we may “forget” this adjective.

Definition 1.7. Let T be a local bigness notion for (¢,.%).

1) We say that T' is weakly invariant if for every o(Z,7) € Z(7),a € M, M <; N
(models in K, so My <¢ M or Ar C M <¢ €;) we have: ¢(Z,a) is I'-big in M iff
o(z,a) is I'-big in N.

2) We say T is invariant if tp (@, Ar, M) and ¢(Z,y) determine whether ¢(Z, a) is
T-big (in M).

3) We say that I' is A-strong [or A-co strong] if for every M € K and ¢(Z, a) which
is I'-big [or I-small] in M there is 7, C 7¢, |7,| < A such that: ¢(z,a’) is I'-big [or
I'-small] in M’ whenever @’ C M’ € K, @’ realized in M’ the £ (7,)-type which a
realize over Ar in M | 7.

4) We say I' is very A-strong if for every ¢ = ¢(z,y) € Z(7¢) thereis 7, C 1, 7| <
A such that: for every ¢(Z,a),a € M € K the type tpo(7,)(a, Ar, M | 7,)
determine if o(Z,a) is I'-small or I'-big in M.

Definition 1.8. Let I' be a local invariant bigness notion.

1) We say that I' is A-simple [or A-co-simple] if for every M € K,a C M, and ¢
such that ¢(Z,a) is I-big [or T-small] in M there is ¢ C tpy(a, Ar, M), |q] < A
such that:

[a" € M" € K& @' realizes ¢ in M’ = ¢(z,a’) is I-big [or -small] in M’].
If A =Ny we may omit it.

2) T' is very A-simple when for every ¢(Z, ) there is a set A of < A formulas of the
form ¢ (g;a) € Z(7, Ar), with @ C Ar such that: if M € K and

Amtpx(gl,AF,M) = Amtpg(l_)z,AF,M)
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then: o(z,b') is I-big iff o(z,b?) is I-big. If A = Xy we may omit it.

3) We say I is uniformly A-simple [or A-co-simple] when for any ¢(z, ) with lg(z) =
a(I") there is a type ¢, (§) over Ar such that: for any relevant M, a we have ¢(Z,a
is I'-big iff @ realizes g, [or: ¢(Z,a) is T'-small iff @ realizes g,).

Claim 1.9. Let I be a local bigness notion.

1) If X > |Ap| + |.Z|, £ has finite occurrence' number then
(a) T is A-strong if and only if T is A-simple
(b) T is A-co-strong if and only if T is A-co-simple

(c) T is very A-strong if and only if T' is very A-simple iff T' is uniformly -
simple and uniformly A-co-simple.

If T is very A-simple then T is \-simple and \-co-simple

)
(b) If T is very A-strong then T is A-strong and A-co-strong
¢) If T is A-simple then T is \-strong
(d) If T is A-co-simple then T is A-co-strong
(e) IfT is very A-simple then T' is very A-strong
(f) If Mi < A2 and T is Aj-strong then T is Ay-strong; similarly for “N¢-co-

strong”, “very \g-strong”, “Ag-simpleq”, “Ng-co-simple”, “very Ag-simple”

(9) if X > |T| + No then the corresponding strong and simple properties are
equal.

3) If T is A-simple and co-A-simple then T is very simple (using the logic £ being
compact).

4) If AC M, p a T-big type over A in M then we can find a T'-big q € S (A, M)
extending p using the logic £ being compact.

5) Parallel of parts (1), (2), (3) hold for global bigness notion defined below.

6) If A\ > | Z(7)| + |Ar| then: T is very A-strong, very \-simple.

7) If T is uniformly A-simple then T is co-simple. If T' is uniformly \-co-simple
then I' is A-simple.

Proof. By the definitions (and compactness when demanded).
We may also use a relative of “local bigness” called “global bigness”. Lo

Definition 1.10. 1) We say T is a g.(=global) bigness notion for (¢,.%¢) (with set
parameters Ap C Mp € K) if (it gives a sequence Z = Zr of variables and):
(a) for every M € K (satisfying My <¢ M as usual), I'js is a family of types
p(Z) such that for some A, Ar C A C M and p(Z) € Sg”ér) (A, M)
(b) local character: if M € K,Ar C A C M, p(Z) € Sy (A, M) then p(z) €
'y & (V finite B C A)[p(i‘) i (AF UB) S FM]
(¢) the extension property: if Ar C AC BC M, pe S;EF)(A,M) is in T'py
then some extension g € S (B, M) of pisin 'y

Lthis means that every ¢ € Z(7) for some finite 7/ C 7; note |-Z| is the number of sentences
up to renaming the predicates and function symbols, so [.Z(7)| < |7| + |-Z| + RNo.
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(d) existence: if Ap C A C M then there is a I-big p € S*I) (A, M). [We can
close the family under restriction thus allowing “p € S*() (A, M) is I'-big”
though Apr Z A.]

2) We define “T", a g.bigness notion is weakly invariant/invariant” as in definition
1.7(1),(2) above.

3) A g.bigness notion I' is A-strong [or A-co-strong] if for every I'-big [or I'-small]
p=p(Z,a) =tpgy(b,aU Ar, M) € Sér) (@U ArM), for some 7, C 7 of cardinality
< A,iwe have: if M <; N and tpngp(BAd,Ap,M) = tpgm(lf)’A@’,Ap,N) then
tp»(b',a’, N) is T-big [or I-small].

4) We say T' is very A-strong if for any n < w for some 7, for any n and p(Z) €
ST (Ap, M), q(g) € S™(Ar, M) with £g(y) = n, there is 7, , C 7(K) of cardinality
< A such that: if for £ = 1,2 we have M < Ny, @z, by € Ny realizes ¢, p respectively
in Ny and tpy(,, y(@1"b1,Ar,N1) = tpy(,, )(@2"b2, Ar,N2) then tp o (b1,a1 U
Ap, N) is T- big iff tp (b, s U Ar, No) is T-big.

5) A g.bigness notion I' is very A-simple if for every m there is a set A of < A
formulas ¢ (%) (with parameters from Ar) such that: if a € ™M, “tp o (b,aUAr, M)
is [-big” depend just on tp, (b @, Ar, M).

6) A g.bigness notion I' is A-simple [or A-co-simple] if tpy(b,aU Ar, M) € S&(aU
Arp, M) is T-big [is T-small] in M implies that for some q C tp(b°a, Ar, M) of
cardinality < A we have b"a’ € M’ € K realizes ¢ = tp o (V/,a’ U Ar, M') is I'-big
[or T-small] in M’ (for example inconsistent).

7) We say T is a semi-g. bigness notion if above we omit the local character.

Claim 1.11. 1) Every £-bigness notion is a g-bigness notion (when we restrict
ourselves to complete L -types over sets which includes Ar; we do not always bother
to make the distinction).

2) If an (-bigness notion T is A-strong/co-A-strong/A\-simple/ co-\-simple/weakly
invariant/ invariant then as a g-bigness notion it satisfies the corresponding prop-
erty. If X\ > | L (7¢)| this holds also for ?

Proof. Easy.
We may like to compose (or iterate) g.bigness notions. 0111

Definition 1.12. 1) If [ = (I" = T; : i < a) is a sequence of g-bigness notion
(with Zp, pairwise disjoint for notational simplicity), we consider I' also as a g-
bigness notion by: Zp = (Tr, : i < a) (formally - their concatenation), Ar =
U{Ar, : i < a} and: for p € Sg}(r)(A, M), Ar C A we have: p is [-big if and only if
p="p(..,Zr,,.. )ica, and whenever M <, N € K, (a; : ¢ < ) realizes p we have
tpy(a;, AU | a;j, M) € T% for each i < av.

j<i
2) Similarly when Ar, € Ar U {Zr, : j < i} defined naturally.
Claim 1.13. 1) If T is a sequence of invariant g-bigness notions then T is itself
an invariant g-bigness notion. -
2) If T is a sequence of [very] A-[co-|strong g-bigness notions and £g(I') < cf(X)
then I' is a [very] A-[co-|strong g-bigness notion. B B
3) If T is a sequence of [very] A-simple g-bigness notions and £g(T') < cf(\) then T
is a [very] \-[co-Jsimple g.bigness notion.

Proof. Easy. U3
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Remark 1.14. 1) What about T' = (I'; : t € I), I a linear order which is not a well
ordering? If the I';’s are very simple, this is O.K.

2) If Ar,\Ar is finite for every t € T, there are no restrictions on I.

3) Why the asymmetry in Claim 1.13(3), i.e. why we omit “A-co-simple”? As in
Definition 1.12(1) is not symmetric, we use I'-big, not ['-small.

Now we turn to the central relation here between bigness notions here: orthogonal-
ity.

Definition 1.15. 1) Let I';,T's be two g.bigness notions for (¢,.Z), for the se-
quences of variables Z!,Z? respectively (maybe infinite). We say that I';,T's are
orthogonal (or say I'y is orthogonal to I'y, or say I'y L I's) when:

for any model M € K, A C M, and sequences a',a> € M of length £g(z'), fg(z?)
respectively such that tp o (@', A, M) is T';-big for | = 1,2, there are an <;-extension
N of M, and sequences b*,b?> € N of length £g(7'), £g(Z?) respectively such that
for | = 1,2 the sequence b' realizes tp - (a!, A, N) and tp o (b, AUb*~L, N) is T;-big.
Similarly “for T7.
2) In part (1) we say I'1,T'2 are nicely orthogonal or we say I'; is nicely orthogonal
to I'y, or we write I'y 1, I's, when:

adding to the assumption Ar, UAr, C A = acly A we can add to the conclusion
aclyr (AUbY)Naclyr (AUbB?) = A (acl stands for algebraic closure, i.e. acly(A) = {b €
M: for some a C A C M and ¢(y, ) we have M = p[b,a] and M = (3<"y)e(y, a)
for some finite n}).

Remark 1.16. 1) If T'; has parameters in My, and some M* € K such that Mp, <
M* and Mrp, <y M* is given, in 1.15 by M (€ K) we mean any <g-extension of
M, otherwise we look at any <g-extensions of Mr,, Mr,.

2) Under context 1.1, orthogonal is equivalent to nicely orthogonal and every I' is
nice, see below Definitions 1.17 and Claim 1.18(4).

3) In fact also in 1.15(2) we are demanding Ar, U Ar, C A. However in 1.10(1) we
can weaken Ar C A C M to ArUA C M, and in 1.10(1)(b) replace p(Z) | B, etc.
with minor changes.

Definition 1.17. T' is nice when: if p € S (A, M) is in I'ps, and « an ordinal,
A = aclj;A then in some N, M <; N € K we can find @’ C N for i < a such that:

(a) @' realizes p (in N)
(b) to(a, AU U @) € Ty
Jj<i
(c) acly(AuUa’) \ acl(A) are pairwise disjoint (for i < a).

We now give some basic properties of those notions.

Claim 1.18. 1) If T = (TY : i < ay) (¢ = 1,2) are two sequences of g-bigness
notions and (Vi < a1)(Vj < ag)[I'} L F?] then Tt L T'? (on such g-bigness notions,
see definition 1.12).

2) If T'1, Ty are nicely orthogonal g-bigness notion then they are orthogonal.

3) If T'1, Ty are orthogonal g-bigness notion and each Ty is invariant and at least
one is nice then I'1,T's are nicely orthogonal.

4) If T is an invariant g-bigness notion then T' is nice.
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5) If during a proof of the orthogonality of T'1,T'y we are given T'y-big py € S:‘éra) (A, M™)
for £ = 1,2 we can replace M* by any N* such that M* <y N* and A, p1, p2 by
A, AC A C N* and p}, py respectively such that p, € So‘(F (A, M) extend py
and s T'g-big.

6) IfT = (I'; : i < @), each T; is an invariant g-bigness notion and nice then so is
Tr.

7) Being orthogonal is a symmetric relation.

Proof. E.g.

3) Say I'y is nice. Let p® for £ = 1,2 be a complete I',-big type over A in M,
Ar, UAr, CAC M. Find N € K, M < N and (a} : i < A\T) (where X is the
supremum on the number of .Z-formulas over a set of cardinality < |A|+Rp), such
that: a} C N reahzes pl and (acly(AUa}) \acly(A) : i < AT) are pairwise disjoint

and tp( ,AU U aj, N) is T'1-big (possible as I'y is nice). Choose by induction on
j<t

i < AT atype p? € S?frz)(A U ‘L<J‘EL31-,N) such that:
j<i
(o) p? is T'a-big
(B) if a® realizes p; in N’, N <¢ N’ then tpo(a;, (AU U aj)Ua?, N') is I';-big

7<i

() p? is increasing continuously
() pg =p*.
[Why possible? For ¢ = 0, trivial: for ¢ = j+ 1 we can take care of clauses (a) + (5)
as I'y L I'y; for ¢ limit use Definition 1.10(1)(b)).
Without loss of generality some b C N realizes p>\+ Choose i such that acly (AU
al) \ aclpr(A) is disjoint to acly(AUb). Now N,a},b are as required.
4) Clearly to prove that I' is nice, it suffice to prove:

(x) for I-big, p € S:’ér)(AM), and A € B C M we can find a, N such
that M <¢ N, a C N, tpg(a, B, M) is a I'-big type extending p and
acly (A + @) Nacly(B) = acl(A).

(just use it repeatedly).

To prove (x), let A be as in the proof of part (3) above, without loss of generality
A = aclp(A); by the compactness (and basic properties of algebraicity) we can
find M', M <y M’ and for i < AT, elementary mapping f; (for M') such that

[i <j <At = acly(fi(B))Nacly(f;(B)) = acl(A)]
[Why? We should consider

{zp #c:bC B~ A,ce M} U{p(zp, ..., 2p,,a):a C A ME by,...,by,a

it is finitely satisfiable in M by the definition of algebraic and the finite A-system

lemma). Then we can find N, a such that M’ <¢ N, tpy(a, |J fi(B),N) extend
<At

p and is I-big. Clearly for some i < AT, acly(f;(B))Nacly(A+a) = acly(A4), and

by invariance we are done.] T
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Now we consider a quite general scheme for defining bigness notion; as an example
see 3.1. We are interested in the case where for a given first order theory s, is a
s-bigness notion scheme or co-s-bigness notion scheme, this is quite a general way
to define bigness notions. But for this we need

Definition 1.19. Let s be a first order theory.

1) We say T is a s-bigness notion scheme when T is a sentence ¢r in the vocabulary
7s U {P}, in some logic (possibly infinitary) P an £g(Zr)-place predicate not from
75 and for every M, € K and interpretation ¢ of s in M,, see Definition 1.19(2) a
formula ¥(Zr, b) is I' we have I' = T'[@] is an invariant bigness notion, where:

(a) if M. <¢ M then I'}, = T[¢]}; is the set of formulas J(M,b)) = ¥r, on
Ml see 1.19(2)
(b) Arppz] is M, or just the elements of M, appearing in @.

1A) A co-pre s-bigness notion scheme? I' is a sentence (in possibly infinitary logic)
called ¢r in the vocabulary 7(s) U {P}, P has arity £g(Zr) but is not in 7(s), (Zr
finite for simplicity-otherwise we should have P, for every finite w C flg(Zr)).
We may write ¢¥r(P), (treating P as a variable; we shall use P*, if P is already
occupied).
2) We call ¢ an interpretation with parameters of s in a model M* € K if:
¢ = (pr(Ur,agr) : R € 7(s)) where pp € Z(7x) and 7(s) is the vocabulary of
s including equality® (for each sort of 7(s)), treating also function symbols as pred-
icates, so R is interpreted as {b: M* = pr(b,ar), Lg(b) = €g(yr) (= arity of R)}.
The interpreted model has universe {b : p(M |= p=[b,b,a=]}, if s is multi-sort we
have equality for each sort. Of course, we assume that (it holds in the cases we are
considering) if M* <, M and |J ar C N <¢ M then N inherits the interpretation.
ReT
The interpreted model is called M[@] or MI#! and we demand that it is a model*
of 5; we demand further (for % to be an interpretation of s in M) that if M? is a
model of s and M < N then N¥! is a model of s and M®?) <, NI?! in the context
1.9(A) we get M < NI#l,
3) For a pre-s-bigness notion scheme I" = ¢r and interpretation @ of s in M* € K,
we define T'[@g] = T'[p, M*], the @g-derived local bigness notion, as follows: given
M € K such that M* <¢ M, 9(z,b) is T'[@]-small in M iff for any quite saturated
(see below) N*, M < N* letting P = {a : N* = d[a,b] and @ C N*[p]} (in the
relevant sorts, of course) we have (N*[g], P) = vr.
3A) The “quite saturated” means:

(a) if (¢,.) = Mod(T),LL), T first order, means AT-saturated where A = |T'| +
|7(8) + Ro
(b) if K is an a.e.c. with amalgamation (the last follows by compactness

if £ is non-trivial), we use A*-model-homogeneous universal where A =
L.S.T.(K) + |7(s)| This is needed for invariance to hold.

°In principle we should denote schemes by a different letter, so in the definition we use I" but
usually we do not

3We may add: ¢ (z,y,d=) = z = .

4We use equivalence classes as elements, equality is interpreted as equivalence relation and we
will not take the trouble of dividing by it; alternatively we can have s not first order



Paper Sh:482, version 2021-09-10. See https://shelah.logic.at/papers/482/ for possible updates.

12 SAHARON SHELAH

3B) For a model N of s and the identity interpretations we define I'y C Z2(N) as
above.
4) We omit the “pre” if every I'[¢, M*] is a £-bigness notion (usually but not always
for our fixed K). [If this holds for some s, we write *.]

" is derived from T if it is of the form I'[@, M*] for some @, M*.
5) We say a property holds for I if it holds for every derived £. bigness notion (so
we demand that @ is an interpretation of s in M; see part (3)) in which not every
formula is small. We may put the “co-” before big.
6) In parts 0),1) we may replace “pre” by “co-pre” if we replace I'[@]-big by I'[7]-
small (so there is no real need for both notions). Similarly in part 3),7).
7) We say “T" is a co-s-bigness notion, it is of the form I'[@, M], for T' a co-s-bigness
notion scheme, @ and interpretation of s in M.
8) We can define global T' parallely.

Observation 1.20. Assume in Definition 1.19 that T* = T'[g] for K, and T is a
co-[pre]-s-bigness notion scheme.

1) It has the parameters from the interpretation @ i.e. Ar is the set of parameters
appearing in Q.

2) T[@] is invariant.

Definition 1.21. 1) A local bigness notion T' (for (¢,.%)) is A-presentable if T =
Zr, and for each ¢(Zr,y) € &, for some set of Z-formulas Ar of the form
9., 2. Diere € ZL(7(€) with A > |Ir|, |A| (we may have parameters) where for
i € Ir,Lg(z') = fg(zr) and for M € K,b C M we have |Ar| < X and: ¢(z,b) is
I-big in M if and only if the set {p(z%,b) : i € I} U Ar is finitely satisfiable in M.
2) If we omit A we mean A\ = Xy. Without loss of generality |Ir| < |Ar].

3) We define similarly a A-co-presentable bigness notion scheme, i.e. we replace
above “I-big” by “I’-small”.

Claim 1.22. 1) IfT is s-[co-]bigness notion then it is invariant.

2) If T is a A-presentable local bigness scheme then T' is invariant very A-strong
uniformly A-simple (hence co-simple) local bigness notion.

3) If T is A-co-presentable local bigness scheme then T is invariant presentable,
very A-strong, uniformly \-co-simple (hence simple) local bigness notion.

4) For “very A-strong” we can replace X by Xg + |7(Ar)|.

5) In parts 2), 3), if A =Ry we get “very simple” = “very co-simple”.

Proof. Easy (for the co-simple/simple in parts (2),(3), use 1.9(7). Oy .90

Claim 1.23. 1) If (z' : i € Ir) and a set A of < X formulas in Z(7(¢)) and
the variable ° (i € Ir) are given, £g(z%) = « for i € Ir, and we try to define a
A-presentable ', i.e. “T'-big formula in M € K7, i.e. as in 1.21(1) (so o(T") = o),
then for some s (a set of < X formulas of £ (7(8)) possibly with parameter) T' is a
derived case of the scheme pre s-bigness notion scheme.

2) Similarly for co-representable and co-pre s-bigness notion scheme.

Convention 1.24. If we define I'Z for every appropriate sequence a of parameters
(from some M € K) then we call I'* a scheme, and I'? an instance of this scheme.
Abusing notation we may call I'[@] from 1.19 a case of T'; in definition 1.19 we may
write I" instead of T'.

See more in 5.2 (and 5.8-5.10).
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§ 2. GENERAL EXAMPLES OF BIGNESS NOTIONS

We deal here with example of bigness notions which are general, i.e. no formulas
play special roles. Consider a model M, very saturated and A C M, and type p(Z)
over A in M and we describe the examples defined below. We say p(z) is I'"-big
always, I'"™*-big if some @ realizing p is disjoint to acl(M). This will be helpful in
guaranteeing no undesirable algebraicity.

We say p = p({Z; : i < a)) is T'9_big if some/any sequence (@; : i < ) realizing
p is indiscernible over A; this is helpful in omitting types of a sort: if we know that f
(say an outside automorphism we would like to “kill”) satisfies f(a) = b ¢ acl(A+a)
and (b, : n < w) is indiscernible over A + q, if we guarantee it is still indiscernible
over B + a, A C B, this helps to “kill” f.

Then we consider FaD.Vﬁ where p(z) is Fga—big iff every formula ¢ € p (or finite

conjunction of such formulas) is satisfied by a D-positive set of a;. This is used,
e.g. when adding a very small non-standard natural number.

For each we are interested in its simplicity etc. and in orthogonality. Now for
theories T' with enough set theory coded in then we can more easily define bigness
notion, so we may expand 7' to such T, define there I'" and see what it induce
on T, this is promising, but as not presently used, we say little (see 1.13, 1.16). We
consider also weakening the local property of g-bigness notion.

Context 2.1. T is first order complete, 7 = 7(T"), L = L(7), and all T here are
(by 1.18(4)) nice; so ¢ = (Modr, <), <¢g==< and € a monster for 7. So tp will mean
tpy, and <¢ is < and M, N are models of T

Definition 2.2. 1) T = I''"| the trivial bigness notion is defined by: o(x,a) is
I'"-big in M if and only if (@ € M, € L, and) M = Jxp(z,a).

2) I'! = I'™2 the non-algebraicity bigness notion is defined by: ¢(z,a) is ['™®-big in
M if and only if (a € M, p € £ and): M = F="xp(x,a) for every natural number
n.

3) Tl = I'2, the a-non-algebraicly bigness notion, is defined by (where z = Ta) (s :
i < a)):¢(Fa)is TL-big in M, a model of T if and only if {p((zF : i < a),a) :
kE<wu{zk #£a2™ i <ak <m <w} is finitely satisfiable in M.

Claim 2.3. 1) T'*" is a nice, presentable (invariant) £-bigness notion, orthogonal
to every (invariant) g-bigness notions T (trivially sometimes) and Arw = 0.

2) T2 s Ny -presentable invariant £.bigness notion orthogonal to every invariant T
and Arna = .

3) T 4s (Ry + |a|t)-presentable invariant (-bigness notion orthogonal to every
invariant T' and Ape = ().

Proof. By the proof of 1.18(4). U2

Definition 2.4. I'2 = I'ids (for o > w), the indiscernibility bigness notion, in the
variables Z = (x; : i < a) (or each z; replaced by a sequence of length n (possibly
infinite) - does not matter) is defined by: (z,a) is T''%-big in a model M of T
if and only if p(Z,a) U {¢(xiy, ..., 2i,_,,0) = Y(zj,.... 25, ,,a) : ¥ € L(r) and
i <ip < - <ip<aand jo < ji <- - < jp < a} is finitely satisfiable in M.

Claim 2.5. 1) T js g (|7] + o) T -presentable £-bigness notion, Apias = 0.
2) Tids s orthogonal to any g-bigness notion.
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Proof. For part (1), the proof of the (relatively) non-trivial part is contained in the
proof of part (2) which is rephrased and proved in 2.6 below. U5

Lemma 2.6. Suppose M is A-saturated (or just A-compact), p is a T'-big o(T')-type
over M, T' any invariant g.bigness notion for T, |p| < X, and the set of parameters
appearing in p is C A and Ap C A. Let I = {a; : i < a} C M be an infinite
indiscernible sequence over A, then we can find a I'-big type ¢ € S*(I) (AUTI), such
that p C q, q is ['-big, and: if a realizes q, then I is an indiscernible sequence over
AUa.

Remark 2.7. We can do this to T whose index-set is any infinite (linearly) ordered
set.

Proof. For notational simplicity assume a = a(I') < w (see below). We can replace
M by any pT-saturated elementary extension for any g and similarly o can be
increased. So without loss of generality p = Jioxy+, x = A+ |T'| + |A| + |(T)| and
a = p. We can extend p to some I'-big p; € S¥(AU I) and assume a € M realizes
p1. Expand M to N by making all elements of AUa into individual constants, and
making the set RN = T and the order <N= {(@;,a;) : i < j < p} into relations of
M. The fact that a realizes over AUI = AURY a I-big complete lg(a)-type, can be
expressed by omitting some types (remember the “local character”, i.e. Definition
1.10(b)).

By Morley theorem on the Hanf number of omitting types, (see, e.g. [SheT8a,
Ch.VIL,85] = [She90, Ch.VII,§5]), there is a model N’, elementarily equivalent to N
and omitting all the types over @) that N omits, such that in RY " there is an infinite
indiscernible sequence J (even in the vocabulary of N’). As I has local character
(see 1.10 clause (b)) necessarily @ realizes a I-big complete £g(@)-type over AUJ in
N'I7¢. Now we can compute g from tp(a, AUJ) in the rg-reduct of N'. If a(T') > w
then in N we have also the partial function defined by FCN ,EN(a;0) = a;¢ for

¢ < al) and <N= {(ac,a0) 10 <j < p}. O

Remark 2.8. We can generalize this to other cases where we have a generalization
of Ramsey theorem (for 2.6 if T" is very simple) or Erdos-Rado theorem with enough
colours (for 2.6 in the general case) [Sheh, §2].

Definition 2.9. 1) We define I' = 'Y/ _ (the averaging ¢-bigness notion) where

a = (ag: B < a) is a sequence of sequences from some My = Mr, D a filter on «, as
follows (¢g(Z) = €g(ag) is constant): ¢(Z,a) is I'-big in the model M if and only if
(@C M,Mp <¢ M € K and) {8 < a: M | glag,a]} # 0 mod D. (So we call
%5 . an instance of the scheme I Pav-)

2) We say D, a is non-trivial if for some ¢ < £g(Z) and for every finite u C £g(a),

the set {8 < a:ag¢ ¢ {ayc: v € u}} belongs to D. If @; = (a;) we may write a;
instead a; }.

