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Abstract. Following [Ges11], we study the uncountable Borel chromatic num-

ber of some notable graphs, viewing them as cardinal characteristics of the
continuum. We prove that consistently, cov(M) < λ0 < λ1 < λ∞ < 2ℵ0 ,

where λ0 denotes the weak Borel chromatic number of the Kechris-Solecki-
Todorčević graph G0, that is, the minimal cardinality of a G0-independent

Borel covering of 2ω , while λ1 and λ∞ are the corresponding invariants of the

Silver graph G1 and the simple graph associated with the Vitali equivalence
relation E0.

§ 0. Introduction

Borel graphs and their combinatorial properties have become a growing area of
research in the last two decades and it has interesting connections with other areas
such as the theory of graph limits, countable group actions, paradoxical decompo-
sitions, as well as ergodic theory.

The Borel chromatic number was studied and defined in [KST99][LM08]. For a
graph G = (X,E) on a Polish space X its Borel chromatic number χB(G) is the
least cardinal κ, such that for some Polish space Y there exists a Borel coloring
c : X → Y of G with |ran(c)| = κ (i.e. for each y ∈ Y the preimage c−1(y) is G-
independent). It is clear by the theory of Polish spaces and the Perfect Set Property
of analytic sets that this number is an element of the set {0, 1, 2, . . . } ∪ {ℵ0, 2

ℵ0}.
The theory was extended by S. Geschke, who showed that if X is Polish, then

for each closed graph G = (X,E) without perfect cliques, as well as for each locally
countable Fσ graph G = (X,E) (i.e. each node has degree at most ℵ0) there exists
some ccc. forcing making the continuum large, while X can be covered by ℵ1-many
Borel (in fact, closed) G-independent sets [Ges11]. Later M. Gaspar- S. Geschke
[GG22] have defined the weak Borel chromatic number of a fixed graph G as the
least possible cardinal κ, such that the underlying space can be covered by κ-
many G-independent Borel sets. Note that if either chromatic number is at most
countable, then they coincide. (Here we remark that S. Geschke had defined the
weak Borel chromatic number (of the graph G = (X,E)) as the smallest cardinal
κ, such that there exists a coloring c : X → κ with Borel fibers (i.e. for each α < κ
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the preimage c−1(α) is Borel) [Ges11]. Note that if for a fixed graph either variant
of the weak Borel chromatic number is at most ℵ1, then they coincide.)

In the celebrated paper of A. Kechris-S. Solecki- S. Todorčević [KST99] the graph
G0 (with X = 2ω) was constructed, and proved to be minimal among analytic
graphs of uncountable Borel chromatic number in the sense that for each simple
graphG = (Y, F ), where Y is Polish, E ∈ Σ1

1(Y
2) either χB(G) ≤ ℵ0, or there exists

a continuous homomorphism f : 2ω → Y from G0 to G (i.e. whenever (x, x′) ∈
EG0 , then (f(x), f(x′)) ∈ F holds necessarily). This also implies that whenever
G = (Y, F ) is an analytic graph on a Polish space with uncountable weak Borel
chromatic number, it is at least as the weak Borel chromatic number of G0.

While the graph G0 is acyclic, so it can be colored by two colors, B. Miller
showed that the measurable chromatic number of it is 3 [Mil08]. He asked whether
anything can be said about the weak Borel chromatic number of G0 compared to
other cardinal characteristics of the continuum. In [KST99] not only has the authors
verified that χB(G) > ℵ0, but it also followed from their argument, that each G0-
independent Baire-measurable set S ⊆ 2ω must be meager. This immediately
implies that cov(M) is a lower bound for the weak Borel chromatic number of G0

as well.
Due to M. Gaspar and S. Geschke, independently of this work, various Borel

chromatic numbers of graphs were computed in models of set theory obtained by
forcing with countable support iteration of uniform tree-forcing notions [GG22], or
see further results by R. Banerjee, M. Gaspar [BG22]. Earlier F. Adams and J.
Zapletal had studied cardinal invariants of closed graphs [AZ18]. Zapletal [Zap19]
studied hypergraphable σ-ideals, namely, σ-ideals that are σ-generated by Borel an-
ticliques in a fixed family of hypergraphs, proving also dichotomy theorems [Zap19,
§4], highlighting the importance of the Silver, Vitali, and KST graphs.

§ 1. Preliminaries, notations

Under ordinals we always mean von Neumann ordinals, and for a set X the
symbol |X| always refers to the smallest ordinal with the same cardinality. For a
set X the symbol P(X) denotes the power set of X, while if κ is an cardinal we
use the standard notation [X]κ for {Y ∈ P(X) : |Y | = κ}, similarly for [X]<κ,
[X]≤κ, etc. By a sequence we mean a function on an ordinal, where for a sequence
s = ⟨sα : α < dom(s)⟩ the length of s (in symbols ℓg(s)) denotes dom(s). We

denote the empty sequence by ⟨⟩. Moreover, for sequences s, t, we let s⌢ t denote
the natural concatenation of them (of length ℓg(s)+ℓg(t)). For a set X, and ordinal
α we use αX = {s : ℓg(s) = α, ran(s) ⊆ X}, and for cardinals λ, κ we use the
symbol λκ = |κλ| (that is, the least ordinal equivalent to it).

For a finite sequence s̄ ∈ ω>2 the symbol [s̄] stands for the basic open set in 2ω

that s̄ determines, i.e.

[s̄] = {x ∈ ω2 : x ⊇ s̄}.
A tree T is a downward closed set consisting of finite sequences.

If φ(n, x) is a formula, then ∀∞nφ(n, x) is true, if for all but finitely many
n ∈ ω φ(n, x) is true, ∃∞n stands for there exists infinitely many n, and we use the
quantifier ∃!y as “there exists a unique y”. For r, r′ ∈ ωω under r ≤∗ r′ we mean
that ∀∞n rn ≤ r′n.

Concerning forcing, q ≤ p means that q is stronger, and for a notion of forcing
P the term 1P stands for the unique largest element of P.
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§ 2. The forcing construction

Let s̄ = ⟨sn : n ∈ ω⟩ be fixed, such that

(x1) for each n ∈ ω: sn ∈ nω,
(x2) the set

⋃
n∈ω[sn] is dense in 2ω.

Recall the definition of the graph G0(s̄) on the Cantor space [KST99]:

Definition 2.1. The graph G0(s̄) is defined as follows:

G0(s̄) = {(sn ⌢ ⟨0⟩⌢ x, sn ⌢ ⟨1⟩⌢ x) : n ∈ ω, x ∈ 2ω} ⊆ [2ω]2.

Theorem 2.2. ([KST99]) For any sequence t̄ satisfying (x1), (x2) the graph G0(t̄) ⊆
[2ω]2 is a closed acyclic graph such that whenever H ⊆ 2ω has the Baire property
and G0(t̄)-independent, then it must be meager.

Moreover, if G = (X,E) is an analytic graph on the Polish space X and χB(G) >
ℵ0, then there exists a continuous map f : 2ω → X, which is a homomorphism from
G0(t̄) into G.

From now on we will only write G0 instead of G0(s̄). Note that the graph G0(s̄)
enjoys the expected properties if (x1), (x2) holds without any regard to the specific
sequence s̄, justifying the use of the terminology χB(G0), χwB(G0), cov(IG0

).

Definition 2.3. The graph G1 is defined as follows:

G1 = {(x, y) : x, y ∈ 2ω, ∃!n ∈ ω xn ̸= yn} ⊆ [2ω]2.

Definition 2.4. The Vitali relation E0 is defined as follows:

E0 = {(x, y) : x ̸= y ∈ 2ω, ∀∞n ∈ ω xn = yn} ⊆ [2ω]2.

Note that this is not the standard definition of the Vitali relation, as we interpret
it as a subset of [2ω]2, while in the literature E0 ⊆ 2ω×2ω is an equivalence relation.

Definition 2.5. If X is a topological space, and G is a graph on it, then we let
IG ⊆ P(X) denote the σ-ideal generated by Borel G-independent sets.

Now we are ready to state our main theorem.

Theorem 2.6. Assume CH, and let λ0 ≤ λ1 ≤ λ∞ ≤ λS = κ be infinite cardinals
such that λι = λℵ0

ι for each ι ∈ {0,1,∞,S}. Then in some cardinal preserving
forcing extension we have

cov(M) = d = ℵ1,
cov(IG0

) = λ0,
cov(IG1

) = λ1,
cov(IE0

) = λ∞,
2ℵ0 = κ = λS.

Proof. We define our forcing posets in the following steps.

Definition 2.7.

(D1) For each n we let Cn ⊆ 2<ω be a finite, non-empty set such that for each n
(a) x ̸= y ∈ Cn → x ⊈ y or y ⊈ x,
(b) C2n+1 = {⟨0⟩, ⟨1⟩}, and
(c) for each t̄ ∈

∏
i<2n Ci there exists t̄′ ∈ C2n such that t̄⌢ t̄′ = sk (from

(x1)-(x2)) for some k ∈ ω.
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(This can be achieved by induction, e.g. before constructing C2n imposing
the auxiliary demand that for some r ∈ 2ω t̄ ∈ C2n → r /∈ [t̄].)

(D2) Let p ∈ P0, if
(i) p = ⟨pi : i ∈ ω⟩, where ∀i : ∅ ≠ pi ⊆ Ci, and
(ii) ∃∞j: p2j = C2j ∧ p2j+1 = C2j+1,
with q stronger than p, (in symbols, q ≤ p) iff qi ⊆ pi for each i.

(D3) For P1 just recall the definition of the Silver real forcing: we let p ∈ P1, if
(i) p = ⟨pi : i ∈ ω⟩, where ∀i : ∅ ≠ pi ⊆ {0, 1}, and
(ii) ∃∞j: pj = {0, 1},
with q stronger than p, (in symbols, q ≤ p) iff qi ⊆ pi for each i.

(D4) We let p ∈ P∞, if
(i) p = ⟨pi : i ∈ ω⟩, where ∀i ∈ ω : ∅ ≠ pi ⊆ kpi2 for some kpi > 0, and
(ii) ∃∞j: |pj | = 2,
with q stronger than p, (in symbols, q ≤ p) iff

• there exists a strictly increasing infinite sequence j0 < j1 < . . . of
finite ordinals, for which

(∀i < ω) : kqi = kpji−1+1
+ kpji−1+2

+ · · ·+ kpji
,

where under j−1 we mean −1,
• for each i < ω, t̄ ∈ qi there exists

(t̄∗ji−1+1 ∈ pji−1+1) & (t̄∗ji−1+2 ∈ pji−1+2) & . . .& (t̄∗ji ∈ pji),

such that

t̄ = t̄∗ji−1+1
⌢ t∗ji−1+2

⌢ · · ·⌢ t∗ji .

(So the biggest element p can be described as the condition satisfying
for each j pj = {⟨0⟩, ⟨1⟩}.)

(D5) If p ∈ Pι (ι ∈ {0,1,∞}), t̄ ∈
∏

j<i pj for some i < ω, then let p[t̄] denote

the condition defined as p
[t̄]
j = {tj} for j < i, and p[t̄]↾[i, ω) = p↾[i, ω).

(D6) Moreover, let P−m denote the subforcing {p↾[m,ω) : p ∈ P} of P with the
natural order.

Recall the definition of the Sacks forcing, and so let PS = {T ⊆ 2<ω : T is a perfect tree}
with T ≤ T ′ iff T ⊆ T ′.

Definition 2.8.

(D7) For n ∈ ω we define the partial order ≤n on P0 as q ≤n p, iff
• q ≤ p, and
• for some ℓ0 < ℓ1 < · · · < ℓn−1 < ω we have

∀j < n : (p2ℓj = q2ℓj = C2ℓj )&(p2ℓj+1 = q2ℓj+1 = C2ℓj+1),

and

(∀k < 2ℓn−1) pk = qk.

(D8) For n ∈ ω we define the partial order ≤n on P1 as q ≤n p, iff
• q ≤ p, and
• for some l0 < l1 < · · · < ln−1 < ω we have

(∀k < ln−1) pk = qk.

and

∀j < n : plj = qlj = {0, 1},
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(D9) For n ∈ ω we define the partial order ≤n on P∞ as q ≤n p, iff
• q ≤ p, and
• for some l0 < l1 < . . . ln−1 < ω we have

∀j < n : |plj | = |qlj | = 2,

and
(∀k < ln−1) pk = qk,

(D10) For q ∈ PS (so q = Tq ⊆ ω>2 is a perfect tree) we define stem(q) to be

the minimal branching node of q (i.e. q and stem(q) satisfy stem(q)⌢ ⟨0⟩,
stem(q)⌢ ⟨1⟩ ∈ q, but each proper initial segment of stem(q) has a unique
immediate successor).

(D11) We define the partial order ≤n (for every n ∈ ω) on S as
• q ≤0 p, iff q ≤ p,
• q ≤n+1 p, iff q ≤ p, stem(q) = stem(p), and for this common stem s:

q[s
⌢⟨0⟩] ≤n p

[s⌢⟨0⟩], and

q[s
⌢⟨1⟩] ≤n p

[s⌢⟨1⟩].

A standard argument yields the following.

Observation 2.9. P0, P1, P∞, PS satisfy Baumgartner’s Axiom A with the partial
orders defined above in D7) and D11), in particular if we are given the sequence

p0 ≥0 p1 ≥1 p2 ≥2 · · · ≥n−1 pn ≥n pn+1 ≥n+1 . . . ,

then there exists a common lower bound p′ w.r.t. ≥ (in fact even p′ ≤n pn can be
assumed for each n).

(D12) For I ⊆ λ0 we let

Q0
I = {f ∈ I(P0) : f(i) = 1P0 for all, but countable i′s}

be the countable support product of P’s.
(D13) For I ⊆ [λ0, λ1) let

Q1
I = {f ∈ I(P1) : f(i) = 1P1 for all, but countable i′s}

be the countable support product of P1’s.
(D14) Similarly for I ⊆ [λ1, λ∞) let

Q∞
I = {f ∈ I(P∞) : f(i) = 1P∞ for all, but countable i′s}

be the countable support product of P∞’s,
(D15) and for I ⊆ [λ∞, λS) let

QS
I = {f ∈ I(PS) : f(i) = 1PS for all, but countable i′s}

be the countable support product of PS’s.
(D16) We let Q be the following countable support product:

Q = Q0
λ0

×Q1
λ1\λ0

×Q∞
λ∞\λ1

×QS
λS\λ∞

.

We have to check that the forcing Q is indeed cardinal preserving, forcing d to be
ℵ1, the continuum to be κ = λS, there exists a system of λ0-many G0-independent
Borel sets covering 2ω, but any system of smaller cardinality is not sufficient (and
similarly for G1, and E0). For this we will prove the following:

(⊛)1 Q is proper, and has the ℵ2-cc,
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(⊛)2 Q is ωω-bounding, i.e. for each r ∈ ωω ∩V Q there exists r′ ∈ ωω ∩V such
that r′ ≥∗ r,

(⊛)3 for each r ∈ ω2 ∩ V Q there exists a

• tree T0 ∈ V Q0
λ0∩P(2<ω) such that r ∈ [T0], and [T0] isG0-independent,

• tree T1 ∈ V Q0
λ0

×Q1
λ1\λ0 ∩ P(2<ω) such that r ∈ [T1], and [T1] is G1-

independent,

• tree T∞ ∈ V Q0
λ0

×Q1
λ1\λ0

×Q∞
λ∞\λ1 ∩ P(2<ω) such that r ∈ [T∞], and

[T∞] is E0-independent,
(⊛)4 If α < λS, T ∈ V Q↾λS\{α} ∩ P(ω>{0, 1}) is a tree, such that

• either α < λ0, and [T ] is G0-independent,
• or α ∈ [λ0, λ1), and [T ] is G1-independent,
• α ∈ [λ1, λ∞), and [T ] is E0-independent,

then for rα, the generic real given by the α’th coordinate (Q↾{α}), we have:

rα /∈ [T ].

