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ON THE WEAK BOREL CHROMATIC NUMBER AND
CARDINAL INVARIANTS OF THE CONTINUUM

MARK POOR AND SAHARON SHELAH

ABSTRACT. Following [Ges11], we study the uncountable Borel chromatic num-
ber of some notable graphs, viewing them as cardinal characteristics of the
continuum. We prove that consistently, cov(M) < Ao < A1 < doo < 280,
where Ag denotes the weak Borel chromatic number of the Kechris-Solecki-
Todorcevi¢ graph Go, that is, the minimal cardinality of a Gp-independent
Borel covering of 2%, while A1 and A are the corresponding invariants of the
Silver graph G; and the simple graph associated with the Vitali equivalence
relation FEjy.

§ 0. INTRODUCTION

Borel graphs and their combinatorial properties have become a growing area of
research in the last two decades and it has interesting connections with other areas
such as the theory of graph limits, countable group actions, paradoxical decompo-
sitions, as well as ergodic theory.

The Borel chromatic number was studied and defined in [KST99][LMO0S]. For a
graph G = (X, F) on a Polish space X its Borel chromatic number x5(G) is the
least cardinal k, such that for some Polish space Y there exists a Borel coloring
c: X — Y of G with |ran(c)| = « (i.e. for each y € Y the preimage c¢~*(y) is G-
independent). It is clear by the theory of Polish spaces and the Perfect Set Property
of analytic sets that this number is an element of the set {0,1,2,...} U {Rg,2%}.

The theory was extended by S. Geschke, who showed that if X is Polish, then
for each closed graph G = (X, F) without perfect cliques, as well as for each locally
countable F,, graph G = (X, E) (i.e. each node has degree at most Ng) there exists
some ccc. forcing making the continuum large, while X can be covered by N;-many
Borel (in fact, closed) G-independent sets [Ges1I]. Later M. Gaspar- S. Geschke
[GG22] have defined the weak Borel chromatic number of a fixed graph G as the
least possible cardinal k, such that the underlying space can be covered by k-
many G-independent Borel sets. Note that if either chromatic number is at most
countable, then they coincide. (Here we remark that S. Geschke had defined the
weak Borel chromatic number (of the graph G = (X, E)) as the smallest cardinal
K, such that there exists a coloring ¢ : X — k with Borel fibers (i.e. for each a < k
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the preimage ¢~ () is Borel) [Ges11]. Note that if for a fixed graph either variant
of the weak Borel chromatic number is at most X;, then they coincide.)

In the celebrated paper of A. Kechris-S. Solecki- S. Todorcevié [KST99] the graph
Go (with X = 2¢) was constructed, and proved to be minimal among analytic
graphs of uncountable Borel chromatic number in the sense that for each simple
graph G = (Y, F'), where Y is Polish, E € X}(Y?) either xg(G) < Ry, or there exists
a continuous homomorphism f : 2¥ — Y from Gy to G (i.e. whenever (x,2’) €
Eg,, then (f(z), f(z')) € F holds necessarily). This also implies that whenever
G = (Y, F) is an analytic graph on a Polish space with uncountable weak Borel
chromatic number, it is at least as the weak Borel chromatic number of Gg.

While the graph Gg is acyclic, so it can be colored by two colors, B. Miller
showed that the measurable chromatic number of it is 3 [Mil08]. He asked whether
anything can be said about the weak Borel chromatic number of Gy compared to
other cardinal characteristics of the continuum. In [KST99] not only has the authors
verified that xg(G) > Vg, but it also followed from their argument, that each Gg-
independent Baire-measurable set S C 2“ must be meager. This immediately
implies that cov(M) is a lower bound for the weak Borel chromatic number of Gg
as well.

Due to M. Gaspar and S. Geschke, independently of this work, various Borel
chromatic numbers of graphs were computed in models of set theory obtained by
forcing with countable support iteration of uniform tree-forcing notions [GG22], or
see further results by R. Banerjee, M. Gaspar [BG22]. Earlier F. Adams and J.
Zapletal had studied cardinal invariants of closed graphs [AZ18]. Zapletal [Zapl9)
studied hypergraphable o-ideals, namely, o-ideals that are o-generated by Borel an-
ticliques in a fixed family of hypergraphs, proving also dichotomy theorems [Zap19]
§4], highlighting the importance of the Silver, Vitali, and KST graphs.

§ 1. PRELIMINARIES, NOTATIONS

Under ordinals we always mean von Neumann ordinals, and for a set X the
symbol | X| always refers to the smallest ordinal with the same cardinality. For a
set X the symbol #(X) denotes the power set of X, while if £ is an cardinal we
use the standard notation [X]® for {Y € Z(X) : |Y]| = }, similarly for [X]<*,
[X]=", etc. By a sequence we mean a function on an ordinal, where for a sequence
5 = (Sq : a < dom(3s)) the length of 5 (in symbols £g(5)) denotes dom(s). We
denote the empty sequence by (). Moreover, for sequences 3, t, we let 5 ¢ denote
the natural concatenation of them (of length £g(5)+£g(t)). For a set X, and ordinal
a we use *X = {5: £g(3) = «, ran(s) C X}, and for cardinals A, k we use the
symbol A" = |*A| (that is, the least ordinal equivalent to it).

For a finite sequence § € “~2 the symbol [3] stands for the basic open set in 2%
that § determines, i.e.

5] ={zxe “2: z D35}
A tree T is a downward closed set consisting of finite sequences.

If (n,z) is a formula, then V*np(n,x) is true, if for all but finitely many
n € w @(n,z) is true, 3°°n stands for there exists infinitely many n, and we use the
quantifier 3!y as “there exists a unique y”. For r,r’ € w® under r <* r’ we mean
that V°n r, <7r/.

Concerning forcing, ¢ < p means that ¢ is stronger, and for a notion of forcing
P the term 1p stands for the unique largest element of P.
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§ 2. THE FORCING CONSTRUCTION

Let 5 = (s, : m € w) be fixed, such that

(x1) for each n € w: s, € "w,
(x2) the set J,, ., [sn] is dense in 2¢.

Recall the definition of the graph G(5) on the Cantor space [KST99):
Definition 2.1. The graph Gg(5) is defined as follows:
Go(3) = {(s, " (0) " .5, " (1) ") : n€w, x€2¥}C 27

Theorem 2.2. ([KST99]) For any sequence t satisfying|(z1)} the graph Go(t) C
[2¥]% is a closed acyclic graph such that whenever H C 2¥ has the Baire property
and Gg(t)-independent, then it must be meager.

Moreover, if G = (X, E) is an analytic graph on the Polish space X and xp(G) >
Ng, then there exists a continuous map f : 2* — X, which is a homomorphism from
Go(t) into G.

From now on we will only write Gq instead of G¢(5). Note that the graph G(5s)
enjoys the expected properties if holds without any regard to the specific
sequence §, justifying the use of the terminology x5(Go), xwB(Go), cov(Ig,).

Definition 2.3. The graph G; is defined as follows:
Gy ={(z,y): z,y€2¥ Incwz, #y,} C[2°]%
Definition 2.4. The Vitali relation Ej is defined as follows:
Eo={(z,y): v #ye€2¥ Y ncwm, =y} C[2¥]%

Note that this is not the standard definition of the Vitali relation, as we interpret
it as a subset of [2¢]2, while in the literature Ey C 2 x 2“ is an equivalence relation.

Definition 2.5. If X is a topological space, and G is a graph on it, then we let
Ig C Z(X) denote the o-ideal generated by Borel G-independent sets.

Now we are ready to state our main theorem.

Theorem 2.6. Assume CH, and let \g < A1 < Ao < Ag = Kk be infinite cardinals
such that A\, = A® for each v € {0,1,00,S}. Then in some cardinal preserving
forcing extension we have

cov(M) =0 =Ry,

cov(lg,) = Ao,

cov(lg,) = A1,

cov(Ig,) = Ao,
Mo — = As

Proof. We define our forcing posets in the following steps.

Definition 2.7.

(D1) For each n we let C), C 2<% be a finite, non-empty set such that for each n
(a) 2#yeC, waxZyory¢ua,
(b) Cans1 ={(0),(1)}, and
(c) for each t € [T, _,, Ci there exists t' € Cy, such that £ ™t = s (from
(x2)]) for some k € w.
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(This can be achieved by induction, e.g. before constructing Cs,, imposing
the auxiliary demand that for some r € 2* t € Cy,, — 7 ¢ [f].)
(D2) Let p € P°, if
(i) p=(p;: i € w), where Vi: 0 # p; C C;, and
(43) 3%°j: paj = C2j A paj1 = Coj41,
with ¢ stronger than p, (in symbols, g < p) iff ¢; C p; for each 1.
(D3) For P! just recall the definition of the Silver real forcing: we let p € P, if
(i) p=(p;: i €w), where Vi: 0 # p; C{0,1}, and
(i) 3°j: p; = 10,1,
with ¢ stronger than p, (in symbols, ¢ < p) iff ¢; C p; for each .
(D4) We let p € P>, if
(i) p=(pi: i €w), where Vi €w: 0 % p; C *»:2 for some k,, > 0, and
(i1) 3% [psl = 2,
with ¢ stronger than p, (in symbols, ¢ < p) iff

e there exists a strictly increasing infinite sequence jo < j; < ... of
finite ordinals, for which

(Vi<w): kg, =kp, o thp, ot thy,
where under j_; we mean —1,
e for each i < w, t € ¢; there exists

(t_;i,lJrl € pji—l“rl) & (t_;i,1+2 € pji71+2) L. & (t_;kl € pji)’
such that

t= t;z‘fﬁrl it

LT
Ji
(So the biggest element p can be described as the condition satisfying
for each j p; = {(0), (1)}.)
(D5) If p e P* (1 € {0,1,00}), T € [T, pj for some i < w, then let pf denote
the condition defined as pgﬂ = {t;} for j < i, and pl] i, w) = pl[i,w).

(D6) Moreover, let P~™ denote the subforcing {p[[m,w) : p € P} of P with the
natural order.

*
Ji—1+2

Recall the definition of the Sacks forcing, and so let P = {T' C 2<% : T is a perfect tree}
with T <T'if T CT'.

Definition 2.8.