Claim 2.10. Ifa; € My € K for i < o and D a A-complete filter on «, and
= Fg’a then

(1) Ar = | a; (but also |J a; for Y € D is O.K.)
i<a i€y
(2) T is an invariant, very No-strong, very |a|-simple £-bigness notion
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(3) If D is an ultrafilter, then T is orthogonal to any uniformly \-co-simple
{-bigness notion

(4) TF  is non-trivial if D is non-trivial.

Proof. For part (2) the proof of the (relatively) non-trivial part is contained in the
proof of part (3) which is rephrased and proved in 1.10 below. Os .10

Lemma 2.11. Suppose

(a) p is a T'-big type over A in M, anda € M, Ap CAC M
(b) @; € A for each i < a, and D is a A-complete filter over I
(¢) for any formula go(f,l;.) with parameters from A, if = ¢[a, b] then {i €
I: M [ gla;,b} € D, (hence tp(a, A, M) is I‘%’?mﬁka)-big; if D is an
ultrafilter this is an equivalent formulation)
(d) T is a uniformly \-co-simple notion of £-bigness.
We can conclude that we can extend p to a I'-big type ¢ € S™(A U a) su.ch that
for any formula ¢(Z,5,0): if b € A, and {i < a : ¢(Z,a;,b) € q} € D, then
©(Z,a,b) € q (ie. ifc realizes q then tp(a,AUe, M) is Fgé—big).

Proof. Let 7,52 (%) be a type of cardinality < A (over Ar) such that: ¢(g,0) is
[-small if and only if b realizes (g, z)(2) (in N whenever M <¢ N,b € N of course;
exist as I is A-co-simple). Without loss of generality p € S*I)(A, M), and now we
define q, by

q=4q(7,9) = p(T) Uqo(y) U q1(Z,9) U ¢2(7,9)
where

20(y) = {e(,b) : b€ A, and M F ¢[a,b]}

a1(@.5) = {¢(@.5.5) ;b€ A, {i <a:p(,a,b) € p(a)} € D}

and

¢2(Z,9) = {~(z,7,b) : b € A and p(z,a,b) is [-small}.
By the hypothesis on a
(¥)1 q extend qo(7) = {¢(7,b) : b € A, M = p[a, ]} and
(¥)2 p(Z) € @1(T,7) S q
and lastly
()3 every finite ¢’ C ¢ is realized in M.

Why ()3 holds? As p,qo are complete types over A, D is a filter and the set of
I-small formulas form an ideal clearly p(Z), qo(9), ¢1(Z, %), g2(Z,§) are closed un-
der conjunctions hence without loss of generality ¢ = {©(Z,b)} U {©0(7,b0)} U
{Sﬁl(f7 Ys bl)}U{WZ(j:? v, bQ)}_Where @(fv b) € p(:f), 809@7 bO) € QO(g) and SOE(CE’ Y, b@) €
qe for £ = 1,2. As 3(,7,b2) € g2 necessarily a”by realizes a type ry(z,5°2) (¥, Z)
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when we let ¢y = —¢) which satisfies: if @’"b’ realizes the type Ty(z,5°2) (¥, Z) then
Y(z,a’,b) is T-small.
Now

(G, 2) € T(zg2) ([, 2) = M [ [a, ba] = Lyg.z) = {i < a:=9]a;,bo]} € D.

But by assumption (c) as D is A-complete % * = Mls,z) 2 VY, 2) € Ty@y 2}
belongs to D. Now ©1(Z,7,b1) € q1(,7) hence %' =: {i < a : p1(z,a;,b1) €
p(Z)} € D. As po(7,b) € qo(7) clearly % = {i < o :[= po[as, b]} # 0 mod D.

We conclude that (% N%*)N %' # 0 mod D hence there is i € % NU' N U*.

Now we can find N, ¢ such that M < N and ¢ € N such that tp(¢, AU a;, N)
is T-big and extend p(Z) exists by 1.9(4). We claim that ¢"a; realizes ¢’ in N.
Why? First N |= o[, b] as ¢(Z,b) € p(Z) C tp(c, AUa, N). Second, N |= @o[a;, b]
as i € %. Third, N |= ¢1[¢,a;,b] as i € %' which implies ¢1(Z,a;,b1) € p(z) C
tp(¢, A, N) C tp(¢, AU a;, N) and € realizes this type. Fourth, N = s[¢, a, b]
which holds as a@; b, realizes the type Ty (z,y-2) (Y, Z) hence (2, a;, by) is T-small but
tp(¢, AU a;, N) is I-big in N so necessarily —¢(Z, a;, b2) ¢ tp(¢, AU a;, N) hence
—p(x,a;,by) € tp(¢, AU Gy, bo) so N = —E, ay, bo] but vo(Z, 7, 2) = p(Z,7,2) so
we are done. So ¢ a; really realizes ¢’, so ¢ is realized as promised in (x)3.

So ¢ is indeed finitely satisfiable (in M) but ¢ > po(y) € SS(A, M) hence even
q(Z,a) is finitely satisfiable so let &* realizes ¢(Z,a) in N* where M < N* and let
q¢* =tp(¢, AUa, N*). By our choice ¢2(Z,a) Uq1(Z,a) C ¢* so clearly ¢(Z,a) is also
I'-big. Obviously it extends p, and satisfies the conclusion of the lemma. Oy 11

Claim 2.12. In 2.11, if D is an ultrafilter then the conclusion of 2.11 is valid even
if we (seemingly) weaken the demand (c) to

()~ tp(a, A, M) is 1"3<aﬂ<a>—big.

Proof. Should be clear. o192
Observation 2.13. 1) If 'y, 'y are local bigness notions, then the following are
equivalent:

(a) Fl L FQ

(b) for any T'1-big, p1 = tp(at, A, M) and U's-big ps = tp(a?, A, M) the follow-
ing set of formulas is finitely satisfiable (in M)

(2.1) p () &  Upa(72) U {ﬂgg(il,a’cQ,l;) b C A, @(fl, a2, b is '1-small}
’ U{—p(zt,22,0) : b C A, p(a', 2%, b) is [y-small}

(¢) Assume Mpe < N,Ap1 U Ap> € AC N, N s |A\+-5aturalfed, by € N,p; =
tp(be, A,N) € T§. We can find by,by € N such that b, realizes p; (=
tp(be, A, N)) and tp(b, AU{b;_,}, N) is Ty-big for £ =1,2

¢) there are N D A, D Ar, U Ar, such that N is |A.|T-saturated such that

1 2
if B C N is finite and A = A, U B then the second sentence in cluase (c)
holds.

2) If T'1, T'y are co-simple local bigness notions then we can add:
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(d) if p1 is Tl-big, pa is T?-big, V1(Z') € p1,92(Z2) € pa, V1(Z') witness
01(x2;21) ds T2-small, V2 (22) witness @o(T'; %) is I't-small then
{91(21), 92(22), ~p1 (2% 21), o (215 2%)} is consistent; of course 91,2, 01, @2

may have parameters. We can guarantee @4(53—5;@) is T¢-small for any
aj.
Proof. Easy. Uaas

Definition 2.14. Let 74 C 75 be vocabularies, T; a complete theory in L(7),
T CTs.

1) If T'? is a local bigness notion for T, we define I'* = I'? | 7 by: for N; a model
of Tl,I‘}Vl = {¢(Tr2,a) : @ € Ny and for some Ny = To, Ny < Ny | 71 we have
@(Zre,a) € TR, }.

2) If I'? is a global bigness notion for Ty, I't = I'? | 7y is defined by: p, a complete
type over A in Nj is I'1-big (in Np) if for some Ny = Ty, Ny < N [ 71 and p can
be extended to a complete type over A in Ny which is I'?-big.

Remark 2.15. Note that above I'? | 7| is not a priori a bigness notion.

Claim 2.16. Let 7,710,171, T be as in Definition 2.14.

1) The two parts of Definition 2.14 are compatible.

2) In Definition 2.14(1) if T? is a local bigness notion for Ty then T is a local
bigness notion for Ty (and is invariant). Similarly (see Definition 1.10(7)) for
global bigness notion.

3) Tt F“a,Ffs,FEga, commute with the restriction operation.

4) In Definition 2.14(1), if T? is a \-strong/ co-\-strong/very \-strong/co-simple
local bigness notion for Ty then T'! is a A-strong/very A-strong/co-simple local big-
ness notion for Ty.

5) Assume I'y, T are global (or local) bigness notions for Ty and Ty =T% [ 71, T =
Y | 7. If T4, T4 are orthogonal then T, TY are orthogonal.

6) T is a co-s-bigness notion scheme, @ an interpretation of s in a model My of
Ty, T2 = T[p, Ms)] (see Definition 1.19) and Tt = T2 | 7y the relevant formulas @;
belong to L(7(T1)), then Tt =T[p, My | 7). Similarly for X — [co—] representable.
7) If in Definition 2.14, T? is a k-weakly global bigness notion then so is I'! (see
Definition 2.18 below).

Remark 2.17. Why in 2.16(4) we have “co-simple” and not simple? The point is
that in Definition 2.14 we have:

e o(Zr,,a) is I'1-big in My | Ty iff there is My | T such that M; <
My |7(Th) and ¢(Zr,,a) is T's-big in Mo.

So for I';-small we have to say “for every My ...”.

Proof. Straightforward, e.g.
4) For notational simplicity let Ar = 0.

Case 1: T'y is A-strong.

Assume, ¢(Z,a) is a I'1-big formula in the model M; of 77, so for some model M,
of T5 we have My < My | 71 and ¢(Z, a) is T's-big in My, hence for some 75 C 75 of
cardinality < A we have: if M3 is a model of T, a} € MJ realizes tp(a, 0, My | 75)
then ¢(z,a*) is I's big in MJ. We shall show that 7f = 7 N 75 is as required,
so assume that M7 is a model of T7 and @i € M; realizes tp(a,d, My | 77). By
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Robinson lemma there is a model Ms* of T» such that M7y < M3* | 71 and aj
realizes tp(a, 0, M3 | 75) hence ¢(z,a}) is I'y-big.

Case 2: co A-strong. The same proof.

Case 3: very A-strong. Just easier.

Case 4: simple. Like case 5.

Case 5: co-simple (not co-A-simple!).

Assume ¢(7,a) is I';-small in M;, a model of Ty. Let T" = To U {J(y) : ¥(y) €
L(7(T1)) and M; = 9[a]} U{—(y) : ¥ € L(12), and if My = ¢[b], M2 a model of T,
then ¢(Z, b) is I'y-small}, clearly this set of (first order) formulas has no model hence
is inconsistent, but the second set in the union is closed under conjunctions and also
the third (as =91 () A ~12(y) is ~(¥1(7) V ¥2(7)). So for some ¥(g) € tp(a, D, M)
and (y) we have T U {J(y), ()} is inconsistent and [My |= [b] = ¢(x,b) is
Iy-small] for every b € Ms, My a model of Ty. So ¥(%) is as required. Os 16

Definition 2.18. T is a (< k)-weakly global bigness notion for T if: in Definition
1.10(1) we weaken clause (b) to:

(b)~ for A < k, the odd player has a winning strategy in the following game: the
game lasts A+ 1 moves, in the a-th move a I'-big p, € S*T)(A,, M,) such
that @ < = M, < Mg& Ay C Ag&po = ps | Aa, the even/odd player
choosing for a even/odd. The even player wins if he has no legal move for
some « < A. Otherwise the odd player wins.

Let a*-weak mean (< a* 4 1)-weak.
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§ 3. SPECIFIC EXAMPLES OF BIGNESS NOTION SCHEMES

We deal with bigness notions for which some formulas have special roles. One
family of natural ones are variants of a subsets of a partially ordered sets which are
somewhere dense (i.e. for some x for every y > x there is z > y in the set). By
looking at intervals of a linear order we can get as a special instance the case of
dense linear orders; note this density has a different meaning, those are important
for automorphism of ordered field not treated here. Another family of natural ones
(considered even earlier) are connected to independence: outside a small set every
combination is possible (for this we need the strong independence property); the
main example here is a member of an atomic Boolean algebra such that except for
a small set of atoms we have total freedom which ones to put inside and which ones
to put outside. The main case here is having a pseudo finite set a as a parameter,
and inside € (see 1.1(B)) we say « C a is big if |z|/|a|] > ¢; for each i < ¢ where
¢; € (0,1)F is increasing with i. So “finitary” theorems enter like the law of large
numbers. We are in particular interested in the case a = #(ay), and in particular
if for some q € (0,1)§ we give to b C a the weight ql®! x (1 — q)l*\*l.

Here we usually do not mention “in €” as it is obvious.

Definition 3.1. 1) Let tP° be the first order theory such a structure (A, <, R)
satisfies tP° if and only if A # (), < a partial order, R a symmetric two-place relation
satisfying xRy — —(32)(z < z Ay < 2), to which (“~2,4,4) can be embedded
(where if we omit R it means zRy = ~(3z)[z <z Ay < 2).

2) Let tP°° be as tP° adding to the theory x < y = (3z)[z < zA zRy| and Vz3Iy(z <
y)-

2A) Let tP°' be as t*° adding to the theory (Vz)(Jy1,y2)[x < y1 &z < y2 & y1 Rys).
3) Let I'P° be the following pre-tP°-bigness notion scheme ¢ (P) (see Definition 1.19):
for M a model of t*°, and P C M: M |= ¢[P] says that the following is finitely
satisfiable in (M, P):

{P(z,):ne“2} Uz, <z, :navev2}

3.1
(3.1) U{.Z‘n~<0>R.’L‘nA<1> i €972},

4) Let I'P°¢ be the following pre-tP°°-bigness scheme: for M, a model of t*°¢ and

P C M: 9[P] says (3x)(Vy)(3z € P)[z < y — y < z| (this means somewhere
dense).
5) TPt is defined like T'PO°.

Remark 3.2. A natural example of 3.1(4) (more exactly, a model of t°°°) is the set
of open intervals of a dense linear order ordered by inverse (strict) inclusion with
(a,b)R(a’,b") iff (a,b) N (a’,b") = 0.

Claim 3.3. 1) T'P° is a tP°-bigness notion scheme and is Ri-presentable so by
1.22(2), (3) is invariant, very Wg-strong co-simple and uniformly Ri-simple local
bigness notion.

2) TP°° 4s a tP°-bigness notion scheme and is presentable (so by 1.22 is invariant,
very simple). Similarly for TP,

3) For M = t°¢ we have IV} = TX7°. If ¢ is an interpretation of t°¢ in a model
M then T [p] = TR7°[@]. Similarly for TP°.

4) PO Lt and ¥ L PO,
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Definition 3.4. 1) t"¢ is the theory saying on a model M, M = (P,Q,R), P,Q
are disjoint (are two sorts (or if you prefer — two unary predicates)), such that
R C P x @, R has the strong independence property (see Definition 3.5 below).

2) We define a pre-t"d-bigness notion scheme I' = T'"? as follows: r(P*) says
P* C @ and (P,Q, R, P*) satisfies: for every n it is I g-n-big which means that for
some finite A C P, P* has n-independence outside A (A is called a I'-n-witness),
which means: for every pairwise distinct ag, ..., a2,—1 € P\ A, for some ¢ € P* we
have V¢ < 2n = [agRc]f<™); so 41 is not first order because we have said “some
finite A” but ¢ € LNl,NO'

Definition 3.5. 1) Let P, @ be one place predicates, R a two-place predicate and
suppose the theory T contains the formula (Vzy)[zRy — P(x) & Q(y)].

We say R (more exactly P,Q, R) has the strong independence property (for or
in the theory T)) if:

(a) P, Q, R as above
(b) for every n < w, M |= T, and pairwise distinct ay, ..., as, € PM there is
¢ € QM such that: a;Rc iff i < n.

2) We say R i.e. (P,Q, R) has comprehension, i.e.

Va,y3z [Q(z) A Q(y) Nz #y — P(2) A (2Rx = —zRy)).

Example 3.6. The following are examples of theories T implying (P, Q, R), i.e
(PC(H ), QYT RG(T)) has the strong independence property and comprehension.
1) T = true arithmetic, that is the theory of N = (w, +, x,0,1). Let

P(x) : x is prime-

Q(z) : x > 0 not divisible by any square of a prime,

xRy : x divides y, and z is prime and Q(y).
2) T as above

P(z):z=u.

xRy : y codes a sequence in which x appears (using a fix coding).
3) T = the first order theory of infinite atomic Boolean algebras

P(z) : x an atom,

Qz) : z =z,

zRy:x <y
Claim 3.7. T4 45 o t"d_bigness notion scheme (hence invariant) and is very
Ry -strong and Nq-co-strong (but not uniformly).

Proof. Assume @ is a t"-interpretation, and let M[p] = (P, Q, R). Concerning the
N;-co-simple, note that “p(x,a) is I'pr-small” iff for some m, we have: a realizes
the type

Qm(:lj) ::{ j(Hyo) (Hyn71)(vzo). (Vzm 1)
(3.2) AN wFak N ztak AP

n k<m l<k<m

A ( 2)(Q(z) & p(x,9) & /\ o(z, yk)‘f(kew))] tn <w}.
wCm <m
We should check T'y; = (Fi]\r}[‘%ﬂ) r satisfies “I'js is a proper ideal” (the other con-
ditions are obvious). So we should check (), (8), () of 1.4(1) (c) in order to show
that “I"js is a proper ideal”.
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So («) + (v) obviously hold. How about (8) i.e. o1 V @27 Suppose 1 is not
I'r — n-big and 9 is not I'r — m-big. Let A C M be finite and we shall show that
A cannot be a I'r — (n 4+ m)-witness for @1 V @2 (see Definition 3.4(2)).

As ¢y is I'py — n-small, A cannot be a witness hence there are ag,...,a2,-1 €
PM\ A with no repetition such that

—(3z) (¢(z, @) A /\ [ain]if(K”)).

1<2n
Now let A’ = AU{ao,...,a2,—1} it cannot be a I'r — m-witness for ¢,. So there
are by, . ..,bam_1 € PM\ A’ with no repetition such that

—(3x) (gp(x,(z) A /\ [bin]if(Km)).

1<2n

Clearly ag, ..., a2n—1,b0, ... ,bam_1 € PM \ A are pairwise distinct and

@) (o1 ven) & N laRal e \ iR 0<).

1<2n 1<2n
So A is not a ' — (n + m)-witness for @1 V pa. Os 7

Definition 3.8. Let T* be as in 1.1(2)%, and M* < € be a model of T*. Let a, ¢;
(¢ < 4, § a limit ordinal) be members of M* such that in M*:

() a is a “finite set”

(8

)

) |a] > n for every true natural number n

(7) ¢ is a rational (or even real), 0 < ¢; < + for every true natural number n
)

(0) 2¢; < cigrand ¢ <¢jfori<j<o

1) Let ¢ = (¢; : i < d). We define the local bigness notion I' = I'j’3 as follows:
©(Z,b) is T-big if and only if M* = “|{x : x is a member of a, o(z,b)}|/|a| is > ¢;”
for every i < 4.

2) Let I' be the scheme whose instances are I'}%, where a and ¢ = (¢; : i < §) are

a,c’
as above for T*. Let I'™® mean (JI'J.

b2

)
3) We say “the smallness of ¢ is witnessed by ¢;” if the quotient in part (1) is < ¢;.
4) If a, ¢ satisfy () — (§) we say that ¢ is an increasing sequence for a. It is called
O.K. for a if also

(e) |a|l x ¢; > 1 for every i < 4.

We may say that ¢ is O.K. for a or a, ¢ are O.K.
5) We say ¢ is wide if for every i < § and n < w we have ¢;11/¢; > n. We say that
a, ¢ are wide for M* or ¢ wide for a in M*) if clauses (a)) — (4) above and ¢ is wide.

Remark 3.9. On I'MS T being equivalent see 3.10(4).

a,c1’ ™ a,C2

5 we need just some schemes
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Claim 3.10. 1) If for T*,M*,a,¢ are as in definition 3.8 (so clauses (a)) — —(9)
holds), then T' = I'}'s is a uniformly |8|F-simple £-bigness notion (with set of pa-
rameters {a} U¢) hence T is co-simple. If in addition ¢ is O.K. for a then T is not
trivial. If ¢ is not O.K. then T is trivial.

2) Suppose T*, M* are as in Definition 3.8, and for £ = 1,2 a*,¢" = (¢!, : a < 6) are
as in Definition 3.8(A) (for T*, M*), and T'* = % e Then I't, T2 are orthogonal.
3) Let D be a filter say on k; the bigness notion Iy, I are orthogonal if cf(0) > Ng
(not k!); also I35, IS are orthogonal if ¢ is wide.

4) If in M*,a,c" = (c! : i < &) is as in Definition 3.8 for £ = 1,2 and (Vi <
61)(35 < da)le} < 3] and (Vj < d2)(Fi < &1)[c; < ¢f] then It =T%e. Hence for
a,ct as above if cf(8) > Ny then for some & wide for a, we have e =Tk
5) T3 is non-trivial (i.e. no algebraic type is I'3-big) if ¢ is wide or just O.K.
for a. B

6) If a,¢ = {(¢; : i < §) is as in Definition 3.8 and cf(6) > Vg or just ww divides &
then (cui: wi < §) is wide.

Proof. 1) Note that M* = “2¢; < ¢;417. So assume ¢(x,b) = ¢1(z,b1) V p2(w,ba)

and g (z,by) is T-small for £ = 1,2. So for £ = 1,2 for some i, < ¢ the formula

e, be) being T-small is witnessed by i, so M* |= [{xéFa : pe(x,be)}| < ¢, X |al.
Hence

M lfatas oo 0| < 3 [{oca pila b))

3.3 2
(3:3) <3 e, % a] < 2emanginin X lal
+1

< Cmax{il,iz}-i-l X |a‘

s0 op(r,b) is [-small as witnessed by max{iy,is} + 1 < &. The other facts are even
easier.

2) This is really a discrete version of Fubini theorem but we shall elaborate. Without
loss of generality & is O.K. for £ =1, 2.

Let Ap, UAp, € A C M* and for ¢ = 1,2 let py(Zr,) be a T'y-big type over
A, pe(zr,) € S¥T(A).

As each Ty is co-simple let q := py(x) U pa(y) U {¢1(y,d) — —p1(z,y,d) : d C
A, 1 (y, Z) witness @1 (x;y,2) is [i-small} U {¢o(z,d) — —pa(y,z,d) : d C A and
a(x, Z) witness ps(y;x, Z) is I'y-small}.

By 1.12(1)(b) it suffice to prove that this set of formulas is finitely satisfiable
in M*, assume not. So we have (increasing the sequences of parameters from
M* noting p,(Zr,) is closed under conjunctions) ¥ (z,d*) € pi(z),V2(y,d") €
p2(y), V1.1(y, d*) — =1 x(w,y,d*) for k < k; from the third term in the union
with smallness witnessed by cl, (see 3.8(3)) and 3 i(z, d*) — —2 1 (y, z,d*) for
k < ko from the fourth term in the union with smallness witnessed by c%k (see
3.8(3)). Note ki, ko are true natural numbers. Choose a(*) < d; such that (Vk <
k1)[ak + k1 < a(x)], and choose B(x) < g such that (Vk < ko2)[Bk + k2 < B(x)]. Let
(recalling ¢ is membership in M*’s sense) Z = {(x,y) : zéa' & yéa® & V1 (x,d*) & 92(y, d*)}.
So Z is (representable) in M* (we do not distinguish).

Let (all is M*’s sense):
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Zy = {(z,9)eZ : (3k < k1) [ x(y,d*) & @1 k(25 y,d)]}

Zy = {(2,y)eZ : (3k < k2)[tho,n(x,d") & 2k (y; 2, d")]}.
So
(a) Z =71 U Zy (by the “assume not” above)
(b) for every y, \Z{y]|/|a1| < c(lx(*) where Z{y] ={z: (z,y)eZ1}.

1 1

[Why? As a union of ky sets, each with < ci(*)#ﬁ x |at] < S X Coa) X lat|

members has < c(ly(*) X |a'| members.]
And similarly

(¢) for every z, |Z£m}|/|a2| < c%(*) where Z%m] ={y: (z,y)eZs}.
There is in M* a set X, such that:

reX = wéa' &0 (x,d*)

(Camyea)lat | +1 2 [X] 2 (cas2) X la'].

There is in M™*’s sense a set Y such that
yeY = yéa® & 9o (y, d*)

(Gr2)|d®| +1 > Y] > (Gaypo)la?].

By the choice of Z clearly X x Y C Z. So in M* (for the fifth line recall ¢ is O.K.,
for the seventh line recall 2¢; < ¢;41)

(3.4)
(Cagrala DGy pola®) < IXIx Y= [X xY[<|ZiN (X xY)[+]Z2N (X xY)
< X |(ehgmlat ) + [Y1(chla®])

< (Ci(*)|a1|)(c%(*)+2|a2\ +1)+ (C}x(*)+2|a1| + 1)(0%(*)|a2|)
< (Ci(*)|a1|)(20§(*)+2|a2|) + (20(11(*)+2|a1|)(C%(*)|a2\)
= (263(*)|a1|)(c[23(*)+2|a2|) + (Cé(*)+2|al‘)(20%(*)|a2‘)
) Ly , < (%Ci(*)+2|a1|)(c%(*)+2|a2|) + (c(ll(*)+2|a1|)(%cé(*)+2|a2|)
= Ca(y 4210 1G5 42la”]
contradiction.
B Let Ty =T% . T2 =T0% = (ci:i<0).

By (4)+(6) below (which does not depend on 3.10(3) ) it suffices to prove the
second case i.e. prove orthogonality assuming (Vn < w)(Vi < §)“n < ¢;11/¢;” (as if
cf(d) > w, letting & = (cux; : wj < d) we have I'}', T3, are equal and ¢ satisfies
the requirement above).

Given A C M* such that bf,a,c; € A (for e < k,j < §), and I'y-big p, =
tp(be, A, M*) (for £ = 1,2), possibly increasing M™* we can find ¢ € M* such that
M* = “c a natural number, n < ¢,2(¢") < logy(civ1/c;)” for every n < w,i < 4,
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and we can find a pseudo-finite set d € M*, such that: M* = “|d| = c&bféd” for
€ < K.

