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Abstract. Good frames were suggested in [She09d] as the bare-bones parallel,
in the context of AECs, to superstable (among elementary classes). Here

we consider (µ, λ, κ)-frames as candidates for being (in the context of AECs)

the correct parallel to the class of |T |+-saturated models of a strictly stable
(complete first-order) theory among elementary classes (we call them DAECs;

directed AECs).
One thing we lose compared to the superstable case is that going up by

induction on cardinals is problematic (because of stages of small cofinality).

But this arises only when we try to lift such classes to higher cardinals. Also,
we may assume (as a replacement) the existence of prime models over unions

of increasing chains.
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2 SAHARON SHELAH

§ 0. Introduction

In this part we try to deal with classes like “ℵ1-saturated models of a first-order
theory T , and even strictly stable ones” rather than of “a model of T ,” but in the
AEC framework. The parallel problem for “a model of T , even a superstable one”
is the subject of [She09d], [She09e], and [Bal09].

In model theory, the first context was investigating the class of models ModT of
a first-order theory T . However, not all interesting classes of models are like this
— e.g.

(A) The locally finite models (i.e. every finitely generated submodel is finite).
The case of locally finite groups is a natural one for group theorists (see
[KW73]).

(B) The class of atomic models of a first-order countable complete theory T .
I.e. if M ∈ ModT and ā ∈ nM , then the type p(x̄) = tp(ā, p,M) is isolated.
That is, for some ϕ(x̄) ∈M , we have T , ϕ(x̄) ` p. (See e.g. [BLS24].)

(C) The model of such theories omitting a type p, or models of ψ ∈ Lℵ1,ℵ0 .
(See e.g. [Kei70], [Kei71].)

(D) Other logics (see [Dic75], [Mak85]).

One way to address this was to use logics stronger than first-order. A related
approach (which we continue here) is to use AECs.

AECs (abstract elementary classes) try to address such problems by forgetting
the syntax (equivalently, the formulas) and just concentrate on the basic properties
of (ModT ,≺) (the class of models of a first-order theory T , ordered by ‘. . . is an
elementary submodel of . . .’). On this, see [She09d], [She09e], and [Bal09].

Much of the work was on investigating “categoricity in λ” (having a unique
model of cardinality λ, up to isomorphism) and stability / superstability. However,
the following prominent class falls outside of even that framework:

(E) Complete metric models, where there is a metric under which all relations
and functions are closed (see e.g. [CK66] and the survey [Kei20]).

An example closer to the author’s heart is

(F) The class of ℵ1-saturated models of a first-order complete theory (see
[She98]).

What do we do here? In §1 we suggest a solution to the analogy

Being ℵ1-saturated inside an elementary class : elementary class (= (ModT ,≺))
? : AEC.

The suggested solutions are various versions of DAECs (directed abstract ele-
mentary classes). In Section 1, we deal with their basic properties and analogues
of the lifting theorem, which says that if we have an AEC of some cardinality then
we can define it in a higher one.

In §2 we suggest how to generalize stability in this context. In §3, we speculate
about what we consider the major question: the so-called ‘main gap.’ (This remains
open even for the ℵ1-saturated models of a countable stable theory T .)

This was the middle part of [Sheb], which was was divided into three by editor
request: the third part is [Shea]. The original full paper has existed (and to some
extent, has been circulated) since 2002.

We thank the referee for his help in improving the presentation.
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Notation 0.1. 1) Let λ<κ ..=
∑
σ<κ

λσ; inside subscripts we may use λ[< κ].

2) λ, κ, µ will denote cardinals — infinite, if not stated otherwise.

3) α, β, γ, δ, ε, ζ, ξ will denote ordinals.

4) k will always be a 0-DAEC, and when we write ‘DAEC’ we mean 0-DAEC. If
not stated otherwise, (µ, λ, κ) = (µk, λk, κk) (see Definition 1.2).

On kλ, k[λ,µ], see 1.18. We may write k∗λ instead of (k∗)λ.

5) M,N are models from Kk.

6) I and J will denote partial orders — directed, if not stated otherwise.

7) We say I is κ-directed when every directed J ⊆ I of cardinality < κ has a
≤I -upper bound.

We shall freely use the following fact.

Fact 0.2. If λ = λ<κ then χ ≥ λ⇒ (χ<κ)<κ = χ<κ.
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4 SAHARON SHELAH

§ 1. Axiomatizing AECs without full continuity

§ 1(A). DAEC. Classes like “the ℵ1-saturated models of a first-order T which is
not superstable” do not fall under AEC — still, they are close; in particular, for
the case when T is stable. Below we suggest a framework for generalizing them,
as AECs generalize elementary classes. So for increasing sequences of short length
the union is not necessarily in the class, but we have weaker demands. In the main
case, as ‘compensation,’ we demand that prime models exist (in particular, over
short increasing chains of models).

We shall lift a (µ, λ, κ)-DAEC to a (∞, λ, κ)-DAEC (see below), so actually kλ
will suffice. Now for the case of AECs, a central point was the replacement of ‘su-
perstable T ’ by ’good λ-frames;’ they were used (e.g.) for investigating categoricity.
In our case this is even more complicated, as their properties are not necessarily
preserved by the lifting. (Not only e.g. the amalgamation property, but even the
existence of a ≤k-upper bound of a short sequence.)

This section generalizes [She09b, §1]; in some cases the differences are minor,
whereas sometimes the differences are the whole point.

Convention 1.1. In this section, if not said otherwise, k will denote a 1-DAEC
(i.e. a directed AEC; see Definition 1.2). We may write DAEC (the D stands for
directed).

Definition 1.2. Assume λ < µ, λ<κ = λ (for notational simplicity),
α < µ⇒ |α|<κ < µ, and κ is regular. (The case κ > ℵ0 is our main interest.)

We say that k is a (µ, λ, κ)-1-DAEC when � and all the axioms in this definition
hold.

(We may omit or add the ‘1’ and ‘(µ, λ, κ)’ by �(a) below; similarly in similar
definitions. Instead of µ = µ+

1 , we may write ≤ µ1.)
We write 0+-DAEC when we omit Ax.III(a),(b) and IV(a),(b), and 0-DAEC if

we also omit Ax.VI.

� [=Ax.O] k consists of the objects in clauses (a)-(d), having the properties
listed in (e)-(g).
(a) The cardinals µ = µk = µ(k), λ = λk = λ(k) and κ = κk = κ(k),

satisfying µ > λ = λ<κ ≥ κ = cf(κ) and α < µ ⇒ |α|<κ < µ (but
possibly µ =∞).