(D7) For n € w we define the partial order <,, on P° as ¢ <,, p, iff
® ¢ <p,and

e for some /g < V1 < -+ < {,_1 < w we have
Vi<n: (pae, = q2e; = Cap;)&(p2e, 41 = qae; 41 = Ca0;41),
and
(Vk < 20n-1) P = Q-

(D8) For n € w we define the partial order <,, on P! as q <,, p, iff
e ¢ <p,and

e for some lg <} < -+ <l,_1 <w we have

(Vk < ln-1) Pk = Q-
and

vj <n: pl_j = QZJ» = {0? ]‘}3
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(D9) For n € w we define the partial order <,, on P> as q <,, p, iff
e ¢ <p,and
e for some lg < l; < ...l,_1 < w we have
Vi<n: |pyl=la,l =2,
and
(Vk <ln-1) P = qx,

(D10) For ¢ € PS (so ¢ = T, € “>2 is a perfect tree) we define stem(g) to be
the minimal branching node of ¢ (i.e. ¢ and stem(q) satisfy stem(q) ™ (0),
stem(q) ™ (1) € ¢, but each proper initial segment of stem(q) has a unique
immediate successor).

(D11) We define the partial order <,, (for every n € w) on S as

* ¢ <opiff ¢ <p,
o g <,t1p iff ¢ <p, stem(q) = stem(p), and for this common stem s:
g O < plsT O and

gls" Wl <, pls™ M,
A standard argument yields the following.

Observation 2.9. P°, P, P> PS satisfy Baumgartner’s Aziom A with the partial
orders defined above in|D7)| and|D11)} in particular if we are given the sequence

Po Z0DP1 Z1DP2 22 Zp—1DPn Zn Pntl Zntl ---s

then there exists a common lower bound p’ w.r.t. > (in fact even p’ <, p, can be
assumed for each n).

(D12) For I C Ao we let
QY ={fe I(PY: f(i) = 1po for all, but countable i’s}

be the countable support product of P’s.
(D13) For I g [)\0,/\1) let

={fe L(PY): f(i) = 1p for all, but countable i's}
be the countable support product of P1’s.
(D14) Similarly for I C [A1, o) let
Q¥ ={f e (P®): f(i) = lp= for all, but countable i’s}
be the countable support product of P>’s,
(D15) and for I C [Ax, As) let
$={fe L(P%: f(i) = 1 for all, but countable i's}
be the countable support product of PSs.
(D16) We let Q be the following countable support product:

Q= @30 X Q:,l\l\xo X QX o\ X Qis\)\m'

We have to check that the forcing Q is indeed cardinal preserving, forcing o to be
Ny, the continuum to be k = Ag, there exists a system of A\g-many Gg-independent
Borel sets covering 2¥, but any system of smaller cardinality is not sufficient (and
similarly for Gy, and Ep). For this we will prove the following:

(®)1 Q is proper, and has the Na-cc,
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(®)2 Qis w*-bounding, i.e. for each r € “wN VY there exists ' € “wNV such
that 7/ >* r,
(®)3 for each r € “2NVQ there exists a
o tree To € V%o NP (2<¥) such that r € [Tp], and [Tp] is Go-independent,
o tree Ty € VR0* @0 0 P (2<¥) such that r € [T1], and [T1] is G-
independent,
o tree Tho € V®o*Wiine*Wavns 0 P(2<¥) such that r € [T], and
[Two] is Ep-independent,
(®)4 If a < Ag, T € VOPsMet 0 92(@>10,1}) is a tree, such that
e either a < A, and [T] is Gp-independent,
e or « € [A\g, A1), and [T] is Gy-independent,
e a € [M,\x), and [T] is Ep-independent,
then for r,, the generic real given by the a’th coordinate (Q[{a}), we have:

ro & [T

Similar statements toare proved independently in [GG22] §3] (for an extension
adding a single real, and generalizing it to CS iterations), and see also [Zap19, Thm
3.47- Corollary 3.49], a more general result, albeit only for a single step extension,
which is independent of both.

Observe that the properness of Q (together with our assumptions on the ground
model) would imply that (QNO)V@ML =)\ (¢t € {0,1,00,S}), and so (QNO)VQ =
kN0 = k (= Ag), while it follows from that cov(Ig,) < Ao (and the respective
inequalities similarly hold for Gy, and Ep).

By the Ny-cc of Q, if p is uncountable, then each system of Borel sets of size
is in V@M for some M € V of size at most p - Ny = p.

Moreover, clearly implies 9V = Xy, and the inequality cov(M) <0 holds
in ZFC (since each compact set in NV is meager as well, or see [BJ95]). Finally,
since each uncountable Borel subset of a Polish space is a continuous image of (a
closed subspace of) NV [Kec12, Theorems 7.9, 13.1], each Borel set is the union
of d-many compact sets. Thus, if a Polish space can be covered by N; < p-many
Borel sets, then we can replace each Borel set B with a system of X;-many compact
sets (Ko @ a <wp) with B =J,_,, Ka, so (in the extension) there exists (K, :
a <cov(Ig,)) with each K/ compact, covering 2¢. This together with implies
cov(Ig,)> Ao, cov(lg,)> A1, cov(Ig,)> Aso. Therefore it is indeed enough to verify

clauses

Claim 2.10. Q has the Ny-cc.

Proof. Suppose that (a; : 4 < ws) is an antichain. Since |supp(a;)| < ¥y for
i < wg, by CH we can assume that {supp(a;) : i < wo} forms a A-system with
kernel K. But |P?| = [P!| = [P>®| = |P°| = |(2%°)"| = ¥; (by Definition [2.7), so
|K (PO UPY UP> UP®)| = Xy, we are done. OcainzTa

Convention 2.11. By passing down to a dense subset of P?, from now on we can
assume that whenever p € P9, k € w,

“(pak = Cor A pakg1 = Corg1) — |pai| = |p2rs1| = 1.

Definition 2.12.
(D*1) if p € P°, n € w, and d is the smallest integer for which
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(D*2)

(D*3)

(D*4)

(D*5)

(D"6)

(D*7)

(2.1)

for some lg < 1 < --- < l,_1 < d we have

Vi <n: (pa, = qu, = Cu,)&(pa;+1 = qa;+1 = Car;41),
then we let
To(p) = H DPj,
j<2d
and
T(p) = |J Tulp),
new
ifpeP uel,, [I;<.pj; (e.g. @€ T(p)), then we define pld = p@
to be a condition in PV satisfying
o Pl =p{" = {u;}, if j < tg(a),
o Pl =p\" =p;, if j > tg(a).
for n € w, p € P!, if d < w is the minimal natural number such that for
some lp <l <---<l,_1<d

Vi<n: (p, ={0,1}),

then for each v = (vg,v1,...,v,_1) € ™2 we define the sequence t;(p) =
(ts(p);: j<d)€ 92as

o t:(p), = vy,

o t;(p)x = ai, where py = {ar}, k € (I;,1j+1) for some j <n — 1.
ifpe P t€U,e,lljcnpis (eg T =talp) for some @ € “>2), then we
define pl¥!, to be a condition in P! satisfying

o b = {t;},if j < tg(0),

o P =pj, if j > Lg(d).
Moreover, if u € ™2 for some n, then we let

p(® = plta@)],
for n € w, p € P> if d < w is the minimal natural number such that for
some lg <l1 <---<l,_1<d
Vi<n: (Ip,]=2),

then for each & = (vg,v1,...,vn_1) € "2 we define the sequence ty(p) =
(ts(p);: j<d)€ 92as

L 7[17(p)lj = tjl)jk,wj’ where pl]- = {Eikyo <lex tjl)].]il}a

o t(p)r = 7%, where p, = {tP*}, k € (I5,1;41) for some j <n — 1.
it pe P, t € U,e, [ ps, (eg. t € T(p)), then we define pll, to be a
condition in P satisfying

o ol ={i;}, if 5 < Ly (D),

o P\ =pj, if j > Lg(d).
Furthermore, if w € ™2 for some n, then we let

@) 1 plia(e)],

For p € P, 5 € ™2 we define the node ts(p) € p by induction on £g(3) as
follows. Let

ty(p) = (),



Paper Sh:1226, version 2024-12-23_2. See https://shelah.logic.at/papers/1226/ for possible updates.

8 MARK POOR AND SAHARON SHELAH
and
t~ = stem (pl&=®@1) (),
(2.2) 570 (p) (p, ) R (0)
tgf\<1>(p) = stem (p[tg(p)]) (1),

(recall [D10)} for the stem of a tree T is the unique largest element in
{teT: V' eT: tCt' vt Ct}).

Note that ¢ <, p, iff ¢ < p, and for each s € "2 we have t;(p) = ts(q).
(D*8) if p € PS and 5 € p, then we define pl*!, to be the condition pl*l = {t € p :
t O 5}, and for arbitrary § € “>2 we let

P& = plt@)],
Observation 2.13. Ifp e P>, i € w,
(2.3) po = {tot,p1 = {t} pi-1 = {1},

and we consider the condition p' < p defined as
sy = (T =B L),
Py = piti (for j € w)
then p lkps p' € G.
Proof. Suppose that p* < p, and p* L p’. By further strengthening p* w.l.o.g. we
can assume that |pf| = 1, and for the unique t* € p§ we have
Cg(E) > [to| + [E7] + - + |64 -
But then this bound together with p* < p and (2.3)) implies that

G Aak: CaRPaY: I Eat SOWNE UMk EaU -

- igg
for some ] € p; = pi, | € Piy1 =Dy, .-, thy ) € Pitk = Pjyq, 50 NOt only is p’
compatible with p*, but p* < p'.
|:IObserva‘ciormE

Definition 2.14. We let £ € £, iff £ = (£°, 7, 0>, 5), where

o F=(ff:i<w)e “w, with ), & < oo,

e O =(?: icw)e “w, with ), 9 < oo,

o M=(l}:icw)e “w, with ), < oo,

o (= (lF:icw)e “w,with ), _ £ < oo,

Definition 2.15. Fix (€2 : j € w) € “Xo, (6] : j€w) € “[ho, M), (€°: j€
w) € “[A1,A0), (€] 1 J €w) € “[Aas, As). The following symbols depend on the
particular fixed &“’s, but we omit it as it will be always clear what those sequences
are.

