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Abstract. The paper settles the problem of the consistency of the existence

of a single universal graph between a strong limit singular and its power.
Assuming that in a model of GCH κ is supercompact and the cardinals θ < κ,

λ > κ are regular, as an application of a more general method, we obtain a

forcing extension in which cf(κ) = θ, the Singular Cardinal Hypothesis fails at
κ and there exists a universal graph at cardinality λ ∈ (κ, 2κ).
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§ 0. Introduction

§ 0(A). Background.

The existence of universal graphs at infinite cardinalities has received extensive
investigation (where we mean that the graph G is universal at cardinality |G| if
every graph of the same cardinality is isomorphic to some induced subgraph of
G). According to the classical result [Rad64], the so called countable random
graph is a universal graph at ℵ0 (which is also unique, up to isomorphism). A
classical result (which now follows as a standard induction argument) establishes
the existence of a κ+-saturated graph on the set 2κ [CK73]. Consequently, there
exists a graph on 2κ into which every graph on κ+ embeds (and we can replace
κ+, 2κ, κ+-saturated with κ, 2<κ, κ-special). Therefore, assuming GCH, there
exists a universal graph at every infinite cardinality. (However, concerning certain
proper classes of graphs the situation is more intricate, even for the countable
case, see [FK97], [Kom89], [KS95], [CS16], [KS19].) Regarding the problem of
universal objects in more complex theories (i.e., beyond graphs) and the relevance
of the present work in model theory, readers may consult the survey [She21] or
earlier works such as [Dža05]. See also recent publications such as [She20] and
[Sheb]. Another related question, the existence of universal Aronszajn trees has
been extensively studied as well, see [Tod07], [DS21], and most recently [BNMV23].

However, without assuming GCH, it is generally much more challenging to
construct universal objects. Furthermore, after adding κ++ Cohen subsets to a
regular κ, there are no universal graphs on κ+, as shown in [KS92].

Regarding positive results, for regular cardinals κ < λ, there consistently exists a
universal graph of size λ, while 2κ > λ [She90]. Moreover, the argument presented
in [She90] also provides a universal ω-edge colored graph on ω1 assuming ¬CH.
Features of this method will be used in this paper. However, a recent study [SS21]
proved that assuming ¬CH, the existence of a universal graph on ω1 does not imply
the existence of a universal ω-edge colored graph on ω1. Furthermore, it should
be noted that when considering specific classes of graphs, there are both negative
[Koj98] and positive results [Mek90] for universal objects and weak universal fam-
ilies. (Given a class Kλ of models each of which is of cardinality λ, κ < λ < 2κ,
we say that the family F ⊆ Kλ is a weak universal family for Kλ if every G ∈ Kλ

embeds into some G∗ ∈ F , and |F| < 2κ). It is also consistent that there exists a
singular κ, 2κ > κ+, and there is no universal graph on κ+ [FT10][Theorem 3.3]
(and it follows from their proof that κ is strong limit). For more consistency results
in the absence of GCH, see [She93] and [DS04]. It is worth mentioning that dealing
with the case λ = κ+ was considerably easier in all the aforementioned cases.

In this paper, we investigate universal graphs in the interval between a strong
limit singular cardinal and its power. The motivation for this question stems from
the following observations. Recall that the cardinal exponentiation 2ℵ0 can be quite
large and at the same time relevant forcing axioms such asMAmay hold. Similarly,
for µ = ℵ1 = 2ℵ0 , 2µ can be large, or for µ = µ<µ, parallel results hold for forcing
notions that are, for example, < µ-complete and satisfy a strong form of µ+-cc (the
strong form is necessary, see [Shear]). On the other hand, much less is known for
strong limit singular cardinals µ, and thus the existence of universals serves as a
central test problem for examining the consistency of forcing axioms at µ.
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4 MÁRK POÓR† AND SAHARON SHELAH∗

In this paper, we continue the work of Džamonja-Shelah in [DS03], which demon-
strated the consistency of the statement (∗) assuming the existence of a supercom-
pact cardinal.

(∗) (a) µ is strong limit singular and µ++ < 2µ,

(b) there is a graph G∗ of cardinality µ++ which is universal for graphs of
cardinality µ+ (equivalently there is a sequence Ḡ = ⟨Gα : α < µ++⟩ of
graphs each of cardinality µ+, universal for the family of such graphs).

for the case cf(µ) = ℵ0, and later Cummings-Džamonja-Magidor-Morgan-Shelah
proved this for arbitrary cofinality in [CDM+17]. Earlier, Mekler-Shelah [MS89]
had proved such consistency results replacing (b) with uniformization principles;
also starting naturally with a supercompact cardinal. Later, (∗) was proved to be
consistent for small singular µ’s too, see [CDM16], [Dav17].

Our goal is to address the naturally arising problem by replacing weak universal
families (in the sense of (∗)(b)) with single universal objects and by considering
λ in the range of (µ, 2µ) instead of restricting it to µ+. Thus, we formulate the
following assertions:

(∗)+ (a) µ is strong limit singular and µ++ < 2µ,

(b) there is a universal graph G∗ in µ+, i.e. universal for graphs of cardi-
nality µ+, G∗ itself is of cardinality µ+,

(b)+ as (b), but changing µ+ for some cardinal in (µ, 2µ).

To initiate our proof, we consider a supercompact cardinal κ as our starting
point. We demonstrate, as part of a more general axiomatic framework, that a
stronger version of a universal on λ > κ (e.g., λ = κ+) is sufficient to guarantee
the existence of a universal graph on λ even after forcing with a P that satisfies the
axiomatic requirements. We first establish a general framework for the preparatory
forcing, followed by the construction of a strong universal graph suited to the
present framework, as in [She90]. (It is worth noting that certain large cardinal
hypotheses are essential, as the failure of the Singular Cardinal Hypothesis itself
implies the existence of an inner model with the Mitchell order o(κ) = κ++ for a
measurable cardinal κ; in fact, these are equiconsistent [Git91].)

The organization of the paper is as follows. In §1 we introduce the concept of
(λ, κ) − i (i = 1, 2) systems, and in Claim 1.5 we prove that extending a ground
model already admitting some strong version of universal using such a (λ, κ) − i
system results in a model with the desired universal object. In §2 we prove that
Prikry forcing, Magidor forcing and Radin forcing give rise to a (λ, κ) − 1 system
provided the relevant filters satisfy some reasonable directedness assumptions. In
§3(A) we prepare the ground, in Claim 3.2 build the framework to force (λ, κ) −
1 systems using a supercompact cardinal. In §3(B) we construct a forcing for
obtaining the strong universal, that fits in the framework in Claim 3.2.

In works in preparation we intend to replace graphs by more general classes;
much of our work is not specific to graphs. Also for consistency of (∗)+ for a small
singular µ, e.g. µ = ℵω = ℶω [PS].
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§ 0(B). Preliminaries. We are interested in universal objects in the class of
graphs, i.e. models of the first order language admitting no functions, only a sin-
gle symmetric, nonreflexive binary relation. Under ordinals we always mean von
Neumann ordinals, and for a set X the symbol |X| always refers to the small-
est ordinal with the same cardinality. If f is a mapping with dom(f) ⊇ X, then
f“X = {f(x) : x ∈ X}, i.e. the pointwise image of X. For a set X the symbol
P(X) denotes the power set of X, while if κ is an ordinal we use the standard nota-
tion [X]κ for {Y ∈ P(X) : |Y | = κ}, similarly for [X]<κ, [X]<κ, etc. By a sequence
we mean a function on an ordinal, where for a sequence s = ⟨sα : α < dom(s)⟩
the length of s (in symbols ℓg(s)) denotes dom(s). Moreover, for sequences s, t let

s ⌢ t denote the natural concatenation (of length ℓg(s) + ℓg(t)). For a set X, and
ordinal α we use αX = {s : ℓg(s) = α, ran(s) ⊆ X}, and for cardinals λ, κ we use
the symbol λκ = |κλ| (that is, the least ordinal equivalent to it).

We call a set T ⊆ <αX a tree (where α is an ordinal), if T is downward closed,
i.e. whenever t ∈ T , γ < ℓg(t), we have t↾γ ∈ T . We call t a leaf, if there is no
s ∈ T for which t ⊊ s.

Regarding iterated forcing and quotient forcing we will mostly use the terminol-
ogy of the survey [Bau76]. However we adhere to the following conventions.

Convention 0.1. Regarding forcing we follow the convention that “p ≤ q” means
that q is stronger, i.e. giving more information.

Convention 0.2. A notion of forcing P is <µ-directed closed (<µ-closed, resp.), if
for any directed (increasing, resp.) system {pα : α < ν < µ} there exists a common
upper bound p∗ in P.

A filter F ⊆ P(X) is κ-complete, if for each {Fα : α < ν < κ} ⊆ F we have⋂
α<ν Fα ∈ F . A partial order P is < µ-directed, if for each {pα : α < ν < µ} ⊆ P ,

there exists a common upper bound p∗ ∈ P . (For example, if F ⊆ P(X) is a κ-
complete filter on X, then F is < κ-directed with respect to the relation ⊇).

§ 1. The framework and deducing the consistency results

§ 1(A). What We Do.

In the present paper we introduce a general framework and apply it for the class
of graphs.

We shall start with a large cardinal, such as a Laver indestructible supercompact,
or with forcing a relative of it. We then have a two step forcing.

First, a forcing P with the following three properties:

(a) preserving the largeness of κ,

(b) moreover, in VP

there is a normal κ-complete filter D on κ such that (D, ∗⊇) is λ+-directed
for a suitable cardinal λ < 2κ,

(c) preparing the ground for the results we like to have on λ, e.g. has a strong
version of “there is a universal graph in λ, λ < 2κ”.

Second, a forcing Q (in VP) such that:

(d) Q makes κ singular,
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(e) preserves κ is strong limit and 2κ large.

Thirdly,

(f) to get the desired property of λ, we use Q that fits in the framework in
Definition 1.2 below,

(g) then prove the existence of a universal object using the framework

In §1(B) Definition 1.2 defines the family of (λ, κ)-systems fitting (f), then we
deduce the existence of universal graphs in λ (a case of (g)).

In §2 we shall prove that classical forcings for making κ singular fit our frame-
work, i.e. satisfy (d)-(g).

In §3 we shall deal with finding P as in (a),(b),(c), so we have to combine the
specific forcing (say forcing a universal graph in λ, i.e. clause (c)) and guaranteeing
the existence of e.g. a normal ultrafilter of which is λ+-complete in a suitable sense
(i.e. clause (b)).

§ 1(B). (λ, κ)-systems.
The following is standard, but we have to include these definitions in order to avoid
ambiguity, thus clarify what we mean under κ-Borel sets.

Definition 1.1. Assume that µ is a cardinal, Y is a set.

(1) We let Bµ ⊆ P(Y 2) denote the set of µ-Borel subsets of Y 2, i.e. Bµ(
Y 2) ⊆

P(Y 2) is the smallest family that satisfies
• for each function f : dom(f) → 2 with dom(f) ∈ [Y ]<ℵ0 the basic

open set (wrt. the product topology)

[f ] := {g ∈ Y 2 : g ⊇ f} ∈ Bµ(
Y 2),

• whenever ⟨Bi : i ∈ µ⟩ is a sequence with (∀i < µ) Bi ∈ Bµ(
Y 2),

necessarily
⋃

i∈µ Bi ∈ Bµ(
Y 2),

• ∀B ∈ Bµ(
Y 2): (Y 2 \B) ∈ Bµ(

Y 2).
(2) we say that the tree

T ⊆ <ω{∪,¬, [f ] : f : dom(f) → 2, dom(f) ∈ [Y ]<ℵ0}

is a code for a set in Bµ(
Y 2) (in symbols, T ∈ codeµ(Y )), if

• T \ {⟨⟩} is nonempty, moreover, it has a stem s ∈ T of length 1
(i.e. ℓg(s) = 1, and for each t ∈ T with ℓg(t) > 1 s ⊆ t),

• T is well-founded, and
• for each t ∈ T \ {⟨⟩} we have that

t is a leaf of T ⇐⇒ t(ℓg(t)− 1) = [f ] for a partial function f above,

• for each t ∈ T \ {⟨⟩}, if t(ℓg(t) − 1) = ¬, then neither does T branch
at t, nor is t a leaf (that is, ∃!t′ ∈ T , ℓg(t′) = ℓg(t) + 1, t ⊊ t′), and

• for each t ∈ T \ {⟨⟩} with t(ℓg(t) − 1) ̸= ¬, t has at most µ-many
immediate successors, that is,

|{s ∈ T : t ⊊ s, ℓg(s) = ℓg(t) + 1}| ≤ µ

(equivalently, |T | ≤ µ),

Paper Sh:1185, version 2024-08-11. See https://shelah.logic.at/papers/1185/ for possible updates.



UNIVERSAL GRAPHS BETWEEN A STRONG LIMIT SINGULAR AND ITS POWER 7

(3) we can define the evaluation BT for T ∈ codeµ(Y ) in the obvious fashion,
by induction on the rank of T . If T = {⟨[f ]⟩}, then we let BT = [f ].
Otherwise, T necessarily has a stem s = ⟨s(0)⟩ = ⟨∪⟩, or s = ⟨¬⟩. For each
t ∈ T , ℓg(t) = 2 we can naturally define the tree Tt below t, i.e.

Tt = {u : ⟨s(0)⟩⌢ u ∈ T, s(0)⟩⌢ u ⊇ t}.
Now if s(0) is the symbol ∪, then we let

BT =
⋃

t∈T,ℓg(t)=2

BTt .

Otherwise, if s(0) = ¬, then there exists a unique t ∈ T , ℓg(t) = 2, and we
let

BT = Y 2 \BTt .

(4) Using the natural identification between Y 2, and P(Y ), we can talk about
µ-Borel subsets of P(Y ), Bµ(P(Y )), and so about codes for µ-Borel sub-
sets of P(Y ).

Definition 1.2.
1) We say r is a (λ, κ)− 1-system when r = (R, X

˜
,≤pr,S ) = (Rr, X

˜
r,≤r,pr,Sr)

satisfies the following

(a) κ is strongly inaccessible,

(b) λ ∈ [κ+, 2κ),

(c) R is a forcing notion preserving “κ is strong limit”,

(d) X
˜

is an R-name of a subset of κ,

(e) ≤pr ⊆ ≤R is a quasi-order,

(f) for each p ∈ R we have Sp ⊆ {q̄ ∈ κR : p ≤pr qε for every ε < κ},
(g) whenever p ∈ R, τ

˜
are such that p ⊩ ”τ

˜
∈ {0, 1}” (a truth value), then :

(∗) there are q̄ ∈ Sp, Ȳ = ⟨Yε : ε < κ⟩ ∈ κVκ, µ̄ = ⟨µε : ε < κ⟩ ∈ κκ and
T̄ = ⟨Tε : ε < κ⟩, where

•1 each Tε ∈ V is a code for a µε-Borel set Bε ∈ Bµε
(P(Yε)) (in

the sense of Definition 1.1 (2), (4)),

•2 qε ⊩ “τ
˜
= 1 ⇐⇒ X

˜
∩ Yε ∈ BTε

”;

(h) for each p ∈ R, and for each sequence ⟨q̄α : α < λ⟩ with ∀α < λ q̄α ∈ Sp,
there exists q∗ ∈ R such that for every α < λ there exists εα < κ such that
qα,εα ≤R q∗.

2) We say r is a (λ, κ) − 2-system when above in clause (g) we restrict ourselves
to τ

˜
’s that are RX

˜
-names, where RX

˜
⋖ R is the complete subforcing adding only

X
˜
[G] (in other words, if G ⊆ R is generic over G, then letting Z = X

˜
[G], V[Z] is

a RX
˜
-generic extension of V);

2A) We may omit the 1 in “1-system”, so that “(λ, κ)-system” is always meant as
“(λ, κ)− 1-system”.
3) We say r is nice when the forcing Rr does not collapse any cardinal.

Discussion 1.3.
1) Here we only deal with the question “when is there a universal graph in the
cardinal λ?”.
2) Of course, in Definition 1.2, we are interested in the case ⊩Rr “κ is singular”.
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3) There are such r’s: Prikry forcing, Magidor forcing, cases of Radin forcing, see
Claim 2.1 and onwards. (In the specific case of Prikry forcing (g) can be simplified,
as Yε will be an ordinal below κ, and the name τ

˜
will depend on the finite set in

which the Prikry generic set meets the ordinal Yε.)

The following notion is necessary to phrase the framework for the main result
(Claim 1.5).

Definition 1.4. Suppose that κ, λ are cardinals.

1) We let Kκ denote the class of edge colored graphs with the set of colors
indexed by κ, so formally it is defined as follows. The model M belongs to
Kκ, iff

(a) M = (|M |, RM
ε )ε<κ,

(b) RM
ε is a symmetric irreflexive two-place relation on |M |,

(c) ⟨RM
ε : ε < κ⟩ is a partition of {(a, b) : a ̸= b ∈ |M |}.

2) (Kκ)λ is the class of graphs in Kκ that have λ-many vertices, i.e. for M ∈
Kκ we have

M ∈ (Kκ)λ ⇐⇒ ||M || = λ.

Claim 1.5.

1) Assume that
(i) ι ∈ {1, 2},
(ii) κ, λ are fixed cardinals, κ < λ < 2κ,
(iii) r ∈ V is a (λ, κ) − ι-system, and let Vι = VRr if ι = 1; Vι = V[Xr]

in case of ι = 2.
(iv) there is a universal member of (Kκ)λ (in V),
Then

Vι |= ”there is a universal graph of cardinality λ”

2) Moreover, in general, if (i)-(iii) hold, and
(iv)χ (in V) there is a weak universal family of size χ in (Kκ)λ , i.e. a

system ⟨Mi : i < χ⟩, for which for each M ∈ (Kκ)λ there exists
i0 < χ such that M can be embedded into Mi0 (in the sense of Kκ),

then

(1.1)

Vι |= ∃⟨Gi : i < χ⟩ :
⊚1 (∀i < χ) Gi is a graph on λ,
⊚2 and for every graph G of size λ there is i0 < χ,

s.t. G can be embedded into Gi0 .

Proof. (Claim 1.5) First note that it suffices to prove 2), as 1) is just a special case
with χ being equal to 1.

(∗)1 Let (in V) ⟨(Uϑ, ξϑ, Zϑ) : ϑ < κ⟩ list
{(U, ξ, Z) : Z ∈ Vκ, ξ < κ is a cardinal,

U is a code for an ξ − Borel subset of Z},
Assume that

(∗)2 there is a sequence M̄ = ⟨Mδ : δ < χ⟩ in (Kκ)λ that forms a universal
sequence for (Kκ)λ (in the universe V, of course) i.e. M̄ witnesses (iv)χ;
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where Mδ = (λ, . . . , RMδ
ε , . . .)ε<κ. It is enough to prove that Vι satisfies (1.1).

Now we define the sequence of Rr-names G
˜

δ (δ < χ) for graphs as follows.

(∗)3 (a) the set of nodes of G
˜

δ is λ (and so RG
˜

δ ⊆ λ× λ),

(b) for α ̸= β < λ let the truth value of “(α, β) ∈ RG
˜

δ” is defined as

follows. For the unique ϑ < κ with (α, β) ∈ RMδ

ϑ we demand

Vι |= (α, β) ∈ RG
˜

δ ⇐⇒ X
˜

∩ Zϑ ∈ BUϑ
.

So clearly

(∗)4 for each δ < χ G
˜

δ is an Rr-name for a graph with set of nodes λ.

Hence it suffices to prove:

(∗)5 ⊩ “Vι |= ⟨G
˜

δ : δ < χ⟩ is a universal sequence in the class of graphs of size
λ”.

So why does (∗)5 hold? Assume

(∗)5.1 p ⊩ “G
˜

∗ ∈ Vι is a graph with set of nodes λ”.

Let ⟨(αγ , βγ) : γ < λ⟩ ∈ V list the set of pairs (α, β) such that α < β < λ. For each
γ < λ (considering the Rr-names τ

˜
γ for the truth value of (αγ , βγ) ∈ RG

˜
∗) clause

(g) of Definition 1.2 1) gives q̄γ = ⟨qγ,ε : ε < κ⟩ ∈ Sp, ζ̄γ = ⟨ζγ,ε : ε < κ⟩ ∈ κκ
and T̄γ = ⟨Tγ,ε : ε < κ⟩, ⟨Yγ,ε : ε < κ⟩ such that for each γ < λ and ε < κ

•1 Tγ,ε is a code for a ζγ,ε-Borel subset of P(Yγ,ε) (in the sense of Definition
1.1 (2)-(4)))

•2 qγ,ε ⊩R (αγ , βγ) ∈ RG
˜

∗ ⇔ X
˜

∩ Yγ,ε ∈ BTγ,ε
.

Now by clause (h) of Definition 1.2 1), there are q∗ ∈ R, ⟨εγ = ε(γ) : γ < λ⟩ ∈ λκ
such that:

•3 q∗ is above qγ,ε(γ) for every γ < λ,

and recalling the enumeration from (∗)1, there exists ⟨ϑγ = ϑ(γ) : γ < λ⟩ ∈ λκ
such that

•4 (Tγ,ε(γ), ζγ,ε(γ), Zγ,ε(γ)) = (Uϑ(γ), ξϑ(γ), Yϑ(γ)) holds for every γ < λ.

Now we define the model M∗ ∈ (Kκ)λ ∩V as follows:

(∗)5.3 (a) M∗ = (λ, (RM∗
α )α<κ), where

(b) for every ϑ ∈ κ we have

RM∗
ϑ = {(αγ , βγ) : (γ < λ) ∧ (ϑ(γ) = ϑ)}.