Similar statements to (⊛)3 are proved independently in [GG22, §3] (for an extension
adding a single real, and generalizing it to CS iterations), and see also [Zap19, Thm
3.47- Corollary 3.49], a more general result, albeit only for a single step extension,
which is independent of both.

Observe that the properness of Q (together with our assumptions on the ground

model) would imply that (2ℵ0)V
Q↾λι

= λι (ι ∈ {0,1,∞,S}), and so (2ℵ0)V
Q
=

κℵ0 = κ (= λS), while it follows from (⊛)3 that cov(IG0
) ≤ λ0 (and the respective

inequalities similarly hold for G1, and E0).
By the ℵ2-cc of Q, if µ is uncountable, then each system of Borel sets of size µ

is in V Q↾M for some M ∈ V of size at most µ · ℵ1 = µ.

Moreover, (⊛)2 clearly implies dV
Q
= ℵ1, and the inequality cov(M) ≤ d holds

in ZFC (since each compact set in NN is meager as well, or see [BJ95]). Finally,
since each uncountable Borel subset of a Polish space is a continuous image of (a
closed subspace of) NN [Kec12, Theorems 7.9, 13.1], each Borel set is the union
of d-many compact sets. Thus, if a Polish space can be covered by ℵ1 ≤ µ-many
Borel sets, then we can replace each Borel set B with a system of ℵ1-many compact
sets ⟨Kα : α < ω1⟩ with B =

⋃
α<ω1

Kα, so (in the extension) there exists ⟨K ′
α :

α <cov(IG0
)⟩ with each K ′

α compact, covering 2ω. This together with (⊛)4 implies
cov(IG0)≥ λ0, cov(IG1)≥ λ1, cov(IE0)≥ λ∞. Therefore it is indeed enough to verify
clauses (⊛)1- (⊛)4.

Claim 2.10. Q has the ℵ2-cc.

Proof. Suppose that ⟨ai : i < ω2⟩ is an antichain. Since |supp(ai)| ≤ ℵ0 for
i < ω2, by CH we can assume that {supp(ai) : i < ω2} forms a ∆-system with
kernel K. But |P0| = |P1| = |P∞| = |PS| = |(2ℵ0)V | = ℵ1 (by Definition 2.7), so
|K(P0 ∪ P1 ∪ P∞ ∪ PS)| = ℵ1, we are done. □Claim2.10

Convention 2.11. By passing down to a dense subset of P0, from now on we can
assume that whenever p ∈ P0, k ∈ ω,

¬(p2k = C2k ∧ p2k+1 = C2k+1) → |p2k| = |p2k+1| = 1.

Definition 2.12.

(D∗1) if p ∈ P0, n ∈ ω, and d is the smallest integer for which
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for some l0 < l1 < · · · < ln−1 < d we have

∀j < n : (p2lj = q2lj = C2lj )&(p2lj+1 = q2lj+1 = C2lj+1),

then we let

Tn(p) =
∏
j<2d

pj ,

and

T (p) =
⋃
n∈ω

Tn(p),

(D∗2) if p ∈ P0, ū ∈
⋃

n∈ω

∏
j<n pj , (e.g. ū ∈ T (p)), then we define p[ū] = p(ū) ,

to be a condition in P0 satisfying

• p
[ū]
j = p

(ū)
j = {uj}, if j < ℓg(ū),

• p
[ū]
j = p

(ū)
j = pj , if j ≥ ℓg(ū).

(D∗3) for n ∈ ω, p ∈ P1, if d < ω is the minimal natural number such that for
some l0 < l1 < · · · < ln−1 < d

∀j < n :
(
plj = {0, 1}

)
,

then for each v̄ = ⟨v0, v1, . . . , vn−1⟩ ∈ n2 we define the sequence t̄v̄(p) =
⟨tv̄(p)j : j < d⟩ ∈ d2 as

• tv̄(p)lj = vj ,
• tv̄(p)k = ak, where pk = {ak}, k ∈ (lj , lj+1) for some j < n− 1.

(D∗4) if p ∈ P1, t̄ ∈
⋃

n∈ω

∏
j<n pj , (e.g. t̄ = t̄ū(p) for some ū ∈ ω>2), then we

define p[t̄], to be a condition in P1 satisfying

• p
[t̄]
j = {tj}, if j < ℓg(t̄),

• p
[t̄]
j = pj , if j ≥ ℓg(t̄).

Moreover, if ū ∈ n2 for some n, then we let

p(ū) := p[̄tū(p)].

(D∗5) for n ∈ ω, p ∈ P∞ if d < ω is the minimal natural number such that for
some l0 < l1 < · · · < ln−1 < d

∀j < n :
(
|plj | = 2

)
,

then for each v̄ = ⟨v0, v1, . . . , vn−1⟩ ∈ n2 we define the sequence ¯̄tv̄(p) =
⟨̄tv̄(p)j : j < d⟩ ∈ d2 as

• t̄v̄(p)lj = t̄pk

lj ,wj
, where plj = {t̄pk

lj ,0
<lex t̄

pk

lj ,1
},

• t̄v̄(p)k = t̄pk , where pk = {t̄pk}, k ∈ (lj , lj+1) for some j < n− 1.

(D∗6) if p ∈ P∞, ¯̄t ∈
⋃

n∈ω

∏
j<n pj , (e.g.

¯̄t ∈ T (p)), then we define p[
¯̄t], to be a

condition in P∞ satisfying

• p
[¯̄t]
j = {t̄j}, if j < ℓg(¯̄t),

• p
[¯̄t]
j = pj , if j ≥ ℓg(¯̄t).

Furthermore, if w̄ ∈ n2 for some n, then we let

p(w̄) := p[̄̄tw̄(p)].

(D∗7) For p ∈ PS, s̄ ∈ n2 we define the node t̄s̄(p) ∈ p by induction on ℓg(s̄) as
follows. Let

(2.1) t̄⟨⟩(p) = ⟨⟩,
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and

(2.2)
t̄
s̄⌢⟨0⟩(p) = stem

(
p[̄ts̄(p)]

)⌢ ⟨0⟩,
t̄
s̄⌢⟨1⟩(p) = stem

(
p[̄ts̄(p)]

)⌢ ⟨1⟩,

(recall D10), for the stem of a tree T is the unique largest element in

{t ∈ T : ∀t′ ∈ T : t ⊆ t′ ∨ t′ ⊆ t}).
Note that q ≤n p, iff q ≤ p, and for each s ∈ n2 we have t̄s(p) = t̄s(q).

(D∗8) if p ∈ PS and s̄ ∈ p, then we define p[s̄], to be the condition p[s̄] = {t̄ ∈ p :
t̄ ⊇ s̄}, and for arbitrary s̄ ∈ ω>2 we let

p(s̄) = p[̄ts̄(p)].

Observation 2.13. If p ∈ P∞, i ∈ ω,

(2.3) p0 = {t̄p0}, p1 = {t̄p1}, pi−1 = {t̄pi−1},
and we consider the condition p′ ≤ p defined as

p′0 = {t̄p
′

0 = t̄p0
⌢ t̄p1

⌢ · · ·⌢ t̄pi−1},
p′j+1 = pj+i (for j ∈ ω)

then p ⊩P∞ p′ ∈ G
˜
.

Proof. Suppose that p∗ ≤ p, and p∗ ⊥ p′. By further strengthening p∗ w.l.o.g. we
can assume that |p∗0| = 1, and for the unique t̄∗ ∈ p∗0 we have

ℓg(t̄∗) > |t̄p0|+ |t̄p1|+ · · ·+ |t̄pi−1|.
But then this bound together with p∗ ≤ p and (2.3) implies that

t̄∗ = (t̄p0
⌢ t̄p1

⌢ · · ·⌢ t̄pi−1)
⌢ tpi

⌢ . . . tpi+k = t̄p
′

0
⌢ t̄pi

⌢ . . . t̄pi+k

for some t̄pi ∈ pi = p′1, t̄
p
i+1 ∈ pi+1 = p′2, . . . , t̄

p
i+k ∈ pi+k = p′k+1, so not only is p′

compatible with p∗, but p∗ ≤ p′.
□Observation2.13

Definition 2.14. We let ¯̄ℓ ∈ L, iff ¯̄ℓ = (ℓ̄0, ℓ̄1, ℓ̄∞, ℓ̄S), where

• ℓ̄S = ⟨ℓSi : i < ω⟩ ∈ ωω, with
∑

i<ω ℓ
S
i <∞,

• ℓ̄0 = ⟨ℓ0i : i ∈ ω⟩ ∈ ωω, with
∑

i<ω ℓ
0
i <∞,

• ℓ̄1 = ⟨ℓ1i : i ∈ ω⟩ ∈ ωω, with
∑

i<ω ℓ
1
i <∞,

• ℓ̄∞ = ⟨ℓ∞i : i ∈ ω⟩ ∈ ωω, with
∑

i<ω ℓ
∞
i <∞,

Definition 2.15. Fix ⟨ε0j : j ∈ ω⟩ ∈ ωλ0, ⟨ε1j : j ∈ ω⟩ ∈ ω[λ0, λ1), ⟨ε∞j : j ∈
ω⟩ ∈ ω[λ1, λ∞), ⟨εSj : j ∈ ω⟩ ∈ ω[λ∞, λS). The following symbols depend on the
particular fixed ε̄ι’s, but we omit it as it will be always clear what those sequences
are.

Now

(▶1) for j ∈ ω, n ∈ ω let
T j
n(q) = Tn(q(ε

0
j ))

and
T j(q) =

⋃
n∈ω

T j
n(q),

(▶2) Suppose that ¯̄ℓ ∈ L, q ∈ Q′. Then (ū, v̄, w̄, s̄) ∈ seq¯̄ℓ(q), iff

• s̄ ∈ ω(<ω2) with sj ∈ ℓSj2 (j < ω),
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• ū ∈
∏

j<ω T
j(q) with uj ∈ T j

ℓ0j
(q) (j < ω),

• v̄ ∈ ω(<ω2) with vj ∈ ℓ1j 2 (j < ω),

• w̄ ∈ ω(<ω2) with wj ∈ ℓ∞j 2 (j < ω).
(▶3) For each

ū = ⟨uj : j ∈ ω⟩ ∈
∏

j∈ω T
j(q)),

v̄ = ⟨vj : j ∈ ω⟩ ∈
∏

j∈ω (ω>2) ,

w̄ = ⟨vj : j ∈ ω⟩ ∈
∏

j∈ω (ω>2) ,

s̄ = ⟨sj : j ∈ ω⟩ ∈
∏

j∈ω (ω>2) ,

we let q(ū,v̄,w̄,s̄) ∈ Q be defined as
• q(ū,v̄,w̄,s̄)(ε0j ) = q(ε0j )

(uj) (j ∈ ω),

• q(ū,v̄,w̄,s̄)(ε1j ) = q(ε1j )
(vj) (j ∈ ω),

• q(ū,v̄,w̄,s̄)(ε∞j ) = q(ε∞j )(wj) (j ∈ ω),

• q(ū,v̄,w̄,s̄)(εSj) = q(εSj)
(sj) (j ∈ ω),

Definition 2.16.

Observe that

(2.4) whenever ¯̄ℓ ∈ L : |seq¯̄ℓ(q)| < ℵ0,

since ¯̄ℓ has a finite sum.

Definition 2.17. Assuming the sequences ε̄ι are as in Definition 2.15 (ι ∈ {0,1,∞,S},
and ¯̄ℓ ∈ L, we let the partial order ≤¯̄ℓ defined by

p ≤¯̄ℓ q ⇐⇒ •1 (p ≤ q) ∧
•2 seq¯̄ℓ(p) = seq¯̄ℓ(q) ∧
•3 ∀(ū, v̄, w̄, s̄) ∈ seq¯̄ℓ(q) : p

(ū,v̄,w̄,s̄) ≤ q(ū,v̄,w̄,s̄).

Note the following easy corollaries of our definitions:

Observation 2.18. Let ε̄ι (ι ∈ {0,1,∞,S}) be as in Definition 2.15, and ¯̄ℓ ∈ L
be given.

Then, if p ≥ q ∈ Q holds, then p ≥¯̄ℓ q, iff

• for each j ∈ ω: T j
ℓ0j
(p) = T j

ℓ0j
(q), and

• for each j ∈ ω and u ∈ ℓ1j 2 we have t1,ju (p) = t1,ju (q), and

• for each j ∈ ω and v ∈ ℓ∞j 2: t∞,j
v (p) = t∞,j

v (q), and

• for each j ∈ ω and s ∈ ℓSj2: tS,js (p) = tS,js (q).

Observation 2.19. If p, q ∈ Q, ¯̄ℓ ∈ L, ε̄ι (ι ∈ {0,1,∞,S}) are as in Definition
2.15, (ū, v̄, w̄, s̄) ∈ seq¯̄ℓ(p), and q ≤ p(ū,v̄,w̄,s̄) then for some q∗ ≤¯̄ℓ p,

q
(ū,v̄,w̄,s̄)
∗ ⊩ q ∈ G,

even q
(ū,v̄,w̄,s̄)
∗ = q, if in addition p(ū,v̄,w̄,s̄)(ε∞j ) ≥ℓ∞j

q(ε∞j ) holds for each j.

Moreover, we can assume that whenever m ∈ ω, and s′ ∈ ω>2 is not comparable
with sm (i.e. s′ ⊈ sm, s′ ⊉ sm), then q∗(ε

0
m) ∈ P0 satisfies q∗(ε

0
m)(s

′) = p(ε0m)(s
′).

Note that we cannot expect above q
(ū,v̄,w̄,s̄)
∗ = q to hold in general, since on

coordinates of the form ε∞j possibly q(ε∞j )0 = {t̄}, where t̄ = (t̄∗)0 ⌢ (t̄∗)1 with

(t̄∗)0 ∈ q
(ū,v̄,w̄,s̄)
∗ (ε∞j )0, and (t̄∗)1 ∈ q

(ū,v̄,w̄,s̄)
∗ (ε∞j )1.
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Observation 2.20. If p ≥ q ∈ Q, ¯̄ℓ ∈ L, (ū, v̄, w̄, s̄) ∈ seq¯̄ℓ(q), then q(ū,v̄,w̄,s̄) ≤
p(ū

′,v̄′,w̄′,s̄′) for some (ū′, v̄′, w̄′, s̄′) ∈ seq¯̄ℓ(p).

The next claim verifies the properness part of (⊛)1, and (⊛)2.

Claim 2.21. Let q ∈ Q, D0, D1, . . . , Di, . . . be a countable sequence of maximal
antichains of Q. Then for a suitable extension q′ ≤ q we have that for each i ∈ ω
q′ is compatible with only finitely many elements of Di.