Now
(»1) for j € w, n € w let
T3 (q) = Tula(e]))
and

77 (q) = | Ti(a),

new
(»2) Suppose that (e L, qe Q. Then (u,v,w,5) € seqz(q), iff
o 5€ “(<%2) with s; € 52 (j < w),
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o i€ T, TVla) with u; € Th(o) ( <w)
J
o D€ (%) withv; € 2 (j <w),
o W€ “(w2) withw; € 2 (j <w).
(»3) For each
= (uj: jew) €[, T (),
v={(vj: jew) €[, (72
w=(v;: jeEw) €[, (72
§=(sj: jew) €[, (“72),
) € Q be defined as
6})) ()™ (j € w),
1 J— 1 Vj s
520) = (J(g;")(“’j) (J € w),
}) = (I(Ej)(sj) (J € w),
Definition 2.16.
Observe that
(2.4) whenever £ € L : Iseq;(q)| < o,
since £ has a finite sum.

Definition 2.17. Assuming the sequences & are as in Definition (v €{0,1,00,S},
and ¢ € L, we let the partial order < 7 defined by
p<;q <= e (p<q) A
*> seq(p) = seqz(q) A - -
o3 V(u,v,w,5) € seqy(q) : plB0W:5) < o(0,0,0,5)
Note the following easy corollaries of our definitions:

Observation 2.18. Let & (1 € {0,1,00,S}) be as in Definition and I € L
be given.
Then, if p > q € Q holds, then p >; q, iff

e for each j € w: ng(p) = ng(;(Q); and

o for cach j € w and u € 52 we have tL7(p) =t (q), and

o foreach j € w andv e 7 2: 57 (p) = 779(q), and

o foreachjcw ands € G2: £7(p) = 59 (q).
Observation 2.19. If p,q € Q, le L, & (1 €{0,1,00,S}) are as in Definition
(5,5, ,5) € seq(p), and g < P55 then for some g, <; p

(ﬁ157@7§) I g€ G

even q?’ﬁ”f’ - q, if in addition p(®?®; S)( ) > (EJOQ) holds for each j.
Moreover, we can assume that whenever m € w, and s’ € “>2 is not compamble
with s, (i-€. 8 € $m, 8 D 5m), then q.(%,) € PO satisfies q. (%)) = p(e9)¢").

Note that we cannot expect above qﬁﬁ’ﬁ’m’g) = ¢ to hold in general, since on

: _ *\0 ™ * :
coordinates of the form £3° possibly ¢(¢3°)o = {t}, where t = (£*)" ™ (¥ )1 with

()" € """ (e3%)o, and ()" € ¢ (e59),.



Paper Sh:1226, version 2024-12-23_2. See https://shelah.logic.at/papers/1226/ for possible updates.

10 MARK POOR AND SAHARON SHELAH

Observation 2.20. Ifp > q€ Q, { € L, (u,v,w,35) € seq(q), then q(@v:5) <

p(ﬁ/j/’w/’g/) for some (@' ,v', %', 5") € seq;(p).

The next claim verifies the properness part of [(®);} and |[(®),]

Claim 2.21. Let ¢ € Q, Dy, D1,...,D;,... be a countable sequence of mazimal
antichains of Q. Then for a suitable extension ¢’ < q we have that for each i € w
q' is compatible with only finitely many elements of D;.

Proof. Assume that ¢ € Q, and the D;’s are fixed. In what follows we will sketch
a standard fusion argument for Baumgartner’s Axiom A.
The following is a trivial application of Observation [2.9

Observation 2.22. Suppose that the sequence (¢, : n € w) € “Q is decreasing,
the sequences & (1 € {0,1,00,S}) are as in Deﬁm'tion and for each k there
is 8 = ((€F)0, (0F)1, (k)2 (%)) € L such that
e for each o € |, ¢, supp(gn) we have that o = €' for some v and j, and
((Ek);- : k € w) is nondecreasing, converging to oo,
® Gnt+1 <ju qn holds for each n.

Then there exists a common lower bound q, € Q of the sequence (¢, : n € w).
Moreover, there exists q., for which for each n q., <z, qn-

We will define the sequences (g; : @ < w), (¢} :

(691 i <w), (I i€ w) satisfying the following:

i€w), (el icw), (X i<w)

(X1) go = q, and for each ¢ we have ¢; € Q,

(lZQ) {E?: iEw} C Ao, {Eil: iEUJ} g/\l\)\o, {E(i}o: i<w} g)\oo\)\l,
{e9: i <w} C s\ Mooy

(®3) for each n supp(g,) C {e}: ¢ €{0,1,00,S}, j € w},

(®4) for each ¢ € {0,1,00,S} and j € w the sequence

((€")%: n €w) is nondecreasing, and tends to oo,

(lzfl) vn dn an dn+1,
(Rg) Vn the condition ¢,11 is compatible with only finitely many conditions in
D,,.
Provided that such sequences exist we can appeal to Observation which will
complete the proof of Claim [2.21] B
We can clearly define a sequence of £*’s as in Observation Now by Obser-
vation [2.18] and some standard bookkeeping arguments it is easy to see that the
entire induction can be done once we specify how to define the condition ¢, +1 € Q
from ¢, and the adequate fragment of £’s. This ¢, 1 will satisfy that
(A1> An+1 gfn dn,
(A2) whenever (@,7,@,5) € seqz,(¢n), then (g,11)®"®* is compatible with
exactly one element of D,,.
For this
(@1) let
M = [seqg. (qn)!;
and fix an enumeration

(2.5) (@t 0%, w5 : i < M)
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of seqy, (qn)-
Note that includes M-many different objectives, each one is corresponding to
some (@, v, w’, 5%) from . So
(®2) we construct the sequence (¢f : i < M) satisfying
4 =Gn Zf G 20 " Zjn Qurs
and

Vi< M) : (q;‘H)(ai’@i’wi’gi) IF p, € G, for some p, € D,

thus ¢}, will work (i.e. hold).
Assuming that i < M and ¢ is defined, pick ¢’ < _(qf)(ﬁi’@i’wi’gi), such that
q' < ps for some p, € D,,. Let g7, <z qf, (gf,1)@"7) Ik p, € G (guaranteed

by Observation [2.19). Clause [(®3)| clearly holds, so we are done.
UclainEzz1

We can turn to the proof of
Claim 2.23. For the forcing Q defined above clause|(®)s| holds.

Proof. Fix a Q-name z with ¢ IFg z € 2¥. By Claim (and a standard density
argument) we can assume, that
(1) zisaQ =]],e(0,1,00,5y Q, -name for some Xo € Mol™ , X1 € A1\ Aol™,
Xoo € Moo \ )\ﬂNO, Xs € [Xs\ )\oo]No,
moreover, w.l.o.g.
(®2) Ihgy 2 ¢ V.
(®3) Fix enumerations Xo = {2 : j € w}, X1 = {e] : j € w}, Xoo = {7 :
jew}, Xs={e): jew}
(Ry) Ife € X3 UX o UXs, g€ @, 5€ “>2welet ¢i#h() € Q' be defined as
DT XoUX1UXo UXs \ {e} = (g1 XoU X1 UXooUXs\ {e}),
¢t (e) = (a(e)?).
(®s5) If e € X1 UXoUXs, ¢,p € Q, n € w, then ¢ <3, p, if ¢ < p and
q(e) <n p(e).
We will again need the terminology introduced in Definition [2.15]

Definition 2.24. If kg 2z € 2¥, n € w, ¢ € {1,00}, then we let ¢ € D5 (2)
(where we mean un as an abbreviation for “unique”), iff
(i) ¢ € Q,
(1) there exist k € w, and ig # i, € {0,1} for which
(i1); qt=nbC) I 24 =g,
(i1)y qt=nbC) Ik 2 =4y, and
(#1)3 whenever ¢ >(..y1 7, and rien b0 or p{enb () decides z; for some
j # k then so does 7.

Definition 2.25. If kg z € 2, n € w, ¢ € {1,00}, then we let ¢ € D4%9(z), iff
whenever ¢ >(..y 1 r, and r{ah(0) op p{en b (D) decides 2, for some k € w then
so does 7.

Definition 2.26. If g z € 2, n € w, ¢ € {1,00}, then we let ¢ € Dy™(2), iff
there is no ¢’ <y..y,1 ¢ with ¢' € Dj;""(2) U D;;°9(z).
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Note the following:

Fact 2.27. Iflkg z € 2¥, n € w, t € {1, 00}, then
1) DL (2) U DL™(2) U D4%(z) is dense (in fact, even <;..y1-dense) in Q'.
n n n { 7L}7
(2) if ¢ € D5"™(2)) (D™ (z), D5(z), resp.), and ¢ <(c.y1 q, then ¢’ €
Dy™(2)) (Dy™4(2), Dy*(z2), resp.).
(8) D5un(z), DL™(2), D4(z) are pairwise disjoint.

The proof of the present claim is by clarifying Subclaims and

Claim 2.28. Let ¢ € Q', Ik 2z € 2%, and £ = (£°, 01,0 °) € L be given, and let
m € w be fired. Then for some r € Q', r <;q, for each (u,v,w,5) € seqz(r) one
of the following holds:
O (r(@0©:9)) (@005 forces that z does not depend on {p(S,) : p € G}, i.c. there is
nop e Q, p < r@%®3) for which there exists k € w and ¢ € {0,1}:

p{ez;zh((O)) Fo zw=c,
plEH) kg s =1-c

©F' (r@0®9); for each p € Q', p < r(@7 ™9 there exist g < p, k € w, and ¢ € {0,1} such
that:
q{E?n}(<O>) H—Q, k= C7
q{ain}v(<1>) H_Q' Zk = 1—c.

[t

Proof. Observe that
(W) if p>r e Q, then ©7'(p) — O (r), and similarly, ©5*(p) — ©F(r) for
every m € w.
Note that

(M) if for p € Q there is no extension p’ < p with O (p’), then ©5'(p) holds
(and conversely),

therefore,

(M) for n € w the set

Dy ={peQ: of'() v 03[}
is dense open (and the sets {p € Q' : OT*(p)}, {p € Q' : OF(p)} are open).