Let Ag = A, Ay = Ap + d and let ply € S(A;, M*) be a T's-big extension of pa.
We shall show now that (without loss of generality ) there are e, € M* (for the

¢ = p(z,2,) € L(T*[A1])) such that M* = “e7, C )@ where n(p) = £g(Zz,) and

(x) p3 = py U{(Vzé"d)[zée}, & p(x,2)] : ¢ = ¢(, 2) € L (T*[Ay])} is T'2-big.
Why (%) holds? As I'}'3 is a local co-simple bigness notion, we can also replace p)
by one formula say J(x,b*), and consider only ¢, ..., ¢, € L(T*[A;]) for some
n < w. We can find ¢ = ¢(z, %) such that for parameters from "(¥)d we get all
the instances of ¢1,..., ¢, by increasing z, hence without loss of generality we
can consider just one ¢ = ¢(z,2,). Let n = n(p) = £g(Z,), then J(M*,b*) has
size > cqlal (for every a < 4, internal sense), it is divided to < |22("(¥)d)| parts
according to the p-type over d, so the largest one (internal sense) is as required (or
find a right e}, in a [§|*-saturated extension of M*) so really (*) holds.

So we can find pfj € S(Ay, M*) extending p3 which is I's-big where As = A3 U
{eg 1 e L(T*[A1])}

Let b, € M* realize pj, b realize a I'1-big p} € S(As + by, M*) extending p; so
clearly [zéd] € py. They are as required (think or see 3.31(3)).
4), 5), 6) Trivial. D3A10

Remark 3.11. You may wonder whether we can weaken the demand on 7', still
demanding that a behave like a finite set. Certainly we can, e.g. by using restriction,
see Definition 1.13. We can do it in a more finely tuned way, we hope to deal with
it elsewhere.

Definition 3.12. 1) Suppose that T*, € are as in 1.1(B), a in €, a is a pseudo finite
set, w a function from a to [0, 1]g such that € = “ > w(x) =17, and ¢ = (¢; : i < 0)

Téa
(6 a limit ordinal) is an increasing sequence for a. For every a’ C a let w(a’) be
>~ a(x), in €’s sense; if confusion may arise we shall write w({z}) for zéa.

We define I' = I'}%§ -, a local bigness notion, by: (z, b) is ['-small if and only if
for some i < 6, ¢ = “iw({xéa : P(z,b)}) < ;7.
2) Assume above that in € we have: a™ = (a),qé(0,1)g. Let g = thgq : at —

[0, 1]g be defined by

w(b) = g1 —q)*\l,
We let T g% = It Wae If @ = co we write Iy 28, we always assume q < 1/2.
3) We say ¢ is O.K. for (a,w) or (a,w,c) is O.K. if for some ¢ < £g(¢) we have
ClF “(Vaéa)w(z) < ¢;”, we normally assume that this holds for ¢ = 0.
4) We say ¢ is wide for (a, w) or (a,w, ¢) is wide if (Vi < £g(¢))(¥n < w)[ci+1/¢; > n].

Remark 3.13. Remember In(1 —z) ~ —z for € (0,1/2), more exactly for the
natural logarithm, |In(1 — z) + z| < 2? for every z € (0, 3). Why? Because by the
Taylor series, In(1 — x) = (a:—l—x;—l—%d—i—...) and %s—l—%—l—... < 3z + 3231+

2 _ 1.3 1,.3_1 1,,3_1 _ .3 1,.2
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Claim 3.14. 1) For T*, M*,a,w,¢ as in Definition 3.12(A), then T =T%2 _ s q

a, 'LU c
uniformly |lg(c )\*—szmple £- bzgness notion (with set of parameters {a} U {w} Uc so
T is co-simple).

2) Suppose T*, M* are as in Definition 3.12(A), and for £ = 1,2 a*, " & = (c%,
a < 6) are as in Definition 3.12(A) (for T*, M*), and I'* = F‘;V[mw@ . Then T,

I'? are orthogonal.
5) Ty™, T% are orthogonal if cf(0) > Ro; Iy - 5 are orthogonal if ¢ is wide or
ww divides 0.

4) If in M*, e = (¢} : i < &) for £ = 1,2 and (Vi < 61)(3j < &2)[c} < ¢3] and
(Vj < 82)(3i < 61)[¢} < cl] then TVF , =T .

5) T & s not trivial (i.e. if p(x ) is Fgﬁ C-bzg then p(z) is not an algebraic type)

if and only if (a,w,¢) is O.K.

6) I'p'% is a special case of Io.e

Proof. Like 3.10 except that in part (2) in the case (a,w,¢) is not O.K we have to
take more care (and this case is not used). 0314

A “dual” notion is

Definition 3.15. Let 7% be as in 1.1(B)% and M* be a model of T*. Let a, ¢;
(¢ < 0, § a limit ordinal) be members of M* such that in M*:

() ais a “finite” set

(7) ¢ is a “rational”, 0 < ¢; < H for every true natural number n

(6

)

(8) la| > n for every true natural number n
)
) ¢

>20¢+1 andi<j:>ci > Cj.

1) Let @ = (¢; : i < §). We define the (-bigness notion I' = '™ as follows: ¢(Z, b)
is I-big if and only if M* = “|{z : = is a member of a,w(m,b)}|/|a| is > ¢;” for
some 7 < 4.

2) Let T'§™* be the scheme whose instances are I'8, where a and ¢ = (¢; : i < 0)
as above for T*. Let ['™S mean J'{™s.

s
3) We shall say “the bigness of ¢ is witnessed by ¢;” if the quotient above is > ¢;.
4) ¢ is decreasing sequence if: clauses (a) — (0) above hold. It is d-O.K. for a if
%<C¢<%f0rn§w. It is wide if ¢;/¢;41 > n for i < 6, n < w.

Claim 3.16. 1) For T*,M*,a,¢ as in Definition 3.15, then T = nggs 1S 4 Uni-
formly |6|*-co-simple (-bigness notion (with set of parameters {a} U ¢) hence is
simple; T' is non-trivial if ¢ is d-O.K..

2) Suppose T*, M* are as in Definition 3.15, and for { = 1,2 a*,&" = (c{ :i < 6) are
as in Definition 3.15 (for T*, M*), and T'* = I‘dms,z. Then T1,T? are orthogonal.
3) F‘gms,FaD" are orthogonal if cf(8) > |Dom(D)] for any filter D.

4) If in M*,e" = (c{ : i < &) for £ = 1,2 and (Vi < 61)(3j < &2)[¢} < ¢}] and
(Vj < 62)(3i < 61)[c; < ] then 1"d“_11b = Fg“;;

5) In Definition 3.15, if cf( ) > Vo or just ww divides § then &@ = (¢, : wi < §) is
wide and ¢, & are like ', in part (4).

6 we need just some schemes
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6) Assume that T*, M* a', & are as in Definition 3.8, Ty = I'"™* ., and (T*, M*), a?, ¢

al Cl )
are as in Definition 3.15 and I's = de32 Then T'1,T'y are orthogonal.

Proof. 1) Note that M* = “c; > 2¢;41”. So assume @(z,b) = @1 (z,b1)Vea(z, b2), 0o, be)
is T-small for £ = 1,2. So for every i < 6, = 1,2 we have M* | “|{zéa :
o(z,b0)} < cip1 x |a|” hence M* = “[{xéa : ¢(x,b)}|/|a] < 2¢i41 < ¢;; as this
holds for each i, clearly ¢(z,b) is I-small. The other parts in the Definition are

even easier.

2) This is really a discrete version of Fubini theorem.

Consider, assuming by realizes p; € S(A, M*) which is des ,-big, ¢ == p1(z) U
p2(y) U {=p1(z,y,d) : d C A, p1(x;bg,d) is T'1-small} U {—\cpz(y,:c,d) :d C A and
©o2(y; by, d) is To-small}.

By 1.12(1) it suffice to prove that this set of formulas is finitely satisfiable in
M*, toward contradiction assume not. So we have (increasing the sequences of
parameters from M* and recalling p; is closed under conjunctions) ¥ (z,d*) €
p1(2),92(y, d*) € p2(y), ~p1.x(z,y,d*) for k < k; from the third term in the union
and ﬁwg’k(y,x,(i*) for k < ko from the fourth term in the union. Note ki, ko
that are true natural numbers. Choose a(*) < &; such that 9;(z,d*) being I';-
big is witnessed by cé(*), and choose B(x) < &y such that 9s(y,d*) being I'y-big
is witnessed by c%(*). Without loss of generality for every a € 91 (M*, J*) M* E
“Ny - wg’k_(y;a,d*)}|/|a2| < c%(*szH” and for every b € VUo(M*,d), M* E “|{z :
o1.k(Y; @, d*)}/lat] < C}y(*)+k1+2”'

Let (recall é is membership in M*’s sense) Z = {(z,y) : zéa’ & yéa? & V1 (z,d*) & 9o (y, d*)}.
So Z is (representable) in M* (we do not distinguish).

Let

Z1 ={(z,y)eZ : (Fk < k1)<p17k(x;y,c{*)}

Zy ={(z,y)eZ : (3k < ka) o (y; 2, d*)}.
So

(a) Z =71 U Zy (by the “assume not” above)
(b) for every y, \Z{y]|/|a1| < c}l(*)ﬁ where Z{y] ={z:(z,y) € Z1}.

[Why? As a union of k; sets each with < ¢!

a(*)+k1+2x|a|< xca()+2x|a\

members has < cié(*)+2 X |a*| members.]
And similarly

(¢) for every z,|Z5"|/|as| < Chs) 1o Where 78 = {y: (x,y) € Z}.
There is in M*’s sense a set X, such that:

reX = zéa' &1 (z,d*)

(Capla'] +1 > [X]| > (ch)lat].

There is in M™*’s sense a set Y such that
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yeY = yéa® & 95y, d*)

(Gla®| + 1> Y] > (c.)la’|-

By the choice of Z clearly X xY C Z.
So in M*

(el (@ la2l) < |X]x [¥]=|X x Y]

|21 (X xY)[+]Z: N (X xY)| < (e, () 2l DY+ [XI(ch (. 4ola®])
ey salat (2 a2 + 1)+ (cL ot + (2, pla?)

(e lat D2 o) + (2ck o) (0 1310%)

ek Ja (o) (e, )|a D265y gala®)
(%03(*)\a1|)(029>|a2|) + (Co *)la (3¢ 0la’])

:cé(*)|a1|c%,(*)|a |

I IA \/\I

AN

contradiction. 3) Let I'; = T8 eecny T2 = Ddms &= (c; 1i < 6).

Let p; = tp(be, A, M*) be T'p-big for £ = 1, 2; without loss of generahty b¥,a,c €
A for € < k,i < §; let Dy be an ultrafilter on s extending D. Now, pos51bly
increasing M* without loss of generality by realizes Avp, ((b7 : € < k), A+ bz, M¥)
so clearly tp(bl, A+ by, M*) is T'y-big. Now assume o(z, b1, d) € tp(ba, A+ by, M*)
hence % =: {e < r : p(z,b,d) € tp(bs, A, M*)} € D, clearly for ¢ € % the
formula (x,be,d) is I'p-big (belonging to tp(ba, A, M*) which is I's-big), so for
€ €U, let ic = min{i : p(z,b?,d) is T5-big as witnessed by ¢;}; it is well defined,
so let i(x) = sup{i. : € € }; now i(x) < § as cf(6) > k > |%], and so easily
¢(x,b1,d) is I'o-big being witnessed by ¢;(,
4),5) Easy.
6) We let Ar, € A C M* and py = tp(be, A, M) is T'p-big for £ = 1,2, without loss
of generality M is \A|+—saturated We can find a ||M*||"-saturated N* such that
M* < N*. We can find (¢3 : n < w) in N* such that: N* |= “c3 <3, <2 for
n < w,a < £g(c?) such that if ¢ € (0, 1)}, M* |= “c < ¢2” for a < Lg(c*) then
N* E “c< 03 7. Now po is Ffl’gféa—big and I‘glzs’@ 1 Fa1,51, and so we can find in N3
elements b}, b} realizing p;, pa respectively such that tp(b], A+ b5, N*) is I .i-big

and tp(by, A+ by, N*) is T'52 zs-big: so b}, by exemplify the desirable result. 316

Definition 3.17. Suppose T, €, a, ¢ are as in Definition 3.15, so is a “finite” and
w is a function from a to [0, 1]g (in €-s sense such that € = > {w(z): z € a} =1).
1) Let I' = T4 = % _ be the following local bigness notion: ¢(z,b) is T-small
if and only if for every i < § we have € = “¢; > X{w(x) : ¢(x,b) &z € a}.

2) We say ¢ is d-O.K. for a,w if and only if for i < fg(¢) and every true natural
number n and by, ..., b, € a we have M* Ew(by) + ... +w(b,) < ¢; < 1/n (this is
retained in any elementary extension of M™*).

3) We define I'y2%, parallely to 3.12(2).

Claim 3.18. The parallel of 3.16 holds for TV,

Proof. Similar to the proof of 3.16. Os.18
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Claim 3.19. 1) Suppose M* = T* and (in M*) we have: (a,c) is increasing
and O.K., A C M* {a}Uc C A, cg/cgra < cgtn (for every 5 for some n = ng,
e.g. n = 3) and p = tp(b, A, M*) is I'3-big, and a = P(a1). Assume further
ACA C M* and B* :=={d : d € acl(4"),d € M” a1, but for no as do we have:
as € acl(A), M* = “déaz &as C ay & (Vo < lg(e))[271%2l > ¢,]”}. If h: B* —
{true, false} then:

() p' =puU{[d e z]fMD) . qc B*} is ['y2-big,
moreover for some b’ realizing p' in some N, M* <¢ N we have

(8) tp(t/, A', N) s 's-big
(7) acly(A+b) Nacly(A’) = acly(A).

2) If in addition logy(1/cg)/logy(1/cay1) < cayo for B < 6 then we can add:

(6) if d € B*, then for no ay do we have: as € acl(A+b") and M* = “déas C
a1 & (Yo < Lg(@))[271921 > ¢,]7.

Proof. 1) The proof of part 2) is similar only slightly harder, so read it.
2) Without loss of generality A = acl(4) and A’ = acl(A4’). It suffices to prove
(a) + (0), meaning:

S

X the following is a I'g'3-big type

¢ (z) = px)U{ldez]f™D) . dec B*}u{~deo(x):dec B* and
o(—) a term with parameters from A such that
p(z) F “o(z) a finite set & 2717@) > ¢5” for every 8 < £g(c)}.

Why is X enough? As then we can get () by the extension property of “I'y'3-

big” types, and to get clause () we replace A’,h by |J A;, |J h; where A >
i<A <A

|T|+|A’| 4+ Ro, f; is an elementary mapping with domain acl(A’) in N where M* <

N, f; | acl(A) = idac(a) for i < X and (fi(acl(A")) \ acl(A) : i < A) are pairwise

disjoint, and A = f;(A’) and h; = ho f; "

Now for simplicity assume Rang(f;) C M*. Now we apply X with A” = U{A; :
i < Ah A = U{h; : i < A} instead A, h, easily the desired conclusion follows; so
indeed it is enough to prove X. (We suppress below parameters from A.)

Let 3 = {o(z) : 0 a term with parameters from A such that M* E “(Vz)[|2~17(®)I
cg & o(x) a finite subset of aq]” for every 8 < ¢}. Note that if oq(z), 02(x) €
and o(z) := o1(z) Uoy(z), in M*’s sense, then o(z) € T as f < § = 2710@I =
2-lon@l . 9=02(®) > ¢p X c519 > 5 when n = ng is as in the assumption (see
3.19(1)). So if the type ¢* is not I';'3-big then for some ¥(z) € p, k < w, B(*) <4,
o(x) € X and distinct do, ...,dp—1 € B*, the (finite) type

>

™M

q = {0(x)} U {[deex]" ) : 0 < k} U {—[deéo(x)] : £ < k}

is I';'2-small, say as witnessed by cg(,) where 3(x) < £g(¢), that is cg(,) is a witness

for the conjunction of ¢ so for some ¥ (zo,...,zr—1) with parameters from A we
have M* |= ¢[do, ...,dr—1] and ¢ state the I';'3-smallness of q by cg(,) i.e.

C
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() € = (Yo, y—1) [ (yo, - yr—1) = [z € a: H2)&(VE < F)lye €
@ {MA) & (VU < k)=de € o(2)}|/a] < cpil-

Without loss of generality

CE (Yo, e )W ue1) = N v Fum& N veéar).

L<m<k L<k

Let f * € € be a maximal family of pairwise disjoint k-tuples satisfying 1, it exists
- see 1.1(B) and without loss of generality f* € A’; let € = “n = |f*]”.
Clearly

M* ': “ (Vyo .. .yk_l)[’l/)(yov, e ,yk_l) — (E'Zo, .. .,Zk_l)
(<20, . .,Zk,1> S f* &{yo, e ,yk,l} N {Zo, .. .,Zkfl} 75 @)]

Hence for some m < k and k(*) < k we have dy(.) € d;,, where for each £ < k we
let dj == {d}: d'éf*} (in M*’s sense). So d, € acl(A) and M* |= “|d*,| = 77, but
as dy(x) € dj, &dy(s) € B*, by the definition of B* we have 27" = 27 l4ul < ¢
for some (%) < 1g(¢). Without loss of generality ~v(x) = B(x) + 1.

Choose () < § such that cg.)/cs)4+2 < Ca(x)-

Let a* := {x € a : J(x)}, so as J(x) is ['}'3-big clearly |a*|/|a] > ¢, for each
. Also by (x) above and the choice of f we have |{(7, ) : gef*, xéa* and (V¢ <
k) [yeea]T40) and (V0 < k)[~deéo(z)]}] < 7 X |a| X cgruy; let us define o’ =:
{wéa : [{gef* : (V€ < k)[yecx]™ ) and (V€ < k)[~deéo(x)]}|/n > caralts by the
previous inequality |a*Na’| < (17X |a] X cg()) /(0 X cax)42) = |a] X (ca)/ca)+2) <
la| X co@e) < 3la*|. Hence |a\ a'| > [a* \ /| > (1/2)|a*].

Now we shall show that a \ o’ C b where

b={wéa: {gef* : ~(V < k)[yeea] Y /i < cpia s}
This holds as if zéa \ @’ then

(4) |({yef* :\(V{)< k) [yeex]T(Md)) and (V0 < k)[~deéo(x)}|/n < CR(x)+2
and
(i) [{gef* : (3¢ < k)[yeeo ()]} /i < |o(x)|/n < (logy(1/cs(x)))/
< logy(1/c(x))/(10ga(1/cy(x))) = 1oga((1/cp(x))/ loga(1/cp(ay41) < Cp(e)t2-

[Why? The first inequality as f is a set of pairwise disjoint k types for the second
inequality recall that 277(*) > ¢4 holds by the choice of ¥ and for the third,
27" < ¢y () was noted above the fourth (equally holds as y(x) = B(x) + 1 and for
the last an assumption of part (2).]

(#ii) 2cp(0)4+2 < Cax)+3-
By the previous paragraph |a \ a’| > (1/2)]a*| hence M* |= “|b] > (1/2)]a*|.
Now for the “random variable” zéa the events (V¢ < k)[d,ex]T"(@) for (d) : £ <

k) e f* each has probability 2% and they are independent and their number is 7,
so the probability that only < cg(,)4+3 x 1 of them occur for z is sufficiently small
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by the law of large numbers, which mean (see e.g [Spe87, pg.29] recall e is the basis
of natural logarithm) that the probability is, for some n < w

< e—2(2*’“h—cB(*)+352/h [ 2= (2k+2)n]
- (2k+3) )
< 2 2
< 2_2—(2k+3)‘d* |
(2 \d*|)2 (2k+3)
9—(2k+3)
< (C’Y(*)) < Cry(x)+n

(last inequality as for every v < fg(¢) for some n we have ¢, < (cv(*))r(zﬂs)

hence ¢, < ¢yqn X Cyyn so for some n depending on k and ~(x), we are O.K.). So
b] < |a| x prob(z & b) < |a| X Cy(x)y+n < T X Cy(x)tnt2 X |a] < § X |a*].
Together we get a contradiction. Os.19

We could have said something on f*

Observation 3.20. Assume M* = T* AC A CM <€ neA=acld),k <
w, for £ < k we have dy € A’, a1 € A and M* | “ay is finite, deéar” and
M* = “n a natural number > 07 and for every az € A and { < k we have
¢ | “deas C a1 — |ag] > n”. Then we can find f € € such that for every
©(Z) € tp({do, . .. ,dr—1), A, €) we have:

(x) € “f is a set of n pairwise disjoint k-tuples from a1, each satisfying
e(z)”.
Proof. The properties of f can be represented as realizing a k-type, so as tp({do, . ..,dk-1), A, €)
is closed under finite conjunction, it is enough to find f € € satisfying (%), for one

given ¢(Z) € tp({do, . .;,dk,1>, A, Q).

In € there is a set f* which is (in @’s sense) a maximal set of pairwise disjoint
k-types C a; satisfying ¢(z). As T* has Skolem functions without loss of generality
fre acl(A) = A. If € & \f*| > i, we are done, so assume not; by f*’s maximality
¢ = “some dy appear in one of the k-types from f*, say as the £(x)-th member of
this sequence”, so d, satisfies dy € flf(*) = {y : y is the £(x)-th member of some
k-type from f*}, but fg‘(*) € acl(A) = A, “|fg‘(*)| = |f*| < n”, contradicting an
assumption. (s3.00

Claim 3.21. Suppose A C €, ¢ U {a*,w'} C A = acl(A), pr = tp(be, A,€) €
S(A,€) is VM., . -big, for £ =1, 2,4t constant, A% = acl(A + by), B* = {d € A%:
d € Ma' but for every azinA such that d € as we have (3a)(271% < ¢l)} and
h: B* — {true, false}.

Then we can find b’y such that:

(a) b} realizes py

(8) acl(A+ b)) Nacl(A+ by) = acl(A)(= A)

(7) tp(bi, A+ bo) s T30 o -big

(6) tp(ba, A+by) is I'p2" 02 -big

(€) ford € B*, ¢ = [déb) )M

(€) every d € B* is still “large” over acl(A+b) (as in the definition of B*).
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Remark 3.22. Note that the extra constraints in clause (¢) are on b} only. If
|[Dom(h)| = 1 simpler better bound suffice, otherwise we use A-system. This claim
is used in fourth case Stage D proof of 5.2 below. Even if we would have failed, in
5.2, stage D, we can use the weak diamond argument.

Proof. We can repeat proof of 3.10(2) + 3.19. By “the local character of the
demand” (really a variant of 1.12) we can replace (€) by

(¥) (V€ < k)[dy € b))% for some k < w and dy, ...,dx_1 € B*.
03.21

Definition 3.23. For M*,a,¢ as in Definition 3.8 and x we define I' = T';'3" as
follows. We let Zr = (z; : i < k), and p(Zr) is I-big if and only if for any finite
q C p and finite w C & such that [z; appears in ¢ = i € w| we have

M* = “f(di i€ w): M = Nal(di i € w)& N\ di € a}|/|a]™! > ¢o”

1€Ew
for each a < £g(c).

Remark 3.24. We can develop this (as in [She83b]) and used it in the stage D of
the proof of 5.2. Also we can define a parallel of I'j,q from Definition 3.4 for .

Claim 3.25. Assume a € € is pseudo finite such that |a| > n for n < w and €

satisfies: p € (0,1)r, ¢ = (¢; : ¢ < 6),¢; € (0,1)r, A 2¢; < ¢j, and let vy : P(a) —
i<y

[0,1) be as in Def. 3.12(2).

1) Then P (a),wp,C satisfy the requirements in Definition 3.12(1) on a, W, €.
The bigness notion ng,gé is non-trivial if for each n < w we have ql“l < 1/n and
(1 —q)l*l < ¢ for some a < 1g(¢), equivalently for every n < w,In(1/q) > n/|a|
and In(1/(1 —q)) > In(1)ca)/|al.

2) If the type p is 'y p&-big, then for no i < lg(¢) and b do we have, € |= “b C

a, |b| <log(l—c¢;)/log(1—p)” and zNb+# 0" € p.

8) If the type p is Iy p%-big and \/ p < ¢; then for no d € € do we have,
i<lg(e)

qd € z]” € p.

Proof. 1) Check.

2) As |b] < 11?1((111(;)) and as In(1 — p) < 0 clearly |b|In(1 — p) > In(1 — ¢;) hence

In((1 - p)P) > In(1 — ¢;) hence (1 — p)P! > (1 —¢;). So clearly wp({z € P(a) :

rNb=0}) = (1-p)tl >1—¢ hence wp,({r € P(a):xNb#0}) =1—1ip,({z €

P(a):xNb=0}) <c¢;, hence “[zNb#0]” € p gives easy contradiction.

3) Because if p < ¢; then 1 — ¢;13 > 1 — q hence In(1 — ¢;43) > In(1 — q) hence as

In(1—q) is negative |[{d}| = 1 < log(1—¢;+3)/log(1—p) and apply part (2). Us.25

Claim 3.26. 1) Assume p, a type over A C €, is T’ 0%-big and a,p (hence wyp), ¢

as in 3.12(2), {a,ptUc C A = acl(A). Suppose & is wide for a and e* € a
and tp(e*, A) is T™3 )y~big where ¢y > In(co)/(la| x In(1 — p)) and assume

a,(c}:i<lg(c’
i <1g(€) = In(1/¢;) < ciy1/ci- Then p(axU{e*}) U{=(e* € )} is Iy p&-big.
2) If A =acl(A),{a,p,d*,e*} € A,c',c® C A, tp(d*, A) is Fflvrsgal—big and tp(e*, A)

is %2 -big and (x) below holds then we can find d’, €' such that:



Paper Sh:482, version 2021-09-10. See https://shelah.logic.at/papers/482/ for possible updates.

32 SAHARON SHELAH
(o) tp(e/, A+ d') is I3, -big extending tp(e”, A)
(B) ¢ ed
(7) tp(d \ {e'}, A+e) is T0%, -big

(&) tp(d', A+ ¢€') nicely extend tp(d*, A)
provided that
(¥) (i) & = {cf:i<d* are asin Definition 3.12 (in particularly, O.K. and
wide) for P(a) (if £ =1) or fora (if ¢ =2)7
(#5) p€(0,D)r, and “p < 1/n” for each real natural number n

(ii7) el” §p*xcj, xlal %cjll for every j1 < 81, jo < 02° (or at least for

some (j1,j2) (by the monotonicity) hence we can omit the )
(iv) ¢ <pxciy
Proof. 1) Without loss of generality p € S(A,€). As I'; D% is co-simple, p closed

under finite conjunctions, clearly if the conclusion fails then for some i < lg(¢) and
©(Z) € p (suppressing parameters from A) we have:

(%) ez U{e*}) U{~(e* € x)} is 'y ph-small as witnessed by c¢;.