Clearly

(∗)5.4 M∗ ∈ (Kκ)λ (with the underlying set of nodes being λ), M∗ belongs to V.

Now choose a suitable δ < χ and a function f so that:

(∗)5.5 f : M∗ → Mδ is an embedding, f ∈ V

[which exists by (∗)2.] Finally it remains to check that

(∗)5.6 q∗ ⊩ “f is an embedding of G
˜

∗ into G
˜

δ”.
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Recall that q∗ ≥ qγ,ε(γ) for each γ < λ by •3. Fix γ < λ. Using •2 and •4 we get

(1.2) qγ,ε(γ) ≤ q∗ ⊩ (αγ , βγ) ∈ RG
˜

∗ ⇔ X
˜

∩ Zθ(γ) ∈ BUθ(γ)
.

Also, note that by (∗)5.3 the color of the pair (αγ , βγ) in M∗ is ϑ(γ), i.e. (αγ , βγ) ∈
RM∗

ϑ(γ), and as f : M∗ → Mδ is an embedding, clearly

(f(αγ), f(βγ)) ∈ RMδ

ϑ(γ).

Recalling (∗)3, we obtain

(1.3) ⊩ [(f(αγ), f(βγ)) ∈ RG
˜

δ ⇐⇒ X
˜

∩ Zϑ(γ) ∈ BUϑ(γ)
].

Finally, combining (1.2) and(1.3) we obtain

q∗ ⊩ [(αγ , βγ) ∈ RG
˜

∗ ⇐⇒ (f(αγ), f(βγ)) ∈ RG
˜

δ ],

as desired.
□Claim1.5

Naturally we can ask:

Question 1.6.
1) What can we say about universals in (Kκ)λ?
2) An old open problem concerns the case of the theory of triangle free graphs
[Mek90], and similarly it is open for Tfeq (equivalently Tceq, see [Sheb]). On Tfeq we
refer the reader to [She93], or [DS04], and on consistent instances of non-existence
of universals in case of Tceq see [Sheb].
3) Moreover, what can we say about (ModT ,≺) for T simple? Or even NSOP2?
(of cardinality < κ). We have to be more careful because of, e.g. function symbols.

A work in preparation deals with 1.6 2), 3). Concerning 1.6 1) we have the following
negative result (note that this does not reflect on Claim 1.5):

Claim 1.7. Assume κ is strong limit singular and κ < λ < 2κ. Then in (Kκ)λ
there is no universal member.

Proof. By [She06, Thm 1.13 and 1.14 (2) on RGCH]

(∗)0 there is a regular σ ∈ (cf(κ), κ) such that λ[σ,κ] = λ, i.e. there is P ′ ⊆ {u ⊆
λ : |u| ≤ κ} of cardinality λ such that every u ⊆ λ of cardinality ≤ κ is the
union < σ members of P ′.

Therefore, as σ = cf(σ) > cf(κ), replacing each u ∈ P ′ with a collection uα ∈ [u]<κ

(α < cf(κ)) satisfying u =
⋃

α<cf(κ) uα we obtain

(∗)1 there is P ⊆ {u ⊆ λ : |u| < κ} of cardinality λ such that every u ⊆ λ of
cardinality ≤ κ is the union < σ members of P.

FixM∗ ∈ (Kκ)λ and we shall prove that it is not universal; without loss of generality
the universe of M∗ is λ. Now for each u ∈ P and α < λ let

v(α, u,M∗) = {ε < κ : for some β ∈ u we have (α, β) ∈ RM∗
ε },

so v(α, u,M∗) ⊆ κ has cardinality < κ. Let

P1 = {w ∈ [v(α, u,M∗)]
≤cf(κ) : u ∈ P, α ∈ λ},

so

(∗)2 P1 ⊆ [κ]≤cf(κ).
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Now

(∗)3 |P1| ≤ |P|+ 2<κ ≤ λ < 2κ = κcf(κ).

Hence

(∗)4 we can find v ⊆ κ of cardinality cf(κ) which is not in P1, moreover, u ∈
P1 ⇒ |u ∩ v| < cf(κ),

which is justified by the following argument: Let ⟨vγ : γ < 2κ⟩ be a sequence of

members of [κ]cf(κ) with any two having intersection of cardinality < cf(κ), hence
for every u ∈ P1, {γ < 2κ : |u ∩ vγ | = cf(κ)} has cardinality ≤ 2cf(κ) < κ, so all
but ≤ λ of the vγ ’s are as required.

Now consider the following N :

(∗)5 (a) N = (A ∪ B, . . . , RN
ε , . . .)ε<κ belongs to (Kκ)σcf(κ) , where |A| = σ,

|B| = σcf(κ), A ∩B = ∅,
(b) RN

ε ̸= ∅ iff ε ∈ v,

(c) letting ⟨εi : i < cf(κ)⟩ list v (from (∗)4), for every sequence ᾱ = ⟨αi :
i < cf(κ)⟩ in A with no repetitions there is β = β(ᾱ) ∈ B such that
(αi, β) ∈ RN

εi for i < cf(κ).

Now if g embeds N into M∗ then since |Rang(g ↾ A)| = σ < κ, by (∗)1 it is the
case that for some {uε : ε < ∂ < σ} ⊆ P, we have Rang(g ↾ A) = ∪{uε : ε < ∂}.
Now as |A| = σ = cf(σ) but ∂ < σ, there is ε < ∂ such that |uε ∩ Rang(g ↾
A)| ≥ σ ≥ cf(κ) so we can choose pairwise distinct αi ∈ A (i < cf(κ)) such that
{g(αi) : i < cf(κ)} ⊆ uε. Let β = β(ᾱ) ∈ B given by (∗)5(c). So g(β) is well
defined and we get an easy contradiction by (∗)4.

This shows that N cannot be embedded into M∗, hence we are done. □1.7

Remark 1.8. In fact, the argument above could be modified so that it work with
weaker assumptions: the conditions ℶω(cf(κ)) < κ, and (α < κ → |α|cf(κ) < κ)
together are sufficient.

§ 2. Proving known forcings fit the framework

§ 2(A). Near a Large Singular.

Here we do not collapse cardinals, just change cofinalities.

Claim 2.1. There is a nice (λ, κ)-system r such that Rr = P when the following
hold :

(A) (a) κ < λ < 2κ are cardinals,

(b) D is a normal ultrafilter on κ,

(c) if A ⊆ D has cardinality ≤ λ, then for some B ∈ D we have (∀A ∈
A )(B ⊆ A mod [κ]<κ), (e.g. D is generated by a ⊆∗

κ-decreasing se-
quence of length of a regular cardinal > λ),

(d) P is the Prikry forcing for D (so P changes the cofinality of κ to ℵ0

and adds no bounded subset of κ and satisfies the κ+-c.c).
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Proof. Recalling the definition of Prikry forcing for D:

(∗)1 (a) p ∈ P iff p = (w,A) = (wp, Ap), where wp ∈ [κ]<ℵ0 and Ap ∈ D and
[0,maxwp] ∩A = ∅,

(b) p ≤P q iff wp ⊆ wq ⊆ wp ∪Ap and Ap ⊇ Aq.

We define the system r by letting:

(∗)2 (a) κr = κ,

(b) λr = λ,

(c) Rr = P,
(d) X

˜
r = the Prikry generic sequence = ∪{wp : p ∈ GP},

(e) ≤pr = ≤r,pr is defined by p ≤pr q iff wp = wq∧Ap ⊇ Aq (and p, q ∈ Rr),

(f) for p ∈ Rr = P let Sp = Sr,p := {q̄ : q̄ = ⟨qε : ε < κ⟩ and for some
B ∈ D we have B ⊆ Ap and {Aqε : ε < κ} list {A : A ⊆ Ap and A ≡ B
mod [κ]<κ}.

We still have to prove that r is as required, namely, that r satisfies conditions listed
in Definition 1.2 1).

Now clauses (a)-(f) from Definition 1.2 1) hold trivially. For clause (g) fix p, τ
˜
,

with p ⊩P “τ ∈ {0, 1}”. Recall the following well-known fact:

(∗)3 if p ∈ P, p ⊩P “τ
˜
∈ {0, 1}”, then for some A′ ⊆ Ap, A

′ ∈ D we have: if

α ∈ κ and u ⊆ Ap ∩ α is finite then (wp ∪ u,A′\α) forces a value for τ
˜
.

[For the sake of completeness we prove (∗)3: by the Prikry-lemma, for each s ∈
[Ap]

<ℵ0 there exists As ⊆ Ap \ ((max s)+ 1), As ∈ D, such that (w∪ s,As) decides
the value of τ

˜
. Now let A′ be the diagonal intersection of As’s (s ∈ [Ap]

<ℵ0),
pedantically ∆α<κ(

⋂
s∈[α+1]<ℵ0 As), it is straightforward to check that A′ works.]

So given p ∈ P, γ and τ
˜
as in clause (g) from Definition 1.2, let A′ ⊆ Ap be as in

(∗)3 and let q̄ = ⟨qε : ε < κ⟩ be defined by: qε ∈ P, wqε = wp and {Aqε : ε < κ} list
{A ⊆ Ap : A ≡ A′ mod [κ]<κ}.

We still have to choose the Yε, Tε. For each ε choose ζε ∈ Aqε such that Aqε\ζε =
A′\ζε. Clause (∗)3 ensures that there is a function f : [Ap ∩ ζε]

<ℵ0 → {0, 1} in V
such that qε ⊩ τ

˜
= f(X

˜
∩ζε). This means we can let Yε = γε, and choose a γε-Borel

code Tε such that whenever w ∈ BTε
necessarily w ∈ [γε]

<ℵ0 , and

qε ⊩ (τ
˜
= 1) ⇐⇒ (X

˜
∩ ζε) ∈ BTε .

Lastly, for clause (h), assume p ∈ Rr = P and q̄ = ⟨q̄α : α < λ⟩ satisfies
q̄α ∈ Sp. So for each α < λ there exists Bα ⊆ Ap such that {Aqα,ε

: ε < κ} lists
{A ∈ D : A ⊆ Ap, A ≡ Bα mod [κ]<κ}, hence by clause (A)(c) of the assumption
of the claim, there is B ∈ D, a subset of Ap such that B ⊆ Bα mod [κ]<κ for each
α ∈ λ and let q∗ = (wp, B) so clearly p ≤pr q∗. Also for each α < λ, for some
ζ < κ we have B\ζ ⊆ Bα. Finally, because q̄α ∈ Sp we have that for some ε < κ
Aqα,ε

= (Bα\ζ) ∪ (Ap ∩ ζ) ⊇ B hence qα,ε ≤ q∗.
We still have to prove that r is nice but as P satisfies the κ+-c.c., and by the

Prikry lemma this is obvious. □2.1

Claim 2.2. There is a (λ, κ)−1-system Rr with VRr |= cf(κ) = θ, when (B) holds:
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(B) (a) θ = cf(θ) < θ∗ < κ < λ < 2κ,

(b) D̄ = ⟨Di : i < θ⟩ is a sequence of normal ultrafilters on κ, increasing
in Mitchell order, i.e. i < j ⇒ Di ∈ MosCol(κV/Dj),

(c) each Di (i < θ) is < λ+-directed mod [κ]<κ, i.e. satisfies the condition
(A)(c) from Claim 2.1.

Moreover, the forcing Rr changes the cofinality of κ to θ, preserves each cardinal
and the function µ 7→ 2µ, satisfies the κ+-c.c. Moreover, we can prescribe that in
VP there is no new subset of θ∗.

Proof. Using [Kru07, Proposition 2.1], condition (b) implies the following.

Subclaim 2.3. If D̄ = ⟨Di : i < θ⟩ is an increasing (w.r.t. the Mitchell order)
sequence of normal ultrafilters on κ, θ ≤ κ, then there exists a coherent sequence
⟨Ūε : ε < κ+1⟩, Ūε = ⟨Uε(α) : α < oU (ε)⟩ for some function oU : κ+1 → κ such
that D̄ = Ūκ, which means:

(⊺)a for each ε ≤ κ, α < oU (ε) Uε(α) is an ε-complete normal ultrafilter on ε,
(⊺)b moreover, for each ε ≤ κ and α < oU (ε), letting jε,α : V → MosCol(εV/Uε,α)

be the associated elementary embedding, we have

(jε,α(Ū ↾ ε))ε = ⟨Uε(β) : β < α⟩,
(⊺)c ⟨Uκ(α) : α < oU (κ)⟩ = ⟨Dα : α < θ⟩.

Now we define the forcing PU to be the Magidor forcing associated with the
sequence D̄ = Ūκ = ⟨Uκ(α) : α ≤ θ⟩ , (see also [Mag78], or [Git10]), here we use
the definition from [Git10, Definition 5.22]

Definition 2.4. Define PU to be the following (auxiliary) poset.

(∗1) Let p = ⟨d0, d1, . . . , dn, dn+1 = ⟨κ,Aκ⟩⟩ ∈ PU , iff
(a) Aκ ∈

⋂
Ūκ =

⋂
α<θ Uκ,α,

(b) each dj (j ≤ n) is of the form
• either ⟨ε,Aε⟩ for some ε < κ, where oU (ε) > 0, moreover,

Aε ∈
⋂

Ūε =
⋂

γ<oU (ε)

Uε,γ ,

(this case we define κ(dj) = ε),
• or dj = ε, when oU (ε) = 0 (and we let κ(dj) = dj = ε).

(c) κ(d0) < κ(d1) < · · · < κ(dn) < κ(dn+1) = κ,
(d) moreover, for each j ≤ n, if dj+1 is a pair, then κ(dj) < minAκ(dj+1).

(∗2) We define

p = ⟨d0, d1, . . . , dn, dn+1 = ⟨κ,Aκ⟩⟩ ≤ q = ⟨e0, e1, . . . , em, em+1 = ⟨κ,Bκ⟩⟩,
if
(a) m ≥ n, and
(b) there exists a sequence 0 ≤ i0 < i1 < · · · < in < jn+1 = m + 1 such

that for each j ≤ n+ 1 we have
• κ(dj) = κ(eij ), and
• Bκ(dj) ⊆ Aκ(dj),

(c) moreover, for each k ≤ m not of the form ij (j ≤ n + 1), if i+ =
min{ij : j ≤ n+ 1, ij > k}, then

Bκ(ek) ∪ {κ(ek)} ⊆ Aκ(di+
).
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(∗3) Now if we define the pairwise disjoint sets Yα (α < θ) as

δ ∈ Yα ⇐⇒ oU (δ) = α,

then
{p ∈ PU : p ≥ ⟨⟨κ,

⋃
α<θ

Yα⟩⟩}

is the Magidor forcing changing the cofinality of κ to max{ω, cf(θ)}.

Definition 2.5. We define p ≤∗ q to be true iff p ≤ q and ℓg(p) = ℓg(q).

We define the system r by letting:

(∗4) (a) κr = κ,

(b) λr = λ,

(c) Rr = {p ∈ PU : p ≥ ⟨⟨κ,
⋃

α<θ Yα⟩⟩},
(d) let X

˜
r be the generic sequence, i.e.

X
˜

r = ∪{{κ(dj) : j < ℓg(p)} : p = ⟨d0, d1, . . . , dℓg(p)−1⟩ ∈ GP} \ {κ},
(e) ≤pr=≤r,pr is defined by p ≤pr q iff p ≤∗ q,

(f) for p = ⟨d0, d1, . . . , dn, dn+1 = ⟨κ,Ap,κ⟩⟩ ∈ Rr = P, let

Sp = Sr,p :=


q̄ : q̄ = ⟨qε : ε < κ⟩, where
(•1)qε = ⟨d0, d1, . . . , dn, ⟨κ,Aqε,κ⟩⟩, and
for some B ∈

⋂
Ūκ we have

(•2) B ⊆ Ap,κ, and
(•3) {Aqε,κ : ε < κ} lists {A∗ : A∗ ⊆ Ap,κ ∧ A∗ ≡ B mod [κ]<κ}

 .

It is known that X
˜

is a club of κ of order type θ, moreover, if condition ⟨⟨β⟩, ⟨κ,A⟩⟩
is in the generic filter (for some β < κ, oU (β) = 0, then the forcing adds no new
subset to β. Therefore (it is not difficult to see that) by (⊺)b the set {β < κ :
oU (β) = 0} ∈ Uκ,0, and so we can we can limit ourselves to the subposet consisting
of conditions above ⟨⟨β⟩, ⟨κ,

⋃
α<θ Yθ⟩⟩ for some β ≥ θ∗. In order to finish the proof

of Claim 2.2 it suffices to verify that the forcing defined in (∗3) is a (λ, κ)−1-system.

Subclaim 2.6. If ⟨Ūε : ε < κ + 1⟩ is a coherent sequence, where the ultrafilters

{Uκ(α) : α < oŪ (κ)} are < λ+-directed mod [κ]<κ, then the forcing PŪ from
Definition 2.4 is a (λ, κ)− 1-system.

Proof. Now we have only to check the requirements of Definition 1.2 1). Recall the
following properties of the Magidor forcing, see [Git10, Sec. 5.1 and 5.2].

Fact 2.7. (Prikry Lemma) For each p ∈ PU and each formula σ(x
˜
0, . . . , x

˜
m)

there exists q ≥∗ p, q ∥ σ(x
˜
0, . . . , x

˜
m) (i.e. either q ⊩ σ(x

˜
0, . . . , x

˜
m), or q ⊩

¬σ(x
˜
0, . . . , x

˜
m)).

Notation 2.8. If p = ⟨d0, d1, . . . , dn, dn+1 = ⟨κ,Ap,κ⟩⟩ ∈ PU , and i ≤ n + 1, then
q ↾ (κ(di) + 1) refers to the condition ⟨d0, d1, . . . , di⟩.

Fact 2.9. Suppose that G ⊆ PU is generic over V, p = ⟨d0, d1, . . . , dn, dn+1 =
⟨κ,Ap,κ⟩⟩ ∈ G, i ≤ n+1, di = ⟨κ(di), Aκ(di)⟩, then the filter G ↾ (κ(di)+1) := {q ↾
(κ(di) + 1) : q ∈ G} is V-generic over the Prikry forcing PU↾(κ(di)+1) associated

with the coherent sequence ⟨Uδ = ⟨Uδ(γ) : γ < oU (δ)⟩ : δ ≤ κ(di)⟩.

The Prikry Lemma and the subforcing PU↾(δ+1) together give the following.
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Fact 2.10. For each δ < κ, p = ⟨d0, d1, . . . , dn, dn+1 = ⟨δ, Ap,δ⟩⟩ ∈ PU↾(δ+1) and

each formula σ(x
˜
0, . . . , x

˜
m) there exists q ∈ PU↾(δ+1),

q ≥∗ p (in the sense of PU↾(δ+1)),

such that for some A ∈
⋂

Uκ we have

q ⌢ ⟨κ,A⟩ ∥PU
σ(x
˜
0, . . . , x

˜
m).

Lemma 2.11. Suppose that σ(x
˜
0, . . . , x

˜
m) is a formula, δ < κ, p = ⟨d0, d1, . . . , dn⟩ ∈

G ↾ (κ(dn) + 1), δ = κ(dn), the filter G ⊆ PU is generic over V (so that
p = p′ ↾ (δ + 1) for some p′ ∈ G, and p′ ⊩ δ ∈ X

˜
r).

Then there exists q ∈ G ↾ (δ+1), PU↾(δ+1) |= q ≥ p, such that for some A ∈
⋂

Uκ

letting q′ = q ⌢ ⟨κ,A⟩ we have q′ ∈ PU and

(2.1) q′ = q ⌢ ⟨κ,A⟩ ∥PU
σ(x
˜
0, . . . , x

˜
m).

Proof. This is a standard density argument: First using Fact 2.9 G ↾ (δ + 1) ⊆
PU↾(δ+1) is generic, and so by Fact 2.10 there exists q ∈ G ↾ (δ + 1),

q ≥ p (in the sense of PU↾(δ+1)),

such that for some A ∈
⋂

Uκ the condition q ⌢ ⟨κ,A⟩ ∈ PU decides about σ. □

Similarly to the case of Prikry forcing, this has the following consequence.

Claim 2.12. For each p = ⟨d0, d1, . . . , dn, ⟨κ,Ap,κ⟩⟩ ∈ PU and τ
˜

(with p ⊩ τ
˜

∈
{0, 1}) there exists a set A′ ∈

⋂
Ūκ, A′ ⊆ Ap,κ, such that the condition p′ =

⟨d0, d1, . . . , dn, ⟨κ,A′⟩⟩ satisfies the following:
Whenever α ∈ Ap,κ, q = ⟨e0, e1, . . . , em, ⟨κ,Aq,κ⟩⟩ ≥ p′ = ⟨d0, d1, . . . , dn, ⟨κ,A′⟩⟩

are given with κ(em) ≤ α, and q forces a value to τ
˜
, then so does

q′ = ⟨e0, e1, . . . , em, ⟨κ,A′ ∩ (α, κ)⟩⟩ ,
i.e.

q′ ∥PU
“τ
˜
= 1”.