For later reference we remark the following corollary of Observation [2.20
Observation 2.29. Ifr € Q' is given by Subclaim (for a fized m and (e L),
and v >; v, then for each (u,v,w,3) € seqz(r) we have (r")(@0®:5) ¢ D™ e,
either O ((r") (@05 - or @5 ((r")(@0@:5)) holds.
Fact 2.30. For everyp € Q', m € w, (u,v,w, 5) € seqz(p) there exists p' <;p for
which either OT((p") @™ or @5 ((p)@P®)) holds.
Proof. Using choose p” < p(®?@3) with p” € DT. By an argument similar
to that of Observation we can assume that p”(e5°) <g p(@0:@:9) (¢%°) for each

j, so by Observation there exists a condition p" <z p such that (p/) (@0 @:8)) =
11 O
p. Fact2.30]
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Since <; is a partial order, enumerating the finite set

{(a,v,w,5) € seqz(q)}
as {(a*,v%,w",5") : i < M} we can choose a sequence
Q=00 =5 2591279
requiring (q;‘+1)(ﬂi’ﬁi’wi’§i) € D7 (i < M) (recall Observation . Thus r = ¢},
works. Osubclaimz2g]
Now we can turn back to the proof of Claim

Definition 2.31. Fix a sequence (£, : n € w) that lists
XoUX1 UXoUXsg={e;: t€{0,1,00,8}, j € w}

with each such element occurring infinitely many times (where the X*’s are from
(X3)). Then we define

1) the sequence (f": n € w) so that
o [ = ((0m)°, (4m), (0™)>°, (1™)%) € L for each n,

e (0 consists of constant Zero sequences,
e if £, = ¢!, then we define "' so that
(énﬂ)bf _ (l?”);: +1, if/=1v AN k=m
k ((”)i& , otherwise.
2) for q e Q', n € w and (@, v seqj, (q) we define the sequence

E(ﬁ76 w,8

,5) €
<§ ©@,0,10,5)

=

j<n)
1nduct1vely as follows: if k <n, K =|{j <k: & =§}| and if § =
€9 | then set t(u D05 =y (K,

e =cl . then set t,(f DS — o (K),
o =&, then set £\"""%) = w,, (K),
S then set t,(c"’v’w’s = sm(K),
3) for ¢ € Q' and the finite sequence t’ we let

=

qp(Q7 17) = (Us, Vs, W, g*)a
if
E/ — t*(ﬂ*,m,m*,g*)
where (., Uy, W, 5x) € seqj;(q), and (@ w054) g defined as above),
141
4) and (for g € Q'), (@,7,w, 5), (u’ 17’ w',§') € U, seqy; (¢) we define (4,0, w, 5) C
(@,v',w',§") naturally, i.e.

(@,0,w,5) C (a0, 5), iff {®V®3) C (@005

as well as

Observation 2.32.
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is such that ty, # t(“ 0:19,8) then
(*)i tr €{0,1} and & is not of the form €9, (for any m),
then qp(q,t*) is defined.
b) If
(a,v,w,5) # (a',0',0',5) € seqz,(q)
are such that f(ﬂ 00.5) gnd {005 differs on ea:actly one coordinate, the
k’th for which holds, then there exists a condition p’ <{en}.1 pl@0w:5) [k
such that

{(p") &) (p )b ()} = gp(ao.w:5) (@' v' a5y

Subclaim 2.33. Let r, z be as in Subclaim and <17” : n € w) defined in
Definition [2.31) Suppose that r I+ z ¢ V. Then there exists a condition r. € Q/,
r>r,, and

= <y(ﬁ’ﬁ’w’§) :new, (u,0,w,5) € seqy, (r*)>,

X = <X(a,a,w,§) s new, (4,0,w,5) € seqy, (r*)>,
such that for each n
©0a(rs,y,X): for each n and (u,v,w,5) € seqg, (r.):
° y(ﬁ,ﬁ,w,g) c w>2}
® X(u,5,w,5 € {un,eq, mul},
op(rs,§): for each m < n:
o (u,0,w,5) € seqy, (),
o (u,0', 0w, 5) € seqj,(rs),
we have

0a(rs, 7, %) if (U,0,W,5) € s€qg,.1(r«), then
1) if &, =5, for some m, then O (r £u’v’w’s)r") Y ®’2”(r£u’v’w’s) M) (from

Subclazm , and

Xapwsin =€q <« "o

b

X(a,5,@,5) n = Mul <= @?(riu’ﬁ’w’g) rn),
2) if &, = €., where t € {1,00} for some m, then for each (4,v,w,3) €
seq;, (x)
. x(m—, 3) —eq, zﬁr(uvws) € D5e4(z),

w
@e(rs, ¥, X): if (w,0,w,5) # (@,0',w0',5) € seqj..(r«) (for some n), are such that
u=1u, then the followmg zmplications hold true:
el) if &, = €5, for some m, 5, # &, and OF((r.) ")) then there
ex1sts
J = bg(y™mmOm gy e,
such that (] < Eg(y(a,ﬁ,ﬂ),g)’ég(y(ﬁ/,ﬂ”u’)”g/))) and
(@0,,5) (@' 0"0"5)
J ] )
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e2) if v((a,v,w,3s),(w,v,ad,35)), under which we mean that (u = @,
and) for each k <mn +1 either
o {00 _ @00
® X(u,v,w,5)k—1 — €4,
then y(ﬂ:57w7§) — y(ﬂ',f)/,ﬂ)/j/)’
e3) if &, = ek or e for some m, and
(i) ¥((4,v,w,s) [ n, (@0, @0",§) | n), but
(1i) X(a,0,w,5) n # eq and tgzﬁ@m’g) # tgzﬁ s );
(iii) and &, is of the form ek | or €% for some m,
then
o if&, =¢lk | then
i < Lg(y™TT), Lg(y ™
yi(ﬂ,f;,m,g) ” yz(ﬁ ,ﬁ’,m’,g’),

moreover, if this i is unique, then
w,0,w,5); _ (a0 w5
y (oS =yt i # s,

(where 5 is fmm ;

o if &, =€, then

Ji < i < Lg(y(@0D)), g (y@ 7@

(4.,7,@,5) 4 y(ﬂ’,ﬁ’,w’,g’) and
3

1
(@,,,5) ” y(a’nﬁ’,w’,g')
5! 'i/

7

First we verify Claim m provided the extension 7, of 7 and the y(®?®%)
given by Subclaim i.e. satisfying ¢, (7«, J, X)—@e (74, J, X). First define

)

T, = {y™"™% : (u,0,,5) € ] seqz, (1)},

new

and note that
Ty Ik z € [T4].
As
Q' ~Q%, x Qk, x Q% x Q%,,
we can
(1) first add a Q% -generic filter Gx, to V with 7.[Xo € Gx,, and define
To € V[Gx,], such that [Tp] is Go(5)-independent, and
(2.6) VIGxo] F “re[(X1 U Xoo UXs) b (xyuxcuxs) 2 € [Tol]”,
or
(2) add a Qg’(o X Q}(l—generic filter Gx,ux, to V with r, [(XoUX1) € Gx,ux,,
and define Ty € V[Gx,ux,], such that [T1] is G;-independent, and
(27) V[G’XUUX]_] |: “’f'* r(Xoo U XS) ”_QIT(XOQUXQ z S [Tl}”,
or
(3) add a Q%, x Q%, x Q% _-generic filter Gx,ux,ux.. to V with 7, [(Xo U
X1 UXx) € Gxouxyuxa,, and define T € V[Gx,ux;ux..], such that
[Tw] is Ep-independent, and

(2.8) VIGxouxiuxo ] FE el (Xs) Forixs 2 € [Too] ™
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So fix the mutually generic filters Gx,, Gx,, Gx_., (containing r.[Xo, [ X1 and
Ty [XOO), define Ty € V[GXO], Ty € V[GXO X le], Ty € V[GXO X GX1 X GXOO}
as follows:

To = {y®%%% . (4,9,w,5) € U seqg, (1) : BP0 X, € Gx,},

new

Ty={y™"m)  (4,0,w,5) € | seqp, (r) : ri"™"7 (X0 U X1) € Groux, },

To = {y(ﬂ’ﬁ’w’g) : ’l_l, U, W, 5 U seqen 7’* : T’£ﬂ’v’w7§)r(X0UX1UXOO) c GXOUXIUXQC}’

ncw

new

(Recalling Definition [2.7] , for each fixed n

{r(u D) (w,v,w,5) € seqz,(r.)} is predense below r,,

hence a standard density argument implies , , and . It remains to
check that [To] ([T1], [Ts], resp.) is indeed Gg(5)- (G1-, Eo-, resp.)-independent.
For these one only needs to check the following assertions (using ¢y (1*,7), we(r*, )
from Subclaim [2.33)), which is left to the reader:

e For every branch (b; : i € w) in T, there is an infinite sequence ((u?, v¢, w?, 5°) :

i € w), such that (¢, v%, 0, 5%) € seqy; (r«) with
(@', o', ", 5") E (@, o' ot 5,

and b; = y® @) (for each i € w) (recall that seqy(r.) is finite by

, and use Konig’s theorem).

If (@, 0%, w5 : i€ w)and (@), (V) (@)% (5)) : i € w) are differ-

ent, C-increasing, (u’,v",w’,s"), ((@')", (?')%, (w')", (s')") € seqj (r«), and

we have i’ = (u’)? for each i, then at least one of the following holds:

(1)1 for each n the premise (from @¢(r«,¥)) holds, and thus

(0@ — g ()"0, (W)™, (™)

Q)2 for some n the premise in E holds, so it holds infinitely mary often
(since {qg € Q' : ®F(q)} is open for arbitrary m) and so U{y(®"-?"-@":5")
n € w} and U{y(@)"@)"@0"6ED") ;e w} differ on infinitely many
digits.

(1)s for some n the premise in |e3)| holds, and so U{y(®"?"®"5") . n € W}
and U{y((@)"@)" @060 .y e w) are not connected in G (8).