Similarly there is ¢(y) € tp(e*, A) (suppressing parameters from A) such that for
every e € ¥(€), we have e € a and ¢(z U {e}) U {~(e € 2)} is I'y p%-small as
witnessed by ¢;.

Let bt =: {x € P(a) : p(x)} (in €), and so as () € p clearly

(x)o wp(b') > ¢; for every j < lg().
Let b =: {y € a : ¥(y)} (in €), now there is b* such that € = "3 C b? & |b?] ~

lnl(r{fp) " (possible by the assumption on e* as ¢; > ¢ > In(co)/(|a| x In(1 — p)) >
In(c;)/(Ja] x In(1 — p))); pedantically we should say l(nclq) < ¥ < lnl(riilq) +1

and complicate the computations a little (in ((x);). Note (as In(1 — p) ~ —p and
0 < q < 1/2), that (ﬁ) X ﬁ is in the interval (3,2), and as In(1/¢;) < ci41/¢;
holds by an assumption we have

()1 (T3 )|b3| < (+% ) X ml(riclq) - ((1Sq))xln(ziq) xIn(1/¢;) <2 x1In(1/¢;) <
2 X (CH_l/C,) = (2014_1/01) < :2

Now in €, by the choice of W, and of bs we have:

()2 wp({z Ca:znb®=0}) = (1 —p)P’l = ellslxnCi-a) < ¢,
and for every e € b3 ( as e € b? i.e. |=1[e] and the choice of 1))
(%)3 wp({z\{e} :x €b', e€x}) <g¢
and by the choice of W, we have

(%) wp({z:z €b and e € z}) = (1pp)wp({x \ {e} :z € b and e € z})

"This is an over-kill but suffice
8if 61 = 2 then the situation is simpler; e! is the bases of natural logarithm
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hence (use logic, logic, ()4, (*)2+ ()3, (x)1, requirement on ¢ and (x)q respectively):

*)5 Wp(b') = wp({z:z e b and zNH =PI U z:xeb and e € z}) <
p p ),
ec
wp({z :z € bl and 2Nt = 0}) + Y wp({z : 2 € b and e € 2}) =
echb3

wp({z : x € b and 2 N3 = 0}) + > (%)u’;p({x \ {e} : € b! and
echd
e e .’[}) <c + ‘b?" X % X <+ cipa <cips < wp(bl)

Contradiction.
2) Let w be constantly |71t| on a.
Note that we can ignore the “nicely”, i.e. clause (§) (Why? As then we let

A= (|T| 4+ |A] + Xg)™, and by induction on ¢ < A we choose d¢ such that:

(a) pc =tp(de, AU{de : € < (}) is I‘X?il-big increasing with ¢

(b) p¢ nicely extend tp(d*, A)

(c) e* edc
(d) th(de \ {e°}, AU {de € < C} + %) is T, big
(e) tp(e*, A+ {de : £ < (}) is ™5, -big.

a,c?

If we succeed then for some (,tp(d¢, A + €*) nicely extend tp(d*, A) and we are
done. For each ¢ we can choose p¢ satisfying (a) + (b) as FZVVIE% is nice, and then
d¢ by the claim (without the “nicely”).

Let p1 = tp(d*, A),ps = tp(e*, A); as the bigness notions are uniformly oo-
simple, if the conclusion fail then by 1.12(2) we can find i, < 1g(c), pe(x) € py
for £ = 1,2 (suppressing parameters from A) such that in € ¢1(z1) — 21 €
P(a),p2(x2) = 2 € a and:

(*)o w1(21) & pa(w2) & a9 € 21 — 1(21 \ {22}, 72) V h2(22, 1)

where for every e € a the formula (21 \ {e}, e) is small for Fjﬁil as witnessed
1

by ¢; , and for every d € q(a) the formula v (z2,d) is small for I'7% as witnessed
by 0122 (and we suppress parameters from A).

Let jo > ip + 5 (and j; < d¢), and the pair (ji, j2) is as in (x) (i) from 3.26(2)
and trivially cfz < ?%2q X cﬁl.

Choose non-empty b; C {x € Z(a) : p1(z)} (in €) such that:

()11 ¢, <tbp(br), and d € by = p(by \ {d}) <}

[Why by exists? Choose by C {z € P(a) : pi(x)} such that ¢ < 1p(b1), now
there is at least one: {z € Z(a) : p1(x)}, and 0 fails this, and d € by = |by/{d}| <
|b1] & g (b1 /{d}) < q(b1) hence there is such b; of minimal cardinality and it is
as required).

Similarly choose by C {y € a : v2(y)} in €, such that:

()12 c?z < i(be) and e € by = w(b) \ {e}) < 6?2
So (as d € by = -q({d}) < ¢}, e € by = w({e}) < ) easily

()1, c}l < g (b1) < 2¢j, and c?z <b(be) < 20?2 and recall |ba|/|a| = w(bz).
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Now in € by the definition of 1y, we have
(1)2 p({d € P(a) : i(dNbo) < (p/2)|bsl/]a]}) < e~ 3®/Dbal < ¢~ 5P" X, x]al

[Why? the second equality (i.e. the left side) is just noting c5, < w(by) =

>~ w(e) = |ba] x (1/|a|). For the first inequality, Wy of the set is just the proba-
e€by

bility of d satisfying |d N ba|/|a| = w(d N b)) < (p/2)|b2|/|al, where d is gotten by
throwing a coin for each e € a to decide whether e € d with the probability of yes

being p; so the e € a \ by are irrelevant and we apply the law of large numbers see
e.g. [Spe87, p.29].]
For every e € by (as x¢ € by = pp(x¢) and by the choice of i; and ;)

(x)3 wp({z\{e}:w €brecz e\ {e},e)}) <cj
and by the choice of W, we have

(¥)a wp({x : € by and e € z and Y1 (z \ {e},e)}) = %wpd({x \{e}:z €
b, e€x, Yi(z\{e}.e)})

By the choice of 15, for every d € by
(+)s w({y € a:a(y;d)}) < cf,.

Let by = {d € P(a) : w(dNbe) = |dNbe|/|a| < (p/2) X |b2|/|a|}. Note that by (x)2
and (4i7) of (x)

(*)6 wp(bik) < %C;l
Now (in €) on the one hand:

D1 Z{IUp(d) X w(e) :dE€by, e€by, €€ d} >

S (S{uip(d) x w(e) : e € by, e € d}) =

deby\by

> wp(d) xw(dNbg) = > wp(d) x ((p/2)|b2l/]al) =
debi\b} deby\by
(P/2) x ¢, x> p(d) = (p/2) x €3, x [tp(br) — wp(b])] >

deby\b}

(p/2) x ¢, x [urp(b1) = §cj,] >

(p/2) x &, x [}, — 3¢} ] >

(p/2) X C?g X %C}l = ip X le'l X 052'
But on the other hand

B E{wp(d) xw(e):d e by, e€by, ecd} <
S{wp(d) x w(e) :d € by, e € by, e €dand ¢1(d\ {e},e)}+

S{tip(d) x 1w(e) 1 d € by, e € by, e € d and ¥(e,d)}
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= > d(e) xwp({d:deby, ecdand yy(d\{e} e)})

e€by
+ > wp(d) x w({e:e€by, e cdand (e, d)}) <
deby
> w(e) x 25 x iy ({d\ {e} 1 d € by, e € dand ¢1(d\ {e}, e)})
ec€by
+ 3 ap(d) x ¢, <
deb;
5 g w(e) x ¢f +p(b1) x ¢, =
e€by
% xcf x> a(e) + ¢ X p(b) = % X ¢f, X (bg) + 2, x p(by)

e€by
1 p 2 1 2 _ 1 1 2 ;1.1 2 _
<o, X(TP5 X2Xcj, ) +cj, X2X 65, < g XPXCj X2XCf, +5 XCj, XPXcj, =

IxXpxc xa.
Now (@)1 + (®)2 gives contradiction. Os.96
Remark 3.27. If in 3.26 we agree to have §' = 62, we can weaken (iii) of ()

demanding jo < ji.

Claim 3.28. Assume a € € is pseudo finite and infinite, if € | “c € (0,1)g and
% <c< %” forn < w and 6,91, 02 are limit ordinals then

1) If n x In(|a])/|a|] < ¢ for n < w then we can find p,¢ = {(¢; : i < J§) and
¢ ={c 1<) such that:

(x) a,p,¢ ¢ are as in 8.26(1), 1g(¢) = 6 = lg(c'), p = ¢ = co.

2) We can find p,c',c as in (x) of 3.26(2), and &', & wide, 1g(c*) = 5, and
p,cll,c? > c.

3) In part (2), moreover if 6 = w = 83, we can choose (in €) any p € ("v/c,1/n),
for every n < w, and choose (for each n) 2, = 8 x c x p~™ 72 and ¢} = = x

el=xPxlal yhen @ E “d>n&de N’ d small enough, and cl, = */c}.

1
3

Proof. By compactness without loss of generality § = 61 = 6o = w.

1) In €, first choose p = ¢; recall that the function z In(1/x) is strictly increasing for
x € (0,1/e!) (as the derivative is —(In 2) — 1 which is positive), has values in (0,1/e)
and ili%(x In(1/z)) = 0; the same is true for /z except having values in (0, /1/e!).

Choose by induction on n: ¢y = p, chy1 = /Cn; clearly (Vm < w)le, < 1/m]
and 2¢, < c¢py1 and even m < w = m X ¢, < ¢p41 (by induction on n), also
co =p >m/lal for m < w.

Also

(*)1 In(1/¢p) < eng1/cn-
[Why? As this means ¢, In(1/c,) < ¢uq1, but z € (0,1073) = zIn(1/z) < /x as
vx — xzln(l/z) is increasing in this domain and 0 = lirré)(\/f — xln(1/x)), so it
r—
holds.]
Let

(#)2 o =t In(co)/(la| x In(1 — p))
(x)5 (Vm < w)[06 > ﬂ]

la]
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[Why? As (Vm < w)[In(cp)/In(l — p) > m] because (Incg)/In(l — p) ~ = x
In(1/co) = LIn(1/c) > m x 1 = m].

Lastly

1
P

(¥)a (Vn < w)e < 1/n].

[Why? Clearly ¢, = In(co)/(|a| x In(1 — p)) ~ % X ln( )/la| so the requirement

mean ,m, < \a|/m for m < w. Now ¢ = p and by assumption n x In(|a|)/|a| < ¢

which mean 2 < 1 x 1n|(|a|) hence 1 lnf =1ml)<(Ix 1n‘(“1(‘1‘)) X ln(ln(Tal) x1)<

L x 1n|((\11‘1\) X 1n(|a|) 7' as requlred.]
We have finished as there is no problem to define ¢, for n € [1,w) by induction
on n as before e.g. as {/cl.

2) Note that e!=**1el is decreasing with z, and
(Va:)(/\a: > @/\e““lal < l)
. |al A n

First choose p € (0, 1)r such that

1
Nle<p"&p < -]
n

n

(so clause (i7) of (x) of 3.26(2) holds). Second choose ¢2, = 8x cxp~ ™2 (so clause
(iv) of (x) of 3.26(2)) hold and &2 = (c2 : n < w) is wide and O.K. which give half
of (i) of (*) of 3.26(2)).

Third choose ¢} such that

n 1
n<w= < ¢ —
(Z(a)] ~°
and
1
/\ [e—§P2XCiXIaI < 56(1)]
n
equivalently

/\ [e_CXpﬂLX‘a‘ < %c(l)].

n

For this to be possible we need A[e! =P "*lal < 1 /n] equivalently A [e!=8*P"xlal <
n n
lal

e!l~"] hence equivalently /\[80 xp "> ‘a‘] ie. /\[ X ¢ > p™.], now as % X ¢ >

1,1 > p this holds.] ThlS guarantee clause (i4i) of (x) of 3.26(2) if we shall have
c(l) <cl forn < w.

Lastly choose e.g. ¢k \/> so clearly &' = (¢l : n < w) is wide and O.K. which
give the second fall of ( ) of (*) of 3.26(2).
3) We are left with proving the “moreover”.



Paper Sh:482, version 2021-09-10. See https://shelah.logic.at/papers/482/ for possible updates.

COMPACTNESS OF THE QUANTIFIER ON “COMPLETE EMBEDDING OF BA’S” SH48237
As as /n\[ﬁ < e < 2], clearly /L\ /¢ < L so there is p satisfying /L\p € [¥/e, 1],
m m
so Ale < " &p < 1] as required in the proof of part (2).
n
Now we continue as in part (2).
Now check the requirement in (x) of 3.26(2). 0308

The claim we shall mostly use in this context is

Claim 3.29. Assume that

(a) Cisasin 1.1(2)
(b) a is pseudo finite (in € so |a| > n forn < w of course)
(¢) 61, 02 limit ordinals

)

(d) €= Ta <€ < L for every true natural number n.

Then we can find p, ', c such that:

(A) the triple (a,p,e') and the pair (a,c?) are is as in 8.12 (so as in ()(i) of
3.26(2))

(B) if {p,c},c',c® C A = acl(A) and tp(d*, A) is T"""% -big and tp(e*, A) is

I'7%,-big then we can find d', e’ (€ € of course) ;ﬂzﬁlthat
(i) tp(e’, A+ d') is I3z -big extending tp(e*, A)

(i1) ¢ e d

(71) tp(d'\ {e'}, A+¢€) is Fgﬁiél—big

(iv) tp(d', A+ €') nicely extend tp(d*, A)

(C) n/lal <p<ch<1l/n forn<w
(D) ¢ <.

Proof. By compactness without loss of generality §; = do = w. Work in €. First,
we find a non-standard integer n small enough, i.e.

(#)1 €F “n<n&2™ <cxlal|” for n < w.

We let p = 1/n,¢? = p~'2"/|a| and lastly ¢} = (Inn)!/n. Now clauses (A), (C),
(D) are immediate. For clause (B) we have to check the demand (%) in 3.26(2).
There clause (i) holds by clause (A), clause (ii) holds by clause (C). Clause (iv)
holds by the choice of ¢? and as for clause (iii) for i, j < w we have

1

1.2 2 _1_2—jon _on/2 1
e sP X xlal — o=xP T2 < 72" <1 /90 < Z¢l < 2l

B C

1
2
03.29

Definition 3.30. Let T be a complete first order theory, p = p(Z) a type definition
(see 0.2(8), say with parameters in A C M*, see more in [Shed]. Then we let
' =T" be the following bigness notion: if A C M,a C M then: ¢(Z,a) is I'-big iff
p(z,a) € p™.
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Claim 3.31. 1) For T, p, M* as in Definition 3.30, T'* is a £-bigness notion.

2) For T* as in 1.1(2), if T is an instance of ™ or TY™ or any T’ such that
for some a € Ar, a pseudo finite set and every I'-big p € S(Ar, M™*) we have
[z; € a] € p (for i <l1g(Zr)), p is a type definition not increasing “finite” sets (for
ezample T, see [Shed, 2.11=L2.6]) then T L I'’.

3) Assume py has a unique extension in S(A', M*) which is necessarily Ts-big so
FlLFQ m.‘

(a)e T1, T2 are bigness notions,

(b)e pe(z’) € S (A, M*) is Ty-big (for £ =1,2),

(¢) thereisd € A, M* |= “d finite”, [z* C d] € p1, and for every o(z',z?) with
parameters from A from some e, € A we have (Vz')[z' Cd — z! € e, =
oz, 2Y)] € p2 and A C A" C AUd(M*) where d(M*) = {c € M* : M* |=
“Céd”},

Proof. Straightforward. U331

Definition 3.32. We say that a bigness notion I' for models of T™* is orthogonal
to pseudo finite if: for any I'-big p(Z) and pseudo finite d € €, there is an extension
q(z) of p(Z) which is T-big and satisfies clause (c) of 3.31(2).

Claim 3.33. (For T* as in 1.1(B)). If T'1,T's are bigness notion, T'1 LTy if:

(a) Ty is orthogonal to pseudo finite

(b) if T'(z) is T2-big in M* D Ar, then for some sequence {(d; : i < 1g(z)) of
pseudo finite sets we have P(Zr,)U{x; € d; : i <lg(Zr)} is ['y-big (we say:
pseudo finitary).

The following generalizes I'™?.

Definition 3.34. Let T* be as in 1.1(B) and M* be a model of T*. Let a,d, ¢;(i <
J,9 is limit ordinal) be members of M* such that (in M™*):

(a) ais a set

(b) d is a distance function on a in the sense of M*, i.e. for by, by, b3é¢M a we
have

e d(by,by) is a non-negative real which is positive if and only if by # ba,

o d(by,by) = d(bo, by),
e d(by,b3) < d(b1,b2) + d(ba,b3)
(¢) ¢; a positive real
(d) 2¢; <ciprandi<j=c¢ <cj
(e) fpr every i < 0 and n there are bg,...,b,_1¢a such that £ < k < n =
d(be,br) > ¢;.
Let ¢ = (¢; : i < ). We define the ¢-bigness notion FZTZLE (mt for metric) as
follows: @(z,b) is I-big if and only if in M* there are n members of a satisfying
©(—, b) pairwise of distance > ¢;, that is:
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@(x,0) A /\ d(xg,xm) > N\ /\ xpéal
1 <m /=1

=

V=V hyn = G, 2n)]
¢

for every i < d,n < w. Let I'™ be the corresponding bigness scheme for T*. We

may omit a if it is defined as {z : (Jy)[d(z,y) well defined}; we may write “dis”
instead of d.

Claim 3.35. Assume T*,M*,a,d,c¢ = (ci i< d) are as in 3.34.
1) I‘anj . s an invariant L-bigness notion, co-simple, Ni-presentable and orthogonal

to every invariant T in particular to T™,TV™ (and to T™® T of course).
2) Suppose AC BC €, AC A" C M*, M* a k-saturated model of T*. We can find
elementary mappings £, (for n < w) such that:

(1) Dom(f,) = B,f, | A=1ida
(i3) if T = Fg‘g . for some a, d,c from A and b € B, tp(b, acl(A), M*) is T'-big

then for any n < w,tp(f,(b), AU |J A¢, €) is T'-big.
L#n

Remark 3.36. 1) Compare with 5.8-5.11 below.
2) In 3.35(2) we can replace w by any T

Proof. 1) Left to the reader e.g. use 2.3(2) (note: if tp(d, A) is F;“El large then for
every A we can find d,, such that each d, realizes tp(a, A), N*) (for o« < \) and N*
such that M* < N* and a < 8 < A& i <1g(¢) = N* | “d(dq,dg) > ¢; Adéa”.

2) For one T',b this should be clear by the definition of F;"f-i - Generally use
compactness; in more detail assume to show that it is enough to prove, for any

n < w that if

()1 for £ < m, ap,dg, ¢ are from A and as in Definition 3.34, b, € B and
tp(be, A) is F:Zt,de,al big clearly
(%)2 it is enough to prove
e for every m, m(x) and find elementary mapping f,, for n < w such that
Dom(f,) = B,f,[A = id4 and for each ¢ < m, and n; < ns < w and
i < 1g(&) we have dy(f,, (be), £, (b2)) > cr.i.
So assume that

e from ()9 fail, so for some m, m(x) and ¢ we have (supervising param-
eters from A)

(*)3 (a) M ':w[b()w"?bm*l]
(b) M* ': (Hy&k, .. .)¢<m,k<n(*)(on, c ,xm_l)[d)(zo, R ,JL‘m_l) —

VoV de(me,yer) < ce,-
£<m k<n(x)

Hence (as we are dealing with models of T*)

()2 we can find by o € dcl(A) for £ < m, k < n(x) such that

M* | (Yo, .. Zm-1) (@0, .. xmo1) =\ ) delz, yber) < o]

£<m k<n(x)
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Substituting by for z; we get that for some £ < m,k < m(x)M* “dg(b,',bm) <
¢eq,”, hence clearly tp(be, A, M*) - d¢(x,br ) < ¢i,, a contradiction to the as-
sumption “tp(bg, A, M*) is " -big”. O3 35

ag,dg,Ce

Trivial but useful in the proof of 5.6 is:

Observation 3.37. Let M be a model of T* from 1.1(B). Let A = acl(A) C
M, M| A=< M,e € M,{a,d} URang(c) C A. Now tp(e, A, M) is F;nzié—big
if and only if for every ¢’ € A,i <lg(¢) we have M F “¢’ € a — d(e,e) > ¢;”.

Proof. Easy as in the proof of 3.35(2) (see more in 5.8-5.13). Os3.37

Definition 3.38. Let T* be as in 1.1(B) and € = “a an infinite set”.
1) We define a local bigness notion scheme I's:

e ¢(x,b) is Tts-hig iff € = “{z Ca: p(z,b)} is not a null subset of F(a)”.

[Note: € “think” itself a model of set theory, hence for A C Z?(a) we can define its
outer Lebesgue measure identifying #2(a) with “2.]
2) We define a local bigness notion scheme I'M by:

o o(z,b) is T'rfbig if € |= “{xéa : p(z,b)} is infinite”.

Claim 3.39. Assume € |= “a,ay are infinite, ag is finite”.

1) TS s q simple invariant (-bigness notion.

2) T4 is orthogonal to T and to T}, . if (ag,w,¢) are as in Definition 3.12.
8) T s an invariant (-bigness notion, uniformly Ny-simple (hence co-simple)
orthogonal to any invariant local and even global bigness notion.

Proof. 1) Easy.

2) Use Fubini theorem.
3) Easy. U339
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§ 4. GENERAL CONSTRUCTION FOR T’

In this section we think on building B, a model of T' of cardinality A by in-
duction on a < AT representing 9B, as the increasing union of Af (j < A) and
having special a§* C Af, |, we better demand A is regular uncountable. On the one
hand constructing B,1 we do it by approximations which are types over B, of
cardinality < A, restricting ourselves to appropriate 2*-big types. On the other
hand for 8 < a we demand that for “many” 1, Af C A% and tp(df,Af‘,%a) is a
I'¢-big type. To be able to carry this we need the orthogonality of the ’s with
the I’s. We look at (A$ : j < ) as increasing vertically and at (B, : o < AT) as
increasing horizontally.

Context 4.1. 1) T a complete first order theory (usually as in 1.1(B)), € a monster
for T.

2) X a regular cardinal > |T'| (and x > A).

3) Yhor (hor -short for horizontal) is a set of < AT global-bigness notions and
schemes of g-bigness notions for 7" such that I'* € Yy, or I'™* € Yy, and if
such scheme has k parameters then \* < AT (or we do not use all instances of the
scheme).

4) YV (ver - short for vertical) is a set of g-bigness notions and schemes of g-
bigness notions for T such that: if I' € YY" is a scheme with k parameters then
A=A

5) We assume: if N =T, T'; is an instance of Y}, for N, T's is an instance of YV
for N then I'; L T'y (at least for those actually used), in fact nicely orthogonal (used
only in niceness of (D)(7) below, in the present context is not an extra assumption
by 1.18(3),(4)).

6) For a given model N of T, an instance of Yo, for N mean I' € Yy, or ' a case
of a scheme I' € Y}, with parameters from IV, similarly for YV,

7) Let for Y as above I' € ¢l (Y) means I' = (I'; : i < a) for some a < A, each T';
an instance of Y for N, see 1.12- 1.18.

Discussion 4.2. If X is a regular uncountable cardinal S§\‘+ = {0 < AT :cf(0) =
A} € I[\1], see [Shec, 3.4=Lcdl.1] or at least some stationary S C S§+ is in I\,
things are nicer. Assuming there are AT almost disjoint stationary subsets of A (a
very weak assumption, see [She86b] or [Shec, 4.1=Ld4] and Gitik-Shelah [GS97]),
simplifies (can use u$* = {i}) but till now was not really necessary. Then below
S =(Sq:a<At), S, C\is stationary, B < a = |SgN Sa| < A

We shall describe a construction of a model of T of cardinality AT by an in-
creasing continuous sequence (B, : a < AT) of AT approximations: models of T'
of cardinality A, and for « = 8 + 1, B, is constructed in X steps; in step i < A,
we have already constructed a type p$ over some A C Bjg of cardinality < A
(stipulating Bg is empty so A? is empty), and a g-bigness notion, ¢, such that
py is Qf-big and pf, Q) are increasing with ¢. We described the construction by
assigning some persona called contractor to perform various tasks. Each contractor
may play the major role for some a < AT, so it is called “the contractor at o”, but
it is also assigned some i’s for every a. For each a@ < AT a contractor ¢, plays the
major role, in particular chooses a set of permissible sequences (2% : i < \) (see
below) and possibly a linear ordering <{* of i with j < i =<§=<{[ j (in §5 we
choose such sequences, generally this choice has to be closed under limits, has no
maximal member; the default value is the usual order). A simple case of the <}
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(the one, which we already use) is when the contractor {, choose a linear order <,
of A and let <¥=<,[ i). If not said otherwise we allow to add instances of I'"®.
We demand that all the bigness notions are nice: also we can replace <Q§‘ 1<)

by one bigness notion 2¢. We may use games to describe the constructions as in
[She83b], [HLS93], see also [She92, AP] or [She94, AP].

The Context Continued 4.3. We have S = (S; : i < \), a partition of A to
stationary sets, and W = (W, : a < AT) a partition of A\ such that for every
regular 6 < X the set {§ < At : ¢f(6) = 0 and § € W, } is a stationary subset of
AT (actually here we use W, only for a < )). In applications for each o < A*
we assign a “contractor” who can make sure the model 8,11 of T which we shall
construct will have some properties. Let W¢ = {6 € W, : cf(§) = 6}.

Now we start with the formal description.
Preliminaries 4.4. We choose by induction on v < AT, ¢ for i < X such that:

(a) €q = (cf : i < A) is an increasing continuous sequence of subsets of «
() a=Ucf

i<
(©) lefl <A
d) Becr=cl=conp
(e

i

) e =0,acct™ 0eci™, [Ny <cf(a) < A& # {0} = a = sup(cP)].

The Construction Definition 4.5. We define a game © = Og between the portag-
onist and antagonist player, the antagonist choices are divided to the work of various
so called contractors and they are actually independent sub-players. All the other
choices are of the protagonist; the protagonist wins a play when always there is a
legal move. The order of the choices is first by o < AT and then by € < A. During
a play the following are chosen.