(b) τ = τk, a vocabulary with each predicate and function symbol of arity1

≤ λ.
(c) K, a class of τ -models.

(d) A two-place relation ≤k on K.

(e) If M1
∼= M2 then M1 ∈ K ⇔M2 ∈ K.

(f) if (N1,M1) ∼= (N2,M2) then M1 ≤k N1 ⇔M2 ≤k N2.

(g) Every M ∈ K has cardinality λ ≤ ‖M‖ < µ.

Ax.I (a) M ≤k N ⇒M ⊆ N
(b) If M ≤k N and they both have the same universe, then M = N .

Ax.II ≤k is a partial order.

Ax.III Assume that 〈Mi : i < δ〉 is a ≤k-increasing sequence and
∑
i<δ

‖Mi‖ < µ.

Then:

1 The reason for allowing infinite arity is explained in [Sheb]. But if we ignore “the type
p ∈ Sk(M) is based on A ⊆M ,” then we can restrict ourselves to finite arity.
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(a) Existence of limits
There is M ∈ K such that i < δ ⇒Mi ≤k M .

(b) Existence of unions
If cf(δ) ≥ κ then there is M ∈ K such that i < δ ⇒ Mi ≤k M
and |M | =

⋃
i<δ

|Mi|. (Note that M may not necessarily be unique, as

some members of τk may have infinite arity.)

Ax.IV Weak uniqueness of limit (= weak smoothness)
For 〈Mi : i < δ〉 as above (in Ax.III),

(a) If N` ∈ K and i < δ ⇒Mi ≤k N` for ` = 1, 2, then there are N ∈ K
and N ′` such that

i < δ ⇒Mi ≤k N
′
` ≤k N`.

Furthermore, there are f1, f2 such that f` is a ≤k-embedding of N ′`
into N for ` = 1, 2 and i < δ ⇒ f1 �Mi = f2 �Mi.

(b) If cf(δ) ≥ κ, M is as in Ax.III(b), and i < δ ⇒ Mi ≤k N , then
M ≤k N . (This implies the uniqueness of M , and justifies writing
‘M =

⋃
i<δ

Mi.’)

Ax.V If N` ≤k M for ` = 1, 2 and N1 ⊆ N2 then N1 ≤k N2.

Ax.VI LST property
If A ⊆ N ∈ K and |A| ≤ λ, then there is M ≤k N of cardinality λ such
that A ⊆M .

Remark 1.3. 1) There are some additional axioms listed in 1.4(6), but we shall
mention them in any claim in which they are used. Note that the classes in 1.4(1)-
(5) are defined in terms of them.

2) Note that in Ax.III(c)-(f), the demands
∑
s∈I
‖Ms‖ < µ and

⋃
i<δ

|Mi| < µ are

needed because otherwise (by Ax.O(g)) there would be no ≤k-upper bound.

Definition 1.4. 1) We say k is a 2-DAEC when it is a 0+-DAEC and we add
Ax.III(b),(d), Ax.IV(b),(d).

2) We say k is a 3-DAEC when it is a 2-DAEC and satisfies Ax.III(a),(c), and
Ax.IV(a),(c).

3) We say k is a 4-DAEC when it is a 3-DAEC and we add Ax.III(e), Ax.IV(e).

4) We say k is a 5-DAEC when it is a 3-DAEC and Ax.III(f) holds.

5) We say k is a 6-DAEC when it is a 5-DAEC and we add Ax.IV(f).

6) The additional axioms are as follows:

Ax.III (c) If I is κ-directed, M = 〈Ms : s ∈ I〉 is ≤k-increasing,2 and∑
s∈I
‖Ms‖ < µ

then M has a ≤k-upper bound M (i.e. s ∈ I ⇒Ms ≤k M).

2 That is, s ≤I t⇒Ms ≤k Ms.
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(d) Union of directed systems
If I is κ-directed, |I| < µ, 〈Mt : t ∈ I〉 is ≤k-increasing, and∑

s∈I
‖Ms‖ < µ,

then there is one and only one M with universe
⋃
s∈I
|Ms| such that

Ms ≤k M for every s ∈ I. (We call it the ≤k-union of 〈Mt : t ∈ I〉.)
(e) Like Ax.III(c), but I is just directed.

(f) If M = 〈Mi : i < δ〉 is ≤k-increasing and∑
i<δ

‖Mi‖ < µ

then there is M which is ≤k-prime over M ; i.e.
• If N ∈ Kk and i < δ ⇒ Mi ≤k N then there is a ≤k-embedding

of M into itself over
⋃
i<δ

|Mi|.

Ax.IV (c) If I is κ-directed, M = 〈Ms : s ∈ I〉 is ≤k-increasing, and N1, N2 are
≤k-upper bounds of M , then for some N ′1, N

′
2, f1, f2, N we have

s ∈ I ∧ ` ∈ {1, 2} ⇒Ms ≤k N
′
` ≤k N`

and f` is a ≤k-embedding of N ′` into N which is the identity on Ms

for every s ∈ I. (This is a weak form of uniqueness.)

(d) If I is a κ-directed partial order, M = 〈Ms : s ∈ I〉 is ≤k-increasing,
s ∈ I ⇒Ms ≤k M , and |M | =

⋃
s∈I
|Ms|, then∧

s
[Ms ≤k N ]⇒M ≤k N.

(e) Like Ax.IV(c), but I is just directed.

(f) If I is directed, M = 〈Ms : s ∈ I〉 is ≤k-increasing, and
∑
s∈I
‖Ms‖ < µ,

then there is M which is a ≤k-prime over M , defined as in Ax.III(f).

Ax.VII Amalgamation
If M0 ≤k M` for ` = 1, 2, then there exists N such that M0 ≤k N and there are

f1, f2 such that f` is a ≤k-embedding of M` into N over M0 (for ` = 1, 2).

Claim 1.5. Assume3 k is a 0-DAEC.

1) Ax.III(d) implies Ax.III(b) and Ax.III(c).

2) Ax.III(e) implies Ax.III(a) and Ax.III(c).

3) Ax.IV(d) implies Ax.IV(a), Ax.IV(b), and Ax.IV(c).

4) Ax.IV(e) implies Ax.IV(c).

5) Ax.IV(f) implies Ax.III(c), Ax.III(f), and Ax.IV(e).

6) ‘If k is a j-DAEC then it is an i-DAEC,’ for

(i, j) ∈
{

(0, 0+), (0+, 1), (0+, 2), (1, 3), (2, 3), (3, 4), (4, 5), (5, 6)
}
.