If (@, 0%, w5 : i€ w)and (@), (V) (@)% (5)) : i € w) are differ-

ent, C-increasing, (u’,v",w’,5"), ((@')", (v')%, (@'), (5)") € seq (r.), and

we have 4’ = (@)%, v* = (v')" for each i, then either |(2)4} - or - (2)2| holds, or

(1)5 for some n the premise in [e3)] holds,where necessarily &, = e3¢ for
some m (since v° = (') for each 4, in particular v = (v/)2+1) and
so U{y@"7"@"5") » n € w} and U{y((ﬁ/)n’(f’/)n’(“7/)”7(5/)”) :n € w}
differ in at least two digits.

If ((ut, v, w, 8%) : i €w)and (@), (¥'), (@), (5)) : i€ w) are dlﬁer—

ent, C-increasing, (a',v",w",5"), ((@')", (v)", (@')", (5)') € seqz(rs), and

we have ' = (@), v* = (v')}, @’ = (w')" for each 4, then elther- or-

holds.

Note that the assertions above are absolute between transitive models.

See https://shelah.logic.at/papers/1226/ for possible updates.
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Proof. (Subclaim Similarly to that in the proof of Claim m
(#1) we are going to define the sequences
(ri: i < w),

(y®o®3) ¢ (u,v,w,5) € seq(r;),i € w)

<x(a,5,w,§) : (w,0,w,5) € seq(ri),i € w)
satisfying the requirements of the following scheme:
(K1) ro =7, and for each i r; € Q’,
(K2) Vi T 25 Tit1,
(®3) for each i

o o (ry, @, x*(=1),

hd 4,01;(7‘1', g*(l))»
hd QOC(Thg*(l‘)% )
° QOd(Tz (1) )—c*(z—l))

° Qpe(rz Y *(1) X*(Z 1))
where 7*() is a restriction of the sequence § defined as
,*() — < (ﬁf)ﬁ)S) : (ﬂ,@7w7§) c Se(hm('m),kﬁi%
and
i—1)

07V = (X(gows ¢ (4,0,0,5) € seqp(r;), k €1).

Again, once we have constructed the r;’s and y(%?%:%)’s, we can let 7, be a common
lower bound of the r;’s such that for each i r; >z 7, holds. Then for each i < j
Ti 25 Tj 25 T«, S0 by Observation for each j > i:

seq;; (r;) = seq; (rj) = seqy; (1),

and for each (@,v,w, 5) € seq@ (n) we have

Also note that by Observatlon (and recalling if & = &5, for some m, and
(ﬂ, v, w, ‘§) € seqy; (Ti+1)a then

Similarly, for each i, if & = ¢, for some m, where ¢ € {1,000}, and (u,?,w,5) €

seqy; (rit1), then r(u TS ¢ DL ST (2 (by ((®3)), recalling the definition of
©dl.,.) in Subclalm 2.33). So we obtain (by Observation [2.37)), that

. UX (a,v,w,5)
Vr <z Tit1: 1€ D, “(z).

This clearly implies that if for each i and g € {a, b, ¢, d, e} we have @, (r;, * @, (1)
(or wg(ri,yj*(i))) holds, then for each g € {a,b,c,d,e} p4(r«,9,X) (or @q(r«,7))
holds, too, as desired.

(#2) So suppose that we have set ro = r, and we have already defined
TO 2GoT1 2 T2 25 21 Tn
satisfying [EH(Es)
Depending on the value of &, we do the following.

(#3)(i) Case i: &, =2, for some m:
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Let N = [seqj,.1(ry)|, and fix an enumeration ((@/,7’,@’,5) : j < N). Then

(@20 )

defining the <z, ,-decreasing sequence (pj : j < M) with py = 7y, and P+
deciding the value of zj (recalling the first part of Observation , Where k=
Lg(y(® 07 @7.87)In) setting Tni1 = pN works.
(#3)(ii) Case ii: &, = &5, (for some m).
(#3)(ii)1 Let M = [seqz,(r,)|, and fix an enumeration ((@/,v’,w’,57) : j < M).
Then (again by Observation [2.19 “ defining the <; decreasmg sequence
(pj : j < M) with pg =ry, and
R Ry gy g
CHIC D IO I I
and set 7 = pas (so easily

(2.9) sed;. (rm) = sedy, (1),

(2.10) Vi< M o ()™ T ) v ey () T ),

and fix the enumeration
<<(ﬂj7 6j7 wj’ gj)7 ((a/)j, (’D/)j7 (wl)jv (gl)j» J< N> of Y.
We are going to construct
e the sequence

qo =1, Zint1 Q1 Zgnt1 42 Zjagr 0 Zjet1 AN

e and for each (u,v,w,5) € seq,..(r},)
xé?@@yg) C 1,571@11775) C . C 335\7,77’177“73)
with o
(a) 279 ¢ w>9 (k< N),

c z € [z},
(d) and for each k < N
(a* 0" @k 5%~ (a* 0" @k 5*)
Ly, C Tpyq )

ﬂ/k’ﬁ/k’w/k’glk k w s
(()()()())gxé(ﬂ)()()())

(e) for each k < N if sk # (s')k and (Dg“b((pk)O1 055 (from
Subclaim m hold, then for some
uvkws @)%, (v o)k, (5")F
j>€g((’ )ﬂg((()()()()))

U,Uk’LUS , ’Uk’LU/kS .
I(H-l )()()())(])'

')
Before constructing the g,’s (K < N) and s ((@,v,w,5) € seqz,1(r},))

\"\H\
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(#3)(i1)3 we clarify why setting

Tn+1
w,v

an
y(@0:2:5)

E\ I

= the maximal element in {x € “>2: (u PO | g e z}(2 ﬁ’w’g))

works for our purposes (i.e. satisfying (X3)]):

First recall that 7,41 < 7o Ik z ¢ V, so the maximal elements above do really exist,
and so the (@,0,9,5)°5 are well defined finite sequences.

First, |(d)| clearly implies @p(rn41, y*(”“)). Second, as py = 1, 27 Py =
Th s qN = rpy41 recalling Observation clearly seqy,(r;,) = seqy, (Tny1)
holds Recalling |(#3)(i¢)1| for each j < M elther

)(ﬁj’ﬁj’@j’gj)) )(’l_l,j,’l_)j,’u_)j,gj))

O ((Pj+1 , or ®y' ((pj+1

(where (@, 97, w7,57) is meant as the j’th entry on the list in [(#3)(ii))). Now (by
Pk Zjn PM = Ty, Zfn Tny1) clearly either
@T((Tn+1)(ﬁj”L_}j’wj’gj))), or ®72n ((T‘n_i_l)(aj’ﬁj’w ,sj))
holds, and g(7,41, 7" *1) follows. Finally, for e(rni1, 7™ 1) we need to check
clause i.e. when there is no reason for y(®%%) and y(@ 7" @"5) {4 be different,
then these two are the same, which follows from the next claim (applying to r,+1 =

qn), SO holds, indeed:

Subclaim 2.34. Assume that p € Q', (u,v,w,5), (a',v",w',5) € seqj,..(p), such
that uw = 4, and whenever k <n

o if & =ct, for some 1 € {1,00} and m € w, then p(HV @51k ¢ preda(y)

o if & =5, for some m € w, then O (p(Hv @)1k,

Then for every x € “>2
pETT |z e [x] = p@ T -z €[],

Proof. Fix x € “~2, and let

o (2,92, !, 30) = (u,v',w', &) € seqj..1(p),

10 = ¢(al, ol wl,s)
° (ﬂ:}-‘rl 7n+1 7n+17§:}+1)

(ﬂ U, W ) € Seqfn+1(p)

1 1 - 1 1
o grtl (el o ),

as defined in [2)] from Definition Now set

fk _(un+1 g+l gn+l gntly ”07 k) U (t—(ag,@‘j,w‘j,gi) [[kz,n + 1) (k‘ <n+ 1)’

and let
(af, o, wl, 55) = ap(p, 1)
(which exists by clause @ from Observation [2.32). Let p, = p(@05@050 for
k < n—+ 1, observe that p(@?®5) = p. 5@ 7.0%5) — 5,0 We claim that
(2.11) foreachk<n: pplFz€[z] < pr1lFze[z],

which will complete the proof of Subclaim
Fix k < n + 1, observe that t* and £**! differ by at most a single digit, and
if th t:“, then & = €, for some ¢ € {1,00,S}, and m, by the assumptions of
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the subclaim. Therefore clause [p)] from Observation implies that there exists
<{€L 11 p(“ UM , and

() O (YUY — (e pe 1Y,

But by our construction (@¥, %, @ 5%)[k = (u,v,w,35)[k, so by the conditions of

the subclaim p(@:- 70551k ¢ D »ed(z). This yields that pj, € D42%(z) by [2[ from
Fact 2.27] Hence by the definition of being in D4°9(z) we obtain

() E Ok 2 € 2] = ()Y IE 2 € [a],

and so (2.11)) holds, indeed.
|:|Subclairrm

Now it only remains to construct the sequence promised in |(43)(i¢)o} Assume
k < N, and r};, >7.,1 g has been already chosen. Recall that m € w is defined so
that &, = >,. The properties of r imply that

ﬂk,ﬁk,i)’,E’ n u ,'uk,wk %) n
O (g " voeg (g ",

SO
—k ~k —k Zk k
@T( (u,v,w,s))\/QQ((uvws))
First suppose that @m(q,i“ oFat5¢ ) Then it suffices to set qry1 <j..1 qx, such
k -k ~I\k (—/\k (3/\k
that both q,(cuﬂ’v a",5* , and q](c(fl) (@)% (@7, )) decide the first

u vk7w ,5 u ,17 "k,E/k
Kg( ))—FEQ((( ()()()))+1

digits of z, ensuring that the relevant parts in bQ] (e)| from |(#3)(47)s| hold.

((u,'u,w s))

So we can turn to the case of ©F° By this property, there exists

qx < q,(Cu o* 0t , and j € w, such that q{E m 100 zj = to, qiei"}’(u» IFz; =141
for some iy # iy (w.l.o.g. we can assume that
—k =Nk (=/\k ¢ =/\k (z/\k
j > tg(a! (a* 0% a" 5 )) +£g(m§€(") (@)%, (0)",(57) )) +1).
W.lo.g. g.(e5 )(“’l = qi (e} )(“’l for each | € w, so by Observation for some
T Sjn+1 Qr We have (QZ)(“k ot = g, and so
(2.12) ((gp) " 2" SN0 | 20 = g,

k

(2.13) ((qp) @750 SN b (D) b 50—y
For a suitable extension ¢4 < (g )((“ )F, @)k, (@), (5")*)
(2.14) ¢+ IF z; =i, for some i, € {0,1}.