For a < A*,B,, and given a and B, toward with choosing B,1 by induction
on € < A, ordinal we choose an ig = iq,, set uf , and for j € ug  a type p§
and a set Af, and (for € and a) Eq Nig, and (<§: j € uf ), ug = (uj : j €
Eoni¢y), EX ni2 ,(T¢, e cie Ef Ni2,) and Qo = Qg :j€ Efni2 ) (and
for some o’s also <§) and (@q,; : ¢ < A) such that:

(A) (a) B, is a model of T with universe A x « (so we stipulate Bg

is an empty model and for notational simplicity ignore the case

[Bat+1 \ Ba| < A; alternatively you may ask that the universe of
B, is 74 < A X o with no serious changes)
(b) B<a=Bg<B, (soB, is <-increasing continuous)
c essentially B,1 \ By = U{aq; : 7 < A}, more exactly as we would
( ) Yy + s ) Yy
like to allow elements appearing @,,; to be equal to a member of

B, and as we may like not to use I''", we demand just

Boi1 =acly, ., (BaU U Ga,i)
i<A
(d) (A$:j <) is an increasing sequence of subsets of B, each of
cardinality < A and J AJO»‘ =B,
J<A
(B) (a) E,is aclub of A
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(F)

) iffecyandie€ E, then E,\ (i+1) C Eg
¢) Eo={i%:e<\},i? =i, s increasing continuous with ¢
0€ E, (soif =0)
a® = (uf : i € Eq),ul aclosed set of ordinals < A with a last element,
min(u) = i, max(ud) < A
b) Ef= U v
i€B,
¢) 1€ Ey,=min(E, \ (i +1)) > max(u)
d) i€ Eqa B E€cy,j€uf then A NBs = A
e)(a) ifie E,,p€c, thenie Eg and ulﬁ is an initial segment of u$*
(B) ifi€ Eq,jeud, Becy,j¢u then j€ By
(7)  <§ is a linear, well ordering of {i:i € jNE}}
increasing with j for j € Ef, i.e. if j; < jp then dom(<$ )
is an initial segment of (dom(<%, ), <%,)
(a) p*=(p§:je€ E7) is an increasing continuous sequence of types over
B, (for a = 0 this means consistent with T')
(b) p§ is a type in the variables {Zqj, : j1 € j N EJ}
(c) p§ is a complete type over A} (in B, )
(d)  (@a,j, : J1 < j) realizes in B, 11 the type p§
(e) Q? a bigness notion, an instance of Yy, with parameters from A?‘ or
at least AS U {Zaj, 11 <§yq1 J}
(f)  the type p§ is big for (Qf :j1 < j) by the order <§
(9) for j1 < jo in EX we have : P | 9 o, is a nice extension of p$
JI<J1
(ie. in Boy1, A5, N acl(Az?‘l U U @ay) = A$,); the niceness
J<J1
require nice orthogonality in 4.1(4)®, but in our present proof
this is automatic
(a) ¢ € Bq is a sequence of length lg(Zre) and tp(cf, AF, Ba) is I'f-big
(for j € EY)
(b) TI'¢ is an instance of clog, (XYV) with parameters from A§
(¢) ifi€ Eqjeu¥,fect, jeu’ then:
(@) 6? is an initial segment of ¢}

(8) if € has no last element then ¢} is the limit of (¢} : 8 < vy € cf)

() F? is a restriction (to initial segment of the variables) of T'}

(note: if j € ud* \ U{uf : B € c'}, the only restriction on ¢} is: € B,); the
easy case is ¢ = ’f , and this is the one used, in the general case we need
to ensure that the limit in clause () exists.
(a) P, is a family of cardinality < X of: types over B, subsets, relations
on |B,| and partial function from |B,| to |B,|; and this family
is increasing with a;, with reasonable closure conditions. E.g. choose
o < (H(x), €, <}), increasing with « of cardinality A with
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A+ 1 C A such that the construction so far belong to it,

including (g : 5 < a), (Eg,EJ“

B < a), p]7Aﬁ <ﬁ A Ff,cf,aﬁ) 1B <a,j€Ep)

(i8, f s B <ae< /\)
(b) in B,y all types over B, from L, of cardinality < A are realized

in %a-i-l
In stage «, the construction is done by induction on € < A. First we decide
(or are given) what is i¢ and then Qf,p$ for j € U{ui : B € ci} by
induction on j, and then we continue adding more elements to what will
be ug and the corresponding I'§, Q¢ and pf (j € i) and lastly choose
i1y Doy s The decisions are dlbtrlbuted among the various contractors,
for j € EF it will be (5" = Ca,js but G will have a say on every j € u?
(and is called “the (major) contractor for («,e€) or the major e-substage
in the stage ), and (§ on all j € EF, in particular ¢§ (which is called
“the (major) contractor for a)”, and written also as (, decide what will
be the family of permissible (2§ : j < 4) for i < A (usually unique, in
particular whether we have <¢’s). Let E2 C A be a thin enough club such
that 0 € ES. For € = 0, i, ¢ is zero and but ¢ = (g is the ¢ such that
o € We. For € alimit ordinal let i = i& be |J i (necessarily it is in E and

£<e

[€ < e= max(ug) < i]) and let ¢ ~be the unique ¢ such that ig' € S¢. For

€ successor it will be a member of ECN (| Es (which is > max(u2_,))
ﬁeca,e—l

as decided in stage € — 1.

Also in stage «, in the induction on € we choose &, . as in (F)(1) increasing

with €, P4 € Pae, U Pae € Pot1, |Pal < A and the construction up
e<
to € belongs to it. Also (essentially) all types in &, . of cardinality < A

over B, U AF will be realized in By41 (as in 4.7(2) below).
the division of the decisions:

(a) for any a < AT the antagonist chooses an index family called “the

horizontal contractor” (2o = (A% : & € X2°%) (or we call (5% a case
of ¢h°r) where X"° has cardinality < At

(b) for any a@ < A*,i® < X the antagonist chooses a non-empty index
family called “the vertical contractor” (7" = ((J% : y € Y5) where

Y e has cardinality < A.

(¢) By bookkeeping for each stage o < AT of the construction, exactly
one of the cases of the vertical contractors (5 horare active as the major
contractors where 8 < a,z € Xbor: for each f/w; (soy < Atz €
X n #,) for some f < A*, in all @ € Wz we have (}% is “the
contractor”: this contractor chooses the (2’s

(d) By bookkeeping for each ()% (so a < AT,y € YY) for every y € yyer
and 8 € (o, A1) we have. for a club of € < X for some j € u?\
{max(u?)} we have: this contractor choose the rs.

(e) some contractor in Y,J¢ choose I'** which belong to Y yer

(f) the antagonist chooses also the &, and the &, ..

See https://shelah.logic.at/papers/482/ for possible updates.
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Theorem 4.6. The protagonist wins the game Oc.
Proof. Note:
(o) for a’s with no <®’s we can carry the construction by the orthogonality of

Thorv xrver

(B) for o’s with the <% not well ordered (case not used) we need stronger
demand on the bigness notion 27" it is simple.

(7) the contractor (& can choose a j; to be in u® though j; belongs some Sg,

§# ¢
Use
Observation 4.7. 1) B* = |J B, is a model of T.
a<At
2) B = AT
Proof. 1) As 9B, is a model of T, <-increasing with .
2) As T € Y}o; and some (, contractor allows it. 47

Discussion 4.8. 1) We can demand only B2 to be quite saturated model, while
for limit ordinal J, 8441 can be any algebraically closed set.
2) We can weaken the demand on Y,,, YV to be sets of A-weak, AT-weak g-bigness
notion respectively, see Definition 2.18.

If we assume that () stated below, then it is enough to demand also on YV
that it is (< A)-weak g-bigness notion

(¥) there is f* € *X such that for @ < AT if f, is the o the function in *X (e.g.
fal(i) = otp(c®)) then fo <g, f* (where 2, is the club filter on ).
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§ 5. PROVING THE COMPACTNESS

Here we prove our main theorem. For suitable expansion €, of S (x*, €), and
k> |7(€)], A = (27)*, there is a kt-saturated model B* of Th(€,) of cardinality
AT (or AT1) in which if by, by are Boolean algebras (or rings) in 98*’s sense, any
complete embedding of bl%* into b?* is one from B*; this gives compactness of
appropriate logics.

Question 5.1. Characterize the first order theories t such that for any 7" (as in 1.1(A)
or as in 1.1(B)) there are models of T in which each automorphism of any instance
of t (interpreted there) is definable (by a first order formula with parameters) hence
is represented.

We carry this here for Boolean rings (in 5.2).

§ 5(A). Explanation of the proof of 5.2:

We shall prove here, in particular the compactness of the logic L(Q")-where
QiSb is quantification over isomorphism of one atomic Boolean ring onto another
atomic Boolean ring (not atomless ones as in [Shed]; [we later in the section deal
with any Boolean algebral. In fact we deal with a more general case which says
something for any case of the independence property, but here we try to explain
the proof for this specific case. Of course we do it in the framework of §4 showing
that for any “positive” set of moves, i.e. a strategy for the antagonist, there is a
strategy for them, i.e. for the protagonist guaranteeing all such isomorphisms are
definable (with parameters). Below we shall survey the proof so we oversimplify in
some points. In particular assume 2" is regular so we could let A = 2%. Let T be a
first order complete theory satisfying |T] < A = (27)*.

We build by induction on a < AT model 9B, of T' of cardinality A such that B,
is <-increasing, continuous in a and B = B+ = U{B, : @ < AT} should serve.
We consider by, by which are definitions by first order formulas with parameters
of atomic Boolean rings in 8. For stationarily many «, we think there will be an
“undesirable” isomorphism f from one atomic Boolean ring b;[B] onto the other,
bo[B] such that (B,,f[Ba) < (B,f) so be[B,] = be%cx is the Boolean ring b, as
interpreted in B,. We cannot list and treat all such possibilities and we do not
know to guess then (note that G.C.H. may fail here), so we try to add few elements
such that the restriction of f to them will suffice to reconstruct f | by[B,]. A first
approximation is to add (a$* : i < 2") with each a®éb; such that for no two disjoint
equivalently distinct atoms by, by of b?"‘ is {1 <27 : by <p, a¥} = {i <27 : by <p,
a$'}, for this use the bigness notion from Definition 3.23. So from f | {a% : i < 2"}
which has fewer possibilities we will be able to reconstruct f | *8,. So consider
B > «a such that B is closed under f, f~'. Now add new a?’ﬁ (for & < k) such that

for every distinct by, by € b2[B ;] we have {i : by <p, a$’} # {i : by <p, a"},
such a sequence exists as suitable types appear in the Yyo.. So if we list the
possible f | {a?"g ;i < K}, together with «, 3 we have essentially listed the possible
£ [ by[B,]! In limit § < AT such that X’ = X\ we can list < A candidates to
f | by[Bs] (those such that for unboundedly many o < §,f [ B, was listed before
0) so fby[Bs] is listed in 4, for a club of such §’s.
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The next stage - assume for simplicity that on § < AT we guess by, ba, f | by[B1].
As in older proofs we add x5 € b1[%B1] and try to omit the type {y € Bs & [f(a) <p,
yliflasei@s] g € b3 [B4]}. Tt is hard to omit types without ¢, so we use the special
types (as in [She78b]) by preserving bigness for vertical bigness notions as explained
below. For x4, we define by induction on j < A, p; € S'(%Bs ;) increasing continuous
in j < A such that “xéby” € p;, and p; is big in the sense that for any pairwise
distinct ag, a1, ...,a, € bi*[B;]\ Bs;, the type p; U {[ap < xs]iflleven] o ¢ < n}
is consistent in By, this is a case of I'"d, For each ¢ < A we would like to choose
a‘g € b3'[Bs] and an infinite J? C B; to which f (a?) belongs, indiscernible over
B;,;U{aj}, and to make it indiscernible over B ; U{al}U{zs}. More generally, we
would like to promise that for 8 > §,{j < A: J? is an indiscernible sequence over
B ; U {a? } (in Bs)} is stationary. To preserve this in limit we promise that this
occurs for je € us, for “almost” all e € S where S C X is stationary, almost means
except a non-stationary set (so it is clear that having A almost disjoint stationary
subsets of A is helpful though not actually used).

However we have outsmarted ourselves: if we add (a$ : ¢ < 2%) as above, this
does not let us fulfill the obligation we have intended to add in order to omit the
type - omitting types by the indiscernibility is a strong commitment. There are
various directions to try to solve the dilemma, our choice is to weaken the demand
on (af : i < 2") - we demand just that:

(%) letting &, be the following equivalence relation on b3'[B,]

hiBEaby = \[b1 < aff = by < af]

i
we demand:

(%) for an unbounded set %5 C A, for every j € % and b € bi* B, j11] \
bi*[B,, ;], the set b/&, is a singleton.

So from f | {a : i < 27} we can reconstruct £ | |J (b3*[Bq,j+1]\bi*[Ba,;]), more
JEUs
exactly £ | {b € bj*(B,) : b/&, a singleton} which includes the mapping above.
Now it is natural to demand on B, that every definable (with parameters) infinite
set has cardinality A, and when it is a subset of bi®[B,] then it has members in
b3 [B,, j11] \ b§*[B,, ;] for every j < A large enough. So if ¢, ¢z € b1[B,] and the
symmetric difference is not (really) finite union of atoms, then we can distinguish
between f(c1), f(c2). From the definition of £ | {b € bi'[B,) : b/&, a singleton
} we can reconstruct the isomorphism f induce on by[B,]/ (truly finite union of
atoms) onto ba[B,]/ (truly finite union of atoms) though if we like to assume just
“f is a complete embedding” we have to use a larger ideal. For our purpose it is
enough to show that f | B, can be reconstructed up to having < A possibilities. So
assume that f1, f; are isomorphisms from b;[B,] onto bs[%B,] inducing the same
isomorphism above and let A =: {b € b3"[B,] : fi(b) # f2(b)}. In the case A is
infinite, and B, is Ni-saturated we get contradiction, how? there is A’ C A infinite
such that for by # be in A’, (£f1(b1),f2(b1), f1(b2), f2(bs)) is with no repetition, so
there is a € by[B,] such that b € A’ = b < a&fy 'fi(b) Na = Op, &fify, *(b) N
a = Op,, and fi(a)Afy(a) is not finite union of atoms). We assume AN = X\ and
cf(0) > N - the latter can be waived. All this is not the end - we have just succeed
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to have for stationarily many § < A* such that Af(9) = X\ cf(§) > Ry and f | by [B;]
being among our guesses and for some j < A for every a € bj*[B;] \ bi*[B; ;] there
is no infinite set indiscernible over B; ; U{a} to which h(a) belongs. We would like
to deduce h(a) € acly,(Bs,; U {a}). If this does not occur we cannot immediately
add x5 and promise to omit a type as above (for possible lack of J g’s) but we can
add such indiscernibles and then have x5 (can do it all in Bs41).

Above we were obscure on which bigness notions we use. Actually these come
from “random enough sets” (like I';3).

So we have accomplished two things. First, for every a < A1, £ | b1[B,]
appear in &+ hence for a club of § < AT of appropriate cofinality 6 (< M),
f | b1[Bs] appear in s (i.e. immediately). Second, for a club of § < AT of
cofinality A, in &5 we have f | BZ’f;, where Bifs is a suitable “large” subset of
bit[B;s] (i.e. have a member below d € by[Bs] if [zéd] is ['PS-big). So then the
pre-killer contractor “acts”. He tries to promise that for stationary many e < A for
some j € ud \ {max(u?)} the sequence ((d,d,) : n < w) is indiscernible over A} and
F? = T4 (50 this will be preserved) where d € b3*[B;], d,, € ba[Bs] and f(d) = dp
(so d € BYY) but do ¢ acly, (A2 + d).

In later stage 3 € €7, cf(3) = 6, we will know f | bi[Bg] (i.e. it belongs to £3),
and so we “promise” that for stationary many e < A for some j € u? the sequence
((dP,d3 :n < w) = ((d*,d%7) : n < w) is indiscernible over Af and e} € bi'[B]
satisfies f(eJ) N d27 > 0p, and a’, € by[B,] satisfies ef Nal = Op,,d?7 <y, a
(this is the old way to kill). So we get that for b € Bz’7i+,f(b) € acly , (A+0)

where A € Py+ N [Br+]<*, s0 £(b) € {f;(b) : i <i(x)}, where

B+ = “f; is a partial function from b2* to by”,

so let £(b) = fiw) (D).
Now as Bif)\ . is large enough, we can show that without loss of generality i(b)

depends just on tp(b, A,B+). Then we show that fi (without loss of generality )
satisfies

(Va,y € Dom(f;))[z # y — fi(z) N fi(y) = Ob,].

Next, we have one such f which will define f | (b; | (—d)) where the formula [zéd]
is I'ps-small (note: as by is a “finite”, it is a Boolean algebra, so —d is legal).

Now for § in which the relevant contractor works, let ¢ = (a : n < w), we get f
as above.

So this translates into: we have a tree whose levels are non-standard integer
n* € B+, with inverse order and we have to show that also such trees have no
undefinable branch. This needs: replacing nice by strictly nice (see 5.6). We succeed
to deal with this thus at last we finish the proof.

Main Lemma 5.2. Let T = T* be as in 1.1(B), A > |T| regular, k > Ro regular
AT > A< and: AR = )\, 0 =Ry. Then in the framework of 4.1 we can get that the
model B =B* =B+ = |J B, satisfies:

a<At
1) B* is a model of T of cardinality ™.
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2) B is k-compact that is every type over B* of cardinality < k is realized, even by
AT elements.
3) There are pseudo finite sets a, € B (for a < A1) increasing by C* such that
for every pseudo finite b € B, for every large enough a,B = ‘b C a,”. Also, if
Y C B and each Y Na, is represented in B* (i.e. for some b € B we have, for
every c € B:

B = “céd” ©ceY&DB | “céay”)

then Y is definable (with parameters, by a first order formula) in B.

4) If (%) below holds and by,bs are atomic Boolean rings in B (so their set of
members is a “set” of B not just a definable subset (with parameters)) then every
isomorphism from by onto by is represented in B; where

(x) for some n(x) < w,kpx)y < Kpy—1 < ... < Ko = X we have (27¢+1) >
ke and cf([w]f’““,g) < At oand N < AT Let k) be k) if € €
{1,...,n(x)} and X\ if £ =0
for example

(xx) 2% regqular, A = (2°)T . kg = A\, k1 = 28 ko =k or A = (2°) T kg = N\, k1 =
(2F)T, ko = 2F k3 = K.

Remark 5.3. 1) From (x) of (4), the demand \f=( < AT is used only in proving
®4 during Stage E. We can weaken it to:

(x) We can find Y; C £y, (4 fori < 9,1 an ideal on  such that: 2¢ < AT, Ti(N) <
At (see [Shec, 3.7=Lcl8]) and (VZ € 2(0) \ I)(3<7a)(3B)(a # B <
0& A [a€Y;=pe€Y;]) and A<? < At (mostly it suffice § = cf(9), A9 =

i€Z
A A? < AT, which means every tree with < A nodes has < A f-branches
(no much harm done if we demand A = A< &k > |T)).

2) Recall from [Shed, 0.12=L2.8A] that f is a complete embedding of the Boolean
ring B; into the Boolean ring B if it is an embedding and maps every maximal
antichain of By to a maximal antichain of Bg; equivalently if a € By \ {0g,} then
there is by € By, b # 0p, such that B; 0 <p, ¢ < b = By Eanf(c) # 0%

3) Recall a Boolean ring is like an ideal of a Boolean algebra.

Proof. Stage A: We use 4.1-4.5 (almost as in 4.6) for T* and Yyop, YV as in 4.1
such that:

(x)p M@, T™¢ TV™ (wide cases only!), I'%,  TPuf (see 3.30 or see [Shed, 2.11=L2.6])
are in Yo, and
(+); Tma,Tids | pwm are n Yver,
Also
(%)2 Pay Pai (Po increasing in a), [Aqi| < A (see 4.5(F)), Pot1 2 U Pasis Pa C
i<\
P (of course &, ; increasing in i); they will be, for some x large enough,
the set of objects definable in (J(x), €, <}) from the construction up to
this point and finitely many members of o U [B,|U (A + 1), (for any o and
i this include pg').
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For this to make sense we have to check the orthogonality condition which holds: we
check each one in XY¥°': for I by 2.3(2), for I''%$, by 2.5(2); for '™, orthogonality:
to I by 2.3(2), to I'™® by 3.35, to I'™™ by 3.14(2), to I'%, by 3.14(3) and to I'Puf
by 3.31; may compare with [Shed, 2.17=L2.8A].

We fix a winning strategy for the protagonist and then we decide various things
for the antagonist in the form of decisions for various contractors. Each such com-
mitment implies that B, (the outcome of a play under the restrictions above)
satisfies more.

This essentially fits in 4.6 but in some cases things are more complicated. One
contractor, (say (the saturator) acts in every stage o < AT but he uses cases of
'@ only (actually we can let it act in stage a only for « successor of successor
ordinals). Another contractor (,, (the branch killer) do not need to add $’s but
acts for every a@ < A" guaranteeing amalgamation of certain kind exist.

The third real deviation from 4.6 is the coder (see Stage D). We should be careful
and show that the demands can be fulfilled.

The fourth deviation is that in the end we have to use a refinement of “niceness”,
from 5.6-5.15.

Stage B: We assign a contractor called the saturator (s, for a € We,,, € AT, he
chooses 2§ = I'™?, and a type p(Z) to be C p§ if possible such that every member
of &, which is a type over B, of cardinality < A is eventually chosen. However
here we also need for every « for every i < A, every type over A?H from P ; of
cardinality < A\ which is consistent with 2B,41, is realized in B,1 (note: there are
just < A many). Moreover, if the type is p(z) € S™(B),B C A?H, and p(z) “say”
ZNacl(B) = 0 he can demand such type to be realized by a sequence disjoint to B,:
using I'"* he can; moreover, for stationarity many i € E, N S, for some j; < jo
successive member of u$* there is such a sequence C A?IH \ A;?‘;'l. This is help for
(1)+(2) of 5.2 in the absence of Skolem functions. We have Skolem functions here
because we use 1.1(B), but if we like to use 1.1(A) and in some continuations we
seem to have to be more careful, for this end we list the cases.

Stage C: We turn to (3) of 5.2 to which we assign two contractors: the end extender
contractor (o, and the branch killer contractor ;. In order to satisfy the first
phrase of (3) of 5.2 we can for o € W¢_, add an element a, = Gy, realizing pu%f“,
i.e. the end extender contractor decides that Q¢ ; is a case of I'"* and Qf = I'P«f
(see 3.31(1) or see [Shed, 2.11]). But for « € W/, =: {a € W, : cf(a) = A, and

a = sup(W¢,, Na)} we demand more:

f.o for every 8>« and b € B we have («) or (3) where:

(@) (Fy € W, ,Na)[bNay ¢ B,] (so ay for every large enough ' € W, Na
or even pseudofinite set a € B, extending a., is o.k. instead of a., i.e.
bNa¢ By, a € B,)

(B) for some b C B, and formula ¢ = 1)(x,b), for every ¢ € B:

B = [céb = (e, b))

However to do this, the branch killer, for « as above (€ Wc’b) at stage o, guarantee:

®5 ,, for some club E = EPr of A, for every i € Se,, N E there is j = j; =

¥ (a, 1) € uf, j < max(u), such that F?H = Ffil,(??H = (2t :p <
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w), &I 08 @y (0415 (€ Ba) for some y(a+1,5) € W, Na, eyt € By
realizes p 2> (we could have used % instead) and (y(a+1,7;) : i € S¢,,NE)
is strictly increasing with limit .

In stage « itself (i.e. defining B, 1), for this the branch killer contractor ¢, chooses
<* (so <¥=<“[ 1) as follows: j; <% jo if and only if both j; and js are < A and
exactly one of the following occurs:

(a) 71 even, jy odd
(b) both even, j; < ja
(¢) both odd, j1 < jo

Further he decrees Qf is: I'Put for j even, instance of I'™® for j odd.

Now to make ®f , and ®3 , true in stage « is straightforward, but preserving
®71 , needs care. In stage a itself we can think we first add (aa; : j < A even ),
then the others. When adding G, use the properties of pyr (see 3.30(2), compare
with [Shed, 2.20(2)]) adding @, 242; no subset of Gq o is added ([Shed, 2.20(2)]) so
it preserves the old ®¢ ,, for o/ € W, N, as for @q 2i+1 we use only I'"™* so it is
like the successor case below.

As for the case « is limit the preservation is automatic; we are left with the
successor case. S0 now suppose we are in stage a and we would like to define
B,+1 etc. and to preserve ® 5 for B € aNW/, . In step € < A from S,,, after
defining @ = i, uf" = ufa and pf,j1 = i) = max(u%), by some bookkeeping
we choose 8 € W/ Ncf, and y € {z¢ : § < ji} or just y = o(T¢,...,7¢ )
for some n < w, term ¢ with parameters in A?a,e and &1,...,&, < j1 (if T has no
Skolem function: just in their algebraic closure, no real difference). We can find, by
®5 5 and B, satisfying clause (E) of 4.5, ordinals i(x) € EP'NSe,, such that letting
Jo = 7(2) := (B, i(x)), the sequence (_:?2 = <C§j(2) : n < w) is indiscernible over A,
which include Af. We extend p§; to a complete type g over acly, (A, U {cPz})
satisfying the required bigness conditions (concerning Q%)e,e < j; recall T is
orthogonal to every instance of YV). Remember: A= Bg and cg’j(2) € Bpgy1
does CPs+1 — extend every pseudo-finite set of B5. Choose appropriate 18,4, ie.
A%, .41 2 dom(g).

First case: ¢ says that y N cg’j ) is not equal to any member of the domain of g or

just dom(g) N V. Using niceness of the bigness demand on ¢ (for (¢ : £ < Jn),
we can extend ¢ to an appropriate complete type over A% ., and by clause (D)(7)

of 4.5 we get the desired contradiction, |J{p$ : ¢ < A} will say y N 1@ g ¢ B,.
So clearly we succeed in guarantying ®f 4.

Second case: ¢ says yﬂcg’j(z) = d for some d € BgNdom(q). As cg’j(z), cg’j@) realize
the same type over Af,, there is an elementary mapping g from acly,, (A?2 U{cg’j ) H
onto aclgy, (Af2 U{cg’j@)}) satisfying g | Ai = the identity, now use g(q) instead of
¢ above, so we know yﬂcg’j(z) € acl%a(Af U {cg’j@}) C B, and as ®] 4 holds for

o and cg @) qoes CBa+1-extends every pseudo-finite member of Bg we are done.
This argument works in both cases (as we use nice types), and “moving by g”
preserved the relevant properties.
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Stage D: We now start dealing with part (4), but meanwhile, more generally we deal
with complete embedding of a pseudo-finite Boolean Algebra into a Boolean ring
(both represented in the model); the more restricted case from part (4) of 5.2 will use
this. We assign a contractor, the coder (.q, to try to code a complete embedding of
one “finite” Boolean ring (hence algebra) by [®B] to another not necessarily “finite”
Boolean ring, by[B] so, both by, by are Boolean rings in the sense of B, note that
as by is pseudo-finite it is atomic and call its set of atoms b3.