Proof. Assume that q ∈ Q, and the Dj ’s are fixed. In what follows we will sketch
a standard fusion argument for Baumgartner’s Axiom A.

The following is a trivial application of Observation 2.9:

Observation 2.22. Suppose that the sequence ⟨qn : n ∈ ω⟩ ∈ ωQ is decreasing,
the sequences ε̄ι (ι ∈ {0,1,∞,S}) are as in Definition 2.15, and for each k there

is ¯̄ℓk = ((ℓ̄k)0, (ℓ̄k)1, (ℓ̄k)∞, (ℓ̄k)S) ∈ L such that

• for each α ∈
⋃

n∈ω supp(qn) we have that α = ειj for some ι and j, and

⟨(ℓk)ιj : k ∈ ω⟩ is nondecreasing, converging to ∞,

• qn+1 ≤¯̄ℓn qn holds for each n.

Then there exists a common lower bound qω ∈ Q of the sequence ⟨qn : n ∈ ω⟩.
Moreover, there exists qω for which for each n qω ≤¯̄ℓn qn.

We will define the sequences ⟨qi : i < ω⟩, ⟨ε0i : i ∈ ω⟩, ⟨ε1i : i ∈ ω⟩, ⟨ε∞i : i < ω⟩
⟨εSi : i < ω⟩, ⟨¯̄ℓi : i ∈ ω⟩ satisfying the following:

(41) q0 = q, and for each i we have qi ∈ Q,
(42) {ε0i : i ∈ ω} ⊆ λ0, {ε1i : i ∈ ω} ⊆ λ1 \ λ0, {ε∞i : i < ω} ⊆ λ∞ \ λ1,

{εSi : i < ω} ⊆ λS \ λ∞,
(43) for each n supp(qn) ⊆ {ειj : ι ∈ {0,1,∞,S}, j ∈ ω},
(44) for each ι ∈ {0,1,∞,S} and j ∈ ω the sequence

⟨(ℓn)ιj : n ∈ ω⟩ is nondecreasing, and tends to ∞,

(45) ∀n qn ≥¯̄ℓn qn+1,
(46) ∀n the condition qn+1 is compatible with only finitely many conditions in

Dn.

Provided that such sequences exist we can appeal to Observation 2.22, which will
complete the proof of Claim 2.21.

We can clearly define a sequence of ¯̄ℓi’s as in Observation 2.22. Now by Obser-
vation 2.18, and some standard bookkeeping arguments it is easy to see that the
entire induction can be done once we specify how to define the condition qn+1 ∈ Q
from qn and the adequate fragment of ε̄ι’s. This qn+1 will satisfy that

(▲1) qn+1 ≤¯̄ℓn qn,

(▲2) whenever (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(qn), then (qn+1)
(ū,v̄,w̄,s̄) is compatible with

exactly one element of Dn.

For this

(⊚1) let
M = |seq¯̄ℓn(qn)|,

and fix an enumeration

(2.5) ⟨(ūi, v̄i, w̄i, s̄i) : i < M⟩
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of seq¯̄ℓn(qn).

Note that (▲2) includes M -many different objectives, each one is corresponding to
some (ūi, v̄i, w̄i, s̄i) from (2.5). So

(⊚2) we construct the sequence ⟨q∗i : i ≤M⟩ satisfying
q∗0 = qn ≥¯̄ℓn q

∗
1 ≥¯̄ℓn · · · ≥¯̄ℓn q

∗
M ,

and

(∀i < M) : (q∗i+1)
(ūi,v̄i,w̄i,s̄i) ⊩ p∗ ∈ G, for some p∗ ∈ Dn,

thus q∗M will work (i.e. (▲1), (▲2) hold).

Assuming that i < M and q∗i is defined, pick q′ ≤ (q∗i )
(ūi,v̄i,w̄i,s̄i), such that

q′ ≤ p∗ for some p∗ ∈ Dn. Let q
∗
i+1 ≤¯̄ℓn q

∗
i , (q

∗
i+1)

(ūi,v̄i,w̄i,s̄i) ⊩ p∗ ∈ G (guaranteed
by Observation 2.19). Clause (⊚2) clearly holds, so we are done.

□Claim2.21

We can turn to the proof of (⊛)3:

Claim 2.23. For the forcing Q defined above clause (⊛)3 holds.

Proof. Fix a Q-name z
˜
with q ⊩Q z

˜
∈ 2ω. By Claim 2.21 (and a standard density

argument) we can assume, that

(41) z
˜
is a Q′ =

∏
ι∈{0,1,∞,S} Qι

Xι
-name for some X0 ∈ [λ0]

ℵ0 , X1 ∈ [λ1 \λ0]ℵ0 ,

X∞ ∈ [λ∞ \ λ1]ℵ0 , XS ∈ [λS \ λ∞]ℵ0 ,

moreover, w.l.o.g.

(42) ⊩Q′ z
˜
/∈ V .

(43) Fix enumerations X0 = {ε0j : j ∈ ω}, X1 = {ε1j : j ∈ ω}, X∞ = {ε∞j :

j ∈ ω}, XS = {εSj : j ∈ ω}.
(44) If ε ∈ X1 ∪X∞ ∪XS, q ∈ Q′, s̄ ∈ ω>2 we let q{ε},(s̄) ∈ Q′ be defined as

q{ε},(s̄) ↾ X0 ∪X1 ∪X∞ ∪XS \ {ε} = (q ↾ X0 ∪X1 ∪X∞ ∪XS \ {ε}),
q{ε},(s̄)(ε) = (q(ε)(s̄)).

(45) If ε ∈ X1 ∪ X∞ ∪ XS, q, p ∈ Q′, n ∈ ω, then q ≤{ε},n p, if q ≤ p and
q(ε) ≤n p(ε).

We will again need the terminology introduced in Definition 2.15.

Definition 2.24. If ⊩Q′ z
˜

∈ 2ω, n ∈ ω, ι ∈ {1,∞}, then we let q ∈ Dι,un
n (z

˜
)

(where we mean un as an abbreviation for “unique”), iff

(i) q ∈ Q′,
(ii) there exist k ∈ ω, and i0 ̸= i1 ∈ {0, 1} for which

(ii)1 q{ε
ι
n},(⟨0⟩) ⊩ z

˜
k = i0,

(ii)2 q{ε
ι
n},(⟨1⟩) ⊩ z

˜
k = i1, and

(ii)3 whenever q ≥{ειn},1 r, and r{ε
ι
n},⟨0⟩ or r{ε

ι
n},⟨1⟩ decides z

˜
j for some

j ̸= k then so does r.

Definition 2.25. If ⊩Q′ z
˜
∈ 2ω, n ∈ ω, ι ∈ {1,∞}, then we let q ∈ Dι,eq

n (z
˜
), iff

whenever q ≥{ειn},1 r, and r
{ειn},(⟨0⟩) or r{ε

ι
n},(⟨1⟩) decides z

˜
k for some k ∈ ω then

so does r.

Definition 2.26. If ⊩Q′ z
˜
∈ 2ω, n ∈ ω, ι ∈ {1,∞}, then we let q ∈ Dι,mul

n (z
˜
), iff

there is no q′ ≤{ειn},1 q with q′ ∈ Dι,un
n (z

˜
) ∪Dι,eq

n (z
˜
).
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Note the following:

Fact 2.27. If ⊩Q′ z
˜
∈ 2ω, n ∈ ω, ι ∈ {1,∞}, then

(1) Dι,un
n (z

˜
)∪Dι,mul

n (z
˜
)∪Dι,eq

n (z
˜
) is dense (in fact, even ≤{ειn},1-dense) in Q′.

(2) if q ∈ Dι,un
n (z

˜
)) (Dι,mul

n (z
˜
), Dι,eq

n (z
˜
), resp.), and q′ ≤{ειn},1 q, then q′ ∈

Dι,un
n (z

˜
)) (Dι,mul

n (z
˜
), Dι,eq

n (z
˜
), resp.).

(3) Dι,un
n (z

˜
), Dι,mul

n (z
˜
), Dι,eq

n (z
˜
) are pairwise disjoint.

The proof of the present claim is by clarifying Subclaims 2.28 and 2.33:

Claim 2.28. Let q ∈ Q′, ⊩Q′ z
˜
∈ 2ω, and ¯̄ℓ = (ℓ̄0, ℓ̄1, ℓ̄∞, ℓ̄S) ∈ L be given, and let

m ∈ ω be fixed. Then for some r ∈ Q′, r ≤¯̄ℓ q, for each (ū, v̄, w̄, s̄) ∈ seq¯̄ℓ(r) one
of the following holds:

⊙m
1 (r(ū,v̄,w̄,s̄)): r(ū,v̄,w̄,s̄) forces that z

˜
does not depend on {p(εSm) : p ∈ G}, i.e. there is

no p ∈ Q′, p ≤ r(ū,v̄,w̄,s̄) for which there exists k ∈ ω and c ∈ {0, 1}:

p{ε
S
m},(⟨0⟩) ⊩Q′ z

˜
k = c,

p{ε
S
m},(⟨1⟩) ⊩Q′ z

˜
k = 1− c.

⊙m
2 (r(ū,v̄,w̄,s̄)): for each p ∈ Q′, p ≤ r(ū,v̄,w̄,s̄) there exist q ≤ p, k ∈ ω, and c ∈ {0, 1} such

that:

q{ε
S
m},(⟨0⟩) ⊩Q′ z

˜
k = c,

q{ε
S
m},(⟨1⟩) ⊩Q′ z

˜
k = 1− c.

Proof. Observe that

(■1) if p ≥ r ∈ Q′, then ⊙m
1 (p) → ⊙m

1 (r), and similarly, ⊙m
2 (p) → ⊙m

2 (r) for
every m ∈ ω.

Note that

(■2) if for p ∈ Q there is no extension p′ ≤ p with ⊙m
1 (p′), then ⊙m

2 (p) holds
(and conversely),

therefore,

(■3) for n ∈ ω the set

Dm
⊙ = {p ∈ Q′ : ⊙m

1 (p) ∨ ⊙m
2 (p)}

is dense open (and the sets {p ∈ Q′ : ⊙m
1 (p)}, {p ∈ Q′ : ⊙m

2 (p)} are open).

For later reference we remark the following corollary of Observation 2.20:

Observation 2.29. If r ∈ Q′ is given by Subclaim 2.28 (for a fixed m and ¯̄ℓ ∈ L),
and r ≥¯̄ℓ r

′, then for each (ū, v̄, w̄, s̄) ∈ seq¯̄ℓ(r) we have (r′)(ū,v̄,w̄,s̄) ∈ Dm
⊙ , i.e.

either ⊙m
1 ((r′)(ū,v̄,w̄,s̄)), or ⊙m

2 ((r′)(ū,v̄,w̄,s̄)) holds.

Fact 2.30. For every p ∈ Q′, m ∈ ω, (ū, v̄, w̄, s̄) ∈ seq¯̄ℓ(p) there exists p′ ≤¯̄ℓ p for

which either ⊙m
1 ((p′)(ū,v̄,w̄,s̄)), or ⊙m

2 ((p′)(ū,v̄,w̄,s̄)) holds.

Proof. Using (■3) choose p′′ ≤ p(ū,v̄,w̄,s̄) with p′′ ∈ Dm
⊙ . By an argument similar

to that of Observation 2.13 we can assume that p′′(ε∞j ) ≤ℓ∞j
p(ū,v̄,w̄,s̄)(ε∞j ) for each

j, so by Observation 2.19 there exists a condition p′ ≤¯̄ℓ p such that (p′)(ū,v̄,w̄,s̄)) =
p′′. □Fact2.30
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Since ≤¯̄ℓ is a partial order, enumerating the finite set{
(ū, v̄, w̄, s̄) ∈ seq¯̄ℓ(q)

}
as {(ūi, v̄i, w̄i, s̄i) : i < M} we can choose a sequence

q0 = q∗0 ≥¯̄ℓ · · · ≥¯̄ℓ q
∗
M−1 ≥¯̄ℓ q

∗
M

requiring (q∗i+1)
(ūi,v̄i,w̄i,s̄i) ∈ Dm

⊙ (i < M) (recall Observation 2.18). Thus r = q∗M
works. □Subclaim2.28

Now we can turn back to the proof of Claim 2.23.

Definition 2.31. Fix a sequence ⟨ξn : n ∈ ω⟩ that lists
X0 ∪X1 ∪X∞ ∪XS = {ειj : ι ∈ {0,1,∞,S}, j ∈ ω}

with each such element occurring infinitely many times (where the Xι’s are from
(43)). Then we define

1) the sequence ⟨¯̄ℓn : n ∈ ω⟩ so that

• ¯̄ℓn = ((ℓ̄n)0, (ℓ̄n)1, (ℓ̄n)∞, (ℓ̄n)S) ∈ L for each n,

• ¯̄ℓ0 consists of constant zero sequences,

• if ξn = ειm, then we define ¯̄ℓn+1 so that

(ℓn+1)ι
′

k =

{
(ℓ̄n)ι

′

k + 1, if ι′ = ι ∧ k = m

(ℓ̄n)ι
′

k , otherwise.

2) for q ∈ Q′, n ∈ ω and (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(q) we define the sequence

t̄(ū,v̄,w̄,s̄) = ⟨t(ū,v̄,w̄,s̄)
j : j < n⟩

inductively as follows: if k < n, K = |{j < k : ξk = ξj}| and if ξk =

• = ε0m, then set t
(ū,v̄,w̄,s̄)
k = um(K),

• = ε1m, then set t
(ū,v̄,w̄,s̄)
k = vm(K),

• = ε∞m , then set t
(ū,v̄,w̄,s̄)
k = wm(K),

• = εSm, then set t
(ū,v̄,w̄,s̄)
k = sm(K),

3) for q ∈ Q′ and the finite sequence t̄′ we let

qp(q, t̄′) = (ū∗, v̄∗, w̄∗, s̄∗),

if
t̄′ = t̄(ū∗,v̄∗,w̄∗,s̄∗),

(where (ū∗, v̄∗, w̄∗, s̄∗) ∈ seq¯̄ℓ|t̄|(q), and t̄
(ū∗,v̄∗,w̄∗,s̄∗) is defined as above),

4) and (for q ∈ Q′), (ū, v̄, w̄, s̄), (ū′, v̄′, w̄′, s̄′) ∈
⋃

j<ω seq¯̄ℓj (q) we define (ū, v̄, w̄, s̄) ⊑
(ū′, v̄′, w̄′, s̄′) naturally, i.e.

(ū, v̄, w̄, s̄) ⊑ (ū′, v̄′, w̄′, s̄′), iff t̄(ū,v̄,w̄,s̄) ⊆ t̄(ū
′,v̄′,w̄′,s̄′),

as well as
(ū, v̄, w̄, s̄) < (ū′, v̄′, w̄′, s̄′),

iff ((ū, v̄, w̄, s̄) ⊑ (ū′, v̄′, w̄′, s̄′) ∧ (ū, v̄, w̄, s̄) ̸= (ū′, v̄′, w̄′, s̄′),

5) for (q ∈ Q′), (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(q), k ≤ n we let (ū, v̄, w̄, s̄) ↾ k to be the
(unique) member (ū′, v̄′, w̄′, s̄′) of seq¯̄ℓk(q) for that

(ū′, v̄′, w̄′, s̄′) ⊑ (ū, v̄, w̄, s̄).