We need the following simple fact, which uses only that if p is a Sacks condition, then
when replacing p by ¢ <; p, then p{{9) and p({!) can be dealt with independently.

Fact 2.35. If r € Q', (u,0,w,5),(w,v', 0", 5) € seq,,(r), r+ < p@v0'.8)

(where we demand also 1 (£7°) (@D < r(e7°) D) for eachl € w), and sy, # s',,, then
there exists ' < T such that

° (T/)(a’,ﬁ’,w’,g’) =r.,
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o /(3 )5m) = (8 Y5m) in particular

(") @BFDDEL(O) < (p(@:0:8,9)) {5, 1.(0)
(") @7 EUD) < (p(@0,:5)) {0 ). ((1)

Applying the fact to ¢, and ¢ yields the condition ¢;;* with

(2.15) (g*) (@@ @)E = g
and so
(2.16) (gi ") EENED 25 =,

Furthermore, the fact gives us that

k

s (GF oF @k 5% o\ (aF T ok 5k
(qk )(u 07 ,w",87) S{E‘?ﬂ},l (qk)(u 07, w",5 )’

so by (2.12)) and (2.13)
(2.17) ()@ 2" SN (O | 50 = g,

k

(2.18) ((qpn) @5 SN E D) | 0 =y
Now since iy # 41 either ig # i, or i; # 4., w.l.o.g. we can assume that
(2.19) B0 F i

Finally, appealing to Observation [2.19 again, there exists ¢;** <z..1 ¢;*, such that

~k

—k — : ~k —k S
(qz**)(u 07w ,EY) (qz*)(u oF WP s )){5 }.({0 ))

SO
kkk u ’Uk U} S
(2.20) (gi")" M 2j # .

This, together with ( shows that setting gry1 = ¢;** works, since by pos-
sibly replacing g¢;** Wlth a <j,i:-extension w.Lo.g. both (¢ ***)(“k ", @*,5%) and

(qz**)((a’)k,(@’)’“,(w) ") decide 210, j].
(#3)(iii) Case iii: &, = -, for some ¢ € {1,000} (and m).

Lemma 2.36. Let g. € Q, Ik z € 2%, n € w be given, suppose that v € {1,000},
m € w are such that &, = ¢!,. Then there exists

(i) 7« <fu @«
(ii) % = (X

(iii) & = (a(@

5 (4,0,w,5) € seqz,(qs))
)1 (w,0,0,8) € seqg,y (14))

satisfying the following.

S‘ E\

u,
u,

() for each (u,v,w,s) we have
o g (WVW5) ¢
® X(a5,m,5)n € {muleq,un},
such that r{®"®9IM) ¢ prX@ewsin (), and whenever (u',v',w',§") #

(@,v,w,5), and X(g,5,@,5) n 7 €d, then either
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(M) (a) X(a,5,w,5)1n = un, and then v+ = 1 holds, when for the unique k satis-
Jying

we have
(where § is from |(z1){{(22)]),
(X)) or X(a,5,w,5)1n = mul, and
ko < k1 < min(£g(z(®% ), 1g(z@ " 05))

@,D,10,5 a’ v, w5
xéoy ;) + x( )

k‘o ?
(@,0,@,5) (a0, @",5")
zy, # Tp, .

Observation 2.37. If n, t, m are as in the lemma, and r' satisfies

(2),

W, 0,w,5)

V(a,,,5) € seqz, (') : (r)®09) g pLx'

then the same statements holds for any r"" <z, 1.

Before proving the lemma note that
(#3)(74)1 applying to g. = 7, it yields the desired condition 7,41 <z, 7n, X(a,5,w,5)’
((a,v,w,5) € seqg, (rnt1), and setting
o y(®7@:5) — the maximal element in

{x e ¥2: rﬁzﬁ,ws) IFzez}(2 xg\;,ﬁ,w,g))
the requirements in |(®;){(X3)| are clearly satisfied: just use the same ar-

gument as after |(#3)(i7)s} therefore finishing the case |[(#3)(4i7), and the
induction in (1)} too.

Proof. (Lemma We are going to construct r, regardless of the specific value
of v € {1,00}. We remark that although for : = oo a simpler argument would
also suffice, as the case of ¢« = 1 itself needs a slightly more involved (and painful)
reasoning, it is easier to handle the two together. First
(A); we choose an enumeration ((@’,v’,w’,57) : j < M) of all the possible
quadruples (4, v, w, 5) from the set seqg, (g« ).

We need the following.
(A)2 We are going to define q.. <z, ¢, as well as the sequence
X = <X(1Z,Tj,u7,§) : (ﬂa ,l_)a IZ), ,§) S Squn (Q*»,

with X(g,5,5,5) € {un,mul,eq} satisfying the following. (For j < M writing
sometimes x; instead of X(gi 57,57 5)) We would like the sequences to have
the properties as follows:

(a) ﬂj<M{q <o Qax @) € DR (2)) s <jn-dense below g,.,
(b) moreover, whenever x; = mul for some i < M, then for every p <7, Gu«

PEN;ifd <p @ @75 € D (2)}
=
p(ai,a",wi,gi) c D;,%Lmul(g).
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Subclaim 2.38. Suppose that v, m, n, q. are as in the lemma. Then there exist
Gex <gn @ and X satisfying the requirements in .
Proof. First we define qg, x¢ as follows.
(1)1 Set the auxiliary variable gy = ..
e, First, suppose that the set
{a<p a0: ™77 € Dm(2))
is <j,-dense below qo, in which case set xg = un, ¢1 = qo.

e, Otherwise, define ¢ <7, qo so that thereisno ¢ <j, ¢ with q(@7%@"5%) ¢

_Z:’VL
Dy (z).
e3 Second, if the set
{4<p by ¢ ") € Ded(2))
is <j,-dense below g, then we let xo = eq, and ¢q; = ¢;.
o, If it is not the case, then there is ¢f <z, ¢ for which there is no
q <j. q5 with q(ﬂovﬁo*ﬂ’o’go) € D5eq(z).
Then
(T)2 set xg = mul, and ¢; = ¢,
and observe that by Definition [2.26
(1)3 for each q <j, ¢ = q1 we have q(@0°8°,5°) ¢ prmul(y)
(T)4 This way we are going to define
e the <j, -decreasing sequence

0 1 M
G=q 2pmq 25 2m 4

e together with the sequence x
by induction on j such that for each i < M
(T)fla) Nj<ila <p @i @) € DR (2)) s <j.-dense below ¢;,
(T)flb) and if x;_; = mul, then for arbitrary p <z, ¢;:
P € Myeirld <o ts - ™55 € DS (2))
=
(ﬁi7171—)i71,wi717

) € Dym(z).

Note that ¢; and x clearly satisfy the demands if x¢ € {un, eq}, and also when

Xo = mul, for which recall

(T)s Suppose that 0 < i < M, and g¢;, and the x;’s are already defined for j < i.
o Set

D* = (g < ai: ™7 € DL (2)},
J<i
which is < gn—dense below g;.
o5 Note that

4 Sjur P == (V] < M)g ") <y ple ey,
Using this observation (recalling [2| from Fact [2.27)) we obtain
(2.21) V¢, qeQ): (¢ <jus1 ¢ g€ D*) — (¢ € D*).
Again, following the pattern of the definition of ¢; and xq,
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o3 lf o o
{¢€D": q<p q ") € DE(2)}
is < /"-dense below ¢, then we set x; = un, and ¢;11 = ¢;,
o otherwise _let q; <j. @i be such that for no ¢ <z, ¢; do we have
g™ 7w S ¢ prun(y),
o If the set
{geD*: < qj: 7" € Dyea(z))

is <j,-dense below g¢;, then we let x; = eq, and g;11 = ¢j.
s If it is not the case, then there is ¢’ <j, ¢;, such that

Vge D™ (¢<p q) — (¢¢ Dy (2) UDLz)).
But then by , and by Definition we have that
VgeD*: (¢<p qf) — (¢€ Dy™(2)),
and letting ¢;+1 = ¢/, x;, = mul we are done, hold for
e =1+ 1.
Finally, letting g.. = qar, it is easy to check that g.., X are as desired. UgubclainiZag

Subclaim 2.39. Suppose that v € {1,00}, I, m, n are as in Lemma X, Qux

giwven by Subclaim (i.e. satisfying the requirements in w.r.t. the fized
enumeration of seqy, (q«) = seqj, (q««)). Then there exists a sequence

Qux Z5n 40 Z5n Q1 Zfn " Zjn QU
such that

(1) (Vk <1) g € Njorrfd <go @ee 0 @77 € DY (2)},
(2) for each k <1, j < M:

qgfw’%?) < (quﬂﬁwj7§j>){s:n},(<o>>,

(3) and for each j < M, if x; = un, then there exist i% < zjl <l < zf (and
. € {0,1}), such that

vk S l: (qliﬂjﬂ’)j7wj,§j)){gin},(<0>) 1= Z5 = J

S i k>
(*9,*],*],*]) L , o ]
(qk“ w8 ){6m}((1)) I 2y = 1—¢],
Proof. By we can choose pp <7, G«x With
(2.22) po € Dyi= () {p <o @ = P70 € DX (2))
j<M

This means that

(1)1 whenever j < M is such that x; = un, then for some ié € w, c% € {0,1}:
@l 9 w? |50 v j
(g "IN EIO) 2, =
(p(()’u,J"uJ’wj,sj)){stn},(<1>) ”_ gzé — 1 _ C(]).
Now for each such fixed j there is p’ <{er 11 qéﬁj’ﬁj’mj’gj) so that both (p’){em}((0))

and (p/){em3-(1) decide 2][0,4)) (in fact ¢ »"@"") € DLun () implies that then
p’ decides that initial segment). Therefore,
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()2 there exists gy <j..1 po, for which

(2.23) vi< Mgl ") | 210,),
and (automatically by (2.22) qo <7.41 Po)
(2.24) qo € D..