Proof. For each α ∈ Ap,κ define Bα ⊆ Ap,κ so that whenever

q = ⟨e0, e1, . . . , em, em+1 = ⟨κ,Aq,κ⟩⟩ ≥ p

(with κ(e0), κ(e1), . . . , κ(em) ≤ α) decides the value of τ
˜
, then so does

q′ = ⟨e0, e1, . . . , em+1 = ⟨κ,Bα⟩⟩.
This can be done easily: first for each possible e0, e1, . . . , em choose a setBe0,e1,...,em ⊆
(α, κ) with

⟨e0, e1, . . . , em, ⟨κ,Be0,e1,...,em⟩⟩ deciding the value of τ
˜
,

if such a Be0,e1,...,em exists, otherwise just let Be0,e1,...,em = Ap,κ∩(α, κ). Second, let
Bα =

⋂
e0,e1,...,em

Be0,e1,...,em . Now it is easy to check that the diagonal intersection

A′ = ∆α∈Ap,κ
Bα ∈

⋂
Ūκ works (note that the intersection of normal measures is a

normal filter). □

Claim 2.13. For every p ∈ PU and τ
˜
, if p ⊩ τ

˜
∈ {0, 1}, then we can choose

q̄ = ⟨qε : ε < κ⟩ ∈ Pp, ⟨γε : ε < κ⟩, ⟨Tε : ε < κ⟩, ⟨Yε : ε < κ⟩, where each Tε is
a code for a γε-Borel subset of P(Yε) such that

qε ⊩ τ
˜
= 1 ⇐⇒ (X

˜
∩ γε) ∈ BTε

.
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Proof. First if p = ⟨d0, d1, . . . , dn, ⟨κ,Ap,κ⟩⟩ ∈ P, τ
˜

are in the Lemma, let A′ =
A′(p, τ

˜
) ⊆ Ap,κ be given by Claim 2.12 and

(∗5) let q̄ = ⟨qε : ε < κ⟩ ∈ Sp be defined by: qε ∈ P, qε = ⟨d0, d1, . . . , dn, ⟨κ,Aqε,κ⟩⟩
where {Aqε,κ : ε < κ} lists {A∗ ⊆ Ap,κ : A∗ ≡ A′ mod [κ]<κ}.

We still have to choose γε, Tε, Yε. For each ε choose ζε ∈ Aqε,κ \ κ(dn) such that

(2.2) Aqε,κ \ (ζε + 1) = A′ \ (ζε + 1).

Now we claim that qε forces that τ
˜
only depends on G ↾ (ζε + 1) in the following

sense:

Subclaim 2.14. If qε ∈ G, then for some q∗ ∈ G with q∗ ≥ qε and δ ≤ ζε,

q∗ ↾ (δ + 1)⌢ ⟨κ,Aqε,κ \ (ζε + 1)⟩ ∥ “τ
˜
= 1”.

Proof. First observe that if qε ∈ G, then by genericity there is some δ ≤ ζε, and
q′ ≥ qε, q

′ ∈ G, such that

(2.3) q′ ⊩ max(X
˜

∩ (ζε + 1) = δ),

i.e.

(2.4) q′ = ⟨e0, e1, . . . , em, em+1 = ⟨κ,Aq′⟩⟩,
and for some k ≤ m we have

(2.5) [κ(ek) = δ)] ∧ [Aq′,κ(ek+1) ∩ (ζε + 1) = ∅].

Now by Lemma 2.11 there is some q∗ ∈ G, A∗ ∈
⋂
Uκ with

(2.6) q∗ ↾ (δ + 1)⌢ ⟨κ,A∗⟩ ∥ “τ
˜
= 1”,

w.l.o.g. q∗ ≥ q′ ≥ qε. But then by the construction of A′ = A(p, τ
˜
) we have

(2.7) q∗ ↾ (δ + 1)⌢ ⟨κ,A′ \ (δ + 1)⟩ ∥ “τ
˜
= 1”.

Therefore, as Aqε,κ \ (ζε + 1) = A′ \ (ζε + 1) by (2.2) (and δ ≤ ζε by (2.3)),

A′ \ (δ + 1) ⊆ A′ \ (ζε + 1) = Aqε,κ \ (ζε + 1),

thus

(2.8) q∗ ↾ (δ + 1)⌢ ⟨κ,A′ \ (δ + 1)⟩ ≤ q∗ ↾ (δ + 1)⌢ ⟨κ,Aqε,κ \ (ζε + 1)⟩.
This means that by (2.7)

q∗ ↾ (δ + 1)⌢ ⟨κ,Aqε,κ \ (ζε + 1)⟩ ∥ “τ
˜
= 1”,

so recalling that qε ≤ q∗, and q∗ ∈ G, we are done. □Subclaim2.14

Now we claim that

(2.9) q∗ ≥ q∗ ↾ (δ + 1)⌢ ⟨κ,Aqε,κ \ (ζε + 1)⟩.
To this end first recall, that

q∗ = ⟨d∗0, d∗1, . . . , d∗ℓ , d∗ℓ+1 = ⟨κ,Aq∗⟩⟩ ≥ q′ ≥ qε = ⟨d0, d1, . . . , dn, dn+1 = ⟨κ,Aqε,κ⟩⟩,
where κ(dn) ≤ ζε (by the choice of ζε), and q′ is from (2.10). Moreover, (2.5)
implies that

q′ = q′ ↾ (δ + 1)⌢ ⟨ek+1, ek+2, . . . , em, em+1 = ⟨κ,Aq′⟩⟩,
where

Aq′,κ(ek+1) ∩ (ζε + 1) = ∅.
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Now by q′ ≤ q∗ necessarily (for some j ≤ ℓ) κ(d∗j ) = δ, and

(2.10) q∗ = q∗ ↾ (δ + 1)⌢ ⟨d∗j+1, d
∗
j+2, . . . , d

∗
ℓ , d

∗
ℓ+1 = ⟨κ,Aq′⟩⟩,

and

(2.11) Aq∗,κ(d∗
j+1)

∩ (ζε + 1) = ∅.

Then one the one hand,

A∗∗ :=
⋃

i∈(j,ℓ+1]

(Aq∗,κ(ei) ∪ {κ(ei)}) ∩ (ζε + 1) = ∅,

and on the other hand,
A∗∗ ⊆ Aqε,κ,

since q∗ ≥ qε, so A∗∗ ⊆ Aqε,κ \ (ζε + 1), and recalling (2.10) we can conclude that
(2.9) holds, indeed.

By Subclaim 2.14 qε ∈ G implies that there is always a q∗ ∈ G and δ ≤ ζε such

that q∗ ↾ (δ + 1)⌢ ⟨κ,Aqε,κ \ (ζε + 1)⟩ decides the value of τ
˜
, and by (2.9)

q∗ ↾ (δ + 1)⌢ ⟨κ,Aqε,κ \ (ζε + 1)⟩ ∈ G.

It is not difficult to check (using the definition of the partial order) that for every
q∗∗ = ⟨e0, e1, . . . , em⟩ ∈

⋃
δ≤ζε

PU↾(δ+1)

q∗∗ ∈ G ⇐⇒
(
{κ(ei) : i ≤ m} ⊆ X

˜
∩ (ζε + 1) ⊆ {κ(ei) : i ≤ m} ∪ (∪{Aq∗∗,κ(ei) : i ≤ m})

)
.

Therefore, for any q∗∗ ≥ qε with

q∗∗ ⌢ ⟨κ,Aqε,κ \ (ζε + 1)⟩ ∥ τ
˜
= 1,

fix the forced value jq∗∗ ∈ {0, 1}:

q∗∗ ⌢ ⟨κ,Aqε,κ \ (ζε + 1)⟩ ⊩ τ
˜
= jq∗∗,

and fix the code Tq∗∗ for the 2ζε-Borel subset of P(ζε) with

q∗∗ ∈ G ⇐⇒ X
˜

∩ (ζε + 1) ∈ BTq∗∗ .

Finally, let Tε be the code for the 2ζε-Borel subset of P(ζε) defined as

BTε = ∪{BTq∗∗ : q∗∗ ≥ qε, jq∗∗ = 1}.
Then

qε ⊩ (τ
˜
= 1) ⇐⇒ ((X ∩ ζε) ∈ BTε

),

and choosing γε = 2ζε , Yε = ζε works, which completes the proof of Claum 2.13.
□Claim2.13

□Subclaim2.6

Finally it remains to verify clause (h) from Definition 1.2. Fix p ∈ P and q̄α =
⟨qα,ε : ε < κ⟩ ∈ Sp (α < λ). Now recall ((∗4)) ((f)), and let A′

α ∈
⋂
Ūκ =⋂

β<θ Uκ,β the set corresponding to the sequence q̄α, i.e. (if d0, d1, . . . , dn, dn+1 =

⟨κ,Ap,κ⟩ denote the components of p)

(2.12)
q̄α = ⟨qα,ε : ε < κ⟩ where qα,ε = ⟨d0, d1, . . . , dn, ⟨κ,Aqα,ε,κ⟩⟩ and
{Aqα,ε,κ : ε < κ} lists {A∗ : A∗ ⊆ Ap,κ and A∗ = A′

α mod [κ]<κ}.
Then for each fixed β < θ as A′

α ∈ Uκ,β (∀α < λ), using (B) ((c)) there is a
pseudointersection in Uκ,β , i.e. a set Bβ ∈ Uκ,β such that Bβ ⊆ Ap,κ, and
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(∗6) for each α < λ |Bβ \A′
α| < κ.

Now taking the union of these pseudointersections, clearly

(∗7) B∗ =
⋃

β<θ Bβ ∈
⋂
Ūκ.

Therefore (∗6) implies (recalling θ < κ)

(∗8) for each α < λ: |B∗ \A′
α| < κ, and we can infer that for some ζα < κ:

B∗ ∩ (ζα, κ) ⊆ A′
α.

At this point we are ready to define q∗. We let q∗ = ⟨d0, d1, . . . , dn, ⟨κ,B∗⟩⟩, clearly
p ≤ q∗ as B∗ ⊆ Ap,κ. Moreover, for any fixed α < λ by (2.12) there exists some
ε < κ with the property that

(∗9) Aqα,ε,κ ∩ (ζα, κ) = A′
α ∩ (ζα, κ) ⊇ B∗ ∩ (ζα, κ), and

(∗10) Aqα,ε,κ ∩ (ζα + 1) = B∗ ∩ (ζα + 1),

so B∗ ⊆ Aqα,ε,κ, thus concluding qα,ε ≤∗ q∗.
□2.2

Next we will give another example of a (λ, κ)-system, the Radin forcing, provided
the measure sequence satisfies a similar < λ+-directedness condition.

Definition 2.15. In order to state the following claim we need to prepare and
introduce the notions below.

(i) Let κ be a cardinal j : V → M be an elementary embedding (into a
transitive inner model M) with crit(j) = κ. We call the sequence F =
⟨F (α) : α < dom(F )⟩ a j-sequence of ultrafilters, if
(a) F (0) = κ,
(b) F (α) ⊆ P(Vκ) for every α < dom(F ),
(c) and for each 0 < α < dom(F ), ∀X ⊆ Vκ: [X ∈ F (α) iff (F ↾ α) ∈

j(X)].
(ii) for each ultrafilter sequence F that is a j-sequence witnessed by some suit-

able j we let κ(F ) denote the critical point of the witnessing j, thus the
Fα’s are concentrated on Vκ(F ). For each ordinal α we mean κ(α) = α.

(iii) for an ultrafilter sequence F that is a j-sequence witnessed by some suitable
j we reserve the notation

⋂
F for the intersection of all F (α)’s but F (0),

i.e. :

∩F :=
⋂

0<α<dom(F )

F∗(α).

Therefore, for each α < dom(F ) F (α) is a κ-complete normal ultrafilter on Vκ,
where under normality we mean that for each sequence ⟨Xβ : β < κ⟩ in F (α) the
diagonal intersection

∆β<κXβ = {f : ∀γ < κ(f) : f ∈ Xγ} ∈ F (α).

We will work with ultrafilter sequences F ∗ according to that almost every element
of Vκ(F∗)

is itself an ultrafilter sequence, i.e. the F∗(α)
′s are concentrated on the

following classes:

(iii) Let A(n) (n ∈ ω) be the following sequence of classes

A(0) = {F : F is a j-sequence of ultrafilters for some j : V → M},
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and

A(n+1) = {F ∈ A(n) : ∀α ∈ dom(F ) \ {0} Vκ(F ) ∩A(n) ∈ F (α)}.

Finally let

A =
⋂
n∈ω

A(n).

(iv) For any set X ⊆ A(0) and a set I of ordinals let

X ↾ I = {F ∈ X : κ(F ) ∈ I}.

Claim 2.16. There is a (λ, κ)-system such that Rr = P when the following hold:

(C) (a) θ∗ < κ < λ < 2κ,

(b) F ∗ is an ultrafilter sequence consisting of κ-complete ultrafilters on
Vκ, F ∗ ∈ A.

(c) there exists f : κ → κ such that

{F : dom(F ) < f(κ(F ))} ∈
⋂

F ∗ =
⋂

0<α<dom(F∗)

F∗(α),

(i.e. when for a witnessing j for F ∗ the inequality j(f)(κ) ≥ dom(F ∗)
holds, for instance this holds if dom(F ∗) ≤ (22

κ

)M),

(d)
⋂
F ∗ =

⋂
0<α<dom(F∗)

F∗(α) is <λ+-directed in the following sense.

For every sequence ⟨Xα : α < λ⟩ in
⋂
F ∗ there exists X∗ ∈

⋂
F ∗ such

that

∀α < λ ∃β < κ : X∗ ↾ (β, κ) ⊆ Xα.

(e) P = PF∗
is the Radin forcing for F ∗ (see Definition 2.17 below), so

preserves the function µ 7→ 2µ, moreover, we can prescribe that in VP

there is no new subset of θ∗, and P satisfies the κ+-c.c.

Proof. We will use the definition of the Radin forcing from [Git10, Definition 5.2].
Observe that the definition only depends on

⋂
F ∗.

Definition 2.17. [Git10, Definition 5.2] For an ultrafilter sequence F ∗ ∈ A we
define the Radin forcing P to be the collection of finite sequences of the form
p = ⟨d0, d1, . . . , dn, dn+1 = ⟨F ∗, Ap,κ⟩⟩, where

(∗1) (a) Ap,κ ∈
⋂
F ∗ =

⋂
0<α<dom(F∗)

F∗(α), Ap,κ ∈ A,

(b) each dj (j ≤ n) is either of the form

• ⟨F dj
, Adj

⟩ where F dj
∈ A, Adj

⊆ A, moreover,

Adj
∈
⋂

F dj
=

⋂
0<γ<dom(Fdj

)

Fdj
(γ).

If ε = κ(F dj ) we may refer to ⟨F dj , Adj ⟩ as ⟨F p,ε, Ap,ε⟩, and we

also define κ(dj) = κ(F dj
).

• or dj = ε for some ε < κ (when we let κ(dj) = ε).
(c) κ(d0) < κ(d1) < · · · < κ(dn) < κ(dn+1) = κ,
(d) moreover, for each j ≤ n if dj+1 is a triplet, then Ap,κ(dj+1)∩Vκ(dj) = ∅.
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20 MÁRK POÓR† AND SAHARON SHELAH∗

(∗2) For the sequences

p = ⟨d0, d1, . . . , dn, dn+1 = ⟨F ∗, Ap,κ⟩⟩,

q = ⟨e0, e1, . . . , en, em+1 = ⟨F ∗, Aq,κ⟩⟩
we let p ≤ q, if
(a) m ≥ n, and
(b) there exists a sequence 0 ≤ i0 < i1 < · · · < in < jn+1 = m such that

for each j ≤ n+ 1 we have
• κ(dj) = κ(eij ),
• and

either F p,κ(dj) = F q,κ(eij )
and Aq,κ(eij )

⊆ Ap,κ(dj),

or dj = eij = κ(dj) = κ(eij ),
(c) moreover, for each l ≤ m not of the form ij (j ≤ n+1), if il = min{ij :

j ≤ n+ 1, ij > l}, then

Aq,κ(ek) ∪ {F q,κ(ek)} ⊆ Ap,κ(dl).

Definition 2.18. We define p ≤∗ q to be true iff p ≤ q and ℓg(p) = ℓg(q).

We define the system r by letting:

(∗3) (a) κr = κ,

(b) λr = λ,

(c) Rr = P,
(d) let X

˜
r be the generic sequence, i.e.

X
˜

r = ∪{{κ(dj), F p,κ(dj) : j < ℓg(p)} : p = ⟨d0, d1, . . . , dℓg(p)−1⟩ ∈ GP} \ {κ},
(e) ≤pr=≤r,pr is defined by p ≤pr q iff p ≤∗ q,

(f) for p = ⟨d0, d1, . . . , dn, dn+1 = ⟨F ∗, Ap,κ⟩⟩ ∈ Rr = P let

Sp = Sr,p :=


q̄ : q̄ = ⟨qε : ε < κ⟩, where
(•1)qε = ⟨d0, d1, . . . , dn, ⟨F ∗, Aqε,κ⟩⟩, and
for some B ∈

⋂
F ∗ we have

(•2) B ⊆ Ap,κ, and
(•3) {Aqε,κ : ε < κ} lists {A∗ : A∗ ⊆ Ap,κ ∧ A∗ = B mod [κ]<κ}

 .

Now we check the requirements of Definition 1.2.
It is known that if a condition ⟨⟨β⟩, ⟨F ∗, Aκ⟩⟩ is in the generic filter (for some

β < κ) then the forcing adds no new subset of β. This implies that as
⋂

F ∗ ⊆ F∗(0),
which is concentrated on the ordinals, i.e. on κ itself, w. l. o. g. we can assume that
⟨β, ⟨F ∗, A⟩⟩ ∈ G for some β ≥ θ∗.

Now we have only to check the requirements of Definition 1.2. Recall the follow-
ing properties of the Radin forcing, see [Git10, Sec. 5.1].

Fact 2.19. (Prikry Lemma) For each p ∈ P and each formula σ(x
˜
0, . . . , x

˜
m)

there exists q ≥∗ p, q ∥ σ(x
˜
0, . . . , x

˜
m) (i.e. either q ⊩ σ(x

˜
0, . . . , x

˜
m), or q ⊩

¬σ(x
˜
0, . . . , x

˜
m)).

The following claims, which complete the proof of Claim 2.16 have the same
proofs as in the case of Magidor forcing. In Claim 2.20 condition (C)/(c) is essential
for the argument.
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Claim 2.20. For each p = ⟨d0, d1, . . . , dn+1 = ⟨F ∗, Ap,κ⟩⟩ ∈ P, τ
˜

(with p ⊩
τ
˜

∈ {0, 1}) there exists a set A′ ∈
⋂
F ∗, A′ ⊆ Ap,κ, such that whenever q =

⟨e0, e1, . . . , em, ⟨F ∗, Aq,κ⟩⟩ ≥ p′ = ⟨d0, d1, . . . , dn, ⟨F ∗, A
′⟩⟩, α ≥ κ(em) are given

and q forces a value for τ
˜
, then so does

q′ =
〈
e0, e1, . . . , em, ⟨F ∗, A

′ ↾ (α, κ)⟩
〉
.

Claim 2.21. Suppose p = ⟨d0, d1, . . . , dn+1 = ⟨F ∗, Ap,κ⟩⟩ ∈ PF∗
, τ
˜
(with p ⊩ τ

˜
∈

{0, 1}), and α ≥ κ(dn). If p ∈ G, G ⊆ PF∗
is generic over V, then there exists

q = ⟨e0, e1, . . . , em+1 = ⟨F ∗, Ap,κ⟩⟩ ∈ PF∗
,

q ∈ G,

where κ(em) ≤ α, Aq,κ ∩ Vα+1 = ∅, and there exists A ⊆ Ap,κ, A ∈
⋂

F ∗, such
that

q ↾ (κ(em) + 1)⌢ ⟨F ∗, A⟩ ∥ τ
˜
= 1.

Claims 2.20, 2.21 implies the following.

Claim 2.22. For each p = ⟨d0, d1, . . . , dn+1 = ⟨F ∗, Ap,κ⟩⟩ ∈ P, τ
˜

(with p ⊩ τ
˜
∈

{0, 1}) there exists a set A′ ∈
⋂

F ∗, A
′ ⊆ Ap,κ, such that whenever α < κ, and

p′ = p ↾ (α+ 1)⌢ ⟨F ∗, Ap,κ ↾ (α+ 1) ∪A′ ↾ (α, κ)⟩⟩ ∈ G,

G ⊆ PF∗
is a generic filter, then there exists q ∈ G, q is of the form

q = q ↾ (α+ 1)⌢ ⟨F ∗, A
′ ↾ (α, κ)⟩⟩,

and
q ∥ τ

˜
= 1.

Claim 2.23. Suppose that p ∈ P and τ
˜
. If p ⊩ τ ∈ {0, 1}, then there exists

q̄ = ⟨qε : ε < κ⟩ ∈ Sp, ⟨γε : ε < κ⟩ ∈ κκ, ⟨Yε : ε < κ⟩ ∈ κVκ, ⟨Tε : ε < κ⟩,
such that each Tε is a code for a γε-Borel subset of P(Yε), and

qε ⊩ (τ
˜
= 1) ⇐⇒ (X ∩ Yε) ∈ BTε

.

□Claim2.16

§ 3. The preparatory forcing

§ 3(A). The general framework. This subsection is devoted to the preparatory
forcing, in Claim 3.2 we provide a general framework to force a (λ, κ)− 1 system.

First we are going to define a variant of Mathias forcing, for which we need to
recall the notations from Definition 2.15 (ii), (iv), so if I ⊆ κ, A ⊆ Vκ, then

A ↾ I = {x ∈ A : κ(x) ∈ I},
where κ(α) = α if α is an ordinal, κ(F ) = crit(j) for the elementary embedding
j if F is a j-sequence (and for every other x, we can let κ(x) = −1). Using this
convention we will have Mathias forcing for filters in the context of Radin forcing,
too, not only filters concentrated on κ.