By normal bookkeeping we assign to every such pair (bq,bs) a stationary subset
Wby by) of {0 € We, @ cf(d) = A}, For 6 € Wiy, b,), the coder decrees that

Q0 = Fg<n:n<w> (D € Py any non principal ultrafilter on w), and Q. , =

I'ms[b3t, (1/28 :n < w)] for i < k1 (see (¥)1 of 5.2(4); this is an instance of I'™™)
(so u§ = w+ K1). All Q (for i > w + ky) will be instances of I'™®. Now for € < A
such that i = i € S, jo = sup U{u’ : B € ¢2}), choose ji = 5o, ja = j5<, such
that jo < jf’e < jg’e < X and:
(%) (Bs [A?l,A;?O) =< (%5,14?0) and
(%)4 (%5[14?2,14?0714‘;1) =< (%5,14?0,14?1) define u! as U{uf : B € ¢ U{jo, j1,J2 )
and demand:

®o ifd € Bs, B |= “débi™”,d € A3\ A3 then there is no d’ € B;,B; |=
“d'éb3*” d' # d” such that
{d§x2+i5d’§xf}+i:i<m}g U p? and
J<A
. .. .. 5 5
for simplicity there is i < x; such that [d < ¢, ;] € pj,.

Note that this is not a part of the general machinery of 4.6, but we shall see that
it is compatible with it, i.e. this is part of contractor (.q’s work i.e. he overtake
more control this “at the expense of” “(.q is the main contractor for §”. Now
it is reasonable to demand that when p? is defined, the condition holds for d €

As.e \Aja,e,d’ € A? (for every e such that jf’e < jg’e < j). So how can we preserve
2 1
this condition when defining p‘; (for j € E;r)‘7 For 7 = 0 no problem. For limit j

there is no problem. So assume, z"g is defined, j € ufg, pg is defined and we have to
)

define pj.(*) where j(*) > j is the successor of j in uf

)

i5
/LE

or j is the last member of
ul; and j(x) =i%,,. We have to consider what is the constraint.

Note: as the 1/x9 in p?- satisfies
(¥)4 for every n, m < w, [ABs EO0<c<1/n= A Bsi1 F “c <1/} <
n n,m
1/77,”]
we really have freedom.

The First Case: No constraint.
So we have to extend p} in a nice way (to preserve clause (D7) and ®p). By
induction on ¢ < j we choose as; to realize over Ag(*) the right type (say in some

saturated M, Bs < M); i.e. we preserve (remember we can look at by as the family
of subsets of b3t in T*’s sense):

(i) A%, Nacla(AF + {ase : € <i}) = A
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(#0) tp(as,i, A%,y U {ase : € < i}) is Q-big

(190) as; = Gs; € b1[M] when w < i < w + K1

(iv) [déMbit&d e (A‘s( )\A‘S) = —déMas;] when w <i <w+ kK1

(v) ifi >wand d e A6 \A‘;, e € acl(A5 U U as.c), and M |= e C bi',e <

e<i
logy(as.n) (equivalently if 271¢1 > 1/as,,)” for each n then M |= “~dée”.

[Why we need (v)? After defining as,; for i < w, applying the relevant claim from
§3, in order to have freedom for (iv) we need (v).]

This is possible by 3.19(2) (check conditions). If ¢ < w by clause (ii) we
have exactly one choice, clause (i) is easy by niceness (and uniqueness), clauses
(iii)+(iv)+(v) are irrelevant, and clause (v) is easy. For i = w clauses (i)-(iv) are
immediate, to assumption of (v) implies e is truly finite hence all é-members are
by (i) not in Aﬁ(*),\Ag. If w<i < w+ k1,¢ limits we have no problem, if 7 is a
successor ordinal we use 3.19(2).

Lastly,if ¢ > w + k1 we just use niceness.

The Second Case: We have obligation from Stage C.

Le. i € S¢,, and let j; = max (u?), choose 3,i(*), j2,y as in Stage C, “for the
successor case” (with j1, jo here standing for j(x), j there). Choose the type ¢ over
aclg,, (A, U {cP72}) as the first case (in our present stage) with A$acly, (A U
{cP72}) here standing for A% Seys AF there.

If in Stage C, first case apply, then we can choose appropriate i’ 41 and extend ¢
to a type as required by the proof of first case (in our present stage). If the second
case in Stage C apply, the elementary mapping g preserve the right things so no
problems: just like when the first case applies.

The Third Case: I‘? is defined and equal to I‘i‘j‘j_l. We just first lengthen the in-
discernible set to I, [T > J(2r)+ say in M* where B, < M* this extend pf» to pT,
complete type over acl(Ag U I) which is a nice extension of p big for <Qg (€ uf’é>
such that for some u C k; for all d € acl(AS U N\ A? (note A% = acl(A?)) we have:
{(d < 2l ,)iGeW]l § < g1} C p*, where u is chosen such that for no d € A;;-,
{(d< )lf(ze“)] i < K1} C p (note: pT exists by 3.19(1)), then use the proof in
26. (i.o. s | 1S i fact u = 0 is 0.K.)

The fourth case: 1"‘5 is defined and equal to I'}75 -
Similar to first case; for n < w, we choose as.,, (corresponding to z°) by 3.10(3),

av wim
Le. as I'YY, I} - are orthogonal.

For x°,,; (i < k1) we can use 3.21.
The fifth case: F? is defined and equal to I'™?.
Easy.

The sixth case: j,j(x) are like j1, jo above in (x)2 + ®q of this stage.
Again by claim 3.19(2) choosing the function h carefully enough remembering

\AJ(*)| <A< 28

Stage E: Assume

X by, by as in stage D, for B+, f is a complete embedding of by[B+] into
bo[By+].
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f will be fixed for stages E—J.
So

¢p = {6 < AT : (Bs,£]Bs) < (B,1)}

is a club of AT; let We = € N Wip, by) C G4 N We,.
Clearly by 5.3(2)

® for § € 63, £1b1[B;] is a complete embedding of by [Bs] into ba[Bs].
For aw € Wy let B := {b € b?*[B*] : b € B, and for no b’ # b do we have

VePeb &b € Bo & N\ [P 0y, = VP al ]}
i<K1
Note that B}, depends on «, B, by, (al,; : i < k1) but not on f. For the rest of
stage E we fix a.
For § € €; for awhile we shall try to show that f | Bf belongs to &+, this in
the following substages:

®1 from £ = f | {a’,; : i < K1} we can reconstruct f§ = f [ B}, so if
f0=f1{a’,; i<k} € P, thenfl =f | Bf € 2,..

[How? For d € Bj, f(d) is the maximal member of ba[B5] which is < f(c) whenever
c €{aspri i < ki, d < agpri} U{f(—aswti) s i < k1 and d < —ag 41} Note
that —as .+, is well defined as by [B] is a Boolean Algebra, by the first paragraph
of stage D. Also note: f(d) satisfies this as f [ b1[Bs] is a complete embedding of
b1 [Bs] into by[B;] and in by[B;s], d is a maximal member of by[B;] which is < ¢
whenever ¢ € {aswti: 1 < k1,d < agppit U{—as0m+i 11 < k1,d < —asp1i}).]

®q if £ < n(x), A C B+, |A| < Ky, then we can find A’ C B+ satisfying
|A'| < ke, A'e | Poand AC A
a<At
[Why? By (x) of 5.2(4) we prove by induction on ¢. For ¢ = 0 immediate by
being regular (as kg = A = cf(\) and have cf([\]<},C) = \). For £+ 1, by the
induction hypothesis we can find A” € |J &, such that A C A”,|A”| < k} and
a<At
now recall cf([k,]S"+1 C) < AT so a cofinal subset of [k/]<"+1 has cardinality
< A" and belongs to |J £, hence is included in |J £, .]

a<At a<At
®3 if £ < n(x),A C bY¥[B+],|A| < ke,,A € | P, then we can find A’,
a<t
Ay, Ay e U P, such that A C Ay, rang(f | A1) = Ag, |A1] + |As] <
a<At

Koy Ai CTb[By+] fori =1,2 and A’ C by[Bs],|A’| < keq1 and from f | A’

and Aj, Ay we can reconstruct f [ Ay; i.e. it belongs to |J Pa.
a<At

[Why ? By ®s,cf([AT]<%,C) = AT so by 5.2(4)(x) and [Shec, 3.11] there is a
stationary . C [A]<"¢ of cardinality < A* hence there is amodel N, [N| € |J a,
a<At
such that N < (B,+,f), A C N,||N|| < k¢ and by, by € N. Let A; = N Nb;[B,+]
for i = 1,2, so f [ N is a complete embedding of by[B,+] [ N into ba[By+]| | N;
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hence to reconstruct it it suffice to reconstruct f [ (b3'[B,+]NN). But the saturator
guarantee the existence of a; € B+ satisfying a;éb;[B+] for i < Ky such that:
ifd #d” €by[N]then V [d <a;&d" Na;=0p,]. Let A’ ={a;:i < kpq1}]

i<Kei1
®4 if A Cby[Bt],|A] < kpgwy then f [ A€ |J P, for some A’ satisfying
AC A Cby[By:] and [4] < A e
[Why? As AFnt0 < AT ]

®s if A € P+, A C b1[B+],|A] < A then fTA € P+ (remember that
[b1[B+]]<* N P+ is cofinal in [by[By+]]<H).

[Why? Put together ®9, ®3,®y4; i.e. we can prove by induction on ¢ < n(x) that
if |A| < Ky (4)—¢ then the conclusion holds; now for £ = 0 use ®4 and for £ + 1 use
®3.]

® f | Bie U P, for a € We.

a<At

[Why? Put together ®1, ®s5.]

Let #} = #Lf be the ideal of bi[B,] generated by {c : ¢ € b¥*[B,] but
c ¢ B}, clearly £ € Z,+ but we do not claim any definability in By+. Also
clearly ¢ € .#} if and only if for some n < w and ¢y, ...c, € bi*[B,] \ B we have
b1[B.] E “c=cU...Uc¢, .a

As B’ has members in every infinite subset of by[B,] definable in B, with
parameters, clearly

®7 for b € by[B,] we have b € £} & —(Jc € bt [B,])(c € Bl & c <b).
Let

I2 = 728 — {ccby[B,]: for every b € B’ we have f(b) N ¢ =0y, }.

Clearly .2 € .+ is an ideal of ba[B,] . We define a function f0 with domain
bl[%a}i

£2(d) = {c € by[B,]: for every b € B}, we have
b <p, d= £(b) <b, ¢) and
bNd= Op, = f(b) Nec= ObQ)}.

It is easy to see that f0 € £+ and £ is a homomorphism from the Boolean Algebra
b;[B,] into the Boolean ring bo[B,]-#2, and f(d) € f(d), and .#. is the kernel of
£0.

We now show (recall that by assumption A = A¥0 6 = R;):

®g Assume cf(a) # 6 and the saturator works for unboundedly many S < «.
If £/ f” are two functions satisfying the information on f | 9B, gathered
so far (more exactly: f' | BX = f[BX = f” | B, and f',f” are com-

plete embeddings of by[B,] into by[B,] hence looking at the definitions
of #1E 728 £0 clearly d € by[B,] = f'(d)/ 72 = £(d)/ 72 = £"(d) | ¥2)

then {e:e € bi*[B,] and f'(e) # f”(e)} has < 6 members.
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[Why? Assume e; € b3t[B,] for i < @ are pairwise distinct and f’(e;) # f”(e;). So
without loss of generality f'(e;)—f"(e;) > Op,[,). Asf” is a complete embedding of
by [B,] into by[B,] clearly for i < 6 there is €] € b{*[B,,] such that £”(e})N(f'(e;) —
f"(e;)) > Op,j,]- This implies f”(e}) # £ (e;) hence ej # e;, and as (e; : i < 0)
is without repetitions, without loss of generality e} ¢ {e; : j < 6} for i < 0. As
cf(a) # 6 without loss of generality for some § < «,{e;, €} : i < 8} C Bg, hence
(as A = A% and less suffice) for some countable u € [0]*, {(e;, e}) : i < w} € Pg,
without loss of generahty u = w; hence by the saturater work there is d € by [B,]
such that e, < d,el, Nd = Op,. Hence by (*)3 for some ¢ € Z1 f'(d —¢c) <
f"(d),£"(d — ¢) < f'(d) and so in bs[B,] we have

(f'(d) — £7(d)) N £"(e},) = f”( d) N f’(d) Nf"(e;) =
£7((=d) ney,) NE'(d) >
f”(e;)ﬂf’( ) =
(e )nf
(

£ (¢! ) (en) >

n

£ (e5,) N (F'(en) — £7(en)) > On,

[Why? As b;[B,] is a Boolean algebra (b being “finite”); as f” is an embedding
as e, Nd=0so0 e, <—d;as e, <d; by Boolean rules; and by the choice €}.]

Choose n such that —(e!, <y, ¢), so we got contradiction to f'(d)/.#2 = "'(d)/.%2.
So ®g really holds.]

From now on we assume the conclusion of ®g holds which suffice for 5.2.

As f | by[B,] satisfies the requirements in ®sg, (there is a least one such f’, and)
by ®g there are < A0 < At such functions f’ so we conclude

9 (f [ b1[Ba]) € P+ hence f < a=b [ b1[Bg] € Py+.
So

¢¢ ={y<A"t: v alimit ordinal such that if
a <y then f [ bi[B,] € P for some 5 € (o, 7)}

is a club of At hence (as A = X))

®10 if @ € 67 and cf(a) = 0 then f, :=f | b1[B,] € P, [remember 2, #

U £,!]. We shall not £, € U{Z, : @ < AT} when not necessary i.e. qQ
y<o
suffice.

Stage F: We have a contractor, the pre-separator, (ps which acts for any (fixed for
this stage):

2

®11 by, by as in Stage D, and p, ¢, ', % as in 3.29 of length say w with b3t for

a

(for example those which the contractor ¢, posed, they will be fixed in this stage),
for stationarily many o € W such that cf(a) = X (and the contractor for this a
choose by, by, &, ¢, p which are from B, and so ¢',¢% € £,), and is quite closed
under the saturator work.

Now
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(¥)s the pre-separator takes care that for every i € E, N Sc,,, there is j; € ug,
Ji < max(u$), such that I'¢" has the form

rem [bla wpa 61] =Ivme [béllt7 P, 61]

(note: by can be considered the power set of by®, recall B, “think” that bi® is finite
hence by is a Boolean Algebra). The set of such a’s will be called We,p b1 ,boc,cl 2 p-

We have another contractor, the separator, (s, such that: stationarily many
a € We,,,cf(a) = A, are assigned to by, by, ¢, ¢,¢',p and p € P, which is a
ngéz—big type over B, of cardinality < A, and the pre-separator has acted in some
ay < a, for the relevant parameters; the separator chooses Q2§ = Fﬁ;)ag and make
p C pg (so z§ will be in bi*[Bo1]). Now for every i¢ € S¢,,NEq, with o € ¢fs, he
took care to have j € uf., j < max(uf ) such that for some df € b1[B,], the type
tp(d§, AS, B, ) is I‘K;I’gq’al—big and [z§éd]] € pj for j' > j, but I‘;?‘-H _ F‘giﬁli’él
and c?‘“ = df — aa,0 (in b1[Bx+]’s sense!); this is possible by the pre-separator
work for some higher j and 3.29 (and the assumption on p,c, &', ¢ in ®11).

Let o < AT be such that 9B, is closed under f and we fix a for a while. Let
B < AT be such that 8 > 8% = min{8 : 8 > « and f, € #3} where below «
there is o as above. We define an equivalence relation &, g on b{*[Bg]: d18, sd2
if and only if for every b € by[B,], we have dy <b < dy <b.

Let B}, 53 = {d € b§*[B] : d/&, p is a singleton}.

Note: as the separator do his for stationarily many o/ < AT of cofinality A, we
can use « such that B, is closed under f. Let Bi’ﬁ = Bi”@ \ Ba,

Biﬁ = Big ={ay0: 7€ [a,B) and in stage 7 the separator acts
(for the parameters by, bg, ¢, p,ct,c2)}.

Recall that there is a3 < a such that the pre-separator act for those parameters.

Clearly Biﬂ C Biﬁ C Béjﬁ, moreover
(*)s for every B1 € [8, A1) we have B3 5 C B3 5 and B3 5 C B? ;.

[Why? Bi,za - B(?;”Bl holds trivially. As for Biﬁ - Biﬁ (this is the whole point
of the work of the separators, that is, assume a, g € Biﬂ and without loss of
generality 8 = B if ay0 ¢ B2 5 then there is d € a,0/€ap ~ {aq,0}, but for
unboundedly many j € E;F_H the separator in stage -y, for j choose c;.”l =dj —ayp
and A;Hlu{a%o, d} C A?, and tp(c}yﬂ, Af, Bg) is F:)V;li‘,él—big hence d’ € b3 [Bg|N
Af = ﬁ(d’éc}H) hence in particular —~(déd§) but (a,0éd) and df € b*[B,] so
d exemplify =(déq,pay,0) so (*)s holds].
For 8 € (8%, A7) we define a relation Rg = R, g:
B cRgb iff: ¢ € B} 5,b € by[Bg], and for every d € bi[B,] and d' € by[B,]

such that f(d) = d’ mod .#2 equivalently, d’ € £2(d)) we have ¢ <p, d =
b<p,d and by FcNd =0y, = by =bNd = 0p,.

(x)7 if B1 < 1 < «v are as above then R, g, = Ra g, N (B x Bg)
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[Why? As £2, belongs to %5 etc.]
(%)g if cRgb then b ¢ Op,.
[Why? Think].
(%)10 If (f(c) =b) € Bp, and c € Biﬂ then cRgb.

[Why? Let d € bi[B,] and d’ € by[B,] be such that f(d) = d’ mod .2. Now
assume ¢ < d (in b1[Bg]) then f(c) < f(d) (in ba[Bg]) and let £(d) — d’ < f(dp) U
f(dy)U...Uf(d,—_1), for some true natural number n and d,éb3*[B,] hence

£(c) — d' < (£(c) — £(d)) U (£(d) — d') = (£(d) — d') < £(do) U ... UE(dy_1)

but ¢ € bi*[Bs] \ B, so cNde =0 in by[Bg| hence f(c) Nf(dy) =0 in by[By| so
at last f(c) —d’ = 0 in ba[Bg]. So ¢ <p, d = b <p, d’. Similarly by[!!Bg] = cNd =
0= bo[Bsl=bNnd =0]

(¥)11 If £f(c) € B and cRgb then b < f(c).

[Why? If not, b — f(c) > 0 in by[B,+], so as the embedding f is complete and
b1 [B,+] is atomic, for some e € bi*[B,+],0 <p, e and we have (in this formula
f(e),f(c) are members of ba[By+]

by[B+] = “fe) N (b—£(c)) > 07

Now if eN¢ > 0 then ¢ = e so f(e)f(c) hence f(e) N (b — f(c)) = 0, contradiction.
So clearly eNc =0 in by[By+], so as c € B3 3 C B, 5 there is d € by [B,] such
that ¢ < d,end =0 (in by[Bx+]), hence f(c) < £(d), f( )N f(d) = 0 in by[B+],
and by the definition of R, as cRgb holds.
Also b < f(d), hence bNf(e) =0 in by so b — f(e) = 0 in bo[!B,+] so we have
gotten a contradiction to the choice of e. Hence b < f(c).]

(x)12 b=f(c) if cRgb and (Bg,f) < (B+, ).

[Why? If not, by (%)11 above we have b < f(c) so by the “f is a complete embedding”
for some e we have B+ | “ecbit & f(e) N (f(c) — b) > Op,”. So as e is an atom of
b1[B,+] clearly e <p, ceNc = Op,. First assume eNc¢ = Op, hence Op, = f(eNc) =
fe)nf(2) > f(e) N (f(c) — b) > Op, contradiction. Second assume if e <p, ¢ recall
that ¢ € Biﬁ C bi* [Bs] \ B, so e = ¢ contradiction to cRgb as the later implies
b 7é Ob2]'

We can conclude

(x)13 if B € (8%, A7) and by [Bg] is a complete embedding of by [B 5] into ba[B 4]
(which occurs for a club of 8’s) then f | Bi’ﬁ € Pg.

What have we gained compared to ®10 in the end of stage E? Here this works for
all confinalities (for a club of 8-s). Let ¢ = {(¢; : i < w) be an increasing sequence
for bt and let 62 = ¢ = {6 : 6 < AT is a limit ordinal > 3}, and f is a complete
embedding of by[B;] into by[Bg] and if Bs = “déby and |d|/|a] > ¢;” for every
i < lg(¢) then there is e € b§*[B;],e < d such that e € B 4}

Clearly it is a club of A*. Now we can note more (but shall not use it below).
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(%)14 for every c, &', ¢® as in 3.4 for some club €} C 62 N6} of AT we have

(x)15 for 6 € ¢ there is f2 € £ which is a function from b;[B;] into by[Bs]
and e € by [B;] = f(e) A bi(e) € ff‘fé where

/fé,é = {f(b) : b1[Bs] = “b C a has < ¢;|a| elements” for some i < 1g(¢)}.

Note that now p, & disappear, as by 3.29 such p, 2 exists.
Stage G: Assume

® by, by, a, ¢, f | bi*[B,], and £] B}, € P4 for B € 4§ as above.

We have a pre-killer contractor (i such that: for stationarily many (even for every)
§eLEn We,. of cofinality A, (for each candidate f for f FBi, ) for stationarily

many € € Sc,, if possible we ensure that for some j € u \ {max(ul )}, we

have I‘?H = Fi‘g;syj’dmn)m<w> SO Eg = ((dsj,dsjn) : 1 < w) where ds ; € va,é -
bi*[Bs],ds jn € b2[Bs],f(ds ;) = dsjo and (ds;n : n < w) is indiscernible over
A%U{ds;} with ds ;0 # ds j1, of course, and without loss of generality —(ds ;.0 <b,
ds;1) as we can find ds j —1,d5 j,—2, ... such that (ds;, : n €I) is an indiscernible
over Ag U {ds;}. Later the automorphism killer contractor (ux is active for our
case for stationarily many 8 € 47 N W, with cf(8) = 0 (so f|bi[Bg] € P
by ®19, of course, the automorphism killer contractor deal there with all such
candidates as he does not know which is really necessary). For stationarily many
€ € S, € A he ensure for 6 € FNEE N W, as above, if possible, that for

some j € ufﬂ,é \ {max(u?ﬂ,é)} and j1 < A, dsj, ¢ aclq;ﬁ(A?), (dsjyn i n < w) is

indiscrenible over A7 + ds;, and I = Fig%s. He choose € € bi*[By] such that

bt [Bs] = “6? Nds; = 0" and (f | by [%5])(6?) Nds ;i1 > Op, (if there is no one,
his candidate for f | by [Bg] is faked, failing coming from a complete embedding, so
Then he let Q8 = s

can be forgotten) and he make e? e A’ (mem<)

min(u} \(j+1))

(for n < w), QF =T (1/ap nin<w) D€ a8 in stage D (alternatively agn > n/|bit|
2, i

for n <w,ap, <bifbeacly, ,(BsgU{agm:m<w})andn <w = n/|bi"| <b

check in stage , and he demand:
heck i D d he d d
*)16 IOr a club or € < A, Ior j as above:
f lub of A, for j b
(o) ds;j <b, a57w&6§3 Nagw = Op, in b1[Bg,]
(8) ((ds,j,ds,j.n) 1 n < w) is indiscernible over A?H.

No problem and f(ag ) will give a contradiction.

So

(x)17 for every § € €2 N We,, of cofinality A, for some j < A, the pre-killer
contractor cannot choose ds ;,ds jn (n < w) as above. Which means: if d €
B(‘r;)\+ \ aclep, (A?) then f(d) € aclmy, (A‘; +d) which is equal to dclg, (A‘; +d)
as 1™ has Skolem functions.

Now without loss of generality A% divides § hence there is &' < At such that cf(§') =
A and A;S- C B hence for some j' < A, A‘; - A?: and of course A?: e J Zs.
B<o
So using Fodor lemma
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(%)1s for some A* for stationarily many § as above satisfying A* € U{Z, : v < ¢},
in (*)17 we can replace A by A*.

Stage H:

We let the automorphism killer contractor act also for Jf e A* BegENWe,, of
cofinality A for stationarily many e € S, , where B = “f a partial function from
b3t to by” to ensure that for some j € ufﬁyé,j < max(ufﬁﬂg), he choose in By, if
possible (dg j » : n < w), indiscernible over Ag + f such that dg jo # dg j1 € Bg’ﬁ,
f(ds ;o) = f(dg,>) and f(dg ;1) # f(ds;1) and are, of course, well defined. If
so without loss of generality add f(ds 1) ¢ {f(dpjn): n < w}, let 1"? = Fié‘}f,

Ej@ = ((f,dsjn):n < w) and get contradiction as above.
Now easily (possibly shrinking 43, using the freedom in choosing a type for Cax;
using that T has Skolem functions)

()19 0 € 63, and A € [Bs]“ A NU{ZL, : o < &} contains the relevant parameters
and d',d? € Bi,é realizes the same non-algebraic type over aclg, (A*), then
for some d* € BJ 5 we have that for £ = 1,2 there is an infinite indiscernible
sequence to which d*, d’ belong.

Hence (together with stage G)

(¥)20 for some o < AT and A* € P+ N [B+]<*, (without loss of generality
A* = aclg , (A*) < B+ and of course A* € Py = J{P, 17 < AT}),
for every F?ii . big type p € S(A*,B,+) from P+ such that [zébi'] € p
for some f, € A* we have
() B+ = “fp is a (partial) function from b to by”
(B) for every d € B? | realizing p, we have fp(d) = f(d)

(7) = # y A zéDom(f) C b2 A yéDom(f) C bit = f,(x) N f,(y) = Op, or
at least

()" for some i and ¥(y, ), such that Vz[|{yebi" : ¢(y,z)}| < ¢; x [bY'|]
we have x # y A zéDom(f) A yéDom(f) C b3t.