7) If k is an AEC then (letting (µ, λ, κ) ..= (∞,LSTk,ℵ0)) it is an ι-DAEC for all
ι ≤ 6.

8) Ax.IV(f) implies Ax.III(f), which implies Ax.III(a).

9) Assume Ax.VII. Then

3By 1.1, it is not necessary to say this.
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(A) Ax.IV(a) is equivalent to
“If N` ∈ K and i < δ ⇒Mi ≤k N` for ` = 1, 2, then there
are N ∈ K and f1, f2 such that f` is a ≤k-embedding of
N` into N for ` = 1, 2 and i < δ ⇒ f1 �Mi = f2 �Mi.”

(B) Similarly for Ax.IV(c), Ax.IV(e).

10) k is an AEC with LSTk = λ when

• µk =∞ and κk = ℵ0.

• k is a 2-DAEC (or just a 0+-DAEC which satisfies Ax.III(b) and Ax.IV(b)).

Proof. Easy. �1.5

Example 1.6. As stated in 1.5(7), AECs with κk = ℵ0 are an example. (See
[She87a], [She09a], and more in [She09b].)

Example 1.7. The first order stable case.
Let T be a stable complete first order theory, and4

κ = cf(κ) ≥ κr(T ) ∈ [ℵ1, |T |+].

(Equivalently, κ is the minimal regular uncountable cardinal such that
λ = λ<κ ≥ 2|T | ⇒ ‘T stable in λ’.) We shall define k = kT :

� (a) K = Kk is the class of κ-saturated models of T .
(Equivalently, Faκ-saturated — see [She90, Ch.IV].)

(b) ≤ = ≤k means “is an elementary submodel of.”

(c) (µk, λk, κk) = (∞, λ, κ), where λ is the first cardinal in which T is
stable. (As κ ≥ ℵ1, we have λ = |D(T )|<κ.)

Now:

(∗)1 All the axioms mentioned in Definitions 1.2, 1.4 are satisfied.

[Why? See [She90, Ch.III-IV]. In particular, for ‘λ = |D(T )|<κ,’ see [She98,
Ch.III,§6].]

(∗)2 If we omit ‘κ ≥ κr(T ),’ we may lose Ax.III(f) and Ax.IV(e),(f).

Example 1.8. As in 1.7, but κ = ℵ0 and we replace ‘κ-saturated’ by ‘Faκ-saturated’
(also called ‘ℵε-saturated;’ see [She90, Ch.IV] and [She87b]).

• k satisfies every axiom mentioned in Definitions 1.2, 1.4.

• Moreover, it is an AEC.

Example 1.9. Existentially closed models.
Let T be a universal first order theory with the JEP, for transparency.5 We shall

define k:

� (a) K = Kk is the class of existentially closed models of T .

(b) ≤ = ≤k means “is a submodel of.”

(c) (µk, λk, κk) = (∞, |T |,ℵ0).

Now,

4 Actually, we can just demand cf(κ) ≥ κr(T ), but in Definition 1.2 we already specified κ to
be regular.

5Otherwise the class of existentially closed models of T is divided into ≤ 2|T | subclasses, each
of them of this form.
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8 SAHARON SHELAH

• All the axioms mentioned in Definitions 1.2, 1.4 are satisfied.
(In particular, Ax.VII: amalgamation.)

• Moreover, k is an AEC.

Example 1.10. Let T be a universal first-order theory. We shall define k = k0T :

� (a) K = Kk is the class of models of T .

(b) ≤ = ≤k means “is a submodel of.”

Now k0T is a 6-DAEC; that is, it satisfies all the axioms of 1.2, 1.4 except possibly
Ax.VII — amalgamation.

Example 1.11. Let T be a universal first order theory with the JEP, for trans-
parency.

Let κ = cf(κ) > ℵ0 and Kκ be the class of models M of T which are (<κ)-
existentially closed, in the sense that if A ⊆M has cardinality < κ, p(x) is a finitely
satisfiable set of formulas of the form ϕ(x, b̄) with b̄ ⊆ A, and ϕ(x, ȳ) ∈ L(τT ) is
existential, then p(x) is realized in M .

Assume T is stable, in the sense that for no existentially closed model M of T
and no existential formula ϕ(x̄n, ȳn), does ϕ linearly order any infinite subset of
nM . Hence we may assume every M ∈ Kκ is stable in some λ = λ<κ (hence in
every µ = µ<κ ≥ 2|T |; see [She75]).

We define k as follows:

� (a) Kk
..= Kκ

(b) ≤k will be ≺� Kk.

(c) (µk, λk, κk) = (∞, λ, κ).

As in the previous examples, k satisfies every axiom listed.
In [She75] this was called the “Kind III context;” recall that Kind II was for such

T with amalgamation and JEP. More was done by Hrushovski.

Example 1.12. Metric Spaces

1) (a) We say that τ is a metric vocabulary if it has the distinguished 2-place
predicates Rq (q a positive rational) and nmet,6 where

nmet(τ) ..= τ \ {Rq : q ∈ Q+}
and τ is finitary. (That is, each predicate and function symbol has
finitely many places.)

(b) M is a metric model when its vocabulary τM is a metric vocabulary
and there is a metric dM (−,−) on M such that:
•1 dM (a, b) = inf{q ∈ Q+ : (a, b) ∈ RMq }
•2 For any predicate R ∈ τ , RM is closed (under the topology

induced by the metric).

•3 For any function symbol F , FM is a continuous function.

•4 M is complete as a metric space.

(c) Without clause •4, we say M is an almost metric model.

(d) We say that the metric models M1,M2 are topologically isomorphic
when there is a π such that
•1 π is an isomorphism from M1 � nmet(τ) onto M2 � nmet(τ).

6 nmet stands for ‘non-metric.’
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•2 distπ(M1,M2) ..=

sup

{
dM2

(
π(a), π(b)

)
dM1

(a, b)
,

dM1(a, b)

dM2

(
π(a), π(b)

) : a 6= b ∈M1

}
is finite.

(Note that this is the meaning of isomorphism for Banach space the-
orists; what we (model theorists) call isomorphism, they would call
isometry.)

2) (a) We say k is a metric AEC (or MAEC) when:
•1 τk is a metric vocabulary.

•2 k is a DAEC with µk
..= ∞, κ ..= ℵ1, and λ = λℵ0 (and for

convenience |τk| ≤ λ).

•3 Each M ∈ Kk is a metric model.