Definition 3.1. For D a < κ-centered system (i.e. generating a κ-complete filter
D∗) on ∪D ⊆ Vκ (so D∗ ⊆ P(∪D)) we let Q = QD be the following forcing notion:
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(A) p ∈ Q iff

(a) p = (w,A) = (wp, Ap), and for some σp < κ we have

(b) wp ⊆ Vκ, wp = wp ↾ [0, σp) (so wp ∈ Vκ holds, too)

(c) Ap ⊆ ∪D, Ap ∈ D∗ and Ap = Ap ↾ [σp, κ).

(B) Q |= p ≤ q iff

(a) p, q ∈ Q,

(b) wp ⊆ wq ⊆ wp ∪Ap,

(c) Ap ⊇ Aq,

(C) w
˜
= ∪{wp : p ∈ G

˜
}.

Claim 3.2. If (A) and (B) hold, then so does (C), where:

(A) v = (V0, κ,h,p,Gκ,V1) satisfies:

(a) V0 is a universe of set theory,

(b) in V0 κ is supercompact and h : κ → H (κ) is a Laver diamond,

(c) p is the Easton support iteration ⟨Pp,α,Q
˜

p,β : α ≤ κ, β < κ⟩ =

⟨P0
α,Q

˜

0
β : α ≤ κ, β < κ⟩ built as specified Definition 3.4 (•)I-(•)II , and

(•)a-(•)b using h (essentially as in Laver [Lav78]) and let Pp = Pp,κ

(hence for α < κ also P0
α ∈ V V0

κ ),

(d) Gκ = Gp,κ ⊆ Pp is generic over V0 and V = V1 = V0[Gκ].

(B) (a) κ < λ < χ = χλ (in V0, of course),

(b) P1
χ = ⟨P1

α,Q
˜

1
β : α ≤ χ, β < χ⟩ ∈ V1 is an iteration with < κ support

such that P1
χ is λ+-c.c. and <κ-directed closed, preserving cardinals,

(c) for each α < χ

V
P1
α

1 |= |Q1
α| ≤ χ.

(d) for the set S∗ ⊆ χ there is a system ⟨D
˜

δ : δ ∈ S∗⟩ ∈ V1, D
˜

δ is a

P1
δ-name of a subset of PV

P1δ
1 (Vκ), and if

(3.1) V
P1
δ

1 |= D
˜

δ generates a κ-complete filter, satisfying
(∀α < κ) |(∪Dδ) ↾ α| < κ

then the forcing Q
˜

1
δ, δ ∈ S∗ is of the form QD

˜
δ
, the forcing from

Definition 3.1. Moreover, we assume that each D ∈ [PV
P1χ
1 (Vκ)]

≤λ

that satisfies (3.1) appears as a Dδ for some δ ∈ S∗, i.e.

(#) V
P1
χ

1 |= ∀D ∈ [P(Vκ)]
≤λ :

[if D generates a < κ-complete filter, and

∀α < κ : |(∪D) ↾ α| < κ,

then (D = Dδ for some δ ∈ S∗).]

(C) in V
P1
χ

1 we have 2κ is χ, and the following.
(a) There is a κ-complete normal ultrafilter U , which is < λ+-directed mod

[κ]<κ.
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(b) (Setting for Magidor forcing:) There is a sequence Ū = ⟨Ui : i < κ⟩ of
normal ultrafilters on κ, strictly increasing in the Mitchell order, i.e.

i < j ⇒ Ui ∈ MosCol(κ(VP1
χ)/Uj), such that each Ui is < λ+-directed

mod [κ]<κ.
(c) (Setting for Radin forcing:) For any Υ ≥ κ and η there is a κ-complete

fine normal ultrafilter W on [Υ]<κ such that for the elementary em-

bedding jW of V
P1
χ

1 with critical point κ we have (letting U denote the
measure sequence associated to jW ):
(⋆) for every σ ≤ min(dom(U, η)) if the filter

⋂
(U ↾ σ) =

⋂
γ<σ Uγ

concentrates on a set X ⊆ Vκ with (∀α < κ) |X ↾ α| < κ, then⋂
(U ↾ σ) is < λ+-directed in the following sense: Whenever

⟨Ai : i < λ⟩ (∀i < λ Ai ∈
⋂
(U ↾ σ)) is given, there exists

A∗ ∈
⋂
(U ↾ σ) such that

(3.2) ∀i ∈ λ ∃δi < κ : A∗ ↾ [δi, κ) ⊆ Ai.

In particular κ is supercompact.

Remark 3.3. This continues Džamonja-Shelah [DS03].

Proof. First we have to construct the iteration P0 using the Laver function h : κ →
H (κ) ∈ V0. The construction P0 = ⟨P0

α,Q
˜

0
β : α ≤ κ, β < κ⟩ goes by induction,

we follow [Lav78], only with a slight technical modification which we will need in
the proof of (C)((b)).

Let h be as in [Lav78] (i.e.

(•)1 for each λ ≥ κ, x ∈ H (λ+) there exists a κ-complete fine normal ultrafilter
U on [λ]<κ such that for the associated elementary embedding jU

jU (h)(κ) = x).

Definition 3.4. We define P0 = ⟨P0
α,Q

˜

0
β : α ≤ κ, β < κ⟩ and ⟨µα : α < κ⟩ by

induction. If ⟨P0
α,Q

˜

0
β : α < γ, β < γ⟩ are already defined, then

(•)I if γ is strongly inaccessible then P0
γ is the direct limit (i.e. we use bounded

support),
(•)II otherwise let P0

γ be the inverse limit of P0
β ’s (β < γ) (i.e. for a function p

with dom(f) = γ p ∈ P0
γ iff (∀β < γ) p ↾ β ∈ P0

β). .

Second,

(•)a if sup{µα : α < γ} ≤ γ, and γ is strongly inaccessible, moreover, h(γ)
happens to be of the form ⟨Q

˜
∗, µ∗, U

˜
⟩, where Q

˜
∗ is a P0

γ-name for a <γ-
directed closed notion of forcing, µ∗ is an ordinal, U

˜
is a (possibly trivial)

P0
γ-name, then let

Q
˜

0
γ = Q

˜
∗, µγ = µ∗.

(•)b In the remaining case let Q
˜

0
γ be the trivial forcing, µγ = γ.

Recall G0
κ ⊆ P0

κ is generic over V0 so that V0[G
0
κ] = V1, and let G1

χ ⊆ P1
χ be

generic over V1, let V2 = V1[G
1
χ] = V0[G

0
κ ∗ G1

χ]. Note that as |P0
κ| = κ and

κ < λ, (B)(a) implies that

(▷◁)1 V1 = V0[G
0
κ] |= χλ = χλ·κ = χ, thus cf(χ) > λ is preserved, too.
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Since κ is strongly inaccessible, and P0 is an Easton support iteration, where Q0
β

is < α-closed for α < β, and for stationarily many α’s |P0
α| = α (actually for each

strongly inaccessible cardinal α), by standard arguments

(▷◁)2 P0
κ has the κ-cc (so forcing with it preserves the regularity of κ),

moreover

(▷◁)3 P0
κ preserves κ to be strongly inaccessible.

Also note that as P1
χ is < κ-closed

(▷◁)4 V V2
κ = V V1

κ , and V2 |= “κ is still strongly inaccessible.”

First observe that because of our cardinal arithmetic assumptions χκ ≤ χλ = χ
in (B)(a), and as |P0

κ| = κ, not only do we have (▷◁)1 (χλ)V1 = χλ·κ = χ, but by
an easy induction (and by the λ+-cc) |P1

χ|V1 = χ, so

(▷◁)5 |P0
κ ∗ P

˜
1
χ| = χ up to equivalence (and so obviously χ+-cc).

Recalling χλ = χ again, clearly

(▷◁)6 V0[G
0
κ ∗G1

χ] |= 2χ = (2χ)V0 ,

(▷◁)7 V0[G
0
κ ∗G1

χ] |= 2κ = χ.

Definition 3.5. We have to introduce the following objects.

(•)2 Let j : V0 → M be an elementary embedding with critical point κ such

that (j(h))(κ) = ⟨P
˜
1
χ, χ

+, ∅̌⟩ (∅̌ = ∅ is the canonical name for the empty
set) and j(κ) > χ, χM ⊆ M,

(•)3 Let ⟨P0
α,Q

˜

0
β : α ≤ j(κ), β < j(κ)⟩ = j(⟨P0

α,Q0
β : α ≤ κ, β < κ⟩) so Q

˜

0
κ = P

˜
1
χ,

and
(•)4 let P

˜
′
j(χ) = j(P

˜
1
χ), i.e.

(a P0
j(κ)-name for a < j(κ)-directed closed notion of forcing)

M
.

(Recall that P
˜
1
χ is a P0

κ-name for the iteration ⟨P
˜
1
α,Q

˜

1
β : α ≤ χ, β < χ⟩) ∈

V
P0
κ

0 .)

Similarly to (▷◁)4, recalling
χM ⊆ M ,

(▷◁)8 V
M[G0

κ+1]
κ = V

M[G0
κ]

κ = V V2
κ , and (κ is strongly inaccessible)M[G0

κ+1].

From now on we will identify P0
κ ∗ P

˜
1
χ with the (κ+ 1)-step iteration P0

κ+1, and
also

(▷◁)9 G0
κ+1 = G0

κ ∗G1
χ is a generic subset of P0

κ+1 = P0
κ ∗ P

˜
1
χ (over V0).

Remark 3.6. Having completed the requirements of Claim 3.2 we remark that
given a scheme for an iteration fitting all our assumptions except perhaps ((B))(d),
it is easy to adapt it to have (#) using χλ = χ (▷◁)1.

Now we can prove the statements in 3.2(C).
Case 1: First we verify 3.2(C)(a).
We would like to find an appropriate κ-complete ultrafilter in V0[G

0
κ ∗ G1

χ], for
which we will use the basic trick: using the elementary embedding j : V0 → M,
then extending V0 with G0

κ ∗G1
χ, and extending M with G0

κ+1(= G0
κ ∗G1

χ), and

finding a single condition in P0
j(κ) ∗P

′
j(χ)/G

0
κ+1 compatible with {j(p ↾ {κ}) = j(p) ↾

{j(κ)} : p ∈ G0
κ ∗G1

χ} giving us sufficient information (just as if there existed some
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lifting j̃ : V0[G
0
κ ∗G1

χ] → M[H0
j(κ) ∗H

′
j(χ)]) of j extending it). (Here the quotient

P0
j(κ) ∗ P

′
j(χ)/G

0
κ+1 is formally

P0
j(κ) ∗ P

′
j(χ)/G

0
κ+1 = {(p↾(κ, j(κ)), q

˜
) : (p, q

˜
) ∈ P0

j(κ) ∗ P
′
j(χ)},

and
P0
j(κ) ∗ P

′
j(χ)/G

0
κ+1 |= (p↾(κ, j(κ)), q) ≤ (p′↾(κ, j(κ)), q′),

if there exists p∗ ∈ G0
κ+1 such that

P0
j(κ) ∗ P

′
j(χ) |= (p∗ ⌢ p↾(κ, j(κ)), q

˜
) ≤ (p∗ ⌢ p′↾(κ, j(κ)), q

˜

′).)

We will need the following facts.

Fact 3.7. The filter G0
κ+1 is generic over M as well, and the forcing notions

P0
j(κ)/G

0
κ+1 and (P0

j(κ) ∗ P˜
′
γ)/G

0
κ+1 (γ ≤ j(χ)) are well defined and < χ+-directed

closed in M[G0
κ+1].

Proof. Note that G0
κ+1 is generic, as P0

κ+1 ⊆ M ⊆ V0.
For the second assertion we first recall that a pair (p, q

˜
) ∈ (P0

j(κ) ∗ P˜
′
j(χ))/G

0
κ+1

iff p = p0 ↾ (κ, j(κ)) for some p0 ∈ P0
j(κ), and (⊩P0

j(κ)
q
˜
∈ P
˜
′
j(χ))

M. We only have to

refer to the construction of the iteration Definition 3.4 i.e. recall that

(i) ⊩P0
κ
“P
˜
1
χ is a < κ-support iteration of < κ-directed closed forcing notions”,

and
(ii) for each α ≤ β < κ we have that ⊩P0

β
“Q
˜

0
β is < β-directed closed”, and is

the trivial forcing if β < sup{µϱ : ϱ < β} (in particular, if β < sup{µϱ :
ϱ < α}),

(iii) for each α < β < κ, where β is limit and cf(β) < µα the iteration P0
β is the

inverse limit of P0
δ ’s (δ < β).

So using [Bau78, Thm. 5.5], for each α < β < κ the quotient (P0
κ ∗ P

˜
1
χ)/G

0
α (of

the κ+1-long iteration P0
κ ∗P

˜
1
χ = P0

κ+1) is < β-directed closed in V0[G
0
α] provided

β ≤ sup{µϱ : ϱ < α}, and P0
α has the β-cc. (In typical applications Q

˜

0
α is the

trivial forcing.) Thus by elementarity (letting α = κ + 1, β = χ+ = µκ, recalling
P0
κ+1 has the χ+-cc by (▷◁)5, and (χ+)M = χ+ by χM ⊆ M):

M[G0
κ+1] |= ”(P0

j(κ) ∗ P
˜
′
j(χ))/G

0
κ+1 is < χ+-directed closed.”

□

Fact 3.8. V1 |= “(P0
j(κ) ∗ P˜

′
γ)/G

0
κ+1 is < χ+-directed closed.”

Fact 3.8 follows from the fact below.

Fact 3.9. V[G0
κ ∗G1

χ] |= χM[G0
κ+1] ⊆ M[G0

κ+1].

Proof. For, pick a name f
˜

for a function f
˜

: χ → M[G0
κ+1], and observe that

w.l.o.g. we can assume that f
˜

: χ → ORD, i.e. for each α < χ, f(α) is an
ordinal, in particular ran(f) ⊆ M. Now for each α there exists a maximal antichain
Aα = {aαi : i < |Aα|} ⊆ P0

κ+1, and {xα
i : i < |Aα|} ⊆ M, s.t. aαi ⊩ f

˜
(α) = xα

i . As

P0
κ+1 = P0

κ ∗ P
˜
1
χ is of power χ, we have |Aα| ≤ χ trivially, therefore as M is closed

under sequences of length χ ((•)2, Definition 3.5) ⟨(xα
i , a

α
i ) : α < χ, i < |Aα|⟩ ∈ M ,

which means that there is indeed a name g
˜
∈ M, such that ⊩P0

κ∗P
˜
1
χ
f
˜
= g
˜
. □Fact3.9

Definition 3.10. (In V0[G
0
κ+1]) for ζ ∈ S∗ we let
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(1) εζ ∈ V[G0
κ ∗G

˜
1
ζ+1] denote the generic subset of V V1

κ (or just κ) given by

Q1
ζ , i.e.

⊩P0
κ∗P

˜
1
ζ+1

ε
˜
ζ = ∪{ε

˜
: ∃A

˜
: (ε
˜
, A
˜
) ∈ GQ

˜

1
ζ
}

(after identifying P0
κ ∗ P

˜
1
ζ+1 = P0

κ ∗ (P
˜
1
ζ ∗Q

˜

1
ζ) with (P0

κ ∗ P
˜
1
ζ) ∗Q

˜

1
ζ).

(2) Define Nζ to be a set of P0
κ∗P

˜
1
ζ-names of subsets of Vκ containing exactly one

name from each equivalence class, i.e. no A
˜
̸= B

˜
∈ Nζ satisfy ⊩P0

κ∗P
˜
1
ζ
A
˜
= B

˜
,

but each set in the extension is represented.

Observe that (as (P0
κ ∗ P

˜
1
ζ) ∗Q

˜

1
ζ ,P0

κ ∗ P
˜
1
ζ ∈ M) we can assume that

(▷◁)10 Nζ ⊆ M,

and as |V V2
κ | = κ, and by the λ+-cc (B)b

(▷◁)11 |Nζ | ≤ |P0
κ ∗ P1

ζ |λ = χ,

so by χM ⊆ M:

(▷◁)12 Nζ ∈ M, and j ↾ Nζ ∈ M.

(3) Using the notation

AQ
˜

1
ζ
= {A

˜
∈ Nζ : (ε

˜
, A
˜
) ∈ GQ

˜

1
ζ
for some ε

˜
},

note that AQ
˜

1
ζ
∈ M[G0

κ ∗G1
ζ+1] (so A

˜
Q
˜

1
ζ
is a P0

κ ∗ P
˜
1
ζ+1-name for a set of

P0
κ ∗ P

˜
1
ζ-names). Now similarly

j“AQ
˜

1
ζ
= {j(A

˜
) : A

˜
∈ AQ

˜

1
ζ
} ∈ M[G0

κ ∗G1
ζ+1] ⊆ M[G0

κ+1]

is a set of P0
j(κ) ∗P˜

′
j(ζ)-names, and each of which collection corresponds to a

P0
κ ∗ P

˜
1
ζ/G

0
κ+1-name, we can define the P0

j(κ) ∗ P˜
′
j(ζ)/G

0
κ+1-name A

˜
′
j(ζ) ∈ M

for a subset of Vj(κ) so that

(in M[G0
κ+1] :) ⊩P0

j(κ)
∗P
˜
′
j(ζ)

/G0
κ+1

A
˜

′
j(ζ) = ∩{j(A

˜
) : A

˜
∈ AQ

˜

1
ζ
}.

Claim 3.11. There is a sequence ⟨qζ : ζ ≤ χ⟩ ∈ V[G0
κ ∗G1

χ] such that:

(∗)1.1 (a) qζ ∈ (P0
j(κ) ∗ P˜

′
j(χ))/G

0
κ+1, and if ε < ζ ≤ χ, then qε ≤ qζ ,

(b) qζ ∈ (P0
j(κ) ∗ P˜

′
j(ζ))/G

0
κ+1 (i.e. qζ ↾ j(κ) ⊩P0

j(κ)
qζ(j(κ)) ∈ P

˜
′
j(ζ)),

(c) whenever p ∈ G0
κ+1 ∩ (P0

κ ∗ P
˜
1
ζ) then

(P0
j(κ) ∗ P

˜
′
j(χ))/G

0
κ+1 |= j(p) ≤ qζ

(i.e. j(p) ≤ qζ in the order of the quotient forcing (P0
j(κ)∗P˜

′
j(χ))/G

0
κ+1),

(d) whenever A
˜
is a P0

κ∗P
˜
1
ζ-name of a subset of κ (so j(A

˜
) is a P0

j(κ)∗P˜
′
j(ζ)-

name for a subset of j(κ)) then for κ ∈ORD

qζ ∥(P0
j(κ)

∗P
˜
′
j(ζ)

)/G0
κ+1

κ ∈ j(A
˜
).

(e) if ζ ∈ S∗ (from (#) of d) then we have the following: If Dζ := D
˜

ζ [G
1
ζ ]

generates a κ-complete filter on Vκ (in V1[G
1
ζ ] = V0[G

0
κ ∗G1

ζ ]) then

(in M[G0
κ+1] in the poset P0

j(κ) ∗ P
′
j(χ)/G

0
κ+1)

(3.3) (qζ+1(j(κ)) (j(ζ)) ≥
(
εζ ∪

(
A
˜

′
j(ζ) ↾ {κ}

)
, A
˜

′
j(ζ) ↾ (κ+ 1, j(κ))

)
.
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(In this generality this will be relevant for the proof (c). For Dζ ’s for
which Dζ ⊆ P(κ) it is enough to ensure that if for each A ∈ Dζ we have

κ ∈ j(A) (forced by qζ), then qζ+1 ⊩ κ ∈ j̃(εζ).)

Proof. Working in V2 = V0[Gκ+1] we can define the qη’s (η ≤ χ, qη ∈ (P0
j(κ) ∗

P′
j(η))/G

0
κ+1) by induction on η. Assume that qξ’s (ξ < η) are chosen and (a)− (e)

hold. First we choose q′ξ satisfying (a), (c), (e) which we will then further strengthen

to get qξ ≥ q′ξ.

Recalling Fact 3.8, let q′0 ∈ (P0
j(κ) ∗ P

˜
′
j(0))/G

0
κ+1 = P0

j(κ)/G
0
κ+1 be the empty

condition.
For η limit we choose q′η ∈ (P0

j(κ) ∗ P
˜
′
j“η)/G

0
κ+1 to be an upper bound of the

increasing sequence ⟨qξ : ξ < η⟩ satisfying (c). Now it follows from standard
arguments that q′η satisfies (c), even if P0

κ ∗ P1
η is bigger than the direct limit of

P0
κ ∗ P

˜
1
ξ ’s (ξ < η), (in the case P0

κ ∗ P
˜
1
η =

⋃
ξ<η P0

κ ∗ P
˜
1
ξ it is automatic), but for

completeness we elaborate:
If p ∈ G0

κ+1 is fixed, p ∈ P0
κ ∗ P

˜
1
ξ , then for each ξ < η let pξ ∈ P0

κ ∗ P
˜
1
ξ ⊆ P0

κ+1 be

such that p↾κ ⊩P0
κ
p(κ)↾ξ = pξ(κ). Now if cf(η) < κ, then sup{j(ξ) : ξ < η} = j(η),

and so j(p)(j(κ)) is the least upper bound for the system {j(pξ(κ)) = j(pξ)(j(κ)) :
ξ < η}, and

(P0
j(κ) ∗ P

˜
′
j(χ))/G

0
κ+1 |= j(pξ) ≤ qξ

by our hypothesis. If cf(η) ≥ κ, then by the κ-cc of P0
κ (▷◁)2 there exists a ξ < η

such that

⊩P0
κ
p(κ) = p(κ)↾ξ,

and so p ∈ P0
κ ∗ P

˜
1
ξ (remember, P1

χ is a < κ support iteration). This in turn implies

(P0
j(κ) ∗ P

˜
′
j(χ))/G

0
κ+1 |= j(p) ≤ qξ ≤ q′η.