Now let p1 <. go be such that

(2.25) for each j < M : p{™ %) < (gfF @ (e (o)

(in particular, p1 £7.11 qo), and p1 € D,. Similarly to and
(1)s whenever j < M is such that x; = un, then for some i} € w, ¢] € {0,1}:
@l 59 1 5)\ gt j
(pg; . 7‘>){am},<<o>> Fzy=ds
(pgu 77,5 )){s%},((l)) = 24 = 1_ C’i,

()4 there exists g1 <j,.1 p1, for which

. a’ o) w? |5 .j
(2.26) i< M: g™ 2p0,49),
and (automatically by ¢1 <z..: p1)
(2.27) ¢ € Ds.

Observe that by and
(1)s for each j: i} < .
Following this pattern, we can define the sequence by induction on k£ < I.
USubelainZza

Subclaim 2.40. Suppose that « € {1,00}, n, m, are as in Lemma X, Qux

giwen by Subclaim (i.e. satisfying the requirements in w.r.t. the fized
enumeration of seqy, (q«) = seqy, (g««)). Suppose that

Qux Zjn 40 ZGn Q1 Zjn *** Zjn
such that the qi’s are given by Subclaim [2.39, so

(2.28) (Vk <1) qi € m {4 <70 s : q(m,m,m,gj) € DL%i(2)},
j<M
moreover,
(2.29)  foreachk<l: Wj < M: 37 @) < (007 (e (o)

(in particular, @ % g1 Qrt1)-
Then,

(1) there exists Guwx <. qo (in fact, even Guex <j.i1 qo), for which
) _ @ 9T 5 [t ,
Vj < M, Vie k>g . (qx(f:*,v ,w? 5 )){sm},(t_) c D:ﬁx] <~Z)}7

and if j is such that x; = un, then for the sequence z% < zjl << Z‘Z from

Subclaim [2.39:
VEe k22 3¢, 2% : (BTN ERLEO) 4, =,
i 59 wI 5 i~ k
(2.30) (@7 T INEBE ) =1 -
. . . . ~lk )
w’ v’ w87 v i "
(qﬁ** )){em},(ﬂ I 21[0,#) = 2
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(2) Moreover, if for each k “=” holds in (2.29)), then g« can be chosen to be

q0-
Proof. Condition (2.29) implies that we can define the condition ¢;' ; <7,., g1 so

that S
) 553 and gd G i o = .
(Vj < M) : ql(" 00,87 (g, 07”8y {en . ((0)
(@)1 note that replacing ¢;—1 with g;'_; still preserves ¢—1 >, g, but ;1 z;nﬂ
q, that is, ¢/ >z ¢, but ¢ ; ;\égn+1 g;. Similarly, for k = [ -1
(2.28) holds recalling that D:Y’s are closed under <{(e. y,1-extensions if
y € {un, eq, mul} (2] from Fact [2.27)).
Doing this by downward induction on k =1—1,1—-2, ..., 0,

(@)2 replacing g by ¢ <j.+: @& when necessary w.l.o.g. we can assume that

(Vk < D)(Vj < M)+ g3 %) = ((gy) @@y (e ()

and introducing the

(®)3 notation 0F for the constant 0 sequence of length k, i.e. 0' = (0), 0%+ =

0"~ (0),
. @ 5 w5 @5 @ s et 1 (TF
(Vk <1)(Vj < M) : g™ ") = ((qo)® @@y temh(0h),

Now

(®)4 we claim that (assuming [(®)o]) choosing gu.. = go works.

(®)5 Fix j < M, we are going to prove that

(VEE 122) . (q(()af,z’ﬂ,wf,gj)){ggn},(ﬂ c D:;ij (2«‘),
(®)¢ First we argue for j’s such that x; € {un,eq}, and prove (2.30) as
well.
So fix j with x; € {un,eq}. If x; = un, then for each k£ < for the natural number
i, from Subclaim (and for some cg, c1)
(ql(cm,W,mﬂ',gﬂ')){aj”},((0>) - 2.5 = co,
N e
(2.31) (QI(gu])v YW, S )){Em}’(<1>) H— gl‘;ﬁ = 017
where ¢y # 1,
where we also have ‘ ' ‘
iy <i] <. <.
(For convenience, if x; = eq, then we let zfc = —1 for each k < 1.) Observe that

yEm b0 € DI (2), where x; € {un, eq} implies that

the fact that (ql(gﬁj=17j,wj,§f)
(2.32) whenever p <(.. 31 ql(cajﬂ-,j’wj’gj))’ and a € (0.1
. (i#d) = [(plEmb (O Ik 2, = a = plenb () |k 4, = q).

(®)7 Now for any £ € ™22, if x; = un, then set i, = il (|f]) = iljﬂ, otherwise if
x; = eq, then set 4 = —1. It suffices to show that
o1 whenever i € w, i # i and r <{er }.1 qéﬁj’ﬁj’wj’gj)){stn}’@ are such
that r{emb () o p{em b (1) decides the value of z;, then so does r,
and
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o9 if x; = un, and so i >0, then
(q(()ﬂj7773'7@”'75")){5;},({”‘(0))7 and (q(()ﬁj’ijij7§j)){5:n},(fA<1))

force different values to z,;.

We fix k£ <, and argue and simultaneously for each £ € *2. Let r <{em} k41
qéﬁﬂ,ﬁﬂ,wﬂ,gﬂ), (so
(2.53) Vie k9. r{a;},<t:“<o>> < (q(gff v w >){a¢n}7(t:“<o>>

plen T W) < ({705 e}, (W)

by symmetry it is enough to show that
(2.34)
Vigil, VEe 2 (rEI T O Iz —a) o (SO g — ),

and
(2.35) vie k2. (rlemdETONIE 25 —q) & (PEREO) 2, =1 —a).
(@)(72) We claim that for any #* € “>2, d <k and a € {0,1}, if i # i/, then
(2.36) B N e N I £ R e

and

(2.37) plEm (O g =a < P (07T L 2y = 1-—a,
d

Before arguing first we note that it would finish the proof of [o1| and For
any t € *2 and i € w (applying 2-{b < k: tp = 1}|-many times) we obtain

that
Vae{0,1}: rlomb @O 2 — 0 e plEmb OO 2, = fit(a),
and
Va € {0,1} : plemnh @ W) Zg=a i b E ) |1 Zg = f(a),
where f(a) =1 —a, f = f> = fo f = id, and we mean 0 under t;, when [ > k.
But then by we have r{&n}(0") (e 31 (q,(cﬂj75j7wj7§j)), which means
PEmb (O 70) < (ql(fjﬂ’)j,u’J"75”')){a:n},(<o>))7

e B @) < (0705 (e ) (),

Now if i = i/, then this together with (2.31) and (2.36) from |(@)7E23| imply ([2.35]).
Similarly, for i # il ([2.32) and (2.37) from (@)gg)l imply (2.34). Hence it remains

to verif (2)
v |(©
But (2.33) and |(®)»| imply that

plERh @O (#0078 (e 1,(0))

PR @) o (oS e 1)

and clearly if i = #,, then (2:31)) implies (2-36)), while for i # 4/, then (2.37) follows
from (2.32)).
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(®)s Now assuming that we have we prove that (by induction on j):
Vi< M, Vte "22: x,, =mul — (qéﬂj’ﬁj’wj’gj)){etn}’@ € D;Xm(z).
Assume that j, < M is such that x;, = mul,
(2.38) Vi< g, WEE 220 (g7 N ELO ¢ prxi(y),
Fix £ € 22, and suppose on the contrary, that
(g ") O ¢ D),

Recalling Definition for some p <(.. 31 (q(()ﬁj* ,m*@j*,gu)){e;}’@ we have p €
Dy (2) U Dy;29(z). Then there is a condition p" <z, qo, for which

(2.39) (p) (@@ e (DL (2) U DESY(2)),

and S
. gl 5wl 5 a’ o7 w? |50 L
Vi< M: (p/)(u 07 w757 <f{e: 11 (qé )){sm},(ﬂ,

S0
(2.40) (1)) ) ¢ prn(z) U i),
and recalling [2] from Fact we could infer from that
(2.41) Vi <ge: ()7 )) € DL (2).

But now, since p’ <z, qo <z, @«x, X;, = mul, necessarily
N (wd* o9 wd* 59 t,mul
()" Ve Dypm(2),

contradicting (2.39) (as D5"%(z), DL™U(2), D4e9(z) are pairwise disjoint by ob-
vious reasons (3)). Utascl

Subclaim 2.41. Suppose that 1 € {1,00}, let the condition q be in DL™Y(2).
Then some ¢ <{e. 3.1 q satisfies the following:
There exist i, # tux € W, Cx, Cax € {0,1}, such that

(@)D 2 = o, (OEHOE = 1
@) O 2 = ewy (D 2 = e

Moreover, q' can be chosen so that both (¢')1=m} () and (¢"){emb (1) decide the
first max (i, i) + 1-many digits of z.

Proof. For each i € w there exists g+ <(.. }1 ¢, such that both qf:”}’(w» and

q:{f:”}’((l)) decide z;. Since ¢ ¢ Dp;4(z), for some i, € w and ¢4 <( 1 ¢

the conditions qf:"}’(w» and qf:"}’(u)) decide about z;, differently. Since ¢4 ¢

Dy¢d(z) (again by ¢4 <(. 3,1 ¢ and Definition [2.26) there exists i.. # i, such
that ¢’ <(.. 11 ¢4, and (") Emb WO and (¢/){=m b)) force different values to

Ziwr DSubclairﬂm
Subclaim 2.42. Assume that ¢ € {1,00}, n, m, q. are as in Lemma Qi) X°
are as mn moreover, there is no j < M for which x; =un. Then if .. <in Qux
is such that o
ree € ({0 S @0 @7 € DI (2)},
j<M
then there is an ry, < £"tlr,, that satisfies the requirements m of Lemma ,
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Proof. Note that all the requirements except hold for r,,, and so for any
re < £"1r,, too by Observation Now we only have to appeal to Subclaim
{j < M : x; = mul}|-many times. Osubclainizaa

Subclaim 2.43. Assume that . = 00, n, m, g, are as in Lemma QxS Qs
X are as z'n and suppose that there exists j < M with x; = un. Then there

exists T« <7, Gex, and X' that satisfy of Lemma (with some T ), where

l.