•4 If I is a directed partial order and M = 〈Ms : s ∈ I〉 is
≤k-increasing, then the completion M of

⋃
s∈I

Ms, naturally de-

fined, is a ≤k-l.u.b. of M .

(b) We say k is an almost metric AEC when we omit the completeness
demand in (1)(b), and add
• If N is the completion of M ∈ Kk (so necessarily N ∈ Kk,
M ≤k N) then M ⊆M ′ ⊆ N ⇒M ≤k M

′ ≤k N .

3) (a) If k is a metric AEC then all the axioms in Definitions 1.2, 1.4 hold.

(b) If k is an almost metric AEC then

comp(k) ..= k �
{
M ∈ Kk :

(
|M |,dM

)
is complete

}
is a metric AEC; also, k itself is an AEC. In this case, “the completion
of M ∈ Kk” is naturally defined.

(c) The representation theorem.
If k is a metric AEC then for some τ1, T1,Γ, we have:
•1 τ1 ⊇ τk and |τ1| ≤ λk.
•2 T1 is a universal f.o. theory in L(τ1).

•3 Γ is a set of L(τ1)-types consisting of formulas (so they are m-
types for some m). They may even just be quantifier-free for-
mulas.

•4 Every M ∈ EC(T1,Γ) is a weak metric model.

•5 Kk
..={

M : M is the completion of M1 � τk for some M1 ∈ EC(T1,Γ)
}

•6 ≤k is defined as{
(M,N) : M ⊆ N, and there are M1 ⊆ N1 from EC(T1,Γ) such that M,N

are the completions of M1 � τk and N1 � τk, respectively
}

[Why is this true? As in the AEC case; see [She87a], [She09a].]

Regarding metric model theory and topological model theory, the field was started
(in a more general frame) by Chang and Keisler in [CK66]; for an introduction and
history, see a recent survey [Kei20].

Example 1.13. If k is an ess-(µ, λ)-AEC (see [Sheb, §1]) then k is a (µ, λ,ℵ0)-4-
DAEC and satisfies all the axioms from 1.4 (except possibly Ax.VII, amalgama-
tion).
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Definition 1.14. We say 〈Mi : i < α〉 is ≤k-increasing (≥ κ)-continuous when it
is ≤k-increasing and δ < α ∧ cf(δ) ≥ κ⇒ |Mδ| =

⋃
j<δ

|Mj |.

As an exercise, we consider directed systems with mappings.

Definition 1.15. 1) We say that M = 〈Mt, ht,s : s, t ∈ I, s ≤I t〉 is a ≤k-directed
system when

(A) I is a directed partial order.

(B) If s ≤I t then ht,s is a ≤k-embedding of Ms into Mt (that is, an isomorphism
from Ms onto some M ′ ≤k Mt).

(C) If t0 ≤I t1 ≤I t2 then ht2,t0 = ht2,t1 ◦ ht1,t0 .

1A) We say that M = 〈Mt, ht,s : s ≤I t〉 is a ≤k-θ-directed system when in addition,
I is θ-directed.

2) We may omit ht,s when s ≤I t⇒ ht,s = idMs
, and write M = 〈Mt : t ∈ I〉.

3) We say (M, h̄) is a ≤k-limit of M when h̄ = 〈hs : s ∈ I〉, hs is a ≤k-embedding
of Ms into M , and s ≤I t⇒ hs = ht ◦ ht,s.
4) We say M = 〈Mα : α < α∗〉 is ≤k-semi-continuous when we assume Ax.III(f)
from 1.4.

That is,

(A) M is ≤k-increasing.

(B) If α < α∗ has cofinality ≥ κ then Mα =
⋃
β<α

Mβ .

(C) If α < α∗ has cofinality < κ then Mδ is ≤k-prime over M � α.

Observation 1.16. [k is a DAEC.]

1) If M = 〈Mt, ht,s : s ≤I t〉 is a ≤k-directed system, then we can find a ≤k-directed
system 〈M ′t : t ∈ I〉 (so s ≤I t⇒M ′s ≤k M

′
t) and ḡ = 〈gt : t ∈ I〉 such that:

(a) gt is an isomorphism from Mt onto M ′t.

(b) If s ≤I t then gs = gt ◦ ht,s.

2) So in the axioms III(a),(b) and IV(a),(b) from Definition 1.2 (as well as those
of 1.4) we can use a ≤k-directed system 〈Ms, ht,s : s ≤I t〉 with I as there (e.g. I ..=
(δ,<)).

3) If (M, h̄) is prime over M = 〈Mt, ht,s : s ≤I t〉 and χ ..=
∑
t∈I
‖Mt‖, then

‖M‖ ≤ χ<κ.

Proof. Straightforward; e.g. for part (4) we can use “k has (χ<κ)-LST” (i.e. Claim
1.17 below). �1.16

More serious is proving the LST theorem in our context. Recall that in the
axioms (see Ax.VI in particular) we demand it only down to λ.

Claim 1.17. Assume k is a (µ, λ, κ)-2-DAEC (see Definition 1.4(1)).

If λk ≤ χ = χ<κ < µk, A ⊆ N ∈ Kk, and |A| ≤ χ ≤ ‖N‖, then there is M ≤k N of
cardinality χ such that A ⊆M . (That is, LSTk(χ) holds.)

Proof. 1) As χ ≤ ‖N‖:
(∗)0 Without loss of generality |A| = χ.

Let
〈
uα : α < α∗

〉
list [A]<κk , and let I be the following partial order:
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(∗)1 (a) The set of elements is
{
α < χ : (∀γ < α)[uα 6⊆ uγ ]

}
.

(b) α ≤I β iff (α, β ∈ I and) uα ⊆ uβ (hence α ≤ β).

Easily,

(∗)2 (a) I is κ-directed.

(b) For every α < α∗, for some β < α∗, we have uα ⊆ uβ ∧ β ∈ I.

(c)
⋃
α∈I

uα = A.

Now we choose Mα by induction on α < χ such that

(∗)3 (a) Mα ≤k N

(b) ‖Mα‖ = λk

(c) Mα includes uα ∪
⋃

β<Iα

Mβ .