If η = ξ + 1 is a successor and

• if ξ /∈ S∗,

then using simply the <(2χ)+-directed closedness of P0
j(κ) ∗ P′

j(χ))/G
0
κ+1 (by Fact

3.8) define q′η ∈ (P0
j(κ) ∗ P′

j(ξ+1))/G
0
κ+1 to be an upper bound of qξ ∈ P0

j(κ) ∗ P′
j(ξ)

and the set {j(p) : p ∈ (P0
κ ∗ P1

ξ+1) ∩G0
κ+1}.

Otherwise,

• if ξ ∈ S∗,

(where η = ξ+1) then recall that by the definition of Q
˜

1
ξ+1 each p ∈ (P0

κ∗P
˜
1
(ξ+1)) the

coordinate (p(κ))(ξ + 1) is a (P0
κ ∗ P

˜
1
ξ)-name for a pair (ε,A) with ε = ε ↾ (0, γ) for

some γ < κ, and where A ⊆ V
V0[G

0
κ∗G

1
ξ]

κ , A = A ↾ [γ, κ). Note that D
˜

ξ generates a
<κ-closed filter on Vκ, therefore j(D

˜
ξ) generates a <j(κ)-closed filter on Vj(κ). We

claim that
(3.4)

M[G0
κ+1] |= P0

j(κ)∗P
′
j(ξ+1)/G

0
κ+1 |= q′ξ

⌢
(
εξ, A

˜
′
j(ξ)

)
≥ j(p) whenever p ∈ P0

κ∗P1
ξ+1∩G0

κ+1,

where q′ξ
⌢

(
εξ, A

˜
′
j(ξ)

)
denotes the condition that agrees with q′ξ on coordinates

below j(ξ), and (εξ, A
˜

′
j(ξ)) at j(ξ). Note that by our hypothesis it suffices to check

that

∀p ∈ P0
κ ∗ P1

ξ+1 ∩G0
κ+1 : (εξ, A

˜
′
j(ξ)) ≥ j(p)(j(ξ)).
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But a contradiction may only arise if for some x = j(x) ∈ V V1
κ it were the case that

j(p) ⊩P0
j(κ)

∗P′
j(ξ)+1

j(x) ∈ j(εξ)(= j(ε)j(ξ)),

equivalently,

p ⊩P0
κ∗P1

ξ+1
x ∈ εξ,

while

q′ξ
⌢ (εξ, A

˜
′
j(ξ)) ⊩P0

j(κ)
∗P′

j(ξ+1)
/G0

κ+1
x = j(x) /∈ j(ε)j(ξ)

(or the other way around). However, this is impossible as clearly x ∈ εξ by p ∈
G0

κ+1 and the very definition of εξ, and by the fact that q′ξ
⌢ (εξ, A

˜
′
j(ξ)) forces

j(ε)j(ξ)↾κ = εξ.
Having the claim established we can choose q′ξ+1 so that q′ξ+1(j(κ))(j(ξ)) satisfies

(3.3) (with ζ = ξ), hence (e) as well.
Finally, for (d), first note that we can assume A

˜
∈ Nη, so there are at most χ-

many such names. Now choosing an increasing sequence of conditions ⟨q′′γ : γ < χ⟩
in (P0

j(κ) ∗P˜
′
j(η))/G

0
κ+1 with q′′0 = q′η, we can decide for each name X

˜
the statement

κ ∈ j(X
˜
). So using the < χ+-directed closedness of (P0

j(κ)∗P˜
′
j(η))/G

0
κ+1 inV0[G

0
κ+1]

(Fact 3.8), we can choose qη to be an upper bound of the sequence ⟨q′′γ : γ < χ⟩,
yielding (d) as desired.

Finally, qχ is defined to be an upper bound of the qη’s (η < χ).
□Claim3.11

Fact 3.12. By the definition of P0
κ ∗P

˜
1
χ, and the way qχ was constructed, we have:

(▷◁)13 For each δ ∈ S∗, if Dδ generates a κ-complete ultrafilter on Vκ, then

⊩P0
κ+1

∀A
˜
∈ D

˜
δ ∃α < κ s.t. (ε

˜
δ ↾ (α, κ) ⊆ A

˜
),

(▷◁)14 moreover, (in M[G0
κ+1]) by e

qχ ⊩(P0
j(κ)

∗P
˜
′
j(χ)

)/G0
κ+1

∀d

κ(d) = κ ∧ d ∈
⋂

A
˜
∈D
˜

δ

j(A
˜
)

 → (d ∈ j(ε
˜
δ))

(where κ(d) is defined in Definition 2.15 (ii)).

(▷◁)15 If δ ∈ S∗, then εδ is a pseudointersection of Dδ.

j and qχ defines the normal ultrafilter

(•)5 D• = {A
˜
[G0

κ+1] : ⊩P0
κ+1

A
˜
⊆ κ, qχ ⊩ “κ ∈ j(A

˜
)”} ⊆ P(κ),

(▷◁)16 and if Dδ ⊆ D•, then εδ ∈ D•.

This together with (#) complete the proof of ((C))((a)).

Case 2: For 3.2(C)(b) we proceed as follows. In V
P1
χ

1 we have to find a sequence

Ū = ⟨Uα : α < κ⟩ of normal measures on κ increasing in the Mitchell order, such
that each Uα satisfies our closedness properties, namely, whenever ⟨Xν : ν < λ⟩ is
a sequence in Uα, there exists X ′ ∈ Uα, |X ′ \Xν | < κ for each ν < λ. Let U0 be
the normal ultrafilter provided by appealing to ((C))((a)) which we have already
proved.

Working in V1[G
1
χ] = V0[G

0
κ ∗G1

χ] we will construct the sequence by induction,
so fixing α < κ, we assume that Uβ ’s are already defined for β < α. So we
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(•)6 let U
˜

be a P0
κ ∗ P

˜
1
χ = P0

κ+1-name for ⟨Uβ : β < α⟩ ∈ V0[G
0
κ ∗G1

χ], where

1P0
κ+1

forces that U
˜

= ⟨U
˜

β : β < α⟩ is an increasing sequence of κ-complete

normal ultrafilters w.r.t. the Mitchell-order of length α, each U
˜

β is <λ+-
directed modulo [κ]<κ.

and fix an elementary embedding j∗ : V0 → M∗ with critical point κ, χM∗ ⊆ M∗
with

(3.5) j∗(h)(κ) =
〈
P
˜
1
χ, χ

+, U
˜

〉
(recall the definition of h (•)1, this is possible). We are going to define a normal
ultrafilter Uα associated with j∗, above the Uβ ’s w.r.t. the Mitchell-order.

Defining P
˜
′
∗ = j∗(P

˜
1), and letting (P0

∗)j∗(κ) = j∗(P0
κ), observe that by the defini-

tion of P0
κ (Definition 3.4)

j∗(P0
κ ∗ P

˜
1
χ) = (P0

∗)j∗(κ) ∗ (P˜
′
∗)j∗(χ),

and

(P0
∗)κ+1 = P0

κ ∗ P
˜
1
χ.

Now our fixed G0
κ+1 ⊆ P0

κ+1 is generic over V0 and also over M∗.
With a slight abuse of notation (in the proof of Case 2 from now on, in order to

avoid notational awkwardness) we will refer to (P0
∗)j∗(κ) as P0

j∗(κ)
, and to (P

˜
′
∗)j∗(χ) as

P′
j∗(χ)

; moreover, observe that all the preceding facts and claims hold in this setting,

we only used that j(h(κ)) = ⟨P
˜
1
χ, χ

+, x
˜
⟩ for some name x

˜
, which obviously holds

for j∗ as well (where x
˜

is not arbitrary anymore). In this new setting we appeal
to Claim 3.11, obtaining the condition q∗χ ∈ P0

j∗(κ)+1/G
0
κ+1, and the κ-complete

normal ultrafilter

(3.6) D•
∗ = {A

˜
[G0

κ+1] : M∗[G
0
κ+1] |= “q∗χ ⊩P0

j∗(κ)
∗P′

j∗(χ)
/G0

κ+1
κ ∈ j∗(A

˜
)”}

(which is a κ-complete normal ultrafilter over V0[G
0
κ+1], belonging to V0[G

0
κ+1])

and < λ+-directed w.r.t. ⊇∗. We only need to prove the following claim, implying
that the filter D•

∗ dominates {Uβ : β < α} w.r.t. the Mitchell order:

Claim 3.13. For each β < α there exists a sequence ⟨Wγ : γ < κ⟩ ∈ V0[G
0
κ+1],

where

• for D•
∗-many γ < κ the set Wγ is an ultrafilter over γ,

• for each X ∈ P(κ) ∩V0[G
0
κ+1]

X ∈ Uβ ⇐⇒ {γ < κ : (X ∩ γ) ∈ Wγ} ∈ D•
∗.

Proof. Using (reinterpreting) (3.5)
γ < κ : h(γ) = ⟨x

˜
γ , µγ , y

˜
γ⟩, where y

˜
α is a P0

γ+1-name
for a sequence of subsets of P(γ) of length α),
x
˜
α = Q

˜

0
α,

 ∈ D•
∗ ∩V0.

Now suppose that β < α is fixed. Since x
˜
γ is name for a sequence of length α, we

can easily get a name for its β’th coordinate. This way, we can fix Y ∈ D•
∗ ∩V0,

and the sequence ⟨W
˜

γ : γ < κ⟩ such that

(▲1) for each γ ∈ Y , W
˜

γ is a P0
γ+1-name for a subset of P(γ) (the β’th coordi-

nate of xγ), and
(▲2) j∗(⟨W

˜
γ : γ < κ⟩)(κ) = U

˜
β .
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In what follows, we will prove that the natural candidate Wγ = W
˜

γ [G
0
κ+1] (γ < κ)

works (utilizing standard arguments, so a reader familiar with this kind of proofs
can jump to Case 3).

For a fixed P0
κ ∗ P1

χ-name X
˜

∈ V0 (for a subset of κ) define the P0
κ ∗ P1

χ-name
Z
˜

X ∈ V0 as follows.

(3.7) 1P0
κ∗P1

χ
⊩ Z

˜
X = {γ < κ : X

˜
↾ γ ∈ W

˜
γ},

We only have to verify that

(3.8) X
˜
[G0

κ+1] ∈ U
˜

β [G
0
κ+1] iff Z

˜
X [G0

κ+1] ∈ D•
∗.

But the latter is defined (by (3.6)) as

Z
˜

X [G0
κ+1] ∈ D•

∗,
⇕

(in M∗[G
0
κ+1]) q

∗
χ ⊩P0

j∗(κ)
∗P′

j∗(χ)
/G0

κ+1
κ ∈ j∗(Z

˜
X),

Therefore, as j∗(W
˜
)(κ) = U

˜
β by (3.7), and

M∗[G
0
κ ∗G1

χ] |= (q∗χ ⊩ κ ∈ j∗(Z
˜

X) ⇐⇒ q∗χ ⊩ j∗(X
˜
) ↾ κ ∈ U

˜
β)

(since j∗(⟨W
˜

γ : γ < κ⟩)(κ) = U
˜

β), we observe that in order to get (3.8) it suffices
to show the following

(3.9) X
˜
[G0

κ+1] ∈ U
˜

β [G
0
κ+1] iff q∗χ ⊩ j∗(X

˜
) ↾ κ ∈ U

˜
β .

But then by the elementarity of j∗ (and crit(j∗) = κ)

∀α < κ, ∀p ∈ P0
κ ∗ P

˜
1
χ : p ⊩P0

κ∗P
˜
1
χ
α̌ ∈ X

˜
⇐⇒ j∗(p) ⊩P0

j∗(κ)
∗P
˜
′
j∗(χ)

α̌ ∈ j∗(X
˜
),

and recalling p ∈ G0
κ+1 implies q∗χ ≥ j∗(p) in the quotient forcing P0

j∗(κ)
∗P′

j∗(χ)
/G0

κ+1)

we get that

(∗)1 (in M∗[G
0
κ∗G1

χ]) the condition q∗χ forces j∗(X
˜
) ↾ κ to be equal to X

˜
[G0

κ+1].

This yields (3.9), completing the proof of Case 2.
□

Case 3: For 3.2(C)(c). We fix Υ > κ, and η, and we would like to define the
κ-complete fine normal ultrafilter W on [Υ]<κ that satisfies ⋆ from (c). First we
redefine the elementary embedding j from Definition 3.5 (as well as P0

j(κ), P˜
′
j(χ)):

Definition 3.14.

(•)1 Let ρ = |2(Υ·χ)κ + η|, and
(•)2 define j : V0 → M to be an elementary embedding with critical point κ

such that (j(h))(κ) = ⟨P
˜
1
χ, ρ

+, ∅̌⟩ (∅̌ = ∅ is the canonical name for the empty
set) and j(κ) > ρ, ρM ⊆ M,

(•)3 Let ⟨P0
α,Q

˜

0
β : α ≤ j(κ), β < j(κ)⟩ = j(⟨P0

α,Q0
β : α ≤ κ, β < κ⟩) so Q

˜

0
κ = P

˜
1
χ,

and let P
˜
′
j(χ) = j(P

˜
1
χ).

Similarly as in Facts 3.7, 3.8, 3.9 we can get the following.

Fact 3.15. The filter G0
κ+1 is generic over M as well, and the forcing notions

P0
j(κ)/G

0
κ+1 and (P0

j(κ) ∗ P
˜
′
γ)/G

0
κ+1 (γ ≤ j(χ)) are well defined and < |2Υ + η|+-

directed closed in M[G0
κ+1].

Fact 3.16. V1 |= “(P0
j(κ) ∗ P˜

′
γ)/G

0
κ+1 is < |2Υ + η|+-directed closed.”
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Fact 3.8 follows from the fact below.

Fact 3.17. V[G0
κ ∗G1

χ] |= 2Υ+ηM[G0
κ+1] ⊆ M[G0

κ+1].

Using this new j, we will extract the ultrafilter W ⊆ P([Υ]<κ) (in the sense of
V0[G

0
κ+1]), and the sequence of ultrafilters U as well from the information provided

by G0
κ+1 = G0

κ ∗G1
χ, and qχ ∈ (P0

j(κ) ∗P
′
j(χ))/G

0
κ+1 (given by Claim 3.11), and then

we will prove that it is indeed a measure sequence corresponding to the elementary
embedding jW . Obviously,

(⊚1) j(κ) > χ, χM ⊆ M .

Observe that Claim 3.11 is true in this setting as well, and let the master condition
qχ ∈ (P0

j(κ) ∗P
′
j(χ))/G

0
κ+1 be given by it. First we claim that by possibly extending

qχ, we can assume that

(⊚2) For each A ∈ P([Υ]<κ)∩V2 the condition qχ ∈ (P0
j(κ)∗P

′
j(χ))/G

0
κ+1 decides

about (the truth value of) “(j“Υ ∈ j(A))” (in M[G0
κ+1]).

To this end we first count the possible A’s. Recall that P1
χ is < κ-closed (((B))/

(b)

[χ]<κ ∩V2 = [χ]<κ ∩V1 = [χ]<κ ∩V0[G
0
κ],

and as |P0
κ| = κ,

(3.10) |[Υ]<κ ∩V2| ≤ (Υ · χ)κ.

Second, as |P0
κ ∗ P1

χ| = χ, we have

(3.11) V2 = V0[G
0
κ ∗G1

χ] |= P([χ]<κ)| ≤ (2(χ·Υ)κ)V0 ≤ ρ.

Now using Fact 3.8 we can extend qχ to another condition q∗ in (at most) ρ-many
steps (in (P0

j(κ) ∗ P
′
j(ζ))/G

0
κ+1) so that

(⊚3) for each name A
˜

for a subset of [χ]<κ

M[G0
κ+1] |= q∗ ∥ j“Υ ∈ A

˜
,

and so (by possibly replacing qχ by q∗) (⊚2) holds, indeed. Now we can define
the κ-complete, fine, normal ultrafilter

(3.12) W = {A
˜
[G0

κ ∗G1
κ] ∈ [Υ]<κ : qχ ⊩ j“Υ ∈ j(A

˜
)} ∈ V2,

Now let jW : V2 → MW = Mos([Υ]<κ

V2/W ) be the corresponding elementary
embedding, and let U = ⟨Uα : α < dom(U)⟩ be the ultrafilter sequence of maximal
length associated to jW , that is, the following holds in V2.

(⊟1) U0 = κ, and for each α ∈ dom(U), α > 0 the set Uα ⊆ P(Vκ) is a κ-
complete normal ultrafilter satisfying

∀A ⊆ Vκ : A ∈ Uα ⇐⇒ U ↾ α ∈ jW (A)

(therefore for each α < dom(U), U ↾ α ∈ MW ),
(⊟2) U /∈ MW .

The following two claims complete the proof of 3.2((C))((c)) as we study the ultra-
filter sequence U↾(min(dom(U), η).
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Claim 3.18. For every ultrafilter sequence F ∈ MW with κ(F ) = κ there exists a

P0
j(κ) ∗ P

′
j(χ)-name F

˜

′ ∈ M for an ultrafilter sequence with κ(F
′
) = κ such that for

each name A
˜

for a subset of V
V0[G

0
κ∗G

1
χ]

κ we have

F ∈ jW (A
˜
[G0

κ ∗G1
χ]) ⇐⇒ M[G0

κ+1] |= q∗ ⊩ F
˜

′ ∈ j(A
˜
).

Claim 3.19. Suppose that σ ≤ min(dom(U, η)), and assume {F
˜

i : i < σ} ⊆ M is
a set of (Pj(κ) ∗ P′

j(χ)-names for) ultrafilter sequences with κ(F
˜

i) = κ (i < σ).

If the filter

F∗ =
⋂
i<σ

{A ⊆ V V2
κ : qχ ⊩ F

˜
i ∈ j(A)}

satisfies (∀α < κ) : | ∪ F∗ ↾ α| < κ, then F∗ is < λ+-directed in the sense that for
any system ⟨Xα : α < λ⟩ in F∗ there is a set X ′ ∈ F∗ s.t. for each α < λ there
exists δ < κ with X ′ ↾ [δ, κ) ⊆ Xα.

Proof. (Claim 3.18) Instead of factoring through our elementary embeddings (after
forcing) we provide a direct calculation. Fix the ultrafilter sequence F ∈ MW , and
pick a function f ∈ V2, dom(f) = [Υ]<κ, jW (f)(jW “Υ) = F , where we can assume
that

(3.13) ∀x ∈ dom(f) f(x) is an u.f. sequence with κ(f(x)) = otp(κ ∩ x).

Now we can fix a P0
κ ∗ P1

χ-name f
˜
∈ V0 of f , such that 1P0

κ∗P1
χ
forces (3.13). Now

as f
˜
∈ V0 is a P0

κ ∗ P1
χ-name for a function with dom(f) = [Υ]<κ, by elementarity

j(f
˜
) is a P0

j(κ) ∗ P
′
j(χ)-name for a function with domain [j(Υ)]<j(κ). Now, as j“Υ ∈

M ∩ [j(Υ)]≤ρ, there is a name F
˜

′ ∈ M such that

(3.14) M |= ⊩P1
j(κ)

∗P′
j(χ)

j(f
˜
)(j“Υ) = F

˜
′.

It only remains to check that for each X ⊆ V V2
κ the conditions ”F ∈ jW (X)”

and ”q∗ ⊩ F
˜

′ ∈ j(X)” are equivalent. More precisely, we prove the following.

(◦) For every fixed P0
κ ∗ P1

χ-name X
˜

for a subset of V V2
κ

F ∈ jW (X
˜
[G0

κ ∗G1
χ]) ⇐⇒ q∗ ⊩ F

˜
′ ∈ j(X

˜
).

As F = jW (f)(jW “Υ) we can reformulate the lhs. of the statement as

V[G0
κ ∗G1

χ] |= {y ∈ [Υ]<κ : f(y) ∈ X} ∈ W,

i.e. for some p ∈ V0[G
0
κ ∗G1

χ]

p ⊩P0
κ∗P1

χ
{y ∈ [Υ]<κ : f

˜
(y) ∈ X

˜
} ∈ W

˜
.

Now for the the P0
κ ∗ P1

χ-name C
˜

:= {y ∈ [Υ]<κ : f
˜
(y) ∈ X

˜
} we have (by (⊚2) and

(3.12))

(3.15) C
˜
[G0

κ ∗G1
χ] ∈ W ⇐⇒ q∗ ⊩ j“Υ ∈ j(C

˜
).

(Recall that q∗ decides this by (⊚3) as C
˜

is a name for a subset of [Υ]<κ.) Now

(⊩P0
j(κ)

∗P′
jχ
) j(C

˜
) = j({y ∈ [Υ]<κ : f

˜
(y) ∈ X

˜
}) = ({y ∈ [j(Υ)]<j(κ) : j

˜
(f)(y) ∈ j(X

˜
)}),

so the rhs. of (3.15) is equivalent to

(3.16) q∗ ⊩ j(f
˜
)(j“Υ) ∈ j(X

˜
),

so recalling the definition of F
˜

′, ⊩ j(f
˜
)(j“Υ) = F

˜
′ by (3.14) (3.16) is clearly equiv-

alent to q∗ ⊩ F
˜

′ ∈ j(X
˜
), therefore (◦) holds, as desired. □Claim3.18
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Proof. Fix ⟨F
˜

′
i : i < σ⟩ as in the Claim 3.18.