[Why? First note that if b € aclg,, (A* + ¢), A* as above then for some fe
A* B+ | “f is a partial function and f(c) = b”; also if ¢ € b3 [B,+],b € by[B -]
without loss of generality B+ E f is a function from b3 into by”; this takes
care of clause («). Second by the first paragraph of this stage we get clause ().
Third, concerning clause () we get p(z)Up(y)J{—¢(y, z,a) : a C A, and for some
i < 1g(e) we have B+ = [{vebf" : ¥(b,z,)} < crb|} U {f(2) N fy(y) # O,
in bo, z # y} belong to &+ and is not realized in B+ hence by the saturator we
can change fp to make clause () true. Now we can extend fp by giving the value
Ob, for zéb2" on which it is not defined, so we can make Dom(f,) = bit].
Without loss of generality ¢, x |b2'| is an integer. So for some a, B+ = “(bj,
i < ¢1 x |b|) is a partition of b3*, and for each n,a’ # a” A a”éby, = fy(a’) N

fp(a”) =
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Now we can find for each fp (for p € S(A*,B\+) N P+ which is Tl -big), in
B+ a “finite” sequence <cf;’p k< ky, £ < 2) such that (in By+), 2k; < [bi*| and
ci’p ¢b3t are pairwise distinct and f, (V") N f,(c)”) > Op, and

(Vo,yebit)(z # y&a,y ¢ {c” 1k < k0 <2} — fio(x) N fo(y) = Ob,).

Let d) = {c,? : k < kj}éby for £ = 1,2,d2 = 1, — df — d]

p7
pairwise disjoint and let e/, = f(d’)éby and el = fo(chP) (all in B+ s sense).
Lastly, let

0 g1 g2
so d,, d,, d- are

df;* = U{c :céb? and ¢ <y, df) and fp(c) < ef;}

SO df;*ébl.
Now for £ =0,1,2

(¥)21 p(z) U [z < df — df*] is T2-small.

[Why? Clearly this type belong to &y+ hence if (x) fail this there is b € Bg’“)\+

realizing it so f(b) = fp(b) and as f is a homomorphism we get contradiction.|
(*)22 for every k < k3, we have (e} <p, (d) —d)*)) V (e} <p, (d} —d}*)).

[(Why? As fy(ef) N fp(ey) > Op, whereas f(d)) N F(d}) = Op,.]
Hence [just proving that (in B+ V x5 is “small”]

(%)23,¢ For some 9, (z) € p(z) we have 0, () & [z <p, (djUd}) = U{e}, : £ <2,k <
ky}] is I'#S-small.

Let a, = {xébi® : ¥(2)} and a, = {xébi" : é(z) &z <p, ddUd}} and let af =
{zebi® - ¥(x) &~z < d) Ud)} so ay, is the disjoint union of a; and a;f. Note that
(P 0 <2k < Ko )s (e, : L, k),dﬁ,dﬁ’*,a;,a;‘ depend on fp (and not on p) and
fp € A* so without loss of generality € A* for every I'PS-big p € S(A4, B +) N P+
we have [z <p, a,] ¢ p and for some j(p) < lg(¢) we have “la, | < c¢;() x [bYY|
and fp [ ap maps bi" into by, z # y € af = fp(x) N fp(y) = Op, and so fp induce
an embedding of by | a;} into by called f,". (We are identifying b; with 2 (bit)
where o := U{zéb}" : fp(x) > Op, in by-s sense} satisfy a;; éby so for some fp we
have B+ = “fp is an embedding of by [a;‘ into bs, by [a;‘ is the sub-boolean ring
of by with set of elements {d € b; : d < a;}”.

Stage I: Let ¢* € B+ be such that ¢; < ¢*¢(0,1)g,c* < 1/n and c*|bf"| integer
> n for every base n. Let k* € N[B,+] be small enough.

In B+ let (fi, : 7 < k*) be a list of functions from b2t into by satisfying
zeb&y eb&r £y = filx)N faly) = Op, including all such members of
A~ (exis‘g by the saturator work). Let e € B,+ be an equivalence relation on bj
with < k* equivalence classes such that B+ F “xey” implies tp(z, A*, By+) =
tp(y, A%, Br+).

Clearly

(%)24 if Ry, 120 < k¥, mhyering then fio, (1h1) < fay (1) & finy (1i22) < fig (1122)
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(¥)25 if @’ # a”,d’ea” and 7 < k* then fy(a') N fi(a”) = Op,.

In B+ let b* = {zébi' : |z/e| > ki}, where e.g. By = “mk} = 2mk*” and we can
choose (a, : < m*) “randomly in B+ sense such that:

(a) my < me < kik = ﬁ(amleamz)
(B) ameb®,b* = U (an/e).
m<k}
So almost surely

(v) if 1y < m*, fy,ne < k* and for every ng < k*, if f satisfies Dom(f) =
{0,...,m3 N\ {my}, (Vm) f(m) C {0,...k*} and b = U{f(amn)m € Dom(f),n €
f(m)}eéby and for every a é(a,/e)\ {am} we have fn, (a)— fa, (a) is disjoint
to b (in bs), then a,;,, satisfies this.

So
(%)27 for each m < 1n*, for some 7 < k* we have f(an) = fi(am).

Hence by ()27 we have a € (a,n,/€) = f(a) = fi(a). Our next aim is to show that
the choice of n can be done uniformly: in a way represented in By +. For each 1 #
1y < mm* and fy,n9 < k* choose if possible a member b = by, sy 1y g €(Griny /€)
such that fi, (@, ) N fay(b) # Op,, otherwise we let biry 1121 ,ms D€ Op,; s0 of
course, without loss of generality the function (n1, 72,71, M2) ¥ biy s .ang e 18
represented in B+ .

Let a' =: {a,, : 1h < 12*} and a2 =: f(a') € by[B,+]. Now by stage H for each
1hy < m* for some 7o < k* we have f(a,) = fao (@, ) hence fi, (am,) = f(am,) <
fal) = a2, also we have

(*)%Sl,r'nl ac aml/e = tp(av AT, %A‘*') = tp(a’ﬁluA*v sB/\‘*') = f(a) = fho (a’)
We like to define ng from a, or just from a,;,, (inside By+).
Clearly

(*)29 fho(aml) <p, a, Mo < k* and a € Gy J€\ {n, } = fﬁo (a) Na? = Op,
(*)30 for no ny < k*, 0 # ny do we have

f.‘hl (a’ml) <b, a? &_\(fhl (afnl) <b, fﬁo (aml))'

[Why? Assume n; is a counterexample, necessarily by f being a complete embed-

ding using the maximal antichain bi* — |J a} U {a:a € b*} of by[B,+], for some
a€cb*

my < mm* and ay;, éa,n, /e we have fm (@, ) — fno (@, ) computed in ba[By+] is not
disjoint to f(ay;,, ), but for some 1y < 1" we have Flay) = fa, (A, ), S0 necessarily
biry v 1y e 7 Ob, and is a member of by disjoint to a' so £(bs, iy sy, is disjoint
(in by) to a® = f(al).
} Also as by, g rinyrins €, /€ and f(am,) = fhz (ary) clearly £(bp, pginge) =
Tira (bisy 1y 1y s ) SO Dy the previous sentence fr, (biy iy iy ine) N @% = Op,, but by
the choice of by, 71y 11,1z (> Ob, ), 1.€. the previous sentence we have fr, (b5, 51g 1101 i )1
fis (@gi,) > Op, hence —(fi, (a4, ) <pb, az), contradicting the choice of n4].

So
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()31 in By, if 2éb?* &z <p, b* then f(z) is fh(w)(x) where n(x) is the unique
n < k* such that
(I < 1) (zéan fe & filam) <p, a2& (Vi) < 72)[far, (am)
<a® = fulan) < failam)]),

so x +— n(z) is a function in By+.

Stage J:
Let

Qley := {b: b a natural number < loglog [b3*|} (in By+)

though really we are interested just in

o, = {béaicy : b > n for every (true) natural number (not in By+!)

for béajey, in B+ let

I, :={f: [ a partial function from b2 into by \ {Op,} such that
e1 # e2ebi® — f(e1) N f(ea) = Op, such that
b}t — Dom(f)| < 2}

(b-th level). We define a distance function on I = (J{I : béajey }:

dis(fi1, f2) = [{z¢bi® : x ¢ Dom(f1) or z ¢ Dom(fz) or fi(z) # fa(z)}.

Next define a branch, it is an (outside) function H, satisfying Dom(H) = Ay s
H(b) € I, by < by (in ay,) = dis(H(by), H(b2)) < 10.

Now f induce a branch H as K in the end of stage I holds for b € Oy -

By 5.6 below we have “no undefinable branch” so there is an equivalent branch
H' (see 5.6 below) which is definable in B+ hence is represented say by f.

Let f, = f(n) (n a true natural number in By’s sense).

For each béay,, , for some ny < w we have dis(H (b), H(n)) < |10 for every n > ny
(otherwise {n : n true natural number} is definable in B,+) so some n* is n; for
arbitrarily small béa,_, hence (changing 10° slightly) without loss of generality this
holds for every small enough béa,, .

[Why? As the cofinality of ({n € N:n <y , n for n < w},>) is uncountable
(in fact is AT as Qu 0 = TV for unboundedly many o < AT]. In particular

) (n:n<w)
[b§* \ Dom(f,,+)] is really < 10° for each b € age, hence is finite. Assume {d €
bi*[B+] : déDom(f+), for(d) # £(d)} is infinite. So we can find d}, d2ébdt,

pairwise distinct hence disjoint, satisfying f(d2) N fn-(dL) # Op,. We can find
béby[By+], such that dl, <p, b,d2 Nb=0p,, let ' = £(b), and in By+:

V' = {d : d'éb® d Ny, b= 0p, but f-(d)Nb #0},

so necessarily B+ = “|b”| is > n” for each n, hence for some ¢ € a,,, we have
B+ = “|0'] > ¢ and we get easy contradiction.
Thus modulo 5.6 we have finished proving:
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() every complete embedding of by [By+] into bs[B,+] appear in B+ where
B+ = “by is a finite Boolean ring hence algebra, by is a Boolean ring (e.q.
algebra)”.

Stage K: Tassume B+ = “by, bs are atomic Boolean rings” and f is a isomorphism
from b;[B+] onto by[By+], and let ¥ = {a : B+ = “a € by is # Op, and is
a finite union of atoms”}. So for every a € #,f is an isomorphism from Boolean
Algebra bl[B+] where b§ := by [{z : z <p, a} onto by[B,+] where bg(a) =by[{y:
Yy <b, f(a)}, ie. £, = £]b§[B,+] is in B+ hence by Stage C we are done. [ o

Remark 5.4. We may try to replace the proof from (x)o7 till here by:

(x) for 1hy < m*,ny < k*, we have f(a,) = fa, (am,) if and only if (1hy,7;)
satisfies f, (amm,) <p, @2 and if fu,(am, <p, a® and flm){n < k* :
Falan) < a®} when 1 < mi* & m # 1m*, then fi, (a) — fa,(a) is disjoint to
a? for every aeay,, and a® = U{fx(am) : 1 € f' (1)} U fa, (am, ).

Hence playing with k* we get:

X for every k* such that B+ = “n < k* < |b2t| for n < w, there is bi. €by
such that f[{aébi® : a Nb;. = Op, } is represented in B+ hence f{aéby :

aNbj. = Op,} is represented in B+ and [{aebit : a <p, by.}| < k*.

Discussion 5.5. 1) In 5.2 we can add
5) Assume N = SBLW] and

(i) N is a model of t"d and
(i1) (Vg1 # 2 € O¥) = (32" € PY)[wRys = ~wRys).

Then any auto of N is represented in B*. The proof is just easier. Without (ii) we
get a weaken result. If above we have dealt with complete embedding rather then
just isomorphism onto, we can get more. May like to allow such f’s (and get the
same result).
2) We may like in 5.2 to allow b to be non-atomic. One way is combining our proof
with [Shed]. We shall give a complete proof elsewhere.

Suppose B+ = “by, by are Boolean rings”, f a complete embedding of by [By+]
into by [B], we would like to show that it is representable.

Let us define, inside B+, Y = {a : a a “finite” subset of by consisting of pairwise
disjoint elements such that B+ = “for every ¢ € q, either ¢ is an atom of by or
below ¢, b is atomless”} and for aéY let b, = |J{z : véa} € b;.

For every (internally) finite aéY let by[a] := “the sub-ring of b; generated by
a”, it is, in B+, a finite sub-Boolean ring of by and itself is a Boolean algebra and
inside By

® if a’ C by[a] is a maximal antichain of bj[a], then in by,a’ is a maximal
family of pairwise disjoint elements which are < b,,.

Hence f | by[a] is a complete embedding of by[a] into by | {x € by : © <y, £(b,)}
which also is a Boolean algebra (and sub-Boolean ring of bs), hence is represented
in By+. So by Stage C, i.e. as we have proved part (3) of 5.2, we have finished
proving part (4) too. For b a not necessarily atomic Boolean ring. (Note: if we
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have earlier the result only for isomorphism (onto bs), here we would have to work
harder.)

Claim 5.6. For B, = %,+ as in 5.2 we can add:

e cvery branch is equivalent to a definable branch H when we assume (com-
pare with 3.35(2)):
(%) (@) d*,a e N®[By+]={z: B+ F wéN&n <z’ for every
truly finite n}

(b) Byt | I =(Ig:deN) is a sequence of sets, dis is a
symmetric two place function from I = J{Is:d € N*'} into N,
satisfying dis(x, z) < dis(z, y) + dis(y, z)” where
NY:={zeN:z<d}

(¢) B+, ¢ is a function (monotonic for simplicity) from N% to N
such that the value “converge to finite” when the argument does,
.e.:

beNe& An <b= (3d)[An < deN® &
Vavd (zély AN \n <d <d=c(d) <b).

(d)  We call a function H (generally, not necessary in B, ) a c-branch
(but may omit ¢) Dom(H) = N\ {n:n < w}
(e) H(d)elyif
(@) An<dy <dy<d*= dis(H(dy), H(ds)) < 2xmax{c(dy), c(ds)}
(f)  branches Hy, H, are z’-gquivale@t if
An < d<d* = dis(Hy(d), Hy(d)) < 4 x ¢(d)

(g) a branch H is c-definable if for some
f€By+,deDom(H) = H(d) = f(d).
The proof of 5.6 is broken to some definition and claims.

Fact 5.7. Let T' be a g-bigness notion, ¢ = (Kp, <;) elementary class. Then
p = tp(a, A, M) is T-big iff p* = tp(a, acl(4), M) is [-big.

Proof. The “if” is by monotonicity. For the “only if” assume the left, let M <,
N € K, N is strongly |A|T-saturated, a’ € *N,p’ = tp(a’,acl4, N) extend p and
is I'-big. But there is an automorphism f of N mapping @’ to a, f [ A = id4 so

f_l(aclM(A)) = aclM(A) |:|5,7
Definition 5.8. 1) We say a bigness notion T is strict (or strictly nice) if (where
a = lg(zr))

(x) if p € S*(A4, M) is I'-big, A = aclp(A) and S is an ordinal then for some
N,a; (i < ) we have
(Oé) M Sg N
(B) a; € “N
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(7) tp(@i, AU U a;, N) is I-big
j<i
(6) if b e ™(acl(AUa;)),Q = I‘Z“z-i . is an a-bigness notion (see Definition
3.34), Aq C A, tp(b, A, N) is Q-big then tp(b, AU |J a;, N) is Q-big;
j<i
hence tp(b, AU |J a;, N) is Q-big.
J#i
2) We say p = tp(a, Az, M) is a strict (or strictly nice) extension of p [ A, where
Ay € Ay € M when: if m < w, b € ™(acly (A2 +a)),Q = I, - is a bigness
notion (see Definition 3.34), Ag C A, Ay C Ay, tp(b,acl(A1), M) is Q-big then
tp(b, acl(Az), M) is Q-big.
3) A global bigness notion T' is strict (or strictly nice) when: if p = tp(a, A2, M)
is I'-big and Ar € A; and A; C Ay C M then p has a strictly nice extension
tp(a’, Aa, N), M <¢ N, which is I'-big. We may omit the “nice” one and leave the
“strictly”.

Definition 5.9. For g-bigness notions I'1, 'y, we say I'; is strictly orthogonal to
I's or I'y L,I's when:
() it Ap, UAp, CAC M € K, tp(as, A, M) is T'p-big for £ = 1,2 then we can
find N, @}, @), such that:
(a) M <N eK
(B) aj,ay € N
(7) tp(aj, A, N) extend tp(ag, A, N) for £ =1,2
(0) tp(ay, A+aj_,, N) is I'y-big for £ =1,2
(e)1 tp(a}, A + a3, N) is a strictly nice extension of tp(aj, A) that is: if
Q = T, o> a bigness notion, Ag C acl(A) and b C acl(A + a7) and
tp(b, A, N) is Q-big then tp(b, A + ab, N) is Q-big.
Claim 5.10. Assume T has Skolem function (asin 1.1(B)) IfT'y L'y then T'o L I'y,
moreover we have

® in (%) inside Definition 5.9 above it follows that

()2 tp(ay, A+ ay, N) is strictly nice extension of tp(ay, A, N), i.e. if Q=
[i.e @ bigness notion, Ag C acl(A) and b C acl(A +aj), tp(b, A, N)

is Q-big then tp(b, A + aj, N) is Q-big.
So we can say ‘T'y, Uy are strictly nicely orthogonal”, i.e. this is symmetric relation.

Proof. Use 3.34(2). Let us prove (e)s from ®, so assume that Q = TR , b C
acl(A + a}) is a counterexample, in particular Ag C A and

(%) b C acl(A + a}) is a counter example, so
(a) tp(b,acly, (A), N) is Q-big
(b) tp(b,acly (A +a}), N) is Q-small.
Now tp(b, Ag,) is Q-small, but [ 18 a local bigness notion hence by 5.7 there
is a formula J(y,a}) € tp(b, A + a}), possibly with parameter from A, which is
Q-small, so there are n < w and i < 1g(¢) such that {dis(g¢,¥m) > ¢ : € < m <
n} U{9(ye,a}) : £ < n} is inconsistent and without loss of generality n is minimal.
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Clearly, it follows that (we can add A  dis(gx, J¢) > ¢; but no need)
k<t<n

N Gho- - Gnr[ N\ 9(@e,a1) A (V) (0e(g,a1) =\ dis(y,5e) < ci)].
<n <n

As T has Skolem functions clearly there are EO,;. ybp—1 € acl(A + a}) such that
N E= A 9(be,ay) A (Y9) (o, (F,a)) = A dis(g,bs) < ¢;). We can substitute b for
I<n <n

7 so for some £ < n,b* € {bg,...b,_1} we have N |= dis(b, b*) < ¢;.

Now first,
Case 1: if tp(b*, acly(A), N) is not Q-big )

Then as in the previous sentences, for some b** C acly(A4) and j < lg(¢) we
have

Nk dis(b", ) < ¢,
so together with the previous sentence N |= dis(b, b**) < max{i,j} + 1, contradic-
tion to tp(b,acly(A), N) is Q-big.
Second,
Case 2: tp(b*,acly(A), N) is Q-big
We can still note that tp(b*,acly(A + @}), N) is not Q-big contradicting (€)1 of

(*) of 5.9 by 5.7.
Together we have gotten a contradiction. Os.10

Claim 5.11. IfI'1,T'y are orthogonal g-bigness notions and I'y is strict then 'y,
'y are strictly orthogonal.

Proof. Let p, € S*T9)(A,¢€) for £ = 1,2 and Ap C A.
Now let A = |T| + |A| + |a(T'1)| + |a(T2)| + N + [{€2 : Q is as in 5.9(x)(g)2 for A
and we choose A,, @1, by induction on o < AT such that:

()10 (@) Ag=U{a1g:B<a}lUA
(b) tp(a@1,a, Aq, ) is a I'1-big strictly nice extension of p;.

This is possible by the assumption. We can find as realizing ps such that tp(aq, Ay+, €)
is I'>-big. It is enough to prove that for some a < AT

(%)2,o for every finite b C acl(A + a1,0,¢) and Q = '™, with parameters from

a,dis,¢

A, if tp(b,acl(A), €) is Q-big then tp(b, acl(A + a@z), €) is I-big.

Toward contradiction assume this fails for every o and let (Qq, ba,ia) Witness this
50 Qo = T o5 ia < £9(Ca). By the choice of A for some a@ < B < AT we have
(Qas ba,ia) = (28, bs,ip).

By transitivity of distance we get contradiction to ()1 g(b). Os.11

Claim 5.12. 1) If T is as in 1.1(2) or at least T has Skolem function then every
bigness motion is a strictly nice bigness notion.
2) If the bigness notion T'1,T's are orthogonal then they are strictly orthogonal.

Proof. 1) By 3.35(2).
2) As in the proof of 1.18(3). Us.12
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Now we should check our notion, and revise the construction in §4 and 5.2. For
local bigness notions we get better results.

Claim 5.13. Assume T is as in 1.1(2) ,(or just has Skolem function in a strong
enough sense) and ¢ = (K, <) = (modr,<). Assume T' is a local bigness notion,
Ar CAC BC N and A = acly(A), B = acly(B),p = tp(d B,N) € S*)(B, N)
is D-big and acly (A+d)NB = A, i.e. niceness, and Q = '™, _ is a bigness notion
with Ag C A.

Then we get strict niceness, and even

a,dis,¢

(a) if by € B and tp(b, A, N) is Q-big then tp(by,acl(A+ d), N) is Q-big
(B) if by € acly (A +d) and tp(by, A, N) is Q-big then tp(by, B, N) is Q-big.

Proof. For transparency we use singleton. We can find a two-place function f = fw
definable in NV such that:

(x)1 (@) Dom(f) = {(d,c): déa,ccRT}
(8) N [ (vyéa)[dis(y, f(y,c)) < c& f(y, c)éR*] for every ¢ € (RT)N

(") N (59 f(y0) = 2 Adis(y,2) < ¢/2 = [y, e, Q)]
for every ¢ € (]R*)N

[Why? Here we use “T" as in 1.1(B) (and a is “a set, not a class”). That is, there is
b for some Fy € 7 such that N |= “for every appropriate a, dis, ¢, F1(a, ¢, dis) is a
maximal subset of a such that (Vay)[z # yéa — dis(z,y) > ¢|”. Clearly exist and
let Fy € 7pr such that N | “for every appropriate a, dis, ¢, béa, x = Fy(b, a, c,dis)
is a member of F{¥(a,c,dis) such that dis(z,b) < ¢”, exists by the maximality of
Fi(a,c,dis). So (b,c) — Fy(b,a,c,dis) is a function as required.]

Now if Ag € C C N then

(*) tp(d,b,C, N) is Q-big if and only if for every large enough i < lg(¢) we have
fa(b,c;) ¢ acly(A).
Os.13

Claim 5.14. 1) In claim 3.19(1), (2) we can strengthen clause () to
(7)" tp(t,acly(A"), N) is a strict extension of tp(a, A, M*).
2) In claim 3.21 we can strengthen clause (B) to
(B)F tp(V',acl(A + b2), €) is a strict extension of tp(by,acl(A), ).
3) In 3.26(2) we can replace “nicely” (in clause () of the conclusion) by strictly.

Proof. We can just use 5.13, (its assumption is O.K. for our application.
1) In the beginning of the proof of 3.19 we reduce it to the proof of ¢*(x) being

[';'3-big, and there we get (2) by applying proof to U}\A to get ()™ we just need
1<
to require there that tp(f;(A4’),acl(J f;(A")), M*) is strict.
j<t
2) Similarly.
3) Similarly: when we waive “nicely” we just replace “pc nicely extend tp(d*, A)”

by “pe strictly extend tp(d*, A)”. Os.14
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Claim 5.15. We can repeat §4, replace “g-bigness notions” by “strict bigness no-
tions” (automatic if we use T* and in (D)(7)), “nice extension” by “strict exten-
sion”.

Proof. Straightforward (or use 5.13(4)).

Proof of 5.6:

In the proof of 5.2 we replace nicely by strictly nice and as we work assuming
1.1(2), by 5.13(4), this holds automatically. The additional point is similar to Stage
C. We add two contractors: the pre-pseudo branch killer ¢, and the pseudo branch
killer (pk.

For 8 € Wy, of cofinality A, assigned to our parameters (so the relevant param-
eters are in B, for some o« < §), we demand

®1,5 for stationarily many € € S, for some j € uf/;:ll, non-maximal in uﬁ;:llve,
satisfying j > maux(ufﬁ .), we have:

a) &t = (eB+4I :p < w) is indiscernible over A7 T
n J
(b) B9 = (e 1 i <i(x)),i(x) < A
(c) {cgjl’j 11 < i(x)} is the universe of an (elementary) submodel of Bg,
including A?—H NBg
(d) BpE “cyréNandm < 2¢g3 " < cgpii <n” e Al NB, By F
“m < n € N” for every true natural number m, all this for any ¢ < w
(e) By F “cg,zl’j > cgzl’jﬂ for 41, 05 < w

(f) tp(@thi, J &thiu Af“) is a strict extension of tp(éﬁ*‘l,AfH)
£<n

(9) ATH NnBs =Rang(c ™).

For every o < AT
®9,q if f < o and (p; acted in 3 for a pseudo tree as above, then for every

f € I[Basi] \ I[B,], for stationary many e € S¢,, for some j < X as in
®1,3 we have:

(¥) (a) e€ EgNEq,pEchh,jEuj
(b)  one of the following occurs:

(Oé tp(fvu A?+17 %a+1) is Fg]lz

(8

(&7 1) P18

)

) there are £ < w and f' € I[B,] such that, in By 1:
(i) dis(f',f) < cof

(ii) for every f" € I[%B3] we have dis(f', f") > coﬂ”gﬂ
)

there is f’ € Af such that dis(f, /) € N is < i for every
non-standard n € N[Bg].

(v

Why can we do this? Having pf first define pf 41 ignoring clause (b) of (x), if it
holds, fine; assume not. As (a) fail by observation 3.37 for some f’ € A, and
¢ <w we have: p$,  says that “dis(f, f) < cg”g”.
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If tp(f, A J+17 B,) is FEZ 89 _,~Pig, possibly increasing ¢ we get poss1b1hty (B)

as we are using the strict version in (D)(7) of 4.5. So assume that tp(f’, A j+17 B,)

is sz wy | w-small. So using 3.37 again and transitivity for some f” € Ag+1

(possibly increasing ¢) we have dis(f, f') < c . We can find 7 such that f” = cB J

where i < i*. So we can find ¢, another candldate for p%,;, which say dls(f, c1 i ) <

’B’g but recall cfg < cgg So to get clause (B) it suffices to have in B, that

(c1 i ’AJ-‘rl) FE;Z o jrw—blg. By the choice of (¢27 : n < w) this holds except
,Co
when f = o B ¢ Aﬁ
But then dis(f, f”) belongs to Af“, so it is a “B,41-natural number”, i.e. a

members of A?H NBsNN[Bg41] smaller than all “non standard” member of N[B];
as this holds for unboundedly many 3 < A clearly clause () of (x)(b) holds.