Note that ∣∣{β ∈ I : β <I α}
∣∣ ≤ ∣∣{u : u ⊆ uα}

∣∣ = 2|uα| ≤ 2<κ(k) ≤ λk,
and by the induction hypothesis β < α ⇒ ‖Mβ‖ ≤ λk. Recall |uα| < κ(k) ≤ λk
hence the set

⋃
β<α

Mβ ∪ uα is a subset of N of cardinality ≤ λ, hence by Ax.VI

there exists Mα as required.
Having chosen 〈Mα : α ∈ I〉, clearly by Ax.V it is a ≤k-increasing (<κ)-directed

system; hence by Ax.III(d), M ..=
⋃
α∈I

Mα is well-defined with universe
⋃
α∈I
|Mα|,

and by Ax.IV(d) we have M ≤k N .
Clearly ‖M‖ ≤

∑
α∈I
‖Mα‖ ≤ |I| · λk = χ, and by (∗)2(c) + (∗)3(c) we have

A ⊆
⋃
α<χ

uα =
⋃
α∈I

uα ⊆
⋃
α∈I
|Mα| = M

and so M is as required.

2) Similarly. �1.17

Notation 1.18. 1) For χ ∈ [λk, µk), let Kχ = Kk
χ

..= {M ∈ Kk : ‖M‖ = χ} and
K<χ

..=
⋃
µ<χ

Kµ.

2) kχ ..= (Kχ,≤k� Kχ).

3) If λk ≤ λ1 < µ1 ≤ µk, λ1 = λ<κ1 , and (∀α < µ1)
[
|α|<κ < µ1

]
, then we define

K[λ1,µ1) = Kk
[λ1,µ1)

and k1 = k[λ1,µ1) similarly:

(A) Kk1
..=
{
M ∈ Kk : ‖M‖ ∈ [λ1, µ1)

}
(B) ≤k1

..= ≤k� Kk1

(C) λk1 = λ1, µk1 = µ1, κk1 = κk.

4) Let k[λ1,µ1]
..= k[λ1,µ

+
1 ).

Definition 1.19. The embedding f : N → M is called a k-embedding or a ≤k-
embedding when its range is the universe of a model N ′ ≤k M (so f : N → N ′ is
an isomorphism, hence it is onto).

Claim 1.20. [k is a 0+-DAEC (hence satisfies Ax.V, Ax.VI).]

1) For every N ∈ K there is a κk-directed partial order I of cardinality ≤ ‖N‖<κk <
µ and M = 〈Mt : t ∈ I〉 such that
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• t ∈ I ⇒Mt ≤k N

• ‖Mt‖ ≤ LST(k) = λk

• I |= “s < t”⇒Ms ≤k Mt,

• N =
⋃
t∈I

Mt.

1A) If in part (1) we weaken the demand on I to simply be directed, then we can
choose |I| ≤ ‖N‖.
2) For every N1 ≤k N2, we can find 〈M `

t : t ∈ I∗〉 as in part (1) for N` such that
I1 ⊆ I2 and t ∈ I1 ⇒M2

t = M1
t .

Proof. 1,1A) As in the proof of 1.17 (but here 〈uα : α < ‖N‖<κk〉 lists
[
|N |
]<κk).

2) Similarly. �1.20

Claim 1.21. Assume k is a 2-DAEC, λk ≤ λ1 = λ<κ1 < µ1 ≤ µk, and

(∀α < µ1)
[
|α|<κ < µ1

]
.

1) Then k∗1
..= k[λ1,µ1) (as defined in 1.18(3)) is a (λ1, µ1, κk)-2-DAEC.

2) Each of the axioms satisfied by k is also satisfied by k1.

Proof. Easy. E.g.,

• For Ax.VI, use 1.17(1).

• For Ax.IV(f), if N is k-prime over 〈Ms : s ∈ I〉 with Ms ∈ Kk and χ ..=∑
s∈I
‖Ms‖ < µ, then χ<κk < µ1 and there is N1 ≤k N of cardinality χ which

includes
⋃
s∈I
|Ms|. But the definition of ‘k-prime’ gives us ‖N‖ ≤ ‖N1‖ < µ1.

�1.21

Claim 1.22. [Assume k is a 1-DAEC.7 ]

1) If k satisfies Ax.IV(e) and Ax.VII (amalgamation), then it satisfies Ax.III(e),
provided that µk is regular or at least that the relevant I has cardinality < cf(µk).

2) If Ax.III(d) and IV(d) hold, we can waive ‘µk is regular.’

Proof. 1) We prove this by induction on θ = |I|.
Let χ ..= λ+ θ +

∑
s∈I
‖Ms‖, which is in the interval [λ, µ).

Case 1: I is finite.
So there is t∗ ∈ I such that t ∈ I ⇒ t ≤I t∗, so this is trivial.

Case 2: I is countable.
So we can find a sequence 〈tn : n < ω〉 such that tn ∈ I, tn ≤I tn+1, and

s ∈ I ⇒
∨
n<ω

[s ≤I tn]. Now we can apply Ax.III(b) to 〈Mtn : n < ω〉.

Case 3: I uncountable.
First, we can find an increasing continuous sequence

〈
Iα : α < |I|

〉
such that

Iα ⊆ I is directed of cardinality ≤ |α|+ ℵ0 and I|I| ..= I =
⋃

α<|I|
Iα.

Second, by the induction hypothesis, for each α < |I| we choose Nα and
h̄α = 〈hα,t : t ∈ Iα〉 such that:

(A) Nα ∈ Kk

7 Or just a 0+-DAEC satisfying Ax.III(a).
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(B) hα,t is a ≤k-embedding of Mt into Nα.

(C) If s <I t are in Iα then hα,s = hα,t ◦ ht,s.
(D) If β < α then Nβ ≤k Nα and t ∈ Iβ ⇒ hα,t = hβ,t.

For α = 0 use the induction hypothesis.
For α a limit ordinal, by Ax.III(a) there is Nα ∈ Kk, a ≤k-upper bound of

〈Nβ : β < α〉. We know Nα is as required; because Iα =
⋃
β<α

Iβ , there are no new

ht-s. (Well, we have to check
∑
β<α

‖Nβ‖ < µk, but as we assume µk is regular – or

at least cf(µk) > |I| – this holds.)
For α = β + 1, by the induction hypothesis there is (N ′α, ḡ

α) which is a limit of
〈Ms, ht,s : s ≤Iα t〉. Now apply Ax.IV(e)+Ax.VII, recalling 1.5(9): well, apply
the directed system version with 〈Ms, ht,s : s ≤Iβ t〉, (N ′α, ḡα), (Nβ , 〈hs : s ∈ Iβ〉)
here standing for M,N1, N2 there.

So there are Nα, f
α
s (with s ∈ Iβ) such that Nβ ≤k Nα and s ∈ Iβ ⇒ fαs ◦gs = hs.

Lastly, for s ∈ Iα \ Iβ we choose hs = fαs ◦ gs, so we are clearly done.