Observation 2.32.
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a) If t̄∗ and t̄(ū,v̄,w̄,s̄) (with (ū, v̄, w̄, s̄) ∈ seq¯̄ℓ|t̄∗|(q)) satisfies that whenever k

is such that tk ̸= t
(ū,v̄,w̄,s̄)
k , then

(∗)k tk ∈ {0, 1} and ξk is not of the form ε0m (for any m),
then qp(q, t̄∗) is defined.

b) If

(ū, v̄, w̄, s̄) ̸= (ū′, v̄′, w̄′, s̄′) ∈ seq¯̄ℓn(q)

are such that t̄(ū,v̄,w̄,s̄) and t̄(ū
′,v̄′,w̄′,s̄′) differs on exactly one coordinate, the

k’th for which (∗)k holds, then there exists a condition p′ ≤{ξk},1 p
(ū,v̄,w̄,s̄)↾k

such that

{(p′){ξk},(⟨0⟩), (p′){ξk},(⟨1⟩)} = {p(ū,v̄,w̄,s̄), p(ū
′,v̄′,w̄′,s̄′)}.

Subclaim 2.33. Let r, z
˜

be as in Subclaim 2.28, and ⟨¯̄ℓn : n ∈ ω⟩ defined in
Definition 2.31. Suppose that r ⊩ z

˜
/∈ V . Then there exists a condition r∗ ∈ Q′,

r ≥ r∗, and

ȳ =
〈
y(ū,v̄,w̄,s̄) : n ∈ ω, (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(r∗)

〉
,

x̄ =
〈
x(ū,v̄,w̄,s̄) : n ∈ ω, (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(r∗)

〉
,

such that for each n

φa(r∗, ȳ, x̄): for each n and (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(r∗):

• y(ū,v̄,w̄,s̄) ∈ ω>2,
• x(ū,v̄,w̄,s̄) ∈ {un, eq,mul},

φb(r∗, ȳ): for each m < n:
• (ū, v̄, w̄, s̄) ∈ seq¯̄ℓm(r∗),
• (ū′, v̄′, w̄′, s̄′) ∈ seq¯̄ℓn(r∗),

we have

(ū, v̄, w̄, s̄) < (ū′, v̄′, w̄′, s̄′) ⇒ y(ū,v̄,w̄,s̄) ⊊ y(ū
′,v̄′,w̄′,s̄′),

φc(r∗, ȳ): for each n, (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(r∗):

(r∗)
(ū,v̄,w̄,s̄) ⊩ z

˜
∈ [y(ū,v̄,w̄,s̄)],

φd(r∗, ȳ, x̄): if (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn+1(r∗), then

1) if ξn = εSm for some m, then ⊙m
1 (r

(ū,v̄,w̄,s̄)↾n
∗ ) ∨ ⊙m

2 (r
(ū,v̄,w̄,s̄)↾n
∗ ) (from

Subclaim 2.28), and

x(ū,v̄,w̄,s̄)↾n = eq ⇐⇒ ⊙m
1 (r

(ū,v̄,w̄,s̄)↾n
∗ ),

x(ū,v̄,w̄,s̄)↾n = mul ⇐⇒ ⊙m
2 (r

(ū,v̄,w̄,s̄)↾n
∗ ),

2) if ξn = ειm, where ι ∈ {1,∞} for some m, then for each (ū, v̄, w̄, s̄) ∈
seq¯̄ℓn(r∗)

• x(ū,v̄,w̄,s̄) = eq, iff r
(ū,v̄,w̄,s̄)
∗ ∈ Dι,eq

m (z
˜
),

φe(r∗, ȳ, x̄): if (ū, v̄, w̄, s̄) ̸= (ū′, v̄′, w̄′, s̄′) ∈ seq¯̄ℓn+1(r∗) (for some n), are such that
ū = ū′, then the following implications hold true:
e1) if ξn = εSm for some m, s̄m ̸= s̄′m, and ⊙m

2 ((r∗)
(ū,v̄,w̄,s̄)), then there

exists

j ≥ ℓg(y(ū,v̄,w̄,s̄)↾n, ℓg(y(ū
′,v̄′,w̄′,s̄′)↾n),

such that (j < ℓg(y(ū,v̄,w̄,s̄), ℓg(y(ū
′,v̄′,w̄′,s̄′))) and

y
(ū,v̄,w̄,s̄)
j ̸= y

(ū′,v̄′,w̄′,s̄′)
j .
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e2) if ψ((ū, v̄, w̄, s̄), (ū′, v̄′, w̄′, s̄′)), under which we mean that (ū = ū′,
and) for each k < n+ 1 either

• t
(ū,v̄,w̄,s̄)
k = t

(ū′,v̄′,w̄′,s̄′)
k , or

• x(ū,v̄,w̄,s̄)↾k−1 = eq,

then y(ū,v̄,w̄,s̄) = y(ū
′,v̄′,w̄′,s̄′),

e3) if ξn = ε1m or ε∞m for some m, and
(i) ψ((ū, v̄, w̄, s̄) ↾ n, (ū′, v̄′, w̄′, s̄′) ↾ n), but

(ii) x(ū,v̄,w̄,s̄)↾n ̸= eq and t
(ū,v̄,w̄,s̄)
n ̸= t

(ū′,v̄′,w̄′,s̄′)
n ,

(iii) and ξn is of the form ε1m, or ε∞m for some m,
then

• if ξn = ε1m, then

∃i < ℓg(y(ū,v̄,w̄,s̄)), ℓg(y(ū
′,v̄′,w̄′,s̄′)) :

y
(ū,v̄,w̄,s̄)
i ̸= y

(ū′,v̄′,w̄′,s̄′)
i ,

moreover, if this i is unique, then

y(ū,v̄,w̄,s̄)↾i = y(ū
′,v̄′,w̄′,s̄′)↾i ̸= si

(where s̄ is from (x1), (x2)),
• if ξn = ε∞m , then

∃i < i′ < ℓg(y(ū,v̄,w̄,s̄)), ℓg(y(ū
′,v̄′,w̄′,s̄′)) :

y
(ū,v̄,w̄,s̄)
i ̸= y

(ū′,v̄′,w̄′,s̄′)
i and

y
(ū,v̄,w̄,s̄)
i′ ̸= y

(ū′,v̄′,w̄′,s̄′)
i′ ,

First we verify Claim 2.23 provided the extension r∗ of r and the y(ū,v̄,w̄,s̄)’s
given by Subclaim 2.33, i.e. satisfying φa(r∗, ȳ, x̄)–φe(r∗, ȳ, x̄). First define

T∗ = {y(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈
⋃
n∈ω

seq¯̄ℓn(r
∗)},

and note that
r∗ ⊩ z

˜
∈ [T∗].

As
Q′ ≃ Q0

X0
×Q1

X1
×Q∞

X∞
×QS

XS
,

we can

(1) first add a Q0
X0

-generic filter GX0 to V with r∗↾X0 ∈ GX0 , and define
T0 ∈ V [GX0 ], such that [T0] is G0(s̄)-independent, and

(2.6) V [GX0 ] |= “r∗↾(X1 ∪X∞ ∪XS) ⊩Q′↾(X1∪X∞∪XS) z˜
∈ [T0]”,

or

(2) add a Q0
X0

×Q1
X1

-generic filter GX0∪X1 to V with r∗↾(X0∪X1) ∈ GX0∪X1 ,
and define T1 ∈ V [GX0∪X1 ], such that [T1] is G1-independent, and

(2.7) V [GX0∪X1 ] |= “r∗↾(X∞ ∪XS) ⊩Q′↾(X∞∪XS) z˜
∈ [T1]”,

or

(3) add a Q0
X0

× Q1
X1

× Q∞
X∞

-generic filter GX0∪X1∪X∞ to V with r∗↾(X0 ∪
X1 ∪ X∞) ∈ GX0∪X1∪X∞ , and define T∞ ∈ V [GX0∪X1∪X∞ ], such that
[T∞] is E0-independent, and

(2.8) V [GX0∪X1∪X∞ ] |= “r∗↾(XS) ⊩Q′↾XS z
˜
∈ [T∞]”.
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So fix the mutually generic filters GX0 , GX1 , GX∞ (containing r∗↾X0, r∗↾X1 and
r∗↾X∞), define T0 ∈ V [GX0 ], T1 ∈ V [GX0 ×GX1 ], T∞ ∈ V [GX0 ×GX1 ×GX∞ ]
as follows:

T0 = {y(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈
⋃
n∈ω

seq¯̄ℓn(r∗) : r
(ū,v̄,w̄,s̄)
∗ ↾X0 ∈ GX0},

T1 = {y(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈
⋃
n∈ω

seq¯̄ℓn(r∗) : r
(ū,v̄,w̄,s̄)
∗ ↾(X0 ∪X1) ∈ GX0∪X1},

T∞ = {y(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈
⋃
n∈ω

seq¯̄ℓn(r∗) : r
(ū,v̄,w̄,s̄)
∗ ↾(X0∪X1∪X∞) ∈ GX0∪X1∪X∞},

(Recalling Definition 2.7), for each fixed n

{r(ū,v̄,w̄,s̄)
∗ : (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(r∗)} is predense below r∗,

hence a standard density argument implies (2.6), (2.7), and (2.8). It remains to
check that [T0] ([T1], [T∞], resp.) is indeed G0(s̄)- (G1-, E0-, resp.)-independent.
For these one only needs to check the following assertions (using φb(r

∗, ȳ), φe(r
∗, ȳ)

from Subclaim 2.33), which is left to the reader:

• For every branch ⟨bi : i ∈ ω⟩ in T∗ there is an infinite sequence ⟨(ūi, v̄i, w̄i, s̄i) :
i ∈ ω⟩, such that (ūi, v̄i, w̄i, s̄i) ∈ seq¯̄ℓi(r∗) with

(ūi, v̄i, w̄i, s̄i) ⊑ (ūi+1, v̄i+1, w̄i+1, s̄i+1),

and bi = y(ū
i,v̄i,w̄i,s̄i) (for each i ∈ ω) (recall that seq¯̄ℓi(r∗) is finite by

(2.4), and use Kőnig’s theorem).
• If ⟨(ūi, v̄i, w̄i, s̄i) : i ∈ ω⟩ and ⟨((ū′)i, (v̄′)i, (w̄′)i, (s̄′)i) : i ∈ ω⟩ are differ-
ent, ⊑-increasing, (ūi, v̄i, w̄i, s̄i), ((ū′)i, (v̄′)i, (w̄′)i, (s′)i) ∈ seq¯̄ℓi(r∗), and

we have ūi = (̄̄u′)i for each i, then at least one of the following holds:
(≀)1 for each n the premise e2) (from φe(r∗, ȳ)) holds, and thus

y(ū
n,v̄n,w̄n,s̄n) = y((̄u

′)n ,̄(v′)n ,̄(w′)n ,̄(s′)n).

(≀)2 for some n the premise in e1) holds, so it holds infinitely many often
(since {q ∈ Q′ : ⊙m

2 (q)} is open for arbitrarym) and so ∪{y(ūn,v̄n,w̄n,s̄n) :

n ∈ ω} and ∪{y((ū′)n,(v̄′)n,(w̄′)n,(s̄′)n) : n ∈ ω} differ on infinitely many
digits.

(≀)3 for some n the premise in e3) holds, and so ∪{y(ūn,v̄n,w̄n,s̄n) : n ∈ ω}
and ∪{y((ū′)n,(v̄′)n,(w̄′)n,(s̄′)n) : n ∈ ω} are not connected in G0(s̄).

• If ⟨(ūi, v̄i, w̄i, s̄i) : i ∈ ω⟩ and ⟨((ū′)i, (v̄′)i, (w̄′)i, (s̄′)i) : i ∈ ω⟩ are differ-
ent, ⊑-increasing, (ūi, v̄i, w̄i, s̄i), ((ū′)i, (v̄′)i, (w̄′)i, (s̄′)i) ∈ seq¯̄ℓi(r∗), and

we have ūi = (ū′)i, v̄i = (v̄′)i for each i, then either (≀)1 or (≀)2 holds, or
(≀)′3 for some n the premise in e3) holds,where necessarily ξn = ε∞m for

some m (since v̄i = (v̄′)i for each i, in particular vn+1
m = (v′)n+1

m ) and

so ∪{y(ūn,v̄n,w̄n,s̄n) : n ∈ ω} and ∪{y((ū′)n,(v̄′)n,(w̄′)n,(s̄′)n) : n ∈ ω}
differ in at least two digits.

• If ⟨(ūi, v̄i, w̄i, s̄i) : i ∈ ω⟩ and ⟨((ū′)i, (v̄′)i, (w̄′)i, (s̄′)i) : i ∈ ω⟩ are differ-
ent, ⊑-increasing, (ūi, v̄i, w̄i, s̄i), ((ū′)i, (v̄′)i, (w̄′)i, (s̄′)i) ∈ seq¯̄ℓi(r∗), and

we have ūi = (ū′)i, v̄i = (v̄′)i, w̄i = (w̄′)i for each i, then either (≀)1 or (≀)2
holds.

Note that the assertions above are absolute between transitive models.
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Proof. (Subclaim 2.33) Similarly to that in the proof of Claim 2.21

(♦1) we are going to define the sequences

⟨ri : i < ω⟩,
⟨y(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈ seq¯̄ℓi(ri), i ∈ ω⟩
⟨x(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈ seq¯̄ℓi(ri), i ∈ ω⟩

satisfying the requirements of the following scheme:
(41) r0 = r, and for each i ri ∈ Q′,
(42) ∀i ri ≥¯̄ℓi ri+1,
(43) for each i:

• φa(ri, ȳ
∗(i), x̄∗(i−1)),

• φb(ri, ȳ
∗(i)),

• φc(ri, ȳ
∗(i)),

• φd(ri, ȳ
∗(i), x̄∗(i−1)),

• φe(ri, ȳ
∗(i), x̄∗(i−1)),

where ȳ∗(i) is a restriction of the sequence ȳ defined as

ȳ∗(i) = ⟨y(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈ seq¯̄ℓk(ri), k ≤ i⟩,
and

x̄∗(i−1) = ⟨x(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈ seq¯̄ℓk(ri), k ∈ i⟩.

Again, once we have constructed the ri’s and y
(ū,v̄,w̄,s̄)’s, we can let r∗ be a common

lower bound of the ri’s such that for each i ri ≥¯̄ℓi r∗ holds. Then for each i < j
ri ≥¯̄ℓi rj ≥¯̄ℓi r∗, so by Observation 2.18 for each j > i:

seq¯̄ℓi(ri) = seq¯̄ℓi(rj) = seq¯̄ℓi(r∗),

and for each (ū, v̄, w̄, s̄) ∈ seq¯̄ℓi(ri) we have

r
(ū,v̄,w̄,s̄)
i ≥ r

(ū,v̄,w̄,s̄)
j ≥ r

(ū,v̄,w̄,s̄)
∗ .

Also note that by Observation 2.29 (and recalling (■3)) if ξi = εSm for some m, and
(ū, v̄, w̄, s̄) ∈ seq¯̄ℓi(ri+1), then

⊙m
1 (r

(ū,v̄,w̄,s̄)
i+1 ) ⇐⇒ ⊙m

1 (r
(ū,v̄,w̄,s̄)
∗ ),

⊙m
2 (r

(ū,v̄,w̄,s̄)
i+1 ) ⇐⇒ ⊙m

2 (r
(ū,v̄,w̄,s̄)
∗ ).