We only have to recall how we constructed qχ, which ensures the existence of
the desired pseudointersection. Fix a sequence ⟨Xα : α < λ⟩ in the filter F∗. Now
let D′ = {Xα : α < λ}, which is equal to Dζ for some ζ < χ by (#) from our
assumptions (B)/d. Now by our assumptions

(∀i < σ) (∀X ∈ Dζ) qχ ⊩ F
˜

i ∈ j(X),

so since A′
j(ζ) is the name for the intersection of the j(A

˜
)’s, where A

˜
runs over the

< κ-complete filter generated by Dζ (Definition 3.10) A′
j(ζ)

(∀i < σ) qχ ⊩ F
˜

i ∈ A′
j(ζ).

Finally, recalling Definition 3.10 and (3.3) from Claim 3.11 we get that for the
generic sequence εζ (which is a pseudointersection of the D′ = Dζ)

qζ+1 ⊩ j(εζ) ↾ (κ+ 1) = εζ ∪ (A′
j(ζ) ↾ [κ, κ+ 1)),

which means
(∀i < σ) qχ ⊩ F

˜
i ∈ j(εζ),

and we are done.
□Claim3.19

□Lemma3.2

§ 3(B). The preliminary forcing for obtaining (κ, λ)− 1 systems together
with a universal in (Kκ)λ.

This subsection deals with the application of Claim 3.2, we show that it is possible
to force a universal object in (Kκ)λ with a notion of forcing satisfying requirements
from Claim 3.2.

Conclusion 3.20. Assume

• κ is supercompact,
• κ < λ < χ = χλ,
• λ is regular,
• (∀θ)(θ ∈ Card ∧ κ ≤ θ < λ ⇒ 2θ = θ+) , and
• σ = cf(σ) < κ.

Then for some forcing extension VP preserving cardinals ≥ κ and cofinalities > κ
and ≤ σ, we have that in VP:

(1) 2κ = χ,
(2) κ is a strong limit singular of cofinality σ,
(3) and there is a universal graph in cardinality λ.

Proof. We shall use 1.2, but we have to justify it. That is, we need a forcing fitting
in the scheme in Claim 3.2 with V0 = V, specifying the (< κ)-directed-complete

iteration P1
χ = ⟨P1

α,Q1
β : α ≤ χ, β < χ⟩ ∈ V1 = VP0

κ in which we are free to choose

Q
˜

β ’s on β′s outside S∗ ⊆ χ. (And then conclusion (C)/ (a) or (b) with Claim 1.5
together with Claim 2.1 or 2.2 will give the desired consistency result.) Our task is
to construct (in V1) a suitable iteration P1

χ, and to check that P1
χ

(⊺)1 is <κ-directed closed,
(⊺)2 is of cardinality χ (up to equivalence),
(⊺)3 has the λ+-c.c.,

Paper Sh:1185, version 2024-08-11. See https://shelah.logic.at/papers/1185/ for possible updates.
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(⊺)4 does not collapse any cardinals, and
(⊺)5 V1 |= ⊩P1

χ
“there is a universal graph in (Kκ)λ”,

(⊺)6 and we can choose S∗ ∈ [χ \ {0, 1}]χ, S∗ ∈ V1, |χ \ S∗| = χ, and the
P1
δ-names D

˜
δ (δ ∈ S∗) satisfying ((B))(d) from Claim 3.2.

We will do the same as in [She90], we define (in V1)

(1) Q1
0 to be the forcing of χ-many stationary sets of λ, any two intersecting in

a set of size smaller than κ,
(2) Q

˜

1
β for β ∈ χ \ (S∗ ∪{0}) the main iteration from [She90] just with κ-many

colors (i.e. in the class Kκ instead of simple graphs, which is just equivalent
to K2): forcing a generic random graph, and the embeddings into it with
< κ-support partial functions.

We need to check that the iteration is indeed λ+-cc, which will be ensured by

showing that (in V1) Q1
0 is λ+-cc, and in (V1)

Q1
0 the iteration of Q1

α’s (0 < α < χ),
i.e. P1

χ/G
1
1 has the κ+-cc .

First for future reference we have to remark that by the construction of P0
κ

(∗)1 in V1 = V
P0
κ

0 κ is still strongly inaccessible (as we noted in (▷◁)3). As
|P0

κ| = κ our cardinal arithmetic assumptions above κ are also preserved.

Working in V1, the next lemma concerns the first step Q1
0 which we can define

to be Q(λ, χ, κ) as in [Bau76, Sec. 6.], see below (b) in Definition 3.22.

Lemma 3.21. In V1 there exists a forcing poset Q1
0 that is <κ-directed closed, of

power χ, having the λ+-cc, preserving cardinals from (κ, λ], and

V
Q1

0
1 |= ∃{Sα : α < χ} ⊆ P(λ), a system of stationary sets s.t. ∀α < β < χ : |Sα∩Sβ | < κ.

Proof.

Definition 3.22. First we define the following auxiliary posets.

(a) For a regular cardinal µ we let Q′(λ, χ, µ) be the set of functions f satisfying
(i) dom(f) ∈ [χ]<µ,
(ii) for each α ∈ dom(f) f(α) ∈ [λ]<µ,

with f ≤ g, iff
(iii) dom(f) ⊆ dom(g),
(iv) ∀α ∈ dom(f): f(α) ⊆ g(α),
(v) for each α ̸= β ∈ dom(f): f(α) ∩ f(β) = g(α) ∩ g(β).

(b) Let Q(λ, χ, κ) ⊆
∏

µ∈Reg∩[κ,λ] Q
′(λ, χ, µ) be the collection of the following

functions f
(i) (∀µ < ν ∈ Reg ∩ [κ, λ]), (∀α ∈ dom(fµ)): fµ(α) ⊆ fν(α)
with the pointwise ordering inherited from the full product∏

µ∈Reg∩[κ,λ] Q
′(λ, χ, µ).

Definition 3.23. We let Q1
0 = Q(λ, χ, κ) ∈ V1.

For later reference we note the following. Recall that χλ = χ holds by our
assumptions.

Observation 3.24. For each µ ∈ Reg ∩ [κ, λ] |Q′(λ, χ, µ)| ≤ χ<µ · λ<µ = χ.
Therefore |Q1

0| = χ.

By [Bau76, Lemma 6.3], recalling (σ ∈ Card ∩ [κ, λ)) → (2σ = σ+) by our
premises, so λ<λ = λ we have the following.
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Claim 3.25. Q(λ, χ, κ) is λ+-cc, <κ-directed closed, preserving cofinalities and
cardinals.

Clearly

(‡)1 every directed subset of power less than κ in Q1
0 = Q(λ, χ, κ) has a least

upper bound.

Now obviously, in V
Q1

0
1

(‡)2 the generic subsets Sα (α < χ) defined by ⊩Q1
0
S
˜
α = ∪{fκ(α) : f ∈ G

˜
}

form a κ-almost disjoint system, i.e. if α < β, then ⊩ |S
˜
α ∩ S

˜
β | < κ,

we only need to verify that

(‡)3 for each α < χ the subset

Sα is a stationary subset of λ,

which is a standard argument, but for the sake of completeness we elaborate. (In
fact, recalling [Bau76, Lemmas 6.3-6.5.] with the aid of the following it is easy
to argue that (Sα ∩ Eλ

≥κ) i.e. restricting Sα to points of cofinality at least κ is

stationary.)

Claim 3.26. [Bau76, Lemmas 6.3-6.5.] The notion of forcing Q(λ, χ, κ) is equiva-
lent to the two-step iteration Q(λ, χ, κ+) ∗Q

˜

′(λ, χ, κ, F
˜
) where

V
Q(λ,χ,κ+)
1 |= • Fα (α ∈ χ) is the generic sequence in [λ]λ(given by Q(λ, χ, κ+)),

• Q′(λ, χ, κ, F ) ⊆ Q′(λ, χ, κ) defined by
[f ∈ Q′(λ, χ, κ, F

˜
) ⇐⇒ ∀α ∈ dom(f) f(α) ⊆ Fα].

Moreover, Q(λ, χ, κ+) is <κ+-closed, (in V
Q(λ,χ,κ+)
1 ), and Q′(λ, χ, κ, F ) has the

κ+ − cc).

Looking at the definition of the forcing Q(λ, χ, κ), if we are given a condition
p, and a Q(λ, χ, κ)-name C

˜
∗ for a club set in λ, first recall that Q(λ, χ, κ) is <κ-

closed (Claim 3.26), in particular < ω1-closed, as κ is strongly inaccessible. We
can define an increasing sequence pj (j < ω) in Q(λ, χ, κ) with p0 = p, and an
increasing sequence of ordinals ϱj (j < κ) satisfying pj ⊩ ϱj ∈ C

˜
∗, and if j < k,

then sup∪{pjλ(β) : β ∈ dom(pjλ)} < ϱk. This is possible, as |dom(pj)| < λ, as well

as |pjλ(β)| < λ, and λ is regular. Then clearly any upper bound of the pj ’s forces
ϱω := sup{ϱj : j < ω} ∈ C

˜
∗, but as the least upper bound does not say anything

about the statements ϱω ∈ S
˜
β (β < χ) we can extend it to a condition p′ with

ϱω ∈ p′µ(α) for each µ ∈ Reg ∩ [κ, λ] (thus p′ ⊩ ϱω ∈ S
˜
α ∩ C

˜
∗). This completes the

proof of Lemma 3.21. □Lemma3.21

As Q1
0 as already defined in Definition 3.23 we can define the iteration ⟨P1

α, Q
˜

1
β :

α ≤ χ, β < χ⟩ for which we have to choose a suitable S∗.

Definition 3.27. We let 0, 1 /∈ S∗ ⊆ χ be such that |S∗| = χ, |χ \ S∗| = χ.

Definition 3.28. We let ⟨P1
α, Q

˜

1
β : α ≤ χ, β < χ⟩ be the following < κ-support

iteration. The definition of the P1
β-name Q

˜

1
β goes by induction on β as follows,

distinguishing three cases. But first
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36 MÁRK POÓR† AND SAHARON SHELAH∗

⊛ we have to remark that in steps with β ∈ S∗ we will only assume that D
˜

β

is a P1
β-name for a system of subsets if V V1

κ , where

⊩P1
β

D
˜

β ∈ [P(V V1
κ )]≤λ,

first we will deduce some properties of P1
χ based on only this weak assump-

tion up until the end of the proof of Lemmas 3.35 and 3.34 and then we will
verify that the D

˜
β ’s (β ∈ S∗) can be suitably chosen (during the inductive

process of defining the iteration P1
χ) so that the iteration fulfills all our

remaining demands from (⊺)1-(⊺)6. This will be a standard bookkeeping
argument.

⊛ Similarly, for steps in χ\S∗ \{0, 1} up until the end of the proof of Lemmas
3.35 and 3.34 we only assume that ⊩P1

β
M
˜

β ∈ (Kκ)λ, i.e. is a P1
β-name for

a κ-colored graph on λ.

• For every M = ⟨|M |, RM
α : α < κ⟩ ∈ (Kκ)λ we will use the notation

cM : [λ]2 → κ denoting the color of the edge between i and j, i.e.

cM (i, j) = α ⇐⇒ (i, j) ∈ RM
α .

Case (1): β = 1.

Let Q1
1 ∈ V

Q1
0

1 be the forcing for obtaining a random κ-colored graph on λ with
conditions of power < κ, i.e. q ∈ Q1

1 iff

(i) q ⊆ {[i Rγ j] : i ̸= j < λ, γ < κ},
(ii) ∀i ̸= j < λ we have

([i Rγ j], [i Rγ′ j] ∈ q) −→ (γ = γ′),

(iii) |q| < κ,

with the usual ordering. Then

(⋄)1 the generic object M
˜

∗ = ⟨λ,R
˜

M∗
α : α < κ⟩ satisfies

⊩P1
2

⟨R
˜

M∗
α : α < κ⟩ is a partition of [λ]2.

Case (2): β ∈ χ \ S∗ \ {0, 1}.

In order to define Q1
β ∈ V

P1
β

1 (formally a P1
β-name Q

˜

1
β ∈ V1) we first need to work

in V′
1 = V

P1
1

1 (= V
Q1

0
1 ) as preparation. Let Υ be a large enough regular cardinal,

and define the continuous increasing chain Nβ = ⟨Nβ,γ : γ < λ⟩ ∈ V′
1 so that

• β, P1
β , ⟨Nγ : γ ∈ β \ S∗ \ {0, 1}⟩, G1

1 ∈ Nβ,0 (the generic filter over P1
1),

• κ+ 1 ⊆ Nβ,0,
• for each γ < λ:

(•)a Nβ,γ ≺
(
H (Υ)V

′
1 ,∈

)
,

(•)b |Nβ,γ | < λ,
(•)c Nβ,γ ∩ λ is an initial segment of λ
(•)d Nβ,γ ∩ λ < Nβ,γ+1 ∩ λ,
(•)e for ε < λ limit Nβ,ε =

⋃
γ<ε Nβ,γ ,

and

(⋄)2 let ξβ(γ) = Nβ,γ ∩ λ (γ < λ).
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So the set {ξβ(γ) : γ < λ} is a club subset of λ, and as Sβ is stationary (Lemma
3.21) the set Cβ = cl(Sβ ∩ {ξβ(γ) : γ < λ}) (i.e. the smallest closed set containing
Sβ∩{ξβ(γ) : γ < λ}) is a club. Therefore the system ⟨Nβ,γ : γ < λ ∧ ξβ(γ) ∈ Cβ⟩
(after reparametrizing) clearly satisfies (•)a-(•)e, hence we can assume that

(⋄)3 {ξβ(γ + 1) : γ ∈ λ} ⊆ Sβ ,

and we let

(⋄)4 N∗
β = {ξβ(γ) : γ ∈ λ}.

For later reference we remark that the κ-almost disjointness of the Sα’s and (⋄)3
together implies

(⋄)5 if β ̸= α < χ then |{ξβ(δ + 1) : δ ∈ λ} ∩ {ξα(δ + 1) : δ ∈ λ}| < κ.

Now the forcing Q1
β ∈ V

P1
β

1 is defined so that it shall give an embedding fβ of the

κ-colored graph Mβ ∈ V
P1
β

1 into M∗, formally defined by

(⋄)6 q ∈ Q1
β , iff

(i) q is a set of elementary conditions of the following form
• [fβ(i) = j], where j ∈ {ξβ(ν + 1) : κi ≤ ν < κ(i + 1)} (so
necessarily i < j),

• [j /∈ ran(fβ)] for some j < λ,
(this is necessary for the κ-cc),

(ii) the collection q corresponds to a partial injection, and free of any
explicitly contradictory subset of terms, by which we mean that
(a) there are no i, j ∈ λ s.t. [fβ(i) = j], [j /∈ dom(fβ)] ∈ q,
(b) there are no i, j0 ̸= j1 ∈ λ s.t. [fβ(i) = j0], [fβ(i) = j1] ∈ q,
(c) there are no [fβ(i0) = j0], [fβ(i1) = j1] ∈ q s.t. cMβ

(i0, i1) ̸=
cM∗(j0, j1).

Note that fβ ’s are automatically injective by (i).
(iii) |q| < κ.

Case (3): β ∈ S∗.

As D
˜

β is a P1
β-name for a system of subsets of V V1

κ , if additionally for each α < κ

|(∪D
˜

β) ↾ α| < κ holds (and if D
˜

β generates a proper κ-complete filter), then we
define Q1

β to be the Mathias forcing QDβ
from Definition 3.1, otherwise we can let

Q1
β to be the trivial forcing. Note that this requirement ensures that

(⋄)7 if (w,A) ∈ Q1
β , then |w| < κ.

This completes Definition 3.28.

Now it is straightforward to check that each Q1
α is (forced to be) < κ-directed

closed, so P1
χ is a < κ-support iteration of < κ-directed closed posets, P1

χ itself is
< κ-directed closed by [Bau78, Thm 2.7]. (In particular it does not add any new
sequence of length < κ.) Since forcing M∗ goes by < κ-approximations (⊩P1

1
(q
˜
∈

Q
˜

1
1) → (|q

˜
| < κ), we have:

Observation 3.29. For each β ∈ χ \S∗ \ {0, 1} forcing with Q1
β over V

P1
β

1 adds an
embedding fβ : Mβ → M∗.

We already saw that P1
1 = Q1

0 is λ+-cc (Lemma 3.21), now we prove that in V
P1
1

1

the quotient forcing P1
χ/G

1
1 has the κ+-cc (no matter how we choose the P1

β-name

D
˜

β , or M
˜

β , at first only assumed to satisfy ⊛ for 2 ≤ β < χ), after which not only
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will the λ+-ccness of P1
1∗(P1

χ/G
˜

1
1) follow (and of P1

χ, too), but some easy calculation
will be sufficient for ensuring (⊺)2-(⊺)6. In order to prove the antichain condition
we will need some technical preparation, the same way as in [She90]. Recalling that
each P1

α is < κ-closed (and (⋄)7) is straightforward to prove (by induction on α)
that

(∗)2 The set

D•
α = {p ∈ P1

α : ∀γ ∈ dom(p) (β ∈ S∗) → [ ∃wγ ∈ V1 s.t. ⊩P1
γ
p(γ) = (w̌γ , A

˜
γ) ]

(β /∈ S∗) → [ ∃sγ ∈ V1 s.t. ⊩P1
γ
p(γ) = šγ} ]

is a dense subset of P1
α.

(∗)3 Therefore, in the quotient forcing P1
α/G

1
1 (as defined in [Bau78], or see

below) the set

D0
α = {p ∈ P1

α/G
1
1 : ∃q0 ∈ G1

1 : ⟨q0⟩ ∪ p ∈ D•
α} ∈ V′

1

is dense (where P1
α/G

1
1 = {p ↾ (dom(p) \ {0}) : p ∈ P1

α} ∈ V′
1, and

p ≤P1
α/G1

1
q, iff for some r0 ∈ G1

1 ⊆ P1
1: ⟨r0⟩ ∪ p ≤P1

α
⟨r0⟩ ∪ q).

(∗)4 With a slight abuse of notation (in order to avoid further notational awk-
wardness) we will identify each condition p ∈ D0

α ⊆ P1
α/G

1
1 with the func-

tion on the same domain, but for each γ ∈ dom(p)
• if β ∈ S∗ then writing p(β) = (w,A

˜
) (instead of some P1

β-name satis-

fying ⟨q0⟩ ∪ p ↾ β ⊩P1
β
p(β) = (w̌, A

˜
) for some q0 ∈ G1

1),

• if β /∈ S∗, β > 0, then writing p(β) = s, where s is a set of symbols as
in Case (1), (2) in Definition 3.28 (instead of ⟨q0⟩ ∪ p ↾ β ⊩P1

β
p(β) = š

for some q0 ∈ G1
1).

Note that (as P1
1 is < κ-closed and D0

α ⊆ V1)

(∗)5 for any α ≤ χ, and increasing sequence p = ⟨pζ : ζ < ε < κ⟩ in D0
α if

p̄ ∈ V′
1, then p̄ has a least upper bound in P1

α/G
1
1, which we will denote by

limζ<ε pζ , and this limit is in D0
α. For the sake of completeness we include

the formal definition of limζ<ε pζ . The limit of p = ⟨pζ : ζ < ε < κ⟩ is the
function p∗, where
(a) dom(p∗) =

⋃
ζ<ε dom(pζ),

(b) for β ∈ S∗ ∩ dom(p∗) p∗(β) = (
⋃

ζ<ε wpζ(β), A˜
β), where pζ(β) =

(wpζ(β), Apζ(β)), and A
˜

β is the P1
β-name defined so that ⊩P1

β
A
˜

β =⋂
ζ<ε A˜

pζ(β) holds,

(c) for β ∈ χ \ S∗, β > 0, set p∗(β) =
⋃

ζ<ε pζ(β).

Definition 3.30. In V′
1 for each α ≤ χ, δ ≤ λ, for each condition p ∈ D0

α we define
p[δ] to be the function with dom(p[δ]) = dom(p), and

(a) if 1 ∈ dom(p), then p[δ](1) = {[i Rγ j] ∈ p(1) : i, j < δ},
(b) for 1 < β ∈ dom(p) ∩ S∗ we let p[δ](β) = p(β),
(c) otherwise (for 1 < β ∈ dom(p) \ S∗) we let

p[δ](β) = {[fβ(i) = j] ∈ p(β) : i, j < max{ξβ(γ) : γ < λ, ξβ(γ) ≤ δ}}
∪

{[j /∈ ran(fβ)] ∈ p(β) : j < max{ξβ(γ) : γ < λ, ξβ(γ) ≤ δ}}.

Observe that, because of each p and each p(β) (β ∈ dom(p)) has support of size
< κ, and λ > κ is regular,
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(∗)6 for each α ≤ χ, p ∈ D0
α ⊆ (P1

α/G
1
1) we have p[δ] = p for every large enough

δ, and
(∗)7 clearly p[δ] ↾ β = (p ↾ β)[δ] (for β < χ).

Note that for p ∈ D0
α ⊆ P1

α/G
1
1 the reduced function p[δ] is in V′

1 (even in V1), but
is not necessarily a condition in P1

α/G
1
1. Nevertheless,

(∗)8 for p ≤ q ∈ D0
α with p[δ], q[δ] ∈ D0

α (i.e. if they are conditions in P1
α/G

1
1)

we obviously have p[δ] ≤ q[δ].