2) Similarly, noting that in the last case, without loss of generality the result has
cardinality ≤ χ by 1.17(2) or 1.21. �1.22

§ 1(B). Basic Notions. As in [She09b, §1], we now recall the definition of orbital
types. (Note that it is natural to look at (orbital) types only over models which
are amalgamation bases, recalling that Ax.VII says that this will hold for every
M ∈ Kk.)

In this subsection, the reader may concentrate on the case where k is a 2-DAEC
with amalgamation.

Definition 1.23. Assume k is a 0-DAEC.

1) For χ ∈ [λk, µk) and M ∈ Kχ, we define S(M) as

{ortp(a,M,N) : M ≤k N ∈ K≤χ<κ and a ∈ N},
where ortp(a,M,N) = (M,N, a)/EM , where EM is the transitive closure of E at

M ,
and the two-place relation E at

M is defined as follows.

~ (M,N1, a1) E at
M (M,N2, a2) iff:

(a) M ≤k N` and a` ∈ N` for ` = 1, 2.

(b) ‖M‖ ≤ ‖N`‖ ≤ χ<κ for ` = 1, 2.

(c) There exists an N ∈ K≤χ<κ and ≤k-embeddings f` : N` → N for
` = 1, 2 such that f1 �M = idM = f2 �M and f1(a1) = f2(a2).

2) We say “a realizes p in N” for a ∈ N and p ∈ S(M) when (letting χ = ‖M‖) for
some N ′ we have M ≤k N

′ ≤k N , a ∈ N ′, and p = ortp(a,M,N ′). So necessarily
M,N ′ ∈ K≤χ<κ , but possibly N /∈ K≤χ<κ .

3) We say “a2 strongly realizes (M,N1, a1)/E at
M in8 N” when for some N2 we have

M ≤k N
2 ≤k N and a2 ∈ N2 and (M,N1, a1) E at

M (M,N2, a2).

4) We say M0 is a ≤k[χ0,χ1)-amalgamation base if this holds in k[χ0,χ1); see below.

4A) We say M0 ∈ Kk is an amalgamation base (or ≤k-amalgamation base) when:
for every M1,M2 ∈ Kk and ≤k-embeddings f` : M0 → M` (for ` = 1, 2) there is
M3 ∈ Kk

λ and ≤k-embeddings g` : M` →M3 (for ` = 1, 2) such that g1◦f1 = g2◦f2.

5) We say k is stable in χ when:

8 Note that E at
M is not an equivalence relation, in general (although EM certainly is).
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(a) λk ≤ χ < µk

(b) M ∈ Kχ ⇒ |S(M)| ≤ χ
(c) χ = χ<κ

(d) kχ has amalgamation.

6) We say p = q �M if p ∈ S(M), q ∈ S(N), M ≤k N , and for some N+ such that
N ≤k N

+ and a ∈ N+ we have p = ortp(a,M,N+) and q = ortp(a,N,N+). Note
that p �M is well defined if M ≤k N and p ∈ S(N).

7) For finite m, for M ≤k N and ā ∈ mN , we can define ortp(ā, N,N) and Sm(M)
similarly, and let S<ω(M) =

⋃
m<ω

Sm(M). (But we shall not use this in any essential

way, hence we choose S(M) = S1(M).)

Remark 1.24. 1) The reader may wonder: why is EatM not necessarily an equivalence
relation? Consider the following example. k will be defined as follows:

(∗)1 (a) τk ..= {R}, where R is a two-place predicate.

(b) Kk is the class of τk-models M such that
(
|M |, RM

)
is a directed graph

with no (directed) cycle of length ≤ 4.

(c) ≤k will be ⊆� Kk.

Now (recalling 1.10):

(∗)2 k is a (∞,ℵ0,ℵ0)-6-DAEC.

(∗)3 We can find M,N0, N1, N2 from Kk and c, a0, a1, a2, b0, b1, b2 such that
(a) |M | = {c} and RM = ∅.

(b) M ⊆ N` and |N`| = {c, a`, b`} for ` = 0, 1, 2.

(c) RN0 = ∅
(d) RN1 =

{
(c, b1), (b1, a1)

}
(e) RN2 =

{
(a2, b2), (b2, c)

}
It is easy to check that

(∗)4 (a) M ≤k N` for ` ≤ 2, and they are all indeed members of Kk.

(b) For ` = 1, 2, there are N+
` such that N0 ≤k N

+
` and we have ≤k-

embeddings f` of N` into N+
` over M .

(c) Hence the pairs
(
(M,N`, a`), (M,N0, a0)

)
belong to EatM .

(d) Hence the pair
(
(M,N1, a1), (M,N2, a2)

)
belongs to EM .

However,

(∗)5 There are no N , g1 and g2 such that M ≤k N , g` embeds N` into N over
M for ` ∈ {1, 2}, and g1(a1) = g2(a2). (Necessarily, g1(b1) 6= g2(b2).)

[Why? If so, then
〈
c, g1(b1), g1(a1) = g2(a2), g2(b2)

〉
is a cycle of length 4 in the

directed graph of
(
|M |, RM

)
.]

Therefore the pair
(
(M,N1, a1), (M,N2, a2)

)
is not in EatM , and so (recalling

(∗)4(c),(d)) EatM is not an equivalence relation.

2) However, if the 0+-DAEC k satisfies Ax.VII (amalgamation) then EatM is an
equivalence relation for all M ∈ Kk. (This is easy to see; more details can be found
in [She09b, §1].)

3) What is the meaning of ‘orbital type’ when k fails amalgamation? We might ask
what it would be if we ‘force’ the class to have it, in a suitable closure of k.

E.g. let τk have predicates only, and ≤k
..= ⊆� Kk. Define k1 as follows:
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(A) M ∈ Kk1 iff M is a τk-model of cardinality < µk and there is a sequence
〈Ms : s ∈ I〉 such that
(a) Ms ⊆M
(b) |M | =

⋃
s∈I
|Ms|

(c) RM =
⋃
s∈I

RMs for R ∈ τk.

(B) ≤k1 will be ⊆� Kk1 .

4) We may replace 1.23(5)(c) by

(c)′ χ ∈ Cark (which means χ = χ<κ, or at least that the conclusion of 1.17
holds).

If so, then 1.25(1) below, we change the default value of χ to rndk(‖N‖) (where
rndk(θ) ..= min(Cark \ θ)) so it is ≤ ‖N‖<κ(k). (Similarly in 1.26(1).)