Similarly, for each i, if ξi = ειm for some m, where ι ∈ {1,∞}, and (ū, v̄, w̄, s̄) ∈
seq¯̄ℓi(ri+1), then r

(ū,v̄,w̄,s̄)
i+1 ∈ D

ι,x(ū,v̄,w̄,s̄)
m (z

˜
) (by ((43)), recalling the definition of

φd(., .) in Subclaim 2.33). So we obtain (by Observation 2.37), that

∀r ≤¯̄ℓi+1 ri+1 : r ∈ D
ι,x(ū,v̄,w̄,s̄)
m (z

˜
).

This clearly implies that if for each i and g ∈ {a, b, c, d, e} we have φg(ri, ȳ
∗(i), x̄∗(i−1))

(or φg(ri, ȳ
∗(i))) holds, then for each g ∈ {a, b, c, d, e} φg(r∗, ȳ, x̄) (or φg(r∗, ȳ))

holds, too, as desired.

(♦2) So suppose that we have set r0 = r, and we have already defined

r0 ≥¯̄ℓ0 r1 ≥¯̄ℓ1 r2 ≥¯̄ℓ2 · · · ≥¯̄ℓn−1 rn

satisfying (41)-(43).

Depending on the value of ξn we do the following.

(♦3)(i) Case i: ξn = ε0m for some m:
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Let N = |seq¯̄ℓn+1(rn)|, and fix an enumeration ⟨(ūj , v̄j , w̄j , s̄j) : j < N⟩. Then
defining the ≤¯̄ℓn+1-decreasing sequence ⟨pj : j ≤M⟩ with p0 = rn, and p

(ūj ,v̄j ,w̄j ,s̄j)
j+1

deciding the value of z
˜
k (recalling the first part of Observation 2.19), where k =

ℓg(y(ū
j ,v̄j ,w̄j ,s̄j)↾n), setting rn+1 = pN works.

(♦3)(ii) Case ii: ξn = εSm (for some m).

(♦3)(ii)1 Let M = |seq¯̄ℓn(rn)|, and fix an enumeration ⟨(ūj , v̄j , w̄j , s̄j) : j < M⟩.
Then (again by Observation 2.19) defining the ≤¯̄ℓn -decreasing sequence
⟨pj : j ≤M⟩ with p0 = rn, and

⊙m
1 (p

(ūj ,v̄j ,w̄j ,s̄j)
j+1 ) ∨ ⊙m

2 (p
(ūj ,v̄j ,w̄j ,s̄j)
j+1 )

and set r∗n = pM (so easily

(2.9) seq¯̄ℓn(rn) = seq¯̄ℓn(r
∗
n),

and

(2.10) ∀j < M : ⊙m
1 ((r∗n)

(ūj ,v̄j ,w̄j ,s̄j)) ∨ ⊙m
2 ((r∗n)

(ūj ,v̄j ,w̄j ,s̄j))).

(♦3)(ii)2 Now let

Y = {⟨(ū, v̄, w̄, s̄), (ū′, v̄′, w̄′, s̄′)⟩ : (ū, v̄, w̄, s̄), (ū′, v̄′, w̄′, s̄′) ∈ seq¯̄ℓn+1(r
∗
n),

ū = ū′}|,

N = |Y |,
and fix the enumeration〈

⟨(ūj , v̄j , w̄j , s̄j), ((ū′)j , (v̄′)j , (w̄′)j , (s̄′)j)⟩ : j < N
〉
of Y.

We are going to construct
• the sequence

q0 = r∗n ≥¯̄ℓn+1 q1 ≥¯̄ℓn+1 q2 ≥¯̄ℓn+1 · · · ≥¯̄ℓn+1 qN ,

• and for each (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn+1(r
∗
n)

x
(ū,v̄,w̄,s̄)
0 ⊆ x

(ū,v̄,w̄,s̄)
1 ⊆ · · · ⊆ x

(ū,v̄,w̄,s̄)
N

with
(a) x

(ū,v̄,w̄,s̄)
k ∈ ω>2 (k ≤ N),

(b) x
(ū,v̄,w̄,s̄)
0 = y(ū,v̄,w̄,s̄)↾n,

(c) and q
(ū,v̄,w̄,s̄)
k ⊩ z

˜
∈ [x

(ū,v̄,w̄,s̄)
k ],

(d) and for each k < N

x
(ūk,v̄k,w̄k,s̄k)
k ⊊ x

(ūk,v̄k,w̄k,s̄k)
k+1 ,

x
((ū′)k,(v̄′)k,(w̄′)k,(s̄′)k)
k ⊊ x

((ū′)k,(v̄′)k,(w̄′)k,(s̄′)k)
k+1 ,

(e) for each k < N if skm ̸= (s′)km and ⊙m
2 ((pk)

(ūk,v̄k,w̄k,s̄k)) (from
Subclaim 2.28) hold, then for some

j ≥ ℓg(x
(ūk,v̄k,w̄k,s̄k)
k ), ℓg(x

((ū′)k,(v̄′)k,(w̄′)k,(s̄′)k)
k )

x
(ūk,v̄k,w̄k,s̄k)
k+1 (j) ̸= x

((ū′)k,(v̄′)k,(w̄′)k,(s̄′)k)
k+1 (j).

Before constructing the qk’s (k ≤ N) and x
(ū,v̄,w̄,s̄)
k ’s ((ū, v̄, w̄, s̄) ∈ seq¯̄ℓn+1(r

∗
n))
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(♦3)(ii)3 we clarify why setting

rn+1 = qN ,

y(ū,v̄,w̄,s̄) = the maximal element in {x ∈ ω>2 : q
(ū,v̄,w̄,s̄)
N ⊩ x ∈ z

˜
}(⊇ x

(ū,v̄,w̄,s̄)
N )

works for our purposes (i.e. satisfying (42), (43)):

First recall that rn+1 ≤ r0 ⊩ z
˜
/∈ V , so the maximal elements above do really exist,

and so the y(ū,v̄,w̄,s̄)’s are well defined finite sequences.
First, (d) clearly implies φb(rn+1, ȳ

∗(n+1)). Second, as p0 = rn ≥¯̄ℓn pM =
r∗n ≥¯̄ℓn+1 qN = rn+1 recalling Observation 2.18 clearly seq¯̄ℓn(r

∗
n) = seq¯̄ℓn(rn+1)

holds. Recalling (♦3)(ii)1 for each j < M either

⊙m
1 ((pj+1)

(ūj ,v̄j ,w̄j ,s̄j)), or ⊙m
2 ((pj+1)

(ūj ,v̄j ,w̄j ,s̄j))

(where (ūj , v̄j , w̄j , s̄j) is meant as the j’th entry on the list in (♦3)(ii)1). Now (by
pk ≥¯̄ℓn pM = r∗n ≥¯̄ℓn rn+1) clearly either

⊙m
1 ((rn+1)

(ūj ,v̄j ,w̄j ,s̄j))), or ⊙m
2 ((rn+1)

(ūj ,v̄j ,w̄j ,s̄j))

holds, and φd(rn+1, ȳ
∗(n+1)) follows. Finally, for φe(rn+1, ȳ

∗(n+1) we need to check

clause e2), i.e. when there is no reason for y(ū,v̄,w̄,s̄) and y(ū
′,v̄′,w̄′,s̄′) to be different,

then these two are the same, which follows from the next claim (applying to rn+1 =
qN ), so (43) holds, indeed:

Subclaim 2.34. Assume that p ∈ Q′, (ū, v̄, w̄, s̄), (ū′, v̄′, w̄′, s̄′) ∈ seq¯̄ℓn+1(p), such
that ū = ū′, and whenever k ≤ n

• if ξk = ειm, for some ι ∈ {1,∞} and m ∈ ω, then p(ū,v̄,w̄,s̄)↾k ∈ Dι,eq
m (z

˜
),

• if ξk = εSm, for some m ∈ ω, then ⊙m
1 (p(ū,v̄,w̄,s̄)↾k),

Then for every x ∈ ω>2

p(ū,v̄,w̄,s̄) ⊩ z
˜
∈ [x] ⇐⇒ p(ū

′,v̄′,w̄′,s̄′) ⊩ z
˜
∈ [x].

Proof. Fix x ∈ ω>2, and let

• (ū0∗, v̄
0
∗, w̄

0
∗, s̄

0
∗) = (ū′, v̄′, w̄′, s̄′) ∈ seq¯̄ℓn+1(p),

• t0 = t(ū
0
∗,v̄

0
∗,w̄

0
∗,s̄

0
∗),

• (ūn+1
∗ , v̄n+1

∗ , w̄n+1
∗ , s̄n+1

∗ ) = (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn+1(p),

• tn+1 = t(ū
n+1
∗ ,v̄n+1

∗ ,w̄n+1
∗ ,s̄n+1

∗ ),

as defined in 2) from Definition 2.31. Now set

t̄k = t̄(ū
n+1
∗ ,v̄n+1

∗ ,w̄n+1
∗ ,s̄n+1

∗ )↾[0, k) ∪ (t̄(ū
0
∗,v̄

0
∗,w̄

0
∗,s̄

0
∗)↾[k, n+ 1) (k ≤ n+ 1),

and let

(ūk∗, v̄
k
∗ , w̄

k
∗ , s̄

k
∗) = qp(p, t̄k)

(which exists by clause a) from Observation 2.32). Let pk = p(ū
k
∗,v̄

k
∗ ,w̄

k
∗ ,s̄

k
∗) for

k ≤ n+ 1, observe that p(ū,v̄,w̄,s̄) = pn+1, p
(ū′,v̄′,w̄′,s̄′) = p0. We claim that

(2.11) for each k ≤ n : pk ⊩ z
˜
∈ [x] ⇐⇒ pk+1 ⊩ z

˜
∈ [x],

which will complete the proof of Subclaim 2.34.
Fix k ≤ n + 1, observe that t̄k and t̄k+1 differ by at most a single digit, and

if tkk ̸= tk+1
k , then ξk = ειm for some ι ∈ {1,∞,S}, and m, by the assumptions of
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20 MÁRK POÓR AND SAHARON SHELAH

the subclaim. Therefore, clause b) from Observation 2.32 implies that there exists

p′k ≤{ειm},1 p
(ūk

∗,v̄
k
∗ ,w̄

k
∗ ,s̄

k
∗)↾k, and

{(p′k){ε
ι
m},(⟨0⟩), (p′k)

{ειm},(⟨1⟩)} = {pk, pk+1}.

But by our construction (ūk∗, v̄
k
∗ , w̄

k
∗ , s̄

k
∗)↾k = (ū, v̄, w̄, s̄)↾k, so by the conditions of

the subclaim p(ū
k
∗,v̄

k
∗ ,w̄

k
∗ ,s̄

k
∗)↾k ∈ Dι,eq

m (z
˜
). This yields that p′k ∈ Dι,eq

m (z
˜
) by 2 from

Fact 2.27. Hence by the definition of being in Dι,eq
m (z

˜
) we obtain

(p′k)
{ειm},(⟨0⟩) ⊩ z

˜
∈ [x] ⇐⇒ (p′k)

{ειm},(⟨1⟩)} ⊩ z
˜
∈ [x],

and so (2.11) holds, indeed.
□Subclaim2.34

Now it only remains to construct the sequence promised in (♦3)(ii)2. Assume
k < N , and r∗n ≥¯̄ℓn+1 qk has been already chosen. Recall that m ∈ ω is defined so

that ξn = εSm. The properties of r∗n imply that

⊙m
1 (q

(ūk,v̄k,w̄k,s̄k)↾n
k ) ∨ ⊙m

2 (q
(ūk,v̄k,w̄k,s̄k)↾n
k ),

so

⊙m
1 (q

(ūk,v̄k,w̄k,s̄k)
k ) ∨ ⊙m

2 (q
(ūk,v̄k,w̄k,s̄k)
k ).

First suppose that ⊙m
1 (q

(ūk,v̄k,w̄k,s̄k)
k ). Then it suffices to set qk+1 ≤¯̄ℓn+1 qk, such

that both q
(ūk,v̄k,w̄k,s̄k)
k+1 , and q

((ū′)k,(v̄′)k,(w̄′)k,(s̄′)k)
k+1 ) decide the first

ℓg(x
(ūk,v̄k,w̄k,s̄k)
k ) + ℓg(x

((ū′)k,(v̄′)k,(w̄′)k,(s̄′)k)
k ) + 1

digits of z
˜
, ensuring that the relevant parts in (a)-(e) from (♦3)(ii)2 hold.

So we can turn to the case of ⊙m
2 (q

(ūk,v̄k,w̄k,s̄k)
k ). By this property, there exists

q∗ ≤ q
(ūk,v̄k,w̄k,s̄k)
k , and j ∈ ω, such that q

{εSm},(⟨0⟩)
∗ ⊩ z

˜
j = i0, q

{εSm},(⟨1⟩)
∗ ⊩ z

˜
j = i1

for some i0 ̸= i1 (w.l.o.g. we can assume that

j ≥ ℓg(x
(ūk,v̄k,w̄k,s̄k)
k ) + ℓg(x

((ū′)k,(v̄′)k,(w̄′)k,(s̄′)k)
k ) + 1).

W.l.o.g. q∗(ε
∞
l )(w

k
l ) = qk(ε

∞
l )(w

k
l ) for each l ∈ ω, so by Observation 2.19 for some

q∗k ≤¯̄ℓn+1 qk we have (q∗k)
(ūk,v̄k,w̄k,s̄k) = q∗, and so

(2.12) ((q∗k)
(ūk,v̄k,w̄k,s̄k)){ε

S
m},(⟨0⟩) ⊩ z

˜
j = i0,

(2.13) ((q∗k)
(ūk,v̄k,w̄k,s̄k)){ε

S
m},(⟨1⟩) ⊩ z

˜
j = i1.

For a suitable extension q+ ≤ (q∗k)
((ū′)k,(v̄′)k,(w̄′)k,(s̄′)k)

(2.14) q+ ⊩ z
˜
j = i∗ for some i∗ ∈ {0, 1}.

We need the following simple fact, which uses only that if p is a Sacks condition, then
when replacing p by q ≤1 p, then p

(⟨0⟩) and p(⟨1⟩) can be dealt with independently.

Fact 2.35. If r ∈ Q′, (ū, v̄, w̄, s̄), (ū′, v̄′, w̄′, s̄′) ∈ seqn+1(r), r+ ≤ r(ū
′,v̄′,w̄′,s̄′)

(where we demand also r+(ε
∞
l )(w

′
l) ≤ r(ε∞l )(w

′
l) for each l ∈ ω), and sm ̸= s′m, then

there exists r′ ≤¯̄ℓ r such that

• (r′)(ū
′,v̄′,w̄′,s̄′) = r+,
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• r′(εSm)(sm) = r(εSm)(sm), in particular

((r′)(ū,v̄,w̄,s̄)){ε
S
m},(⟨0⟩) ≤ (r(ū,v̄,w̄,s̄)){ε

S
m},(⟨0⟩),

((r′)(ū,v̄,w̄,s̄)){ε
S
m},(⟨1⟩) ≤ (r(ū,v̄,w̄,s̄)){ε

S
m},(⟨1⟩).

Applying the fact to q∗k and q+ yields the condition q∗∗k with

(2.15) (q∗∗k )((ū
′)k,(v̄′)k,(w̄′)k,(s̄′)k) = q+,

and so

(2.16) (q∗∗k )((ū
′)k,(v̄′)k,(w̄′)k,(s̄′)k) ⊩ z

˜
j = i∗.