Vji<M: x;€{muleq} — x;=x],

X; =un — X} = mul.

Proof. Proceed first similarly to the proof of Subclaim [2:42] and appeal to Subclaim
{j < M : x; = mul}|-many times, and so for some p, <j, g.» We have that

D Vi < M: g7 e Doy,
L) if x; = mul, then for some i} # 7" the conditions
w5l 5 oo @l 5 w5 oo
(S UL (p Ny
decide differently about Ziz, as well as about Ziz+. Moreover, both condi-
tions decide z[[0, max(i}, ;") + 1].
Now pick p.x <j. p«, so that
Oy Vi < Ml < (plt 7Dy A (o),
Oy and Vj < M : Pl o) o puxs (2)-
So (by replacing p, with a <jn+1-extension of it) w.l.o.g. we can assume that
(242) Vj < M . pg{zjﬂ—)j,wj’gj) _ (piﬂj’l_)j’wj’gj))({Efrj}’(«»).
Define 7, <jn Dx SO that
(2.43) Vi< M : (Tfkﬁ-’,ﬁ-’,wj,gj)){em,«o» _ (pgaﬂ,aj,wf,51)){5;?}«070»,
and similarly,
(2.44) Vi< M: (Tiﬁj,ﬂj,wj7§j)){5§},((1)) _ (pfkﬂj7ﬁj,u’)jﬁj)){efj},((l,l))'
Now if j < M is such that x; = mul, then for ¢ € {0,1}
({7 DR (@) < (p(B SV (R (@)

SO (riﬂj’ﬁj’wj’gj)){gfs}*((“)) (a € {0,1}) decide differently about z;: and z;:- (by

EHe))-
If 5 < M is such that x; = eq, then it follows from , and

from Subclaim that
Vtg € {0,1}: (LT E 0D ¢ preagz),
but then a similar straightforward calculation shows that for no ¢ and p’ <{ex1.2
piﬂj’ﬁj’ﬂ’j’y), no tg # t; € 2{0,1} do (p'){em (o) and (p/)tem (1) decide differently
about z;. This clearly implies that r*ﬂj’ﬁj’mj’gj)) € D4ed(z).
Finally, if j is such that x; = un, then we argue that p(@ 070080 Dimul(z),

Again, (2.42), D(a)l, Oy and [2| from Subclaim together imply that

Vig e {0,1}: (& 7P S ETN() ¢ prun(y),
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and similarly to the argument in [(®)¢| in Subclaim there are i9 < 41 and
co,c1 € {0,1}, such that

Vi = (to,tr) € 2{0,1}: (") ER U Ik g = f10(cq) A2y = 11 (1),
(where f(c) =1 —¢, f° = id). From this we obtain
(piajjj’wj,gj)){sfs},((o,())) I Ziy = Co Azi, = c1,

(piaj,m,wj,g]‘)){s;';},(u,m) I ziy=1-co Azi, =1—c1,

so recalling (2.43)), (2.44) clearly vr*ﬁj’ﬁj’wj’gj) € D2omul(z) (And since we can al-

ways <z,.,-extend r, so that (rfﬂ’ﬁj’mj’gj)){soc}’«“» (a € {0,1}) decides z [0, max(ig, i1 )+

1), which gives the z(%%)’s for the two (u,?,w, ) € seqg,.; (r.) for which
(@, o7, w?,5) C (a,v,w,5).)
DSubclairrm

Subclaim 2.44. Assume thatt =1, q., z, n, m are as in Lemma|2.560, qsx <in Qs

x are as in[(A)g] | € w, moreover, ~
(2.45) 0<|{j<M: x;=un}| <2

Suppose that quws <j. Gx 15 given by applying Subclaims and to g.. and
I. Then there exists t € '2 for which some r, <ju+1 Tt Salisfies the requirements in

(where 1z is defined by the equality
Vi< M: réﬂj’ﬁj’wj’gj) = (qgi’ﬁj’w’gj)){ain}’(f)).

Proof. Fixing j < M so that x; = un,
vie . (q£zi,@j,wj,§j)){s;},(ﬂ) € DL (),

and by (2:30)

(1) there are natural numbers
W< <<
such that
vie 2, Va e {0,1}: (¢{" I ERE @) | 210,44+ 1).
o vic 12, 35 € 2 (¢TI ELLO) Ik 5 C g,

e iffe 22 i# il r<pay (@07 EDO), then
rlEmb @O | 2 =0 = plEBETW) 2 = (Va € {0,1}),
o ifte 22, r <fay, (qg‘i’ﬁj’wj’gj)){Ein},(t‘))’ a € {0,1}, then
MELEO) | =g e bW g g,
7] il
(2) Observe that if j < M, t # t', then 2% # 2%,.
Now for
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(3) it suffices to choose € '2, and set 7, = 77 so that whenever j < M is such
that x; = un, then

(2.46) zl S

which is shown by the following: since for any j with x; = eq obviously
rt@]’ﬁ]’w]’gj) € D}Yea, while if x; = mul, then we can replace r, with some

Twx <{e1 1,1 T = 17 given by Subclaim preserving

e N pe@: p™ 7 e D).
j<M

But for each j < M with x; = un there is at most one ¢ € i9 that does not satisfy
(2.46)), so by (2.45)) there exists a sequence ¢ that is suitable for our demands.

USubelainzza
ULemmdZ3a
USubclaimZ33
It is only left to argue that will complete the proof of Theorem |2.6

So fix
e a < Ao, and a Go(5)-independent tree

To € Vo N e@(W>2),

Where VO — VQ?‘U\{Q}XQIXQOC XQS,
e € [Xo, M), and a Gi-independent tree

T, €eVin y(w>2),

where Vl = VQOX@il\,\O\{B}XQWXQS,
® 7 € [AM,Ax), and an Ep-independent tree

Too € Voo N P(¥72),
where Vo, = VQOXQlXQTm\Al\{w}XQS,

and we shall check that the generic real in question is not in [7,] (¢ € {0, 1, 00}).
Assume on the contrary (i.e. —|(®)4)), let p, € P* be such that

(2.47) V.E “plkpr € [1.]”,

where 1 is the generic real given by P* (note that P* € V', and so we have to carefully
manipulate p when working in V, as there are more reals in that model than in V).
By Definition 2.7 and p € P*

e if t = 0, then there exists j € w with pa; = Cyj, p2j+1 = Cojt+1. W.lo.g. we
can assume that |po| = [p1| = -+ = |p2j—1| = 1, and if p; = {t;} (i < 2j),
then let

=1 "t " gy,

e if . = 1, then there exists j € w with p; = {0,1}, and |po| = [p1| = --- =

Ip2j—1| = 1, and if p; = {a;} (i < j), then let

= (a;: 1 <J),
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e if 1 = 00, then there exists j € w with
(2.48) p;j = {1}, 15},

and |po| = [p1] = -+ = |p2j—1| = 1, and if p; = {t;} (¢ < j), then let

t* :Eor\tl/-\"'mtj—17
Now
e if L = 0, then using pick to; € po; so that
=" EQj = 5

for some k € w. Letting p’ € P° denote a condition for which p’ < p,

pa; = {t2;},
e if 1 = 0, or oo, then

o=
and let p’ = p.
Clearly
P 1 € [t
so we can assume that [t..] N [T,] # 0. Consider
e the sets
Ti..0)=1{t€ “22: £, 7 (0) " teT},
and

Tp..q)y={t€ “22: L.~ (1) "TeT},
ift=00r1,
e while if © = 0o, then let
Tr.)={te “72: L. "8 " TeT},
and
TE**(l) = {t S w22 . t_** /\Zy AEG T’}7

(where p; = {t,#} recalling (2.48)).
Now as [To] ([T1], [Teo], resp.) is Go(5)-independent (Gq-, Ep-independent, resp.)
compact set for which ¢, € T', there must be k € w such that the sets Ty _ ) N k9,
and Ty, 1) N *2 are disjoint.
Now by further extending p’ if necessary we can assume that
b ({f L= 0) |p,2j+2| = ‘p/2j+3| = = ‘p/2j+k+1| = 1, and if p/2j+2+i =
{t2j42+i} (¢ < k), then the sequence
bus = ojya “tajps o D lajppgr € 952
is obviously of length > k.
o (ifL=1) \p;—+2\ = |p;-+3| == |p;'+k+1‘ =1, and if p;‘+2+i = {ajta+i}
(i < k), then the sequence
t_*** = (aj+2+i i< k> c WZQ

is of length k,
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o (if L =00) |p;-+2| = \p;—+3\ == |p;'+k+1‘ =1, and if p/2j+2+i = {:t2j+2+z‘}
(i < k), then the sequence
basw = tojyo " lojys - T tojpkt1 € w29
is obviously of length > k.

If © € {0,1}, then let a € {0,1} be such that t...[k € T, (q). Our observation
above means that t...[k ¢ T, (1—q), thus

(2.49) tex " (1 —a) “tuun € T,.

Extend p’ to p” € Q such that py, ., = {(1 —a)} (if t = 0), or .p7,; = {1 —a} (if

¢ =1), and then

P/ € [t T (1 — a) ™ frns]

which together with (2.49) contradicts (2.47]). We can also reach the same contra-

diction in the case ¢ = oo, just working with p; = {#,#/} instead of {0, 1}.
DClainm

Problem 2.45. Is it true, that in the final model there is a partition of the Cantor

space into Ag-many Gg(5)-independent Borel sets (while the other assertions from

Theorem still hold)? Is it consistent that there is a partition of 2* into A-many

Go(3)-independent Borel sets, where cov(M) < A < 2%, and less than A\-many (or

just not more than cov(M)-many) Go(s)-independent Borel sets do not cover 2¢7
What can we say about the corresponding invariant of Gy, or Ey?

Problem 2.46. Define the graph
Gn={(z.y) € ["2]*: {jew: ; £y} <n}

for n € w fixed. Can we separate cov([g,) and cov(lg
infinitely many cov(7g,)’s?

.+1)? Can we separate
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