Definition 1.25. 1) We say N is χ-universal above or over M when χ ∈ [λk, µk),
M ∈ K≤χ, M ≤k N , and for every M ′ with M ≤k M

′ ∈ Kk
χ, there is a ≤k-

embedding of M ′ into N over M . If we omit χ we mean ‖N‖<κ(k); clearly this
implies thatM is a≤k[χ0,χ1]

-amalgamation base, where χ0 = ‖M‖ and χ1 = ‖N‖<κ.

2) K3
k

..=
{

(M,N, a) : M ≤k N, a ∈ N \M and M,N ∈ Kk

}
, with the partial order

≤ = ≤k defined by (M,N, a) ≤ (M ′, N ′, a′) iff a = a′, N ≤k N
′, and M ≤k M

′

(which follows).

3) We say (M,N, a) is minimal if (M,N, a) ≤ (M ′, N`, a) ∈ K3
k for ` = 1, 2 implies

ortp(a,M ′, N1) = ortp(a,M ′, N2) and moreover, (M ′, N1, a) E at
λ (M ′, N2, a) (this

is not needed if every M ′ ∈ Kλ is an amalgamation basis).

4) K3,k
χ is defined similarly, using k[χ,rndk(χ)].

Generalizing superlimit, we have more than one reasonable choice.

Definition 1.26. 1) For ` = 1, 2 and χ = χ<κ ∈ [λk, µk), we say M∗ ∈ Kk
χ is

superlimit` (or (χ,≥ κ)-superlimit`) when:9

(a) It is universal (i.e. every M ∈ Kk
χ can be properly ≤k-embedded into M∗).

(b) M∗ is an amalgamation base in kχ.

(c) There exists N ∈ Kk
χ such that M∗ <k N .

(d) Case 1: ` = 1.10 If 〈Mi : i ≤ δ〉 is ≤k-increasing (≥ κ)-continuous,
cf(δ) ≥ κ, δ < χ+, and i < δ ⇒Mi

∼= M∗, then Mδ
∼= M∗.

Case 2: ` = 2.11 If I is a (<κ)-directed partial order of cardinality ≤ χ,
〈Mt : t ∈ I〉 is ≤k-increasing, and t ∈ I ⇒Mt

∼= M∗, then
⋃
t∈I

Mt
∼= M∗.

2) We say M is χ-saturated above θ when ‖M‖ ≥ χ > θ ≥ LST(k) and

N ≤k M ∧ ‖N‖ ∈ [θ, χ)⇒
(
∀p ∈ Sk(N)

)[
p is strongly realized in M

]
.

3) Let “M is χ+-saturated” mean that M is χ+-saturated above χ. Let

K(χ+-saturated) ..= {M ∈ K : M is χ+-saturated}

4) When we say “M is saturated,” we mean “M is ‖M‖-saturated above some
θ < ‖M‖.”

9 We may omit ` in the case ` = 2.
10 Usually used when Ax.III(b) holds.
11 Usually used when Ax.III(d) holds.
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Definition 1.27. Assume k is a 1-DAEC.

1) We say N is (χ, σ)-brimmed over M when we can find a ≤k-increasing sequence
〈Mi : i < σ〉 with Mi ∈ Kχ and M0

..= M , where Mi+1 is ≤k-universal over Mi and⋃
i<σ

Mi = N . (Usually cf(σ) ≥ κ.)

We say N is (χ, σ)-brimmed over A if A ⊆ N ∈ Kχ and we can find 〈Mi : i < σ〉
as above such that A ⊆M0; if A = ∅ we may omit “over A.”

2) We say N is (χ, ∗)-brimmed over M if it is (χ, σ)-brimmed over M for every
σ ∈ [κ, χ). We say N is (χ, ∗)-brimmed if N is (χ, ∗)-brimmed over M for some M .

3) If α < χ+, let “N is (χ, α)-brimmed over M” mean M ≤k N are from Kχ and
cf(α) ≥ κ⇒ N is (χ, cf(α))-brimmed over M .

Recall

Claim 1.28. Assume k is a 1-DAEC satisfying Ax.VII.

1) If k is stable in χ and σ = cf(σ) (so χ ∈ [λk, µk)), then for every M ∈ Kk
χ, there

is an N ∈ Kk
χ universal over M which is (χ, σ)-brimmed over M .12

2) If N` is (χ, θ)-brimmed over M for ` = 1, 2 and κ ≤ θ = cf(θ) ≤ χ+, then N1

and N2 are isomorphic over M .

3) If M2 is (χ, θ)-brimmed over M1 and M0 ≤s M1, then M2 is (χ, θ)-brimmed
over M0.

Proof. 1) Straightforward. For universality, recall that saturated implies universal
by [She87c]; this is repeated in [She09b].

2,3) As in [She09b]. �1.28

∗ ∗ ∗

§ 1(C). Lifting such classes to higher cardinals. Here we deal with lifting;
there are two aspects. First, if k1, k2 agree in λ they agree in every higher cardinal.
Second, given k we can find k1 with µk1 =∞ and (k1)λ = kλ.

Theorem 1.29. 1) If k` is a (µ, λ, κ)-2-DAEC for ` = 1, 2 and k1λ = k2λ, then
k1 = k2, provided that the clause below holds.

(∗) τk1 = τk2 has arity ≤ κ, or just κ1 and κ2 have the same notion of unions.

2) If k` is a (µ`, λ, κ)-2-DAEC for ` = 1, 2, µ1 ≤ µ2, k1λ = k2λ, and (∗) above holds,
then k1 = k2[λ, µ1).

Proof. 1) Note

�1 If N ∈ Kk1 then N ∈ Kk2 .

[Why? By 1.20(1), there is a κ-directed partial order I and a ≤k1-increasing se-
quence M = 〈Ms : s ∈ I〉 of members of Kk1 with cardinality λ, with union N .
Hence M is also ≤k2-increasing.

As k2 satisfies Ax.III(d), we know that N =
⋃
s∈I

Ms ∈ Kk2 and

s ∈ I ⇒Ms ≤k2 N . So N ∈ Kk2 as promised.]

�2 Kk2 ⊆ Kk1 .

[Why? By symmetry.]

�3 If M ≤k1 N then M ≤k2 N (and so by symmetry, ≤k1 = ≤k2).

12 Hence it is Sχσ -limit: see [She09a], but this is not used here.
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[Why? Similarly to the proof of �1, using 1.20(2) and Ax.IV(d).]
Together we are done.

2) Similarly. �1.29

Theorem 1.30. The lifting-up Theorem

Assume kλ is a (λ+, λ, κ)-2-DAEC.