Furthermore, the fact gives us that

(q∗∗k )(ū
k,v̄k,w̄k,s̄k) ≤{εSm},1 (q∗k)

(ūk,v̄k,w̄k,s̄k),

so by (2.12) and (2.13)

(2.17) ((q∗∗k )(ū
k,v̄k,w̄k,s̄k)){ε

S
m},(⟨0⟩) ⊩ z

˜
j = i0,

(2.18) ((q∗∗k )(ū
k,v̄k,w̄k,s̄k)){ε

S
m},(⟨1⟩) ⊩ z

˜
j = i1.

Now since i0 ̸= i1 either i0 ̸= i∗, or i1 ̸= i∗, w.l.o.g. we can assume that

(2.19) i0 ̸= i∗.

Finally, appealing to Observation 2.19 again, there exists q∗∗∗k ≤¯̄ℓn+1 q
∗∗
k , such that

(q∗∗∗k )(ū
k,v̄k,w̄k,s̄k) = (q∗∗k )(ū

k,v̄k,w̄k,s̄k)){ε
S
m},(⟨0⟩),

so

(2.20) (q∗∗∗k )(ū
k,v̄k,w̄k,s̄k) ⊩ z

˜
j ̸= i∗.

This, together with (2.16) shows that setting qk+1 = q∗∗∗k works, since by pos-

sibly replacing q∗∗∗k with a ≤¯̄ℓn+1-extension w.l.o.g. both (q∗∗∗k )(ū
k,v̄k,w̄k,s̄k) and

(q∗∗∗k )((ū
′)k,(v̄′)k,(w̄′)k,(s̄′)k) decide z

˜
↾[0, j].

(♦3)(iii) Case iii: ξn = ειm for some ι ∈ {1,∞} (and m).

Lemma 2.36. Let q∗ ∈ Q′, ⊩Q′ z
˜
∈ 2ω, n ∈ ω be given, suppose that ι ∈ {1,∞},

m ∈ ω are such that ξn = ειm. Then there exists

(i) r∗ ≤¯̄ℓn q∗
(ii) x̄ = ⟨x(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(q∗)⟩
(iii) x̄ = ⟨x(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn+1(r∗)⟩

satisfying the following.

(⊠) for each (ū, v̄, w̄, s̄) we have
• x(ū,v̄,w̄,s̄) ∈ <ω2, and
• x(ū,v̄,w̄,s̄)↾n ∈ {mul, eq,un},

such that r
(ū,v̄,w̄,s̄)↾n)
∗ ∈ D

ι,x(ū,v̄,w̄,s̄)↾n
m (z

˜
), and whenever (ū′, v̄′, w̄′, s̄′) ̸=

(ū, v̄, w̄, s̄), and x(ū,v̄,w̄,s̄)↾n ̸= eq, then either
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(⊠)(a) x(ū,v̄,w̄,s̄)↾n = un, and then ι = 1 holds, when for the unique k satis-
fying

k < min(ℓg(x(ū,v̄,w̄,s̄)), ℓg(x(ū
′,v̄′,w̄′,s̄′)))

x
(ū,v̄,w̄,s̄)
k ̸= x

(ū′,v̄′,w̄′,s̄′)
k ,

we have

x(ū,v̄,w̄,s̄)↾k = x(ū,v̄,w̄,s̄)↾k ̸= sk

(where s̄ is from (x1)-(x2)),
(⊠)(b) or x(ū,v̄,w̄,s̄)↾n = mul, and

k0 < k1 < min(ℓg(x(ū,v̄,w̄,s̄)), ℓg(x(ū
′,v̄′,w̄′,s̄′))

x
(ū,v̄,w̄,s̄)
k0

̸= x
(ū′,v̄′,w̄′,s̄′)
k0

,

x
(ū,v̄,w̄,s̄)
k1

̸= x
(ū′,v̄′,w̄′,s̄′)
k1

.

Observation 2.37. If n, ι, m are as in the lemma, and r′ satisfies

∀(ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(r
′) : (r′)(ū,v̄,w̄,s̄) ∈ Dι,x(ū,v̄,w̄,s̄)

m (z
˜
),

then the same statements holds for any r′′ ≤¯̄ℓn+1 r
′.

Before proving the lemma note that

(♦3)(iii)1 applying to q∗ = rn it yields the desired condition rn+1 ≤¯̄ℓn rn, x(ū,v̄,w̄,s̄)’s
((ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(rn+1), and setting

• y(ū,v̄,w̄,s̄) = the maximal element in

{x ∈ ω>2 : r
(ū,v̄,w̄,s̄)
n+1 ⊩ x ∈ z

˜
}(⊇ x

(ū,v̄,w̄,s̄)
N )

the requirements in (41)-(43) are clearly satisfied: just use the same ar-
gument as after (♦3)(ii)3, therefore finishing the case (♦3)(iii), and the
induction in (♦1), too.

Proof. (Lemma 2.36) We are going to construct r∗ regardless of the specific value
of ι ∈ {1,∞}. We remark that although for ι = ∞ a simpler argument would
also suffice, as the case of ι = 1 itself needs a slightly more involved (and painful)
reasoning, it is easier to handle the two together. First

(▲)1 we choose an enumeration ⟨(ūj , v̄j , w̄j , s̄j) : j < M⟩ of all the possible
quadruples (ū, v̄, w̄, s̄) from the set seq¯̄ℓn(q∗).

We need the following.

(▲)2 We are going to define q∗∗ ≤¯̄ℓn q∗, as well as the sequence

x̄ = ⟨x(ū,v̄,w̄,s̄) : (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn(q∗)⟩,
with x(ū,v̄,w̄,s̄) ∈ {un,mul,eq} satisfying the following. (For j < M writing
sometimes xj instead of x(ūj ,v̄j ,w̄j ,s̄j)) we would like the sequences to have
the properties as follows:

(a)
⋂

j<M{q ≤¯̄ℓn q∗∗ : q(ū
j ,v̄j ,w̄j ,s̄j) ∈ D

ι,xj
m (z

˜
)} is ≤¯̄ℓn -dense below q∗∗,

(b) moreover, whenever xi = mul for some i < M , then for every p ≤¯̄ℓn q∗∗

p ∈
⋂

j<i{q ≤¯̄ℓn q∗∗ : q(ū
j ,v̄j ,w̄j ,s̄j) ∈ D

ι,xj
m (z

˜
)}

⇒
p(ū

i,v̄i,w̄i,s̄i) ∈ Dι,mul
m (z

˜
).
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Subclaim 2.38. Suppose that ι, m, n, q∗ are as in the lemma. Then there exist
q∗∗ ≤¯̄ℓn q∗ and x̄ satisfying the requirements in (▲)2.

Proof. First we define q0, x0 as follows.

(⊺)1 Set the auxiliary variable q0 = q∗.
•1 First, suppose that the set

{q ≤¯̄ℓn q0 : q(ū
0,v̄0,w̄0,s̄0) ∈ Dι,un

m (z
˜
)}

is ≤¯̄ℓn -dense below q0, in which case set x0 = un, q1 = q0.

•2 Otherwise, define q′0 ≤¯̄ℓn q0 so that there is no q ≤¯̄ℓn q
′
0 with q

(ū0,v̄0,w̄0,s̄0) ∈
Dι,un

m (z
˜
).

•3 Second, if the set

{q ≤¯̄ℓn q
′
0 : q(ū

0,v̄0,w̄0,s̄0) ∈ Dι,eq
m (z

˜
)}

is ≤¯̄ℓn -dense below q′0, then we let x0 = eq, and q1 = q′0.
•4 If it is not the case, then there is q′′0 ≤¯̄ℓn q′0 for which there is no

q ≤¯̄ℓn q
′′
0 with q(ū

0,v̄0,w̄0,s̄0) ∈ Dι,eq
m (z

˜
).

Then

(⊺)2 set x0 = mul, and q1 = q′′0 ,

and observe that by Definition 2.26

(⊺)3 for each q ≤¯̄ℓn q
′′
0 = q1 we have q(ū

0,v̄0,w̄0,s̄0) ∈ Dι,mul
m (z

˜
).

(⊺)4 This way we are going to define
• the ≤¯̄ℓn -decreasing sequence

q∗ = q0 ≥¯̄ℓn q
1 ≥¯̄ℓn · · · ≥¯̄ℓn q

M ,

• together with the sequence x̄
by induction on j such that for each i ≤M

(⊺)(a)4

⋂
j<i{q ≤¯̄ℓn qi : q

(ūj ,v̄j ,w̄j ,s̄j) ∈ D
ι,xj
m (z

˜
)} is ≤¯̄ℓn -dense below qi,

(⊺)(b)4 and if xi−1 = mul, then for arbitrary p ≤¯̄ℓn qi:

p ∈
⋂

j<i−1{q ≤¯̄ℓn qi : q
(ūj ,v̄j ,w̄j ,s̄j) ∈ D

ι,xj
m (z

˜
)}

⇒
p(ū

i−1,v̄i−1,w̄i−1,s̄i−1) ∈ Dι,mul
m (z

˜
).

Note that q1 and x0 clearly satisfy the demands if x0 ∈ {un, eq}, and also when
x0 = mul, for which recall (⊺)2, (⊺)3.

(⊺)5 Suppose that 0 < i < M , and qi, and the xj ’s are already defined for j < i.
•1 Set

D∗ =
⋂
j<i

{q ≤¯̄ℓn qi : q
(ūj ,v̄j ,w̄j ,s̄j) ∈ Dι,xj

m (z
˜
)},

which is ≤¯̄ℓn -dense below qi.
•2 Note that

q ≤¯̄ℓn+1 p ⇐⇒ (∀j < M)q(ū
j ,v̄j ,w̄j ,s̄j) ≤{ειm},1 p

(ūj ,v̄j ,w̄j ,s̄j)).

Using this observation (recalling 2 from Fact 2.27) we obtain

(2.21) (∀q′, q ∈ Q′) : (q′ ≤¯̄ℓn+1 q, q ∈ D∗) → (q′ ∈ D∗).

Again, following the pattern of the definition of q1 and x0,
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•3 if

{q ∈ D∗ : q ≤¯̄ℓn qi, q
(ūi,v̄i,w̄i,s̄i) ∈ Dι,un

m (z
˜
)}

is ≤ ¯̄ℓn-dense below qi, then we set xi = un, and qi+1 = qi,
•4 otherwise let q′i ≤¯̄ℓn qi be such that for no q ≤¯̄ℓn q′i do we have

q(ū
i,v̄i,w̄i,s̄i) ∈ Dι,un

m (z
˜
).

•5 If the set

{q ∈ D∗ : q ≤¯̄ℓn q
′
i : q

(ūi,v̄i,w̄i,s̄i) ∈ Dι,eq
m (z

˜
)}

is ≤¯̄ℓn -dense below q′i, then we let xi = eq, and qi+1 = q′i.
•6 If it is not the case, then there is q′′i ≤¯̄ℓn q

′
i, such that

∀q ∈ D∗ : (q ≤¯̄ℓn q
′′
i ) → (q /∈ Dι,un

m (z
˜
) ∪Dι,eq

m (z
˜
)).

But then by (2.21), •1 and by Definition 2.26 we have that

∀q ∈ D∗ : (q ≤¯̄ℓn q
′′
i ) → (q ∈ Dι,mul

m (z
˜
)),

and letting qi+1 = q′′i , xi = mul we are done, (⊺)(a)4 , (⊺)(b)4 hold for
i∗ = i+ 1.

Finally, letting q∗∗ = qM , it is easy to check that q∗∗, x̄ are as desired. □Subclaim2.38

Subclaim 2.39. Suppose that ι ∈ {1,∞}, l, m, n are as in Lemma 2.36, x̄, q∗∗
given by Subclaim 2.38 (i.e. satisfying the requirements in (▲)2, w.r.t. the fixed
enumeration of seq¯̄ℓn(q∗) = seq¯̄ℓn(q∗∗)). Then there exists a sequence

q∗∗ ≥¯̄ℓn q0 ≥¯̄ℓn q1 ≥¯̄ℓn · · · ≥¯̄ℓn ql

such that

(1) (∀k ≤ l) qk ∈
⋂

j<M{q ≤¯̄ℓn q∗∗ : q(ū
j ,v̄j ,w̄j ,s̄j) ∈ D

ι,xj
m (z

˜
)},

(2) for each k < l, j < M :

q
(ūj ,v̄j ,w̄j ,s̄j)
k+1 ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨0⟩),

(3) and for each j < M , if xj = un, then there exist ij0 < ij1 < · · · < ijl (and

cjk ∈ {0, 1}), such that

∀k ≤ l : (q
(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨0⟩) ⊩ z

˜ ijk
= cjk,

(q
(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨1⟩) ⊩ z

˜ ijk
= 1− cjk,

Proof. By (▲)2 we can choose p0 ≤¯̄ℓn q∗∗ with

(2.22) p0 ∈ D∗ :=
⋂

j<M

{p ≤¯̄ℓn q∗∗ : p(ū
j ,v̄j ,w̄j ,s̄j) ∈ Dι,xj

m (z
˜
)}.

This means that

(‡)1 whenever j < M is such that xj = un, then for some ij0 ∈ ω, cj0 ∈ {0, 1}:

(p
(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(⟨0⟩) ⊩ z

˜ ij0
= cj0,

(p
(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(⟨1⟩) ⊩ z

˜ ij0
= 1− cj0.

Now for each such fixed j there is p′ ≤{ειm},1 q
(ūj ,v̄j ,w̄j ,s̄j)
0 so that both (p′){ε

ι
m},(⟨0⟩)

and (p′){ε
ι
m},(⟨1⟩) decide z

˜
↾[0, ij0) (in fact q(ū

j ,v̄j ,w̄j ,s̄j) ∈ Dι,un
m (z

˜
) implies that then

p′ decides that initial segment). Therefore,

Paper Sh:1226, version 2024-12-23 2. See https://shelah.logic.at/papers/1226/ for possible updates.



ON THE WEAK BOREL CHROMATIC NUMBER AND CARDINAL INVARIANTS OF THE CONTINUUM25

(‡)2 there exists q0 ≤¯̄ℓn+1 p0, for which

(2.23) ∀j < M : q
(ūj ,v̄j ,w̄j ,s̄j)
0 ∥ z

˜
↾[0, ij0),

and (automatically by (2.22) q0 ≤¯̄ℓn+1 p0)

(2.24) q0 ∈ D∗.

Now let p1 ≤¯̄ℓn q0 be such that

(2.25) for each j < M : p
(ūj ,v̄j ,w̄j ,s̄j)
1 ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(⟨0⟩)

(in particular, p1 ≰¯̄ℓn+1 q0), and p1 ∈ D∗. Similarly to (‡)1 and (‡)2
(‡)3 whenever j < M is such that xj = un, then for some ij1 ∈ ω, cj1 ∈ {0, 1}:

(p
(ūj ,v̄j ,w̄j ,s̄j)
1 ){ε

ι
m},(⟨0⟩) ⊩ z

˜ ij1
= cj1,

(p
(ūj ,v̄j ,w̄j ,s̄j)
1 ){ε

ι
m},(⟨1⟩) ⊩ z

˜ ij1
= 1− cj1,

(‡)4 there exists q1 ≤¯̄ℓn+1 p1, for which

(2.26) ∀j < M : q
(ūj ,v̄j ,w̄j ,s̄j)
1 ∥ z

˜
↾[0, ij1),

and (automatically by q1 ≤¯̄ℓn+1 p1)

(2.27) q1 ∈ D∗.