It is straightforward to check the following (by induction on α).

Observation 3.31. For each α ≤ χ, p ∈ D0
α and δ < λ

a) p[δ] is an actual condition (i.e. belongs to D0
α ⊆ P1

α/G
1
1), iff for every

β ∈ dom(p)
• p[δ] ↾ β ∈ P1

β, and

• (letting δ−β = max(N∗
β ∩ (δ + 1))

(3.17)
(∀i0, j0, i1, j1) if [fβ(i0) = j0], [fβ(i1) = j1] ∈ p(β), then :
j0, j1 < δ−β −→ p[δ] ↾ β ⊩P1

β/G
1
1
cMβ

(i0, i1) = cM∗(j0, j1).

b) In particular, for limit α

p[δ] ∈ P1
α/G

1
1 ⇐⇒

[
(for cofinally many ε < α) : p[δ] ↾ ε ∈ P1

ε)
]
,

c) while for α = β + 1

p[δ] ∈ P1
α/G

1
1 ⇐⇒ p[δ] ↾ β ∈ P1

β/G
1
1 and (3.17) holds.

The following notion and lemma is of central importance.

Definition 3.32. In V
P1
1

1 for α ≤ χ define

D∗
α = {p ∈ D0

α : (∀δ < λ) p[δ] ∈ P1
α/G

1
1}.

Having Observation 3.31 in our mind it is easy to check the following.

(∗)9 Whenever ⟨pζ : ζ < ε < κ⟩ is an increasing sequence in D∗
α, then

limζ<ε pζ ∈ D∗
α.

This leads to the statements about how p ∈ D∗
α and p ↾ β ∈ D∗

β (β < α) relate to
each other.

Observation 3.33. For each α ≤ χ, p ∈ D0
α

a) p ∈ D∗
α, iff for every β ∈ dom(p) and for every δ < λ

p ↾ β ∈ D∗
β ,

and (letting δ−β = max(N∗
β ∩ (δ + 1))

(3.18)
(∀i0, j0, i1, j1) if [fβ(i0) = j0], [fβ(i1) = j1] ∈ p(β), then:
j0, j1 < δ−β −→ p[δ] ↾ β ⊩P1

β/G
1
1
cMβ

(i0, i1) = cM∗(j0, j1).

b) In particular, for limit α

p ∈ D∗
α ⇐⇒ (for cofinally many ε < α) : p ↾ ε ∈ D∗

ε ,

c) while for α = β + 1

p ∈ D∗
α ⇐⇒ [p ↾ β ∈ D∗

β ] and [for each δ < λ (3.18) holds for β.]
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We are ready to state the two lemmas on which the correctness of the entire
construction depends. Lemma 3.35 makes it possible to enumerate and embed all
possible graphs on λ into M∗, which can be proved relying on Lemma 3.34.

Lemma 3.34. For α ≤ χ

(■)1α

V
P1
1

1 |= D∗
α is dense in P1

α/G
1
1.

Lemma 3.35. For every α ≤ χ

(■)2α

V
P1
1

1 |= P1
α/G

1
1 has the κ+-cc.

Proof. We proceed by induction, and prove Lemmas 3.34 and 3.35 simultaneously:
More exactly we prove Lemma 3.34 for α provided that both Lemmas holds for
β’s less than α, and we verify the κ+-cc property for P1

α assuming that D∗
α is a

dense subset of P1
α/G

1
1. For α ≤ 2 (when P1

2/G
1
1 is essentially the forcing Q1

1 of
the random graph Case (1) of Definition 3.28) the statement (■)1α clearly holds,
moreover, (■)2α holds recalling κ<κ = κ.

Suppose we know that for each ε < α (■)1α and (■)2α hold . Assume first that
α is limit. If cf(α) ≥ κ, then P1

α =
⋃

ε<α P1
ε, D

∗
α =

⋃
ε<α D∗

ε , so the latter is dense,
we are done.

Second, if α is limit, but cf(α) < κ, then let ⟨ηθ : θ < cf(α)⟩ be a continuous
increasing sequence with limit α, let p−1 ∈ D0

α be arbitrary. We will choose the
increasing sequence ⟨pθ : θ < cf(α)⟩ in D0

α with p0 ≥ p−1, and pθ ↾ ηθ ∈ D∗
ηθ
. This

would suffice as for each θ < cf(κ) the sequence pϱ ↾ ηθ (ϱ < cf(α)) is eventually in
D∗

ηθ
, so for p∗ = limϱ<cf(α) pϱ using (∗)9 we have p∗ ↾ ηθ ∈ D∗

ηθ
, leading to

(∀θ < cf(α)) p∗ ↾ ηθ ∈ D∗
ηθ
,

so by b) we are done. For the construction of the pθ’s, as D0
α and D∗

ηθ
’s are < κ-

closed we only have to ensure that pθ ∈ D0
α can be chosen so that not only pθ ≥ pϱ

(ϱ < θ), but pθ ↾ ηθ ∈ D∗
ηθ
. Now applying the induction hypothesis, we can find

p∗θ ∈ D∗
ηθ

such that it extends (limϱ<θ pϱ) ↾ ηθ (in P1
ηθ
/G1

1). Finally, let pθ be the
least upper bound of p∗θ and (limϱ<θ pϱ) (in fact for θ limit we did not even have to
appeal to the induction hypothesis if η̄ is continuous).

Third, if α = β + 1, let p−1 ∈ D0
α be arbitrary and we will extend p−1 ↾ β to

p∗ ∈ D∗
β (using (■)1β) in such a way that the right hand side of Observation 3.33

c) holds for p = p∗ ∪ ⟨p−1(β)⟩ (so that p ∈ D∗
α, p ≥ p−1).

For this, let {jθ : θ < ν} enumerate {j < λ : [fβ(i) = j] ∈ p−1(β) for some i <
λ} in increasing order, and we can fix the system {iθ : θ < ν} so that

(⊙)1 {iθ : θ < ν} is such that for each θ [fβ(iθ) = jθ] ∈ p−1(β).

Note that by Definition 3.28/Case (2)/ (i)

(⊙)2 for each θ: iθ < jθ,

and also we can choose γθ for each θ < ν such that ξβ(γθ) = jθ, thus

(⊙)3 we have

{j < λ : ∃i < λ [fβ(i) = j] ∈ p−1(β)} = {jθ : θ < ν} = {ξβ(γθ) : θ < ν}.
Now we construct the increasing sequence ⟨pθ : θ < ν⟩ in D∗

β with the properties

(α) p−1 ↾ β ≤ p0,
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(β) for each θ < ν, for each ε0 < ε1 < θ

p
[ξβ(γε1+1)]

θ ⊩P1
β/G

1
1
cMβ

(iε0 , iε1) = cM∗(jε0 , jε1).

This clearly suffices, as we can let p∗ = limθ<ν pθ ∈ D∗
β , and then p = p∗∪⟨p−1(β)⟩

belongs to D∗
α, (■)1α follows, indeed. (To see that the condition p belongs to

D∗
α, recall jε1 = ξβ(γε1) so ξβ(γε1 + 1) is the minimal δ < λ with p[ξβ(γε1

+1)](β)
containing the symbol [fβ(iε1) = jε1 ], therefore by Observation 3.33 c) we are done.)

Appealing to the induction hypothesis, let p0 ∈ D∗
β , p0 ≥ p−1. Using the < κ-

closedness of D∗
β ((∗)9) it is enough to deal with the successor case, that is, for each

θ choose pθ+1 such that p
[ξβ(γθ+1)]
θ+1 forces that the partial function iε 7→ jε (ε ≤ θ)

is an embedding of M
˜

β ↾ {iε : ε ≤ θ} into M
˜

∗ ↾ {jε : ε ≤ θ}. Using again (∗)9
(⊙)6 it suffices to show that for each ε < θ and q ≥ p−1 ↾ β, where q ∈ D∗

β , there

exists q′ ∈ D∗
β , q

′ ≥ q

q′[ξβ(γθ+1)] ⊩P1
β/G

1
1
cMβ

(iε, iθ) = cM∗(jε, jθ).

We will see that this follows from the following (formally) more general lemma,
stated here for later reference.

Lemma 3.36. For every β ≤ χ, q ∈ D∗
β, δ < λ, i′, i′′ < max(N∗

β ∩ (δ + 1)) there

exists q′ ∈ D∗
β, q

′ ≥ q such that

q′[δ] forces a value to cMβ
(i′, i′′).

Moreover, if q satisfies

(3.19)

(∀γ ∈ dom(q) \ S∗)(∀i, j) :[
([fβ(i) = j)] ∈ q(γ) \ q[δ](γ)) −→ (j = max(N∗

γ ∩ (δ + 1)) ∧ j < δ)
]

and (q(1) = q[δ](1))

(hence δ /∈ N∗
γ for γ ∈ dom(q) \ S∗), then there exists q′ for which additionally:

(∀γ ∈ dom(q′) \ S∗) : q′(γ) \ q′[δ](γ) = q(γ) \ q[δ](γ) .

(Here we remark that lemma is for every β, and uses the κ+-cc property of
P1
β/G

1
1, but we will only apply it to our fixed β, for proving (⊙)6, that is, to

complete the proof of ((■)1β ∧ (■)1β) →(■)1α.)

Proof. (Lemma 3.36) So fix q ∈ D∗
β , let ϱ be chosen so that ξβ(ϱ) = max(N∗

β ∩
(δ + 1)), so i′, i′′ < ξβ(ϱ) ≤ δ, and recall that for the model Nβ,ϱ ≺ (H V′

1(Υ),∈)
we know that i′, i′′,M

˜
β ,P1

β ,G
1
1 ∈ Nβ,ϱ (and thus P1

β/G
1
1 ∈ Nβ,ϱ). So we can find

A ∈ Nβ,ϱ such that A is a maximal antichain in D∗
β ⊆ P1

β/G
1
1, each p ∈ A decides

the value of cMβ
(i′, i′′). But as P1

β/G
1
1 has the κ+-cc, and κ + 1 ⊆ Nβ,ϱ we have

that A ⊆ Nβ,ϱ.
So

(⊞)1 let q′ ∈ D∗
β be a common upper bound of q and some q′′ ∈ A.

We have to argue that not only q′ ⊩P1
β/G

1
1
cMβ

(i′, i′′) = c∗ (for some c∗ < κ) but

(3.20) q′[δ] ⊩P1
β/G

1
1
cMβ

(i′, i′′) = c∗.

For (3.20) it is enough to prove that q′′[δ] = q′′, because then q′[δ] ≥ q′′[δ] = q′′ (by
(∗)8), which decides c

˜
Mβ

(i′, i′′), yielding (3.20), as we wanted. But as q′′ ∈ Nβ,ϱ,
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and λ ∩Nβ,ϱ = ξβ(ϱ) ≤ δ, we have dom(q′′) ⊆ Nβ,ϱ. Now for each ζ ∈ dom(q′′) \
S∗ \ {0, 1} we have ⟨Nζ,ι : ι < λ⟩ ∈ Nβ,ϱ (recall Case (2) from Definition 3.28), so
ξβ(ϱ) is an accumulation point of the ξζ(ι)’s. Hence we get that

(⊞)2 for each ζ ∈ dom(q′′) \ S∗ \ {0, 1} ξβ(ϱ) = ξζ(ι) for some ι < λ (in fact, for
ι = ξβ(ϱ)),

so q′′[ξβ(ϱ)] = q′′[δ] = q′′, we are done.
Finally, for the moreover part, if γ ∈ dom(q) \ S∗, let δ−γ = max(Nγ ∩ (δ + 1))),

and define i−γ to be the unique ordinal s.t.

(3.21) [fγ(i
−
γ ) = δ−γ ] ∈ q(γ)

(if there exists). Note that our conditions on q imply that if i−γ is defined, then

i−γ < δ−γ , and by our conditions (3.19)

δ−γ < δ.

Now by induction and by the first part define q′′ ≥ q such that for every γ ∈
dom(q′′) \ S∗ with i−γ defined

([fγ(i) = j] ∈ q′′[δ](γ)) → q′′[δ] ↾ γ decides the value cM
˜

γ
(i, i−γ ),

and
([fγ(i) = j] ∈ q′′[δ](γ)) → q′′[δ](1) decides the value cM

˜
∗(j, δ

−
γ )

(in fact this latter follows from j, δ−γ < δ and (3.21)). Now clearly q′′[δ] ≥ q[δ], and

we can define the condition q′ to be the least upper bound of q′′[δ] and q (which
is just adding symbols [fγ(i

−
γ ) = δ−γ ] ∈ q(γ)): this is possible, as for every γ with

i−γ defined we have that q′′[δ] ↾ γ forces that q′′[δ](γ) ∪ {[fγ(i−γ ) = δ−γ ]} is indeed a
partial embedding.

□Lemma3.36

Turning back to the statement from (⊙)6, as jε < jθ = ξβ(γθ) < ξβ(γθ + 1) we
also have iε, iθ < ξβ(γθ) (thus obviously iε, iθ < ξβ(γθ+1)). Apply the lemma with
δ = ξβ(γθ + 1), i′ = iε, i

′′ = iθ,

(⊙)7 let q′ ∈ D∗
β be given by the lemma, so

(3.22) q′ ⊩P1
β/G

1
1
cMβ

(iε, iθ) = cM∗(jε, jθ)

(which is obvious, as

(⊙)8 q′ ≥ p−1 ↾ β, and p−1 is a proper condition in D0
α with [fβ(iθ) = jθ],

[fβ(iε) = jε] ∈ p−1(β), hence q′ ⌢ ⟨p−1(β)⟩, too).
It remains to argue that

(3.23) q′[ξβ(γθ+1)] ⊩P1
β/G

1
1
cMβ

(iε, iθ) = cM∗(jε, jθ).

But q′[ξβ(γθ+1)] ⊩P1
β/G

1
1
cMβ

(iε, iθ) = c∗ (for some c∗ < κ) and if [jε Rc∗ jθ] /∈
q′[ξβ(γθ+1)](1) (so does not belong to q′(1)), then adding [jε Rc∗+1 jθ] to the first
coordinate of q′ would lead to a contradiction with (3.22). This verifies that assum-
ing the induction hypotheses for β, the assertion (■)1α holds, i.e. the set D∗

β+1 = D∗
α

is dense in P1
α/G

1
1.

Now assuming that D∗
α is dense we are ready to prove that P1

α/G
1
1 has the κ

+-cc.
So let ⟨pγ : γ < κ+⟩ be an antichain in D∗

α. By extending each pγ

(⊙)9 we can assume that for each γ < κ+
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(i) for each β′ ∈ dom(pγ), for each i0, i1, j0 < j1 with [fβ′(i0) = j0], [fβ′(i1) =

j1] ∈ pγ(β
′) the condition p[j1] ↾ β′ decides the value cM

˜
β′ (i0, i1),

(ii) for each γ < κ+ the condition pγ(1) is a complete graph on some set
Lγ with its edges colored, i.e.

Lγ = {i < λ : ∃i′ < λ ∃ε < κ [i Rε i′] ∈ pγ(1)},
so (∀i, j ∈ Lγ) (∃δ < κ) : [i Rδ j] ∈ pγ(1).

(iii) for each γ < κ+ and β′ ̸= β′′ ∈ dom(pγ) \ S∗ \ {0, 1} we have

{ξβ′(ρ+ 1) : ρ < λ} ∩ {ξβ′′(ρ+ 1) : ρ < λ} ⊆ Lγ

(recall that |{ξβ′(ρ+1) : ρ < λ}∩ {ξβ′′(ρ+1) : ρ < λ}| < κ by (⋄)5),
(iv) for each γ < κ+ and β′ ∈ dom(pγ) \S∗ \ {0, 1}, for each j < λ if either

[j /∈ ran(fβ′)] ∈ pγ(β
′), or [fβ′(i) = j] ∈ pγ(β

′) (for some i < λ), then
j ∈ Lγ ,

(v) for each γ < κ+, β′ ∈ dom(pγ) and j < λ, if j ∈ Lγ , then

(j ∈ {ξβ′(ρ+ 1) : ρ < λ}) ⇒
{

either [j /∈ ran(fβ′)] ∈ pγ(β
′)

or (for some i) [fβ′(i) = j] ∈ pγ(β
′),

(vi) the set Lγ ⊆ λ is closed, of limit order type,

[This is possible, a simple induction using Lemma 3.36, and the fact

[fβ(i) = j] ∈ pγ(β) → j ∈ N∗
β

(and (∗)9) yield that there is p′γ ≥ pγ in D∗
α, with (p′γ ↾ β)[j1] determining the value

cM
˜

β
(i0, i1) whenever [fβ0(i0) = j0] ∈ pγ(β0), [fβ1(i1) = j1] ∈ pγ(β1) (for some

j0 < j1, or if either of the i’s belongs to the universe of pγ(1)). Now repeating this
ω-many times we get a condition satisfying (i). Then we can obtain an even stronger
condition satisfying (ii)-(vi) by only adding symbols of the form [j /∈ ran(fβ′)] at
coordinates 1 < β′ ∈ χ \ S∗ and extending also p′γ(1).]

As κ is strongly inaccessible in V1 (by (∗)1), and in V
P1
1

1 (as P1
1 is < κ-closed),

we can apply the delta system lemma, so w.l.o.g. ⟨dom(pγ) : γ < κ+⟩ forms a delta
system. By applying the delta system lemma again we can assume that for each
β′ ∈ ∩{dom(pγ) : γ < κ} \ S∗ each of the following systems of sets forms a delta
system:

• Lγ (γ < κ+) ,

• Iγ(β
′) =

{
i : [fβ′(i) = j] ∈ pγ(β

′) ∨ ∃j ∈ [ξβ′(κi), ξβ′(κ(i+ 1)))
[j /∈ ran(fβ)] ∈ pγ(β

′)

}
(γ <

κ+).

Therefore (recalling that each i < λ has κ-many possible images) there are
ξ ̸= ζ < κ+, such that pξ and pζ has no explicitly contradictory terms on the
coordinates concerning the κ-colored graphs, and agreeing in the first part of the
condition on the coordinates dedicated to Mathias forcing, under which we mean
the following (w.l.o.g. we can assume that ξ = 0, ζ = 1):

(⊙)10 for each i, j ∈ L0(1) ∩ L1(1) there exists some ε < κ s.t. [i Rε j] ∈ p0(1) ∩
p1(1),

(⊙)11 for β′ ∈ χ \ S∗ \ {0, 1} (if β′ ∈ dom(p0) ∩ dom(p1)) the set p0(β
′) ∪ p1(β

′)
determines a partial injection from a subset of λ to a subset of λ, i.e.
satisfies (ii) (a), (b) (from Definition 3.28 Case (2)),
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(⊙)12 for β ∈ S∗ ∩ dom(p0) ∩ dom(p1) p0(β) = (wβ , A
˜

0,β), p1(β) = (wβ , A
˜

1,β) for
some wβ ∈ [V V1

κ ]<κ, and P1
β-names A

˜
0.β , A

˜
1,β .

Now p0 and p1 appear as good candidates for a compatible pair in our supposed
antichain, but we cannot take just the upper bound coordinate wise, as for coor-
dinates β′ > 1 outside S∗ it will not necessarily force that p0(β

′) ∪ p1(β
′) is an

embedding of M
˜

β′ to M
˜

∗. Although it is not immediate, the following claim shows
that we can construct a common upper bound, which will complete the proof of
(■)2α for α.

Claim 3.37. There exists a condition q ∈ D∗
α extending both p0 and p1.

Proof. (•)1 By adding symbols of the form [j /∈ ran(fβ)] to p0(β), p1(β) we can
assume the following (not harming (⊙)11)

(•)1a for 1 < β ∈ dom(p0) ∪ dom(p1) if [fβ(i) = jθ] ∈ p0(β) ∪ p1(β) holds
for no i then [jθ /∈ ran(fβ)] ∈ p0(β) ∩ p1(β),

(•)1b whenever β′ ̸= β′′ ∈ dom(p0) ∪ dom(p1), j∗ ∈ {ξβ′(ρ + 1) : ρ <
λ} ∩ {ξβ′′(ρ + 1) : ρ < λ} ∩ jϱ and there is no i with [fβ′(i) = j∗] ∈
p0(β

′) ∪ p0(β
′) then [j∗ /∈ ran(fβ′)] ∈ p0(β

′) ∩ p1(β
′),

(•)2 Let {jε : ε < ϱ} be a continuous increasing sequence for which,
(•)2a whenever β′ ∈ dom(p0) ∪ dom(p1) \ S∗, and j is such that either

[j /∈ ran(fβ′)] ∈ p0(β
′) ∪ p1(β

′), or [fβ′(i) = j] ∈ p0(β
′) ∪ p1(β

′) for
some i, then j = jθ for some θ < ϱ. (Therefore, L0 ∪ L1 = {j :
[j Rν j′] ∈ p0(1) ∪ p1(1) for some j′ < λ, ν < κ} ⊆ {jθ : θ < ϱ}.)

let jϱ = sup{jθ : θ < ϱ}, let jϱ+1 be an ordinal which is bigger than
min(N∗

β′ \ jϱ) for any β′ ∈ dom(p0) ∪ dom(p1) \ S∗.