So having guaranteed the relevant ®1 g, ®1,q, we apply it to a “branch” (g(n) :
n € NYBy+]\{m : m < w}), for each B < AT satisfying, cf(3) = A and o € (8, \")

such that tp(a§,Ba, Bat1) is F‘B’< and n € Bg = (n) € Bp.

So we can find fg € I[%B3] such that dls(fﬁ,g(ao)) € N[B,+] is smaller than
all non standard n € N[®Bg]. By Fodor lemma for some f * for stationary many S,
fg = f*. This finish the proof. Os.15

Remark 5.16. 1) It seems we can use guessing of clubs as in [She03] (more [She97])
and “y is AT-saturated” (when A > R;) to deal with 5.6, but the present look
simpler and did not check.

2) We can also in stage C in the proof of 5.2 deal with weaker notions of trees (with
distance instead equality).

3) By 5.2 and the previous chapter, we can conclude the compactness of the quan-
tifier on complete embeddings of one boolean ring to another.

4) Tt is more natural for general T' (in order to save claim 5.10) to replace I'™" in
Definition 5.8,5.9 by I'™ as in the following definition.

Definition 5.17. Assume

(a) T is as in 1.1(1), i.e. a complete first order theory

(b) M* is a model of T'

(c) = (p1(z), p1(2), p2(2,y), p3(2Y, 2), pa(2, Y, 2)) = (Pdom (), Prang(2), T <
Y, g0<z(1' Y), Psubadd (T, Y, 2)) are first order formulas (possibly with param-
eters), or ¢ (the intended meaning of @gom(M*) is the “space, and of
¢rang (M) the possible distances

(d) the formula ©2*(z,y) is such that:

dis (

P< \Ts y) = (pdom(‘r) & Pdom (y) & (prang(z) and dis§21 (aj? y)&zl <z = dis§22 (:17, y)

(the intended meaning of gp‘ilz (z,y) is the distance from z to y is < 2)
(e) ©Ysubadd(Z,y, 2) is a first order formula such that
Psubadd (1'7 Y, Z) = Qorang(x) & Prang (y) & @rang(z) &
€ S P Yy S vav y(@rang(x) A @rang(y) — (HZ)QOSUbadd(xv Y, Z))

the (intended meaning of @gupaqd(z,y,2) is z+y < 2)
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(f) %5 (z122) A ©T5 (22, 23) A Psubadd (21, 22, 23) = T3, (1, 23)
(9) =1 <z, is a partial directed order of noa(M™*)
(h) e¢={(ci 11 <9),c1 € Prang(M™*),i < j = Psubadd (T4, Ti, Tit1).

We define I' = T'Z%, as the following local bigness notion: (z,a) is I'-big (in

N,M* < N) if and only if

{¥(zn) :n <w}U {ﬂgo%iii (Tny ) :m #m < w}
is consistent.

Remark 5.18. More generally we can use any dependency relation.
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§ 6. CONSTRUCTING MODELS IN 8; UNDER CH

This section has little dependence on the earlier parts. In Rubin Shelah [RS80]
models in X; were constructed using: in two cases {n, and in one CH. Here we
prove all of them under CH and get further results (for example the results on
ordered fields). The construction here was promised in [She83b]. The omission of
types in 6.2 continue [RS80], hence Keisler [Kei70] or [Kei71] which deal with the
quantifier 3=,

Context 6.1. T* as in the context 1.1(B) T™* countable. M™* a countable model
of T* (usually well founded), with universe w for simplicity.

Definition 6.2. 1) For a formula ¢(z, ) (here first order) and term o of T* we shall
define the formula (Q!xz)p(z, 7), assuming o is a term whose set of free variables
does not include z and for notational simplicity is C g, so we can write o(g);
now (C if(g)x)ga(x,y) means “c = o(g) is an R;-complete ideal® and {zé¢Dom(o) :
o(z;7)}eo(y) or o(y) is not an Nj-complete ideal”.

2) If M is a model of T*, p a type over M (i.e., a set of formulas ¢(Z,a), a C M,
Z a fixed finite sequence) we say: p is suitably omitted by M if:

() if b C M*, n < w, and M F (Qo, Un) - - . (Qo, 1) BT (T, 91 . . . yn,Z)), then
for some p(Z,a) € p, M = (Qo, Yn) - - - (Qo, 1) BT)[WV(Z, Y1, - - -, Yn, b) & —(Z, a)].

3) Let M be a model of T, and A be a finite set of formulas of the form ¢(z;7,),
p a set formulas of the form ¢(Z,a), where a C M, ¢o(Z;y) € A. We say that p is
strongly undefined over M if there are no sequences (¢, (y,,C,) : ¢©(Z,9,) € A)
where ¢, C M such that:

o(r,a) € p= M |=tyla, i),

—p(z,a) € p= M = —),la,c,).
Observation 6.3. 1) In 6.2(3) if p is strongly undefined type over M, then it is

suitably omitted over M ; if p is suitable omitted by M then p is omitted by M.
2)Ifae M and A C {b: M = béa} is not represented in M, then

p = {x C a& [bex]TC . M = béa}

s strongly undefined in M.
3) If My, < My4q forn < w,p a type over My suitably omitted by M, for each n,
then p is suitably omitted by |J M,.

n<w
Construction 6.4. We describe a construction of an elementary extension M**
of M* of cardinality Ny; we leave some points for latter fulfillment.

Step A: Let x > Ny, and x € J#(x) be given. Let 7, € J(x) be a countable
vocabulary extending 7r«, having infinitely many n-place predicates and n-place
function symbols in 7p- for each n < w.

Step B: We choose a list 7 = (1, : @ < wy) of “*~2, such that
9 We can restrict ourselves to a class R (of T*) or allow non-first order ¢, and get other

variants. If we would like to have |wM| = Ry, we start with a Rj-saturated model (by section 5)
and apply the theorems below to it.



Paper Sh:482, version 2021-09-10. See https://shelah.logic.at/papers/482/ for possible updates.

COMPACTNESS OF THE QUANTIFIER ON “COMPLETE EMBEDDING OF BA’S” SH48273

[naQUﬁ:}a<ﬁ]'

So () = no, and for simplicity: 1o () € {Natr : 0 < k <w} for £ =1,2, and

1g(nq) is a limit ordinal = « is limit.

Let (S, : @ < wy) be a partition of w; to pairwise disjoint stationary sets such that
min(S,) > 1 + « and each S, is non-small, see [Shec, 3.1(2)] and history there.
By induction on o < wy we choose N, and M, and S(«), G, such that:

(a) No < (H(x),€,<%), @ € Na, {x,7} € Na, (Ny: 7 < ) € N, for f < «
and (M, ,G, b, :v<B) € N, for B <a,

(b) the sequence (Ng : § < ) is increasing and continuous, each N, is count-
able,

() My, is a model of T™, with universe w(1 + 1g(ng)), My = M* (but for
convenience 3 as a member of those models is called ag),

(d) for no < ng, then M, < M,,, and if p belongs to Ng and is a suitably
omitted type over M,,,, then M, suitably omits it too,

(e) if Ig(nq) is a limit ordinal, then M, = J{M,, i i <lg(n.)},

(f) iflg(na) = v+ 1, v € Sp(y), My,1y E “apy) is an R;—complete ideal on
Dom(ag()) = U{y : yéag(y)}”, then let y,, = ag(,); otherwise let g, be
the ideal of non-stationary subsets of wy in the sense of M, -,

(9) iflg(ne) =+ 1, then
(i) Gy, is an N,-generic subset of P, , where:

b ]P)na = {QD : (,e: Sp(xw(l—i-a)’ To(4a)+1y -y Lw(l+a)+ns b)
for some n < w,b C M,y and

M, 1y E (Qymxw(1+a))(3$w(1+a)+1) e (3%}(1+a)+n)90}

e the order on PP, is naturally defined
(it) Gy, = {p(Twata),- - ,mwi(Ha)Jrn,b) ‘n<w, bC M, yand M, =
Qp[aw(l-&-a)a B aw(l—‘—a)—‘—n; b]}

There is no problem to carry out the construction.

Note: in order to have a good definition of “suitably omitted”, we restrict the
family P, to be quite well defined, loosing some cases.

Lastly,for v € “12, for M, = |J M.

1<wi

Step C: We choose N, < (H(x), €, <}), [[Nuy | = V1, (Na, My, 1 a <wi) € Ny,
and w; C N,,. Let (f; : i < wy) list the sequences from N, of length < w of
functions f € N, such that Rang(f) C {0,1} and (where 7, is from Step A)

Dom(f) = {(1a, M,[) 1 « < wi, M, is an expanion of M, by at most
countably many relations and functions from 7, }.

Let f; = (fin :n < a;),a; < w. We shall choose n(i) < a; and let f; = finGi)-

Let (S! :i < wy) be a partition of w; to stationary subsets, and if 2% < 2%
non-small sets and, if S, is not small, then even S/ NS, is not small (as above,
[Shec, 3.1(2)].
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For each i let (I, : o« € S}) be such that for j < wy, (¢} : a € S/ NS;) is a weak
diamond for f; (see [Shec, 3.1(2)]). So for every v € “12 and expansion M.’ of M,
by at most countably many relations and functions from 7,

{B€S8i:v1B=nqand fi(na, M | (w(l+a)) =04}

is stationary.
Choose v* € “12 such that v*(a) = 1 — %, if & € S is not a successor ordinal.
Let M** = M,,..

Claim 6.5. 1) Forn € 122, M,, has the same natural numbers as M*, but when
lg(n) is wi or just is large enough, wi™n is not well ordered.
2) For v € “12 and a € M,, we have

o M, = “a is countable” iff {b: M, |= “béa”} is countable (in particular
M** satisfies this).

3) For v € “12, if M, = “a is an uncountable set”, then for stationary many

a, My (a+1) F “aqo is a countable subset of a and béa,”, whenever M, o = “béa”.

4) If M, = “a is a stationary subset of wi”, then the set {a < w1 : M, | ‘aq is

an ordinal and agéa” and )\ [béay, = b € My, o]} is a stationary subset of wy.
beM,

5) Moreover, for stationary many «, a, satisfies: M, = “ao is countable”, and

M, = “béay” < be Myq.
Proof. Straightforward. Us.5

Claim 6.6 (CH). Assume w™0 is well ordered.
1) If v € “12, M, = “|a| = Xy and y is a family of subsets of a”, then M, = “y is
non-meagre” iff {{x : M, = xéb} : béy} is a non-meagre subset of the power set of

{z: M, | zéa}.
2) Assume v € “12 and M, = “b; is a Boolean ring of subsets of a including the
singletons, |a| = Ng, by is a Boolean ring, and by is not meagre”. Then every

complete embedding f of b{W imnto bé\/fy is represented in M, .

3) Assume v € “12 and M, | “by is a Boolean ring of subsets of a1 including all
the finite ones, a C a1, |a] = Vg, {bNa:b & by} is a non-meagre family of subsets
of a and by is a Boolean ring”. Then for every embedding f of biw” into béw” the
following condition is satisfied:

(x) for some g € M,,, we have:
(1) ¢ is a function with domain a (in M, ),

(ii) for beMva, g(b) is an ideal of bo,

(ZZZ) bléM'/a, bgéM"a, b1 # by = g(bl) N g(bg) = {Obz},

(iv) for beMva, £({b})eMy g(b).
Proof. 1) Check.
2) Follows by 3).
3) By CH (and the choice of the N,’s), for some ap, {a,f [ {{b} : béa}} € Ny,
Nao < v, and all parameters are in M, . Let b} = {bNa:b € b1}, and let g € M,
be the function from by to b} such that §(b) = a Nb. For some a € (o, w1), Yo
is (in M) the ideal of meagre subsets of b} C Z(a) included in b} (b} € Yo as
b; is not meagre).
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We now note that if ng,+1 = 1, (¢), then M, cannot suitably omit

Be+1
p={lbs | “f(b) <y & flc)ny=10"] & yébs : b1[M,, ]
F“b<ag & ag, Nc=0p,", and b,c € B1[M,, ,,] are atoms C a)}.

(as in M,,f(ag,) realizes it). Hence, there is a suitable support
Qoo - Qo, Ty Iz o(z,20,. .., T0_1, ag,,b)

of p,b € M,,. So some t € Gy, ., forces this (for £,, ., see clause (g) of 6.4).

Using this ¢ we can define r as required. Oe.s

Discussion 6.7. What occurs in 6.6 if we omit the assumptions “w™0 is well
founded”? We should replace “finite” by “finite in the sense of M,”, in particular
(see 6.6(2)) for every complete embedding £* of by [M,] into by[M, ] for some d’, f' €
M,, M, = “d’ is a finite subset of a, bébs, f a complete embedding of by | {zéb; :
zNa=0p,}into by | {yéby : yNb = 0p,} and fM = f | Dom(fM)",

The next claim says that for vy # 11 € “2, the models M,,,, M,, has “very little
in common over M,,n,,”.

Claim 6.8. 1) Assume n € “*>2,7"(l) < v €“*2, and for eachn < w: M, = “T
is a tree with set of levels (W, <w ) which is an Ni-directed partial order, a,, a level
of the tree, ay, <w any1”, and {a, : n < w} is cofinal in (W, <y ). If, forn < w,

M, = DbpeT is in level a,”

and, for £ < w,

Muz ): “beéT&bn Sk bf <k b2+177

then for some c,

M, = ‘c is a branch of T with uncountable cofinality and b, € ¢”

forn <w.

2) If Ay, Ay C M, are disjoint and no (first order) formula (with parameters in
M, ) separates them, n € “1>2, n°({) < vy € “*22, and Ay U Ay € Nigip41 (for
example A1 U Ag is represented in M, ), then for at least one ¢, in M, no formula
separates them.

Remark 6.9. Note: if A; U Ay = {b: M, |= béa}, then: [A;, Az not separated in
M,] means [A; not represented in M,].

Proof. 1) Let 1 = 1q(0). Assume that there is no c as required. We prove by
induction on « € [a(0),w:] the statement when we replace M,, by U{M,, : 8 < «
and ng < vg}. This is enough — for o = wy we get the result.

For oo = «(0) this is trivial.

For a limit - nothing new arises.

The only case we have to prove something is 7, <1 V¢, & a successor. We can consider
all the countably many possible b'~“U{M,, : 8 < a and ng<vi_¢}, so (b, : n < w)
is determined up to Wg possibilities, as really the identity of (b, : n < w) is not
important just the branch which (b, : n < w) determines and all those branches
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belong to N,_1. So the type pg = {xéT Nby, <j & :n < w} € Ny, and we just
have to prove that it is omitted. Let ng be the (<1-) predecessor of M, . By the
induction hypothesis, M,,, omits po; if we fail, by the construction it is not omitted
by M,,. But omitting pg is equivalent to omitting

. IV b<by] .
p=A{xeT&[b<px] » t M, = “beT” ),

so by 6.3(1) the type p is not strongly undefined. But by T*’s choice this means it
is represented in M, , a contradiction.
2) Same proof. Us.8

Conclusion 6.10. 1) If M,. = “T is a tree with § levels, cf(8) is reqular un-
countable”, then every full branch of TMv* (i.e., a linear ordered subset which has
members in an unbounded set of levels) is represented in M- .

2) The set of levels ofT can be partially ordered as long as it is Ny —directed (in the
sense of T* ), and we get the same result.

Proof. 1) By 6.8 + 6.4 Step C, i.e., consider expansions of N,, by a branch B of TNv
(i.e., a unary relation). Pick i such that f;(n1, (M, ,B)) = 0 iff for some v € “12,

ne"(0) < v and B', a full branch of 7™~ (M,, ,B) < (M,,B’).

MNa
2) Similar. Us.10

Definition 6.11. For an atomic Boolean ring B:
1) B is non-meagre, if, identifying b € B with {z : € B*®;2 <g b}, B is a non-
meagre family of subsets of B (B is the set of “atoms” of B), i.e., B can be

represented as a countable union |J Y,, each Y,, nowheredense (i.e., for every finite
n<w

a; C ay C B® there are finite by C by C B* such that a; C by,a2 \ a1 C by \ by,

and for no ¢ € B do we have Nby = by).

Observation 6.12. 1) If Y C P (X) (i.e., is a family of subsets of X), X' C X,
and {yNX':y € Y} is a meagre subset of Z(X'), then Y is a meagre subset of
P(X).

2) IfY is a meagre (or nowheredense) subset of P(X), then the set {a C X : a is
countable, {yNa:y €Y} is meagre (or nowheredense) subset of a P (a)} is a club
of XM ={a C X : |a] = Ng}.

Question 6.13. Phrase the statement which suffices for the proof instead CH (it
seems the existence of a non-meagre set of cardinality Ny suffices).

Conclusion 6.14. Assume w™0 is well ordered, and suppose M, = “by is a
Boolean ring of subsets of a including the singletons, |a| > Rg, by is non-meagre
and by is a Boolean algebra”. Then every complete embedding of by into by is
represented in M.

Proof. In M, let (W, <) be the set of countable subsets of b3' U by ordered by
inclusion. We define a tree ¢ with W as a set of levels by:

t ={(c,f): céW and f is a function from ¢ N b3" into by}.

We define the order of £ by (c1, f1) < (co, f2) < ¢1 C co & f1 C fo (defined in M,-).
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Now, if f is a complete embedding of b}** into b)**, then for a club E of
a < wi, the restriction f [ bq[M,+4] is a complete embedding of by [M, -] into
ba[M,«14] (see [Shed]). Let the ordinal v be such that

M, = “a, = the non-stationary ideal on [by[M,-] Uby[M,]%”.

So for o € EN Sy, {b: My« = béay(14q)} is exactly (by[M,-]Uba[M,«]) N M, q.
Now we apply 6.8(2) with f,a.,14q) N b [My«1o],bf", b1, by here standing
for f, a, ay, by, by there. We get § = g, € M,~ as there. But a € F, so
g = f | b¥*[M,«4]. Clearly gaéi%(lm and for « < B from E NS, we have:
(W.<) E “uta) € @wars)”st F “9a < 957 and {aya4a) : @ € ENS,} s
cofinal in (W, <), and {g, : @ < w;} induce a branch of ¢.
By 6.10(2) we finish. Ue.14

Conclusion 6.15. Assume w™0 is well ordered and

M, = “ (a) by is a Boolean ring,

= is a family of mazimal antichains of by,

(b) for 2 €&, the sub-algebra sub-Boolean ring
b[lz] ={ze€b: foreveryy e Z,xNy=0Vany=y}
by is non meagre, i.e. essentially as a family of subsets of b =

(¢) E is Ny-directed (order: bigger means finer),

(d)  for every x € by \ {0}, there are 2 € B, and y € E,
such that 0 < y < x or at least
r=supy {z: forevery=2 € E andy € b[lE
r<y=2z<y}

(e) bg is a Boolean ring”.

] we have:

Then every complete embedding of by[M,«] into ba[M,«] is represented in M.
Proof. Combine 6.14 and 6.10(2). Os.15

Definition 6.16. For a model (4, <, R) of t*°¢ (see Definition 3.1) and X C A we
say that:

1) A set X C A is nwd (nowhere dense) when every cone has a subcone disjoint
to it (a cone is {x : zp < x}). A set X C A is meagre if it is a countable union of
nowhere dense sets.

2) A set X C A is non-medium meagre when if the family of countable a C A
satisfying (), = (*)a[X] is an unbounded subset of [A]<N0 where

(%)a[X] : (A,<,R) | a is a model of t*°°, and we cannot find X,,, a nwd subset of
a (for n < w) such that: a = |J X,, and for every ¢ € A there is n < w satisfying:

n<w
{bea:b<c} C Xy
If X = A we may omit it. We say in this case that X is non-meagre in (4, <, R)
for a.
3) X C A is non-weakly meagre when for a stationary set of a € [A]<?° we have

(%)a[X].

Remark 6.17. 1) For an ordered field or just a dense linear order (A4, <) we use A=
the set of open intervals of A;, with < being subintervals, R being disjoint.
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2) If we can get the parallel of 6.6, 6.11, 6.14 to models of t*°¢ (hence to ordered
fields), we later get stronger results, the missing point is 6.14(1) — downward mono-
tonicity of non-meagre.

Claim 6.18. 1) If (A1, <, R) is a model of t*°¢, X C A is meagre in (A, <, R), then
for some club S C [A]<X0, for every a € S, we have: X is meagre in (A, <, R) for
a. This in turn means: X is weakly meagre. If X is medium meagre in (A, <, R),
then X s weakly meagre.

Proof. Should be clear. Ue.18

Claim 6.19. [CH/
Assume v € “12, for £ =1,2

M, = “(A%, <* R") is a model of t*°°”

and

M, = “qt C At is countable’.
Also (AL, <L, RY) | a® = t*°¢, and M, = “for (A, <Y RY), (%)a from 6.16(2)
holds”. Then for every embedding f of (A',<', R\)Mv | a into (A2, <% R?)Mv
mapping a' into a®> we have:
® for every cone C of (AY, <!, R\ )M~ | a, on some subcone C' of
(AL, <Y RYMyta, we have:
(%) there is r € M, such that:
(i) M, = “g is a function with domain {zéa' : z¢C'},
(ii)  for xéMvDom(g) we have: g(x) is a subset of A2,
(iii)  if by, bee™MrDom(g), and by R bo, then
(Fx1ér(b1))(3z26d(b2))[x1; R?; 22 hence x1, x2 are <'-incomparable],

(iv)  for béMvDom(g), we have: f(b) € §(b).
Proof. Straightforward (like the proof of 6.6(2)). Oe.190

Claim 6.20. /CH]

Assume that M, = “(Ag, <% RY) is a model of t*°¢ and for { = 1 non-medium
meagre” and f is a dense embedding (see [Shed], i.e., on branches) of (A, <!
, ROYMo into (A2, <2, R\)Mv* | Then for a dense set of cones C (of (AY, <!, RY),
f | C is represented in M.

Proof. Like the proof of 6.14 (using Fodor lemma). Os.20

Definition 6.21. 1) We say that B is a partial Boolean algebra if the functions
(r Ny,z Uy, z —y,0,1) are partial (but 0B well defined), so the identities are
interpreted as “if at least one side is well defined then so is the other and they are
equal”. (So a Boolean ring is a partial Boolean algebra.) Let a < b mean aNb = a,
so 7[bNa = 0] means bNa is an element # 0 or undefined.

2) Let B be a partial Boolean algebra. A set Z C B is called a maximal antichain
of B when:

(%) (a) a€E=a#0
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b)) a£be=Z=anb=0
(¢) beB\{0}= V (F¢)lanb=c#0g].
a€=
3) For a partial Boolean algebra B and a maximal antichain =, let BZ be a partial
Boolean algebra with universe B and BZ |= “b < ¢” iff for every a € Z,[bNa #
0=cNa#0].
4) For B, = as above, and Y C B we call Y nowhere dense for (B, Z), if for every
partial finite function h from Z to {0,1} there is a finite function At from E to
{0,1} extending h and such that for no ¢ € Y do we have h*(a) = 0= anNc =
0,ht(a)=1=a<ec.
We say Y is p-meagre for (B, =) if it is the union of < p nowhere dense for
(B, 2) sets; if 4 =Ny we omit it.
We say B is u-meagre over = when B is p-meagre for (B, E) as a subset of B.

Claim 6.22. Assume w™0 is well ordered. If b, b are Boolean rings in
M** =M, , E asin 6.12(a),(c),(d) and

(b)~ for every E € E, bT is not meagre (in the sense of N**)
then every complete embedding of b{VI** into bé\/[** 1is represented wn M**.

Proof. Straightforward. Ug.22

Theorem 6.23. [CH/ 1) The logic L extended by the following quantifiers is still
Rg-compact (getting models of cardinality Ny :

(A) complete embedding of one Boolean ring to another,

(B) embedding of one ordered field into another with dense range.

2) In the logic Ly, x, extended by 3=%t and the following quantifiers we still cannot
characterize well ordering of order type < wy:

(A) non-meagreness of a family of subsets of a countable set,
(B) complete embedding of a non meagre B.A. into a Boolean algebra,

(C) dense embedding of a non meagre ordered field considering the interval un-
der inclusion as a model of tP°°.

3) The logic L extended by 32X+ and the quantifier from (A),(B),(C) of part (2),
is No-compact, getting models of cardinality Xy.

Proof. 1) Assume we are given such a theory T in this logic. First use §5 to get
an Rj-compact model N* of T (e.g. in L[A],; A C 2™ code T and £ (X;), which
satisfies (A)+(B), then create a model €* of T in which N* is a member. Let
M* < € | M*|| =Ry, N* € M*, and apply this section.

2) Should be clear. Og.03

Remark 6.24. You can add in 6.23(2),(3) also the quantifier (aa X), i.e., make “for
stationary many countable z C y” be standard. For this in 6.5(5) we should replace
“stationary many o” by “club many «”, and so restrict somewhat the Z-s which
we may use.
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Claim 6.25. Assume w™0 is well ordered. For by, by € M,« such that by[M,-] is
a triple (P, Q%, R, P*) with the strong independence property (this means satisfying
No sentences).

1) Claim 6.6, Def.6.11, conclusion 6.1/ generalize naturally to dense embedding
(see [Shed] ).
2) In 6.23(2) we can add:

(D) dense embedding of one interpretation of a model of the strong independence
property into another.

Proof. No new point. Us.25

Remark 6.26. 1) We can in 6.2 and say that T* suitably omit I when T' C {p(Z) €
L(rp«)} and

() if T*U{(Qq,Yn) e (Qalyl)(ai)w(j, Yis- -, Yn)} is consistent then for semi
o(Z) € p, T*U{(Qo, yn) - - - (Qo,y1)(FZ)(Y(Z,y1 - - . yn) A—p(Z)) and has the
“omitting type theorem”.

2) We can replace here (Qay) by (pr) where I is a bigness notion and lg § = 1g Zr.

Theorem 6.27. [CHJ
Let T be countable and complete first order theory. ThenT has a model M* of
cardinality Ny such that:

(A) If by, by are interpretations of Boolean rings in M*, every complete em-
bedding of by to by is definable (from parameters) in M*

(B) if F1,Fy are interpretation of dense linear ordered in M*, every dense em-
bedding of Ty into Fy is on a dense set of interval definable (from parame-
ters) in M* .

(C) The parallel to interpretation of the theorem kind,

Proof. Use [She83b]+the theorem above. Oe.27
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