Observe that by (2.25) and (2.23)

(‡)5 for each j: ij0 < ij1.

Following this pattern, we can define the sequence by induction on k ≤ l.
□Subclaim2.39

Subclaim 2.40. Suppose that ι ∈ {1,∞}, n, m, are as in Lemma 2.36, x̄, q∗∗
given by Subclaim 2.38 (i.e. satisfying the requirements in (▲)2, w.r.t. the fixed
enumeration of seq¯̄ℓn(q∗) = seq¯̄ℓn(q∗∗)). Suppose that

q∗∗ ≥¯̄ℓn q0 ≥¯̄ℓn q1 ≥¯̄ℓn · · · ≥¯̄ℓn ql

such that the qk’s are given by Subclaim 2.39, so

(2.28) (∀k ≤ l) qk ∈
⋂

j<M

{q ≤¯̄ℓn q∗∗ : q(ū
j ,v̄j ,w̄j ,s̄j) ∈ Dι,xj

m (z
˜
)},

moreover,

(2.29) for each k < l : ∀j < M : q
(ūj ,v̄j ,w̄j ,s̄j)
k+1 ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨0⟩)

(in particular, qk ≱¯̄ℓn+1 qk+1).
Then,

(1) there exists q∗∗∗ ≤¯̄ℓn q0 (in fact, even q∗∗∗ ≤¯̄ℓn+1 q0), for which

∀j < M, ∀t̄ ∈ k≥2 : (q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄) ∈ Dι,xj

m (z
˜
)},

and if j is such that xj = un, then for the sequence ij0 < ij1 < · · · < ijl from
Subclaim 2.39:

(2.30)

∀t̄ ∈ k≥2 ∃c, z∗ : (q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄⌢⟨0⟩) ⊩ z

˜ ijk
= c,

(q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄⌢⟨1⟩) ⊩ z

˜ ijk
= 1− c,

(q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄) ⊩ z

˜
↾[0, ijk) = z∗.
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(2) Moreover, if for each k “=” holds in (2.29), then q∗∗∗ can be chosen to be
q0.

Proof. Condition (2.29) implies that we can define the condition q∗l−1 ≤¯̄ℓn+1 ql−1 so
that

(∀j < M) : q
(ūj ,v̄j ,w̄j ,s̄j)
l = (q∗l−1)

(ūj ,v̄j ,w̄j ,s̄j)){ε
ι
m},(⟨0⟩)

(⊚)1 note that replacing ql−1 with q
∗
l−1 still preserves ql−1 ≥¯̄ℓn ql, but ql−1 ≱¯̄ℓ∗n+1

ql, that is, q∗l−1 ≥¯̄ℓn q∗l , but q∗l−1 ≱¯̄ℓn+1 q∗l . Similarly, for k = l − 1
(2.28) holds recalling that Dι,y

m ’s are closed under ≤{ειm},1-extensions if
y ∈ {un, eq,mul} (2 from Fact 2.27).

Doing this by downward induction on k = l − 1, l − 2, . . . , 0,

(⊚)2 replacing qk by q∗k ≤¯̄ℓn+1 qk when necessary w.l.o.g. we can assume that

(∀k < l)(∀j < M) : q
(ūj ,v̄j ,w̄j ,s̄j)
k+1 = ((qk)

(ūj ,v̄j ,w̄j ,s̄j)){ε
ι
m},(⟨0⟩),

and introducing the

(⊚)3 notation 0⃗k for the constant 0 sequence of length k, i.e. 0⃗1 = ⟨0⟩, 0⃗k+1 =

0⃗k ⌢ ⟨0⟩,

(∀k < l)(∀j < M) : q
(ūj ,v̄j ,w̄j ,s̄j)
k = ((q0)

(ūj ,v̄j ,w̄j ,s̄j)){ε
ι
m},(⃗0k).

Now

(⊚)4 we claim that (assuming (⊚)2) choosing q∗∗∗ = q0 works.

(⊚)5 Fix j < M , we are going to prove that

(∀t̄ ∈ l≥2) : (q
(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄) ∈ Dι,xj

m (z
˜
),

(⊚)6 First we argue (⊚)5 for j’s such that xj ∈ {un, eq}, and prove (2.30) as
well.

So fix j with xj ∈ {un, eq}. If xj = un, then for each k ≤ l for the natural number

ijk from Subclaim 2.39 (and for some c0, c1)

(2.31)

(q
(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨0⟩) ⊩ z

˜ ijk
= c0,

(q
(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨1⟩) ⊩ z

˜ ijk
= c1,

where c0 ̸= c1,

where we also have

ij0 < ij1 < · · · < ijl .

(For convenience, if xj = eq, then we let ijk = −1 for each k ≤ l.) Observe that

the fact that (q
(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨0⟩) ∈ D

ι,xj
m (z

˜
), where xj ∈ {un, eq} implies that

(2.32)
whenever p ≤{ειm},1 q

(ūj ,v̄j ,w̄j ,s̄j)
k ), and a ∈ {0, 1} :

(i ̸= ijk) → [(p{ε
ι
m},(⟨0⟩) ⊩ z

˜
i = a ⇐⇒ p{ε

ι
m},(⟨1⟩) ⊩ z

˜
i = a].

(⊚)7 Now for any t̄ ∈ n≥2, if xj = un, then set ij∗ = ij∗(|t̄|) = ij|t̄|, otherwise if

xj = eq, then set ij∗ = −1. It suffices to show that

◦1 whenever i ∈ ω, i ̸= ij∗ and r ≤{ειm},1 q
(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄) are such

that r{ε
ι
m},(⟨0⟩), or r{ε

ι
m},(⟨1⟩) decides the value of z

˜
i, then so does r,

and
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◦2 if xj = un, and so ij∗ ≥ 0, then

(q
(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄⌢⟨0⟩), and (q

(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄⌢⟨1⟩)

force different values to z
˜ ij∗

.

We fix k ≤ l, and argue ◦1 and ◦2 simultaneously for each t̄ ∈ k2. Let r ≤{εm},k+1

q
(ūj ,v̄j ,w̄j ,s̄j)
0 , (so

(2.33)
∀t̄ ∈ k2 : r{ε

ι
m},(t̄⌢⟨0⟩) ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄⌢⟨0⟩)

r{ε
ι
m},(t̄⌢⟨1⟩) ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄⌢⟨1⟩))

by symmetry it is enough to show that
(2.34)

∀i ̸= ijk, ∀t̄ ∈ k2 : (r{ε
ι
m},(t̄⌢⟨0⟩) ⊩ z

˜
i = a) ⇔ (r{ε

ι
m},(t̄⌢⟨1⟩) ⊩ z

˜
i = a),

and

(2.35) ∀t̄ ∈ k2 : (r{ε
ι
m},(t̄⌢⟨0⟩) ⊩ z

˜ ij∗
= a) ⇔ (r{ε

ι
m},(t̄⌢⟨1⟩) ⊩ z

˜ ij∗
= 1− a).

(⊚)
(2)
7 We claim that for any t̄∗ ∈ ω>2, d ≤ k and a ∈ {0, 1}, if i ̸= ijd, then

(2.36) r{ε
ι
m},(⃗0d⌢⟨1⟩⌢t̄∗) ⊩ z

˜
i = a ⇐⇒ r{ε

ι
m},(⃗0d⌢⟨0⟩⌢t̄∗) ⊩ z

˜
i = a,

and

(2.37) r{ε
ι
m},(⃗0d⌢⟨1⟩⌢t̄∗) ⊩ z

˜ ijd
= a ⇐⇒ r{ε

ι
m},(⃗0d⌢⟨0⟩⌢t̄∗) ⊩ z

˜ ijd
= 1− a,

Before arguing (⊚)
(2)
7 first we note that it would finish the proof of ◦1 and ◦2: For

any t̄ ∈ k2 and i ∈ ω (applying ◦1 2 · |{b < k : tb = 1}|-many times) we obtain
that

∀a ∈ {0, 1} : r{ε
ι
m},(⃗0k⌢⟨0⟩) ⊩ z

˜ ijl
= a ⇐⇒ r{ε

ι
m},(t̄⌢⟨0⟩) ⊩ z

˜ ijl
= f tl(a),

and

∀a ∈ {0, 1} : r{ε
ι
m},(⃗0k⌢⟨1⟩) ⊩ z

˜ ijl
= a ⇐⇒ r{ε

ι
m},(t̄⌢⟨1⟩) ⊩ z

˜ ijl
= f tl(a),

where f(a) = 1 − a, f0 = f2 = f ◦ f = id, and we mean 0 under tl, when l ≥ k.

But then by (⊚)2, (2.33) we have r{ε
ι
m},(⃗0k) ≤{ειm},1 (q

(ūj ,v̄j ,w̄j ,s̄j)
k ), which means

r{ε
ι
m},(⃗0k⌢⟨0⟩) ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨0⟩)),

r{ε
ι
m},(⃗0k⌢⟨1⟩) ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
k ){ε

ι
m},(⟨1⟩)).

Now if i = ij∗, then this together with (2.31) and (2.36) from (⊚)
(2)
7 imply (2.35).

Similarly, for i ̸= ij∗ (2.32) and (2.37) from (⊚)
(2)
7 imply (2.34). Hence it remains

to verify (⊚)
(2)
7 .

But (2.33) and (⊚)2 imply that

r{ε
ι
m},(⃗0d⌢⟨0⟩⌢t̄∗) ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
d ){ε

ι
m},(⟨0⟩),

r{ε
ι
m},(⃗0d⌢⟨1⟩⌢t̄∗) ≤ (q

(ūj ,v̄j ,w̄j ,s̄j)
d ){ε

ι
m},(⟨1⟩,

and clearly if i = ijd, then (2.31) implies (2.36), while for i ̸= ijd, then (2.37) follows
from (2.32).
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(⊚)8 Now assuming that we have (⊚)6, we prove that (by induction on j):

∀j < M, ∀t̄ ∈ n≥2 : xm = mul → (q
(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄) ∈ Dι,xm

m (z
˜
).

Assume that j∗ < M is such that xj∗ = mul,

(2.38) ∀j < j∗, ∀t̄ ∈ l≥2 : (q
(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄) ∈ Dι,xj

m (z
˜
).

Fix t̄ ∈ l≥2, and suppose on the contrary, that

(q
(ūj∗ ,v̄j∗ ,w̄j∗ ,s̄j∗ )
0 ){ε

ι
m},(t̄) /∈ Dι,mul

m (z
˜
).

Recalling Definition 2.26 for some p ≤{ειm},1 (q
(ūj∗ ,v̄j∗ ,w̄j∗ ,s̄j∗ )
0 ){ε

ι
m},(t̄) we have p ∈

Dι,un
m (z

˜
) ∪Dι,eq

m (z
˜
). Then there is a condition p′ ≤¯̄ℓn q0, for which

(2.39) (p′)(ū
j∗ ,v̄j∗ ,w̄j∗ ,s̄j∗ ) ∈ (Dι,un

m (z
˜
) ∪Dι,eq

m (z
˜
)),

and

∀j < M : (p′)(ū
j ,v̄j ,w̄j ,s̄j) ≤{ειm},1 (q

(ūj ,v̄j ,w̄j ,s̄j)
0 ){ε

ι
m},(t̄),

so

(2.40) (p′)(ū
j∗ ,v̄j∗ ,w̄j∗ ,s̄j∗ ) ∈ Dι,un

m (z
˜
) ∪Dι,eq

m (z
˜
),

and recalling 2 from Fact 2.27 we could infer from 2.38 that

(2.41) ∀j < j∗ : ((p′)(ū
j ,v̄j ,w̄j ,s̄j)) ∈ Dι,xj

m (z
˜
).

But now, since p′ ≤¯̄ℓn q0 ≤¯̄ℓn q∗∗, xj∗ = mul, necessarily

(p′)(ū
j∗ ,v̄j∗ ,w̄j∗ ,s̄j∗ ) ∈ Dι,mul

m (z
˜
),

contradicting (2.39) (as Dι,un
m (z

˜
), Dι,mul

m (z
˜
), Dι,eq

m (z
˜
) are pairwise disjoint by ob-

vious reasons (3). □fascl

Subclaim 2.41. Suppose that ι ∈ {1,∞}, let the condition q be in Dι,mul
m (z

˜
).

Then some q′ ≤{ειm},1 q satisfies the following:
There exist i∗ ̸= i∗∗ ∈ ω, c∗, c∗∗ ∈ {0, 1}, such that

(q′){ε
ι
m},(⟨0⟩) ⊩ z

˜
i∗ = c∗, (q′){ε

ι
m},(⟨1⟩) ⊩ z

˜
i∗ = 1− c∗

(q′){ε
ι
m},(⟨0⟩) ⊩ z

˜
i∗∗ = c∗∗, (q′){ε

ι
m},(⟨1⟩) ⊩ z

˜
i∗∗ = 1− c∗∗.

Moreover, q′ can be chosen so that both (q′){ε
ι
m},(⟨0⟩) and (q′){ε

ι
m},(⟨1⟩) decide the

first max(i∗, i∗∗) + 1-many digits of z
˜
.

Proof. For each i ∈ ω there exists q+ ≤{ειm},1 q, such that both q
{ειm},(⟨0⟩)
+ and

q
{ειm},(⟨1⟩)
+ decide z

˜
i. Since q /∈ Dι,eq

m (z
˜
), for some i∗ ∈ ω and q+ ≤{ειm},1 q

the conditions q
{ειm},(⟨0⟩)
+ and q

{ειm},(⟨1⟩)
+ decide about z

˜
i∗ differently. Since q+ /∈

Dι,eq
m (z

˜
) (again by q+ ≤{ειm},1 q and Definition 2.26) there exists i∗∗ ̸= i∗, such

that q′ ≤{ειm},1 q+, and (q′){ε
ι
m},(⟨0⟩) and (q′){ε

ι
m},(⟨1⟩) force different values to

z
˜
i∗∗ . □Subclaim2.41

Subclaim 2.42. Assume that ι ∈ {1,∞}, n, m, q∗ are as in Lemma 2.36, q∗∗, x̄
ι

are as in (▲)2, moreover, there is no j < M for which xj =un. Then if r∗∗ ≤¯̄ℓn q∗∗
is such that

r∗∗ ∈
⋂

j<M

{q ≤¯̄ℓn q∗∗ : q(ū
j ,v̄j ,w̄j ,s̄j) ∈ Dι,xj

m (z
˜
)},

then there is an r∗ ≤ ¯̄ℓn+1r∗∗ that satisfies the requirements in (⊠) of Lemma 2.36.
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Proof. Note that all the requirements except (⊠)(b) hold for r∗∗, and so for any

r∗ ≤ ¯̄ℓn+1r∗∗ too by Observation 2.19. Now we only have to appeal to Subclaim
2.41 |{j < M : xj = mul}|-many times. □Subclaim2.42

Subclaim 2.43. Assume that ι = ∞, n, m, q∗ are as in Lemma 2.36, q∗∗ ≤¯̄ℓn q∗,
x̄ are as in (▲)2, and suppose that there exists j < M with xj = un. Then there
exists r∗ ≤¯̄ℓn q∗∗, and x̄′ that satisfy (⊠) of Lemma 2.36 (with some x̄), where

∀j < M : xj ∈ {mul, eq} → xj = x′
j ,

xj = un → x′
j = mul.