(•)3 We construct the increasing sequence ⟨qε : ε < ϱ+ 2⟩ in D∗
α satisfying

q[jε]ε ≥ p
[jε]
0 , p

[jε]
1 ,

(•)4 and also we require that for each ε < ϱ the strict inequality qε(β
′) ⪈

q
[jε]
ε (β′) is possible if and only if β′ ∈ dom(p0)∪dom(p1)\{1} and (δβ

′

ε )− =
max(N∗

β′ ∩ (jε + 1)) < jε hold, and then for each such β′ the difference

qε(β
′)\q[jε]ε (β′) =

{
{[fβ′(i) = (δβ

′

ε )−]}, if [fβ′(i) = (δβ
′

ε )−] ∈ p0(β
′) ∪ p1(β

′),

{
[
(δβ

′

ε )− /∈ ran(fβ′)
]
}, if

[
(δβ

′

ε )− /∈ ran(fβ′)
]
∈ p0(β

′) ∪ p1(β
′),

While otherwise, if neither [(δβ
′

ε )− /∈ ran(fβ′)] belongs to p0(β
′)∪p1(β

′) nor

is there an i with [fβ′(i) = (δβ
′

ε )−] ∈ p0(β
′)∪p1(β

′), then qε(β
′) = q

[jε]
ε (β′).

(Since for the generic embedding fβ′ ran(fβ′) ⊆ N∗
β′ must hold, roughly

speaking qε contains all the information from p0 and p1 strictly below jε.)

Now we claim that provided the sequence ⟨qε : ε < ϱ + 2⟩ exists there is a
common upper bound of p0 and p1.

Observation 3.38. qϱ+1 is an upper bound of p0 and p1.

Claim 3.39. There exists a sequence ⟨qε : ε < ϱ+ 2⟩ satisfying (•)3, (•)4.

Proof. We define q0 to be the upper bound of p
[j0]
0 and p

[j0]
1 to satisfy (•)1a, (•)1b:

For β′ ∈ S∗ if p0(β
′) = (wβ′ , A

˜
0,β′), p1(β

′) = (wβ′ , A
˜

1,β′) then we let s0(β
′) =

(w,B
˜

β′) (where B
˜

β′ is the P1
β′ -name satisfying ⊩P1

β′
B
˜

β′ = A
˜

0,β′ ∩A
˜

1,β′). Because

of q0 = q
[jε]
0 (by (•)3), and recalling (⊙)9/(iv) for γ = 0, 1, q0(1) can only be the

empty condition. Furthermore, for β′ ∈ dom(p0) ∪ dom(p1) \ S∗, β′ > 1 we let
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(△)1 q0(β
′) = {[j /∈ ran(fβ′)] ∈ p0(β

′) ∪ p1(β
′) : j < j0 ∧ j ≤ sup(N∗

β′ ∩ j0)}.
So q0, q

+
0 ∈ D0

α in fact belong to D∗
α, and we obviously have (•)3, (•)4.

Now suppose that qθ’s are already defined for θ < ε, and we shall construct qε,
but we need to deal with limit and successor ε’s differently.

Case A: ε is limit.

Let sε = limθ<ε qθ ∈ D∗
α, we argue that we can choose a suitable extension of sε to

be qε. For qε we only extend sε on coordinates β′ ∈ dom(p0)∪dom(p1)\ ({1}∪S∗).
So fix such a β′. First, if jε /∈ N∗

β′ (hence N∗
β′ is bounded in jε) then we let

qε(β
′) = sε(β

′). Second, if jε ∈ N∗
β′ , and it is an accumulation point of N∗

β′ ,

then again we do nothing, we just let qε(β
′) = sε(β

′). But if jε is a successor of

(jβ
′

ε )− = max(N∗
β′ ∩ jε) in N∗

β′ , then first note that

(△)2 p
[jε]
0 (β′) ∪ p

[jε]
1 (β′) ⊆ p

[(jβ
′

ε )−]
0 (β′) ∪ p

[(jβ
′

ε )−]
1 (β′) ∪ {[jθ /∈ ran(fβ′)] : jθ ≥

(jβ
′

ε )−} ∪ {[fβ′(i) = (jβ
′

ε )−] : i < (jβ
′

ε )−}
(in fact j’s between two consecutive element of N∗

β′ are irrelevant in terms of the

forcing and the embedding fβ′). Moreover, as ε is limit (and ⟨jθ : θ < ϱ + 2⟩ is

closed by (•)2) there is θ ∈ ε with jθ ∈ ((jβ
′

ε )−, jε), and by (•)3, (•)4 we have (for
such θ)

(△)3 qθ(β
′) ⊆ sε(β

′) ⊆ s
[(jβ

′
ε )−]

ε (β′) ∪ {[(jβ′

ε )− /∈ ran(fβ′)], [fβ′(i) = (jβ
′

ε )−] : i <

(jβ
′

ε )−}.
Again

(△)4 sε(β
′) ⊇ p

[(jβ
′

ε )−]
0 (β′) ∪ p

[(jβ
′

ε )−]
1 (β′), and

(△)5 sε(β
′) ⊇ (p0(β

′) ∪ p1(β
′))∩

{
[(jβ

′

ε )− /∈ ran(fβ′)], [fβ′(i) = (jβ
′

ε )−] : i < (jβ
′

ε )−
}
.

so there is no problem adding {[jθ /∈ ran(fβ′)] ∈ p0(β
′)∪ p1(β

′) : (jβ
′

ε )− < jθ < jε}
to sε(β

′) obtaining qε(β
′). In each of the cases it is also easy to check (•)4.

Case B: ε = θ + 1.

We summarize first which symbols the qε(β
′)’s (β′ ∈ dom(p0) ∪ dom(p1)) would

have to include in order for qε to satisfy q
[jε]
ε ≥ p

[jε]
0 , p

[jε]
1 , and (•)4. Of course only

the case β′ /∈ S∗ is relevant.

(△)6 for β′ = 1 the set to cover is

(3.24) p
[jε]
0 (1) ∪ p

[jε]
1 (1) \ qθ(1) = {[jθ Rτ j] ∈ p0(0) ∪ p1(0) : j < jθ, τ < κ}.

By (•)2a
(△)7 for 1 < β′ ∈ dom(p0) ∪ dom(p1) \ S∗ the set qε(β

′) has to include the set

(3.25) {[fβ′(i) = jθ] ∈ p0(β
′) ∪ p1(β

′) : i ∈ λ}

(which is actually either a singleton, or the empty set) and

(3.26) {[j /∈ ran(fβ′)] ∈ p0(β
′) ∪ p1(β

′) : j ∈
(
(δβ

′

θ )−, δβ
′

ε )−
]
∪ {jθ} \ {jε}

(where (δβ
′

θ )− = sup(N∗
β′ ∩ (jθ +1)), (δβ

′

ε )− = sup(N∗
β′ ∩ (jε +1)), possibly

(δβ
′

θ )− = (δβ
′

ε )− ≤ jθ). Recall that if [fβ′(i) = jθ] ∈ p0(β
′)∪p1(β

′) for some

i, then necessarily jθ ∈ N∗
β′ , hence (δβ

′

θ )− = jθ.
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46 MÁRK POÓR† AND SAHARON SHELAH∗

First we are going to extend qθ to a condition q+θ with q+θ (1) including the set in

(3.24), and for β′ ∈ dom(p0) ∪ dom(p1) \ S∗ the condition q+θ (β
′) including the set

in (3.25).

Subclaim 3.40. There exists q+θ ≥ qθ in D∗
α with

(∗)a q+θ (1) ⊇ {[jθ Rτ j] ∈ p0(0) ∪ p1(0) : j < jθ, τ < κ},
(∗)b for each 0 < β′ /∈ S∗

q+θ (β
′) ∋ [jθ /∈ ran(fβ′)], if [jθ /∈ ran(fβ′)] ∈ p0(β

′) ∪ p1(β
′),

q+θ (β
′) ⊇ {[fβ′(i) = jθ] ∈ p0(β

′) ∪ p1(β
′) : i < jθ},

while

(∗)c q+θ (1) ⊆ q
+[jθ]
θ (1) ∪ {[j Rν jθ] : j < jθ, ν < κ},

(∗)d and for each 1 < β′ /∈ S∗

q+θ (β
′) ⊆ q

+[(jβ
′

θ )−]

θ (β′) ∪ {[fβ′(i) = jθ] : i < jθ} ∪ {[jθ /∈ ran(fβ′)]}.

Assuming the subclaim (which guarantees that q+θ satisfies (•)4) we only have

to add symbols of the form [j /∈ ran(fβ′)] (sets in (3.26)) to the q+θ (β
′)’s to obtain

the condition qθ+1 = qε satisfying (•)3 and (•)4, therefore Subclaim 3.40 will finish
the proof of Claim 3.39

Proof. (Subclaim 3.40)

(▲)1 For each fixed β′ where β′ ∈ dom(p0) ∪ dom(p1) with [fβ′(i) = jθ] ∈
p0(β

′) ∪ p1(β
′) for some i let iβ

′

θ denote this unique i.

Now observe that

(▲)2 for each β′ with iβ
′

θ defined, for each j′ < jθ with [fβ′(i′) = j′] ∈ qθ(β
′) for

some i′ note that i′ < j′ ≤ (δβ
′

θ )− = jθ and iβ
′

θ < (δβ
′

θ )− = jθ, so we can
apply Lemma 3.36, and thus each condition q in D∗

α can be extended to

q′ ∈ D∗
α with q′[jθ] deciding the color cM

˜
β′ (i

′, iβ
′

θ ).

So enumerating all possible pairs (β′, i′) (that are as in (▲)2) and recalling (∗)9 we
infer that

(▲)3 for some q∗ ≥ qθ the condition q∗[jθ] ↾ β′ ∈ D∗
α decides the color cM

˜
β′ (i

′, iβ
′

θ )

for all such pairs from {(β′, i′) : β′ ∈ dom(p0) ∪ dom(p1), ∃j [fβ′(i′) =
j] ∈ qθ},

(▲)4 repeat this for pairs in {(β′, i′) : ∃j [fβ′(i′) = j] ∈ q∗[jθ]}, and let q∗∗ ∈ D∗

be the condition obtained after countable many such steps,

so

(▲)5 the condition q∗∗ ∈ D∗
α, q∗∗ ≥ qθ with q∗∗[jθ] ↾ β′ deciding the color

cM
˜

β′ (i
′, iβ

′

θ ) for all (β′, i′) ∈ {(β′, i′) : β′ ∈ dom(p0)∪dom(p1), ∃j [fβ′(i′) =

j] ∈ q∗∗[jθ](β′),

Finally recall that by (•)4 qθ(1) = q
[jθ]
θ (1), and for each β′ ∈ dom(qθ) \ S∗ then

qθ(β
′)\q[jθ]θ (β′) can only be non-empty if β′ ∈ dom(p0)∪dom(p1) (and if it is indeed

non-empty then it is a singleton [jθ /∈ ran(fβ′)] or [fβ′(i) = jθ], where (δ
β′

θ )− < jθ).

(▲)6 This means that after possibly replacing q∗∗θ (β′) by q∗∗[jθ](β′)∪qθ(β
′) using

(▲)5 it is easy to see that we get a condition q∗∗ ∈ D∗
α (which still satisfies

both (•)4 and (▲)5).
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Now we are at the position to construct the desired q+θ as an extension of q∗∗.

(In order to include the symbols listed in (∗)a, and (∗)b for β′’s with (δβ
′

θ )− = jθ,
but constructing a proper condition in D∗

α), our task is to determine the color
ν(j∗, jθ) = cM∗(j

∗, jθ) (i.e. add [j∗ Rν(j∗,jθ) jθ] to q∗∗(1)) for each j∗ and β′ such
that

• [fβ′(iβ
′

θ ) = jθ] ∈ p0(β
′) ∪ p1(β

′),

• and for some i∗ [fβ′(i∗) = j∗] ∈ q∗∗[jθ](β′),

so that ν(j∗, jθ) = cM
˜

β′ (i
∗, iβ

′

θ ) (this latter value is the color forced by q∗∗[jθ] ↾ β′

by (▲)5). Then adding also the symbols [fβ′(iβ
′

θ ) = jθ] ∈ p0(β
′) ∪ p1(β

′) will work.
So fix a pair j∗, jθ as above. Now we will make use of the preparations (⊙)9

and (•)1 and show that there are no contradicting demands concerning the value
of ν(j∗, jθ). We distinguish the following cases.

Case (1): for some ν∗ < κ we have [j∗ Rν∗ jθ] ∈ p0(1) ∪ p1(1).

Then necessarily j∗ = jη for some η < θ, and the only option is to

(3.27) put [jη Rν∗ jθ] ∈ q+ε (1),

i.e. define ν(jη, jθ) = ν∗. Note that this implies jη, jθ ∈ L0. Pick an arbitrary

β′ ∈ dom(p0) ∪ dom(p1) satisfying [fβ′(iβ
′

θ ) = jθ] ∈ p0(β
′) ∪ p1(β

′) and for some i∗

[fβ′(i∗) = jη] ∈ q∗∗(β′).

If β′ ∈ dom(p0), then by (⊙)9/(v), which implies that both [fβ′(iβ
′

θ ) = jθ], [fβ′(i∗) =

jη] ∈ p0(β
′), so by (⊙)9/(i) p

[jθ]
0 ↾ β′ forces a value to cM

˜
β′ (i

∗, iβ
′

θ ). Hence,

q∗∗[jθ] ↾ β′ ≥ q
[jθ]
θ ↾ β′ ≥ p

[jθ]
0 ↾ β′ forces the same value for cM

˜
β′ (i

∗, iβ
′

θ ) (by

our hypothesis on qθ (•)3), which is ν∗.

Otherwise, assume that β′ /∈ dom(p0) (so necessarily β
′ ∈ dom(p1) and [fβ′(iβ

′

θ ) =
jθ] ∈ p1(β

′), and jθ ∈ L1). Then again (by our construction and (•)1/(•)1a) the only
way that [fβ′(i∗) = jη] ∈ qθ can happen for some i∗ is when [fβ′(i∗) = jη] ∈ p1(β

′),
but then (⊙)9/ (iv) implies that jη ∈ L1, so [jη Rν∗ jθ] ∈ p1(β

′) is a member
of p1(β

′), too, and then we can proceed as in the case above (i.e. arguing that

p
[jθ]
1 ↾ β′ ⊩ cM

˜
β′ (i

∗, iβ
′

θ ) = ν∗).

Case (2): for no ν∗ < κ do we have [j∗ Rν∗ jε] ∈ p0(1) ∪ p1(1).

Case (2A): j∗ = jη for some η < θ (so by (ii) necessarily |{jη, jθ} ∩ (L0 \ L1)| =
|{jη, jθ} ∩ (L1 \ L0)| = 1).

We can assume, that jη ∈ L0 \ L1, jθ ∈ L1 \ L0. This means that

(▲)7 for no β′ does there exist i such that [fβ′(i) = jη] ∈ p1(β
′), and similarly,

[fβ′(i) = jθ] ∈ p0(β
′) is impossible

by our assumption (⊙)9/(iv) on p0 and p1. So by (•)1/(•)1a [fβ′(i) = jη] ∈ qθ(β
′)

is only possible for any β′ ∈ dom(p0) ∪ dom(p1) if [fβ′(i) = jη] ∈ p0(β
′) ∪ p1(β

′),
so this case necessarily [fβ′(i) = jη] ∈ p0(β

′). Summing up, for each β′ with the
prospective q+θ forcing jη ∈ L0 \ L1, jθ ∈ L1 \ L0 to be in the range of fβ′ the only
possibility is that

(3.28) [fβ′(iβ
′

θ ) = jθ] ∈ p1(β
′), and

(3.29) for some i∗ [fβ′(i∗) = jη] ∈ p0(β
′).
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Now we argue that at most one such β′ ∈ dom(p0) ∪ dom(p1) may exist (then
by (▲)5 we can put [j∗ Rν∗ jε] ∈ q+θ (β

′) with ν∗ < κ defined by q∗∗[jθ] ↾ β′ ⊩

cM
˜

β′ (i
∗, iβ

′

θ ) = ν∗, and we are done).

So assume on the contrary, let β′ ̸= β′′ be such that (3.28) (3.29) hold. Then
clearly β′, β′′ ∈ dom(p0)∩dom(p1), and jθ, jη ∈ {ξβ′(ρ+1) : ρ < λ}∩{ξβ′′(ρ+1) :
ρ < λ}, then by our assumption (on all the pγ ’s) (⊙)9/(iii) contradicts (▲)7.

Case (2B): j∗ is not of the form jθ for any θ < ε.

This case we argue that at most one β′ ∈ dom(p0) ∪ dom(p1) could exist with

[fβ′(iβ
′

θ ) = jθ] ∈ p0(β
′) ∪ p1(β

′) satisfying that for some i∗ [fβ′(i∗) = j∗] ∈ q∗∗(β′).

(Then again by (▲)5 we can put [j∗ Rν∗ jθ] ∈ q+θ (β
′) with ν∗ < κ, q∗∗[jθ] ↾ β′ ⊩

cM
˜

β′ (i
∗, iβ

′

θ ) = ν∗.)

So if there are β′ ̸= β′′ ∈ dom(p0) ∪ dom(p1) with

• [fβ′(i∗) = j∗] ∈ qθ(β
′) for some i∗,

• [fβ′′(i∗∗) = j∗] ∈ qθ(β
′′) for some i∗∗,

• [fβ′(iβ
′

θ ) = jθ] ∈ p0(β
′) ∪ p1(β

′),

• [fβ′′(iβ
′′

θ ) = jθ] ∈ p0(β
′′) ∪ p1(β

′′),

then again as in Case (2A) we can get to an easy contradiction (i.e. β′, β′′ ∈
dom(p0) ∪ dom(p1), and j∗ ∈ {ξβ′(ρ + 1) : ρ < λ} ∩ {ξβ′′(ρ + 1) : ρ < λ},
hence (•)1/(•)1b implies [j∗ /∈ ran(fβ)] ∈ p0(β

′) ∩ p1(β
′), similarly for β′′. Now

recall q∗∗ ≥ qθ and (•)4).
□Subclaim3.40

□Claim3.39

□Claim3.37

□Lemmas3.34and3.35

Having proven that P1
χ (and each P1

α, α ≤ χ) is the composition of a λ+-cc and

a κ+-cc forcing, so itself λ+-cc, we have (⊺)3. Moreover, recall Claim 3.25 and that
Q1

0 = Q(λ, χ, κ), so Q1
0 does not collapse any cardinal, while P1

χ/G
1
1 is κ+-cc, < κ-

closed, so P1
χ being the composition of the forcings preserving cardinals itself does

not collapse any cardinal, we get (⊺)4. An easy calculation yields the following.

Claim 3.41. For each α < χ we have V
P1
α

1 |= |Q1
α| ≤ χ. Therefore, up to equiva-

lence P1
χ is of power χ.

Proof. For P1
1 = Q1

0 we already know |Q1
1| by Observation (3.24). We have to

prove the two statements simultaneously by induction on α. As P1
χ is a < κ-

support iteration, and χ<κ ≤ χλ = χ, by our premises it is enough to prove for the

successor case. So for each α < χ it is enough to show that V
P1
α

1 |= |Q1
α| ≤ χ. For

α = 1 as Q1
1 is a forcing of a κ-colored random graph on λ with conditions of size

< κ we get that |Q1
1| = λ<κ ≤ χ (in fact |Q1

1| = λ).
For α with 1 < α /∈ S∗ (so Definition 3.28 Case (2)). Again, each condition in

Q1
α can be coded by a partial function of size < κ on λ to λ+1, so |Q1

α| = λ<κ ≤ χ.
Finally, for α ∈ S∗ (Definition 3.28 Case (3)), Q1

α = QDα is the Mathias type
forcing from Definition 3.1, where Dα is a system of subsets of V V1

κ generating a
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κ-complete filter, so |Q1
α| ≤ (2|Vκ|)V

P1α
1 = (2κ)V

P1α
1 ≤ χ (because |P1

α| = χ, P1
α is

λ+-cc, and we assumed (χλ)V1 = χ).
□Lemma3.41

So now we are ready to complete the definition of P1
χ by prescribing the names

D
˜

δ (δ ∈ S∗) and M
˜

δ (1 < δ /∈ S∗), which are standard easy bookkeeping arguments
(using |P1

χ| = χ and the λ+-cc), but for the sake of completeness we elaborate. This
will prove (⊺)5 and (⊺)6, so complete the proof of Conclusion 3.20.

Claim 3.42. The system of D
˜

δ’s can be chosen so that for every P1
χ-name D

˜
with

V1 ⊩P1
χ
D
˜

∈ [P(Vκ)]
≤λ there exists a δ ∈ S∗, such that for the P1

δ-name D
˜

δ we

have ⊩P1
χ
D
˜

= D
˜

δ

Proof. It is obvious that by χλ = χ (so cf(χ) > λ) and the λ+-cc for every such D
˜there is a nice P1

δ-name for some δ < χ. As forcing with the < κ-closed P1
χ does not

add new elements to Vκ we get that for each δ there are χκ·λ = χ-many such nice
names. Also, as |S∗| = χ we can partition S∗ =

⋃
α<χ S∗

α with S∗
α∩α = ∅, |S∗

α| = χ,

we can let ⟨D
˜

δ : δ ∈ S∗
α⟩ list the nice names for subsets of P(Vκ). □Claim3.42

A similar calculation yields the following.

Claim 3.43. The system of M
˜

δ’s can be chosen so that for every P1
χ-name for a

κ-colored graph M
˜

on λ there exists a 1 < δ /∈ S∗, such that for the P1
δ-name M

˜
δ

we have ⊩P1
χ
M
˜

= M
˜

δ.

Proof. Easy. □Claim3.43

□3.20
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