Proof. Proceed first similarly to the proof of Subclaim 2.42, and appeal to Subclaim
2.41 |{j < M : xj = mul}|-many times, and so for some p∗ ≤¯̄ℓn q∗∗ we have that

⊡(a) ∀j < M : p
(ūj ,v̄j ,w̄j ,s̄j)
∗ ∈ D

ι,xj
m (z

˜
),

⊡(b) if xj = mul, then for some i∗j ̸= i∗∗j the conditions

(p
(ūj ,v̄j ,w̄j ,s̄j)
∗ )({ε

∞
m},(⟨0⟩)), (p

(ūj ,v̄j ,w̄j ,s̄j)
∗ )({ε

∞
m},(⟨1⟩))

decide differently about z
˜
i∗j
, as well as about z

˜
i∗∗j

. Moreover, both condi-

tions decide z
˜
↾[0,max(i∗j , i

∗∗
j ) + 1].

Now pick p∗∗ ≤¯̄ℓn p∗, so that⊙
(a) ∀j < M : p

(ūj ,v̄j ,w̄j ,s̄j)
∗∗ ≤ (p

(ūj ,v̄j ,w̄j ,s̄j)
∗ )({ε

∞
m},(⟨0⟩),⊙

(b) and ∀j < M : p
(ūj ,v̄j ,w̄j ,s̄j)
∗∗ ∈ D

ι,xj
m (z

˜
).

So (by replacing p∗ with a ≤¯̄ℓn+1-extension of it) w.l.o.g. we can assume that

(2.42) ∀j < M : p
(ūj ,v̄j ,w̄j ,s̄j)
∗∗ = (p

(ūj ,v̄j ,w̄j ,s̄j)
∗ )({ε

∞
m},(⟨0⟩).

Define r∗ ≤¯̄ℓn p∗ so that

(2.43) ∀j < M : (r
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨0⟩) = (p

(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨0,0⟩),

and similarly,

(2.44) ∀j < M : (r
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨1⟩) = (p

(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨1,1⟩).

Now if j < M is such that xj = mul, then for a ∈ {0, 1}

(r
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨a⟩) ≤ (p

(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨a⟩),

so (r
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨a⟩) (a ∈ {0, 1}) decide differently about z

˜
i∗j

and z
˜
i∗∗j

(by

(⊡(b))).
If j < M is such that xj = eq, then it follows from (2.42), ⊡(a),

⊙
(b) and 2

from Subclaim 2.40, that

∀t0 ∈ {0, 1} : (p
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨t0⟩) ∈ Dι,eq

m (z
˜
),

but then a similar straightforward calculation shows that for no i and p′ ≤{ε∞m},2

p
(ūj ,v̄j ,w̄j ,s̄j)
∗ , no t̄0 ̸= t̄1 ∈ 2{0, 1} do (p′){ε

∞
m},(t̄0) and (p′){ε

∞
m},(t̄1) decide differently

about z
˜
i. This clearly implies that r

(ūj ,v̄j ,w̄j ,s̄j)
∗ ) ∈ Dι,eq

m (z
˜
).

Finally, if j is such that xj = un, then we argue that r
(ūj ,v̄j ,w̄j ,s̄j)
∗ ∈ Dι,mul

m (z
˜
).

Again, (2.42), ⊡(a),
⊙

(b) and 2 from Subclaim 2.40 together imply that

∀t0 ∈ {0, 1} : (p
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨t0⟩) ∈ Dι,un

m (z
˜
),
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and similarly to the argument in (⊚)6 in Subclaim 2.40 there are i0 < i1 and
c0, c1 ∈ {0, 1}, such that

∀t̄ = ⟨t0, t1⟩ ∈ 2{0, 1} : (p
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨t0,t1⟩) ⊩ z

˜
i0 = f t0(c0) ∧ zi0 = f t1(c1),

(where f(c) = 1− c, f0 = id). From this we obtain

(p
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨0,0⟩) ⊩ z

˜
i0 = c0 ∧ z

˜
i1 = c1,

(p
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞
m},(⟨1,1⟩) ⊩ z

˜
i0 = 1− c0 ∧ z

˜
i1 = 1− c1,

so recalling (2.43), (2.44) clearly r
(ūj ,v̄j ,w̄j ,s̄j)
∗ ∈ D∞,mul

m (z
˜
). (And since we can al-

ways≤¯̄ℓn+1-extend r∗ so that (r
(ūj ,v̄j ,w̄j ,s̄j)
∗ ){ε

∞},(⟨a⟩) (a ∈ {0, 1}) decides z
˜
↾[0,max(i0, i1)+

1), which gives the x(ū,v̄,w̄,s̄)’s for the two (ū, v̄, w̄, s̄) ∈ seq¯̄ℓn+1(r∗) for which

(ūj , v̄j , w̄j , s̄j) ⊑ (ū, v̄, w̄, s̄).)

□Subclaim2.43

Subclaim 2.44. Assume that ι = 1, q∗, z
˜
, n, m are as in Lemma 2.36, q∗∗ ≤¯̄ℓn q∗,

x̄ are as in (▲)2, l ∈ ω, moreover,

(2.45) 0 < |{j < M : xj = un}| < 2l.

Suppose that q∗∗∗ ≤¯̄ℓn q∗∗ is given by applying Subclaims 2.39 and 2.40 to q∗∗ and

l. Then there exists t̄ ∈ l2 for which some r∗ ≤¯̄ℓn+1 rt̄ satisfies the requirements in
(⊠), (where rt̄ is defined by the equality

∀j < M : r
(ūj ,v̄j ,w̄j ,s̄j)
t̄ = (q

(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄)).

Proof. Fixing j < M so that xj = un,

∀t̄ ∈ l2 : (q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄)) ∈ D1,un

m (z
˜
),

and by (2.30)

(1) there are natural numbers

ij0 < ij1 < · · · < ijl ,

such that

∀t̄ ∈ l2, ∀a ∈ {0, 1} : (q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄⌢⟨a⟩) ∥ z

˜
↾[0, ijl + 1).

• ∀t̄ ∈ l2, ∃z̄jt̄ ∈ ijl 2 : (q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄)) ⊩ z̄jt̄ ⊆ z

˜
,

• if t̄ ∈ l≥2, i ̸= ij|t̄|, r ≤{ε1m},1 (q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄)), then

r{ε
ι
m},(t̄⌢⟨0⟩) ⊩ z

˜
i = a ⇐⇒ r{ε

ι
m},(t̄⌢⟨1⟩) ⊩ z

˜
i = a (∀a ∈ {0, 1}),

• if t̄ ∈ l≥2, r ≤{ε1m},1 (q
(ūj ,v̄j ,w̄j ,s̄j)
∗∗∗ ){ε

ι
m},(t̄)), a ∈ {0, 1}, then

r{ε
ι
m},(t̄⌢⟨0⟩) ⊩ z

˜ ij|t̄|
= a ⇐⇒ r{ε

ι
m},(t̄⌢⟨1⟩) ⊩ z

˜ ij|t̄|
= 1− a.

(2) Observe that if j < M , t̄ ̸= t̄′, then z̄jt̄ ̸= z̄jt̄′ .

Now for (⊠)
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(3) it suffices to choose t̄ ∈ l2, and set r∗ = rt̄ so that whenever j < M is such
that xj = un, then

(2.46) z̄jt̄ ̸= sijl
,

which is shown by the following: since for any j with xj = eq obviously

r
(ūj ,v̄j ,w̄j ,s̄j)
t̄ ∈ D1,eq

m , while if xj = mul, then we can replace r∗ with some
r∗∗ ≤{ε1m},1 r∗ = rt̄ given by Subclaim 2.41, preserving

r∗∗ ∈
⋂

j<M

{p ∈ Q′ : p(ū
j ,v̄j ,w̄j ,s̄j) ∈ Dι,xj

m (z
˜
)}.

But for each j < M with xj = un there is at most one t̄ ∈ ijl 2 that does not satisfy
(2.46), so by (2.45) there exists a sequence t̄ that is suitable for our demands.

□Subclaim2.44

□Lemma2.36

□Subclaim2.33

It is only left to argue (⊛)4, that will complete the proof of Theorem 2.6.
So fix

• α < λ0, and a G0(s̄)-independent tree

T0 ∈ V0 ∩ P(ω>2),

where V0 = V Q0
λ0\{α}×Q1×Q∞×QS

,
• β ∈ [λ0, λ1), and a G1-independent tree

T1 ∈ V1 ∩ P(ω>2),

where V1 = V Q0×Q1
λ1\λ0\{β}×Q∞×QS

,
• γ ∈ [λ1, λ∞), and an E0-independent tree

T∞ ∈ V∞ ∩ P(ω>2),

where V∞ = V Q0×Q1×Q∞
λ∞\λ1\{γ}×QS

,

and we shall check that the generic real in question is not in [Tι] (ι ∈ {0,1,∞}).
Assume on the contrary (i.e. ¬ (⊛)4), let pι ∈ Pι be such that

(2.47) Vι |= “p ⊩Pι r
˜
∈ [Tι]”,

where r
˜
is the generic real given by Pι (note that Pι ∈ V , and so we have to carefully

manipulate p when working in Vι as there are more reals in that model than in V ).
By Definition 2.7 and p ∈ Pι

• if ι = 0, then there exists j ∈ ω with p2j = C2j , p2j+1 = C2j+1. W.l.o.g. we
can assume that |p0| = |p1| = · · · = |p2j−1| = 1, and if pi = {ti} (i < 2j),
then let

t̄∗ = t̄0 ⌢ t̄1 ⌢ · · ·⌢ t̄2j−1,

• if ι = 1, then there exists j ∈ ω with pj = {0, 1}, and |p0| = |p1| = · · · =
|p2j−1| = 1, and if pi = {ai} (i < j), then let

t̄∗ = ⟨ai : i < j⟩,
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• if ι = ∞, then there exists j ∈ ω with

(2.48) pj = {t̄′j , t̄′′j },

and |p0| = |p1| = · · · = |p2j−1| = 1, and if pi = {t̄i} (i < j), then let

t̄∗ = t̄0 ⌢ t̄1 ⌢ · · ·⌢ t̄j−1,

Now

• if ι = 0, then using D1) pick t2j ∈ p2j so that

t̄∗∗ := t̄∗ ⌢ t̄2j = sk

for some k ∈ ω. Letting p′ ∈ P0 denote a condition for which p′ ≤ p,
p′2j = {t2j},

• if ι = 0, or ∞, then

t̄∗∗ := t̄∗,

and let p′ = p.

Clearly

p′ ⊩ r
˜
∈ [t̄∗∗],

so we can assume that [t∗∗] ∩ [Tι] ̸= ∅. Consider
• the sets

Tt̄∗∗(0) = {t̄ ∈ ω≥2 : t̄∗∗ ⌢ ⟨0⟩⌢ t̄ ∈ T},
and

Tt̄∗∗(1) = {t̄ ∈ ω≥2 : t̄∗∗ ⌢ ⟨1⟩⌢ t̄ ∈ T},
if ι = 0 or 1,

• while if ι = ∞, then let

Tt̄∗∗(0) = {t̄ ∈ ω≥2 : t̄∗∗ ⌢ t̄′j
⌢ t̄ ∈ T},

and

Tt̄∗∗(1) = {t ∈ ω≥2 : t̄∗∗ ⌢ t̄′′j
⌢ t̄ ∈ T},

(where p′j = {t̄′j , t̄′′j } recalling (2.48)).

Now as [T0] ([T1], [T∞], resp.) is G0(s̄)-independent (G1-, E0-independent, resp.)
compact set for which t∗∗ ∈ T , there must be k ∈ ω such that the sets Tt̄∗∗(0) ∩ k2,

and Tt̄∗∗(1) ∩ k2 are disjoint.
Now by further extending p′ if necessary we can assume that

• (if ι = 0) |p′2j+2| = |p′2j+3| = · · · = |p′2j+k+1| = 1, and if p′2j+2+i =

{t̄2j+2+i} (i < k), then the sequence

t̄∗∗∗ = t̄2j+2
⌢ t̄2j+3

⌢ · · ·⌢ t̄2j+k+1 ∈ ω≥2

is obviously of length ≥ k.
• (if ι = 1) |p′j+2| = |p′j+3| = · · · = |p′j+k+1| = 1, and if p′j+2+i = {aj+2+i}
(i < k), then the sequence

t̄∗∗∗ = ⟨aj+2+i : i < k⟩ ∈ ω≥2

is of length k,
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• (if ι = ∞) |p′j+2| = |p′j+3| = · · · = |p′j+k+1| = 1, and if p′2j+2+i = {̄̄t2j+2+i}
(i < k), then the sequence

t̄∗∗∗ = t̄2j+2
⌢ t̄2j+3

⌢ · · ·⌢ t̄2j+k+1 ∈ ω≥2

is obviously of length ≥ k.

If ι ∈ {0,1}, then let a ∈ {0, 1} be such that t∗∗∗↾k ∈ Tt̄∗∗(a). Our observation
above means that t∗∗∗↾k /∈ Tt̄∗∗(1−a), thus

(2.49) t̄∗∗ ⌢ ⟨1− a⟩⌢ t̄∗∗∗ /∈ Tι.

Extend p′ to p′′ ∈ Q such that p′′2j+1 = {⟨1 − a⟩} (if ι = 0), or .p′′j+1 = {1 − a} (if
ι = 1), and then

p′′ ⊩ r
˜
∈ [t̄∗∗ ⌢ ⟨1− a⟩⌢ t̄∗∗∗]

which together with (2.49) contradicts (2.47). We can also reach the same contra-
diction in the case ι = ∞, just working with pj = {t̄′j , t̄′′j } instead of {0, 1}.

□Claim2.23

Problem 2.45. Is it true, that in the final model there is a partition of the Cantor
space into λ0-many G0(s̄)-independent Borel sets (while the other assertions from
Theorem 2.6 still hold)? Is it consistent that there is a partition of 2ω into λ-many
G0(s̄)-independent Borel sets, where cov(M) < λ < 2ℵ0 , and less than λ-many (or
just not more than cov(M)-many) G0(s̄)-independent Borel sets do not cover 2ω?
What can we say about the corresponding invariant of G1, or E0?

Problem 2.46. Define the graph

Gn = {(x, y) ∈ [ω2]2 : |{j ∈ ω : xj ̸= yj}| ≤ n}

for n ∈ ω fixed. Can we separate cov(IGn
) and cov(IGn+1

)? Can we separate
infinitely many cov(TGj

)’s?
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[BJ95] Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA,

1995, On the structure of the real line. MR 1350295
[Ges11] Stefan Geschke, Weak borel chromatic numbers, Mathematical Logic Quarterly 57

(2011), no. 1, 5–13.
[GG22] Michel Gaspar and Stefan Geschke, Borel chromatic numbers of closed graphs and forc-

ing with uniform trees, arXiv preprint arXiv:2208.06914 (2022).

[Kec12] Alexander Kechris, Classical descriptive set theory, vol. 156, Springer Science & Business

Media, 2012.
[KST99] Alexander S Kechris, Slawomir Solecki, and Stevo Todorčević, Borel chromatic numbers,
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