[Notation:] Let I be a κ-directed partial order and 〈Ms : s ∈ I〉 be a ≤k-increasing
sequence of τkλ-models.

If J ∈ [I]≤λ is κ-directed, then we define MJ as the union of 〈Mt : t ∈ J〉
(in the sense of Ax.III(d) from Definition 1.4).

Note that for every J1 ⊆ J2, we have MJ1 ≤kλ MJ2 by Ax.IV(d). (This is
clause � below).

The pair k′ = (K ′,≤k′) defined below is an (∞, λ, κ)-2-DAEC, and k′λ = kλ.

(A) K ′ is the class of τkλ-models M such that for some I and M = 〈Ms : s ∈ I〉,
we have:
(a) I is a κ-directed partial order.

(b) Ms ∈ Kλ

(c) I |= “s < t”⇒Ms ≤kλ Mt

(d) M =
⋃
{MJ : J ⊆ I is κ-directed of cardinality ≤ λ}

(Note that this is well-defined even if τk has symbols of arity λ.)

(A)′ We call such 〈Ms : s ∈ I〉 a witness for M ∈ K ′, and we call it reasonable
if |I| ≤ ‖M‖<κ.

(B) M ≤k′ N iff for some I, J,M we have:
(a) J is a κ-directed partial order,

(b) I ⊆ J is κ-directed,

(c) M = 〈Ms : s ∈ J〉 and is ≤kλ-increasing,

(d) 〈Ms : s ∈ J〉 is a witness for N ∈ K ′,
(e) 〈Ms : s ∈ I〉 is a witness for M ∈ K ′.

(B)′ We call such I, 〈Ms : s ∈ J〉 witnesses for M ≤k′ N , or say(
I, J, 〈Ms : s ∈ J〉

)
witnesses M ≤k′ N .

Proof. Let us check the axioms one by one.

Ax.O(a)-(g): K ′ is a class of τkλ -models, ≤k′ a two-place relation on K, K ′ and
≤k′ are closed under isomorphisms, and M ∈ K ′ ⇒ ‖M‖ ≥ λ, etc.

[Why? Trivially.]

Ax.I(a): If M ≤k′ N then M ⊆ N .

[Why? As all members of τk have arity ≤ λ, and{
J ⊆ I : J is κ-directed and |J | ≤ λ

}
is λ+-directed (recalling part (0)), clearly this holds.]

Ax.I(b): If M ≤k′ N and they have the same universe, then M = N .
Let

(
I, J, 〈Ms : s ∈ I〉

)
witness M ≤k′ N . As M and N have the same universe,

the set
J∗ ..=

{
J ′ ∈ [J ]≤λ :

⋃
s∈J′
|Ms| =

⋃
s∈J′∩I

|Ms|
}

is κ-directed and cofinal in
(
[J ]≤λ,⊆

)
. Furthermore,

J ′ ∈ J∗ ⇒MJ′ = MJ′∩I
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because kλ satisfies Ax.I(b). So clearly M = N .

Ax.II(a): M0 ≤k′ M1 ≤k′ M2 implies M0 ≤k′ M2 and M ∈ K ′ ⇒M ≤k′ M .

Why? The second phrase is trivial. For the first phrase, for ` ∈ {1, 2}, let I` ⊆ J`

be κ-directed partial orders and let M
`

= 〈M `
s : s ∈ J`〉 witness M`−1 ≤k′ M`.

Before proceeding, let us prove two small sub-lemmas.

� As mentioned above, if S1 ⊆ S2 ⊆ I are (<κ)-directed of cardinality ≤ λ,
then

MS1
≤kλ MS2

.

[Why? By Ax.IV(d).]

� If I is a κ-directed partial order, 〈M `
t : t ∈ I〉 is a ≤kλ -increasing sequence

witnessing M` ∈ K ′ for ` = 1, 2, and t ∈ I ⇒M1
t ≤kλ M

2
t , then M1 ≤k M2.

[Why? Let I1 be the partial order with set of elements I × {1}, ordered by

(s, 1) ≤I1 (t, 1)⇔ s ≤I t.

Let I2 be the partial order with set of elements I × {1, 2} ordered by

(s1, `1) ≤I2 (s2, `2)⇔ s1 ≤I s2 ∧ `1 ≤ `2.

Clearly I1 ⊆ I2 are both κ-directed.
Let M(s,1)

..= M1
s and M(s,2)

..= M2
s , so clearly M = 〈Mt : t ∈ I2〉 is a ≤kλ -

increasing, I-directed sequence witnessing M2 ∈ K ′. Lastly, (I1, I2,M) witnesses
M1 ≤k′ M2, so we have proved �.]

Now we return to verifying Ax.II(a). Without loss of generality, J1 and J2 are

disjoint. Let χ ..=
(
|J1|+ |J2|

)<κ
(so λ ≤ χ < µk =∞) and let

U ..=
{
u ∈ [J1 ∪ J2]≤λ : u ∩ I` is κ-directed under ≤I` and

u ∩ J` is κ-directed under ≤J` for ` = 1, 2,

and
⋃{
|M2

s | : s ∈ u ∩ I2
}

=
⋃{
|M1

t | : t ∈ u ∩ J1
}}
.

Let 〈uα : α < α∗〉 list U , and we define a partial order I as follows:

(a)′ Its set of elements is
{
α < α∗ : (∀γ < α)[uγ 6⊆ uα]

}
.

(b)′ For α, β ∈ I, α ≤I β iff uα ⊆ uβ .

Note that the set I may have cardinality
( ∑
i<δ

‖Mi‖
)<κ

, which may be > λ.

As in the proof of 1.17, I is κ-directed.
For ` = 0, 1, 2 and α ∈ I, let M`,α be

(A) The ≤k-union of 〈M0
t : t ∈ uα ∩ I1〉 if ` = 0.

(B) The ≤k-union of the ≤kλ-directed sequence 〈M1
t : t ∈ J1〉 when ` = 1.

(C) The ≤k-union of the ≤kλ-directed sequence 〈M2
t : t ∈ J2〉 when ` = 2.

Now,

(∗)1 If ` = 0, 1, 2 and α ≤I β then M `
α ≤kλ M

`
β .

(∗)2 If α ∈ I then M0
α ≤kλ M

1
α ≤kλ M

2
α.

(∗)3 〈M`,α : α ∈ I〉 is a witness for M` ∈ K ′.
(∗)4 M0,α ≤kλ M2,α for α ∈ I.
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Together by � we get that M0 ≤k′ M2 as required, and Ax.II(a) does indeed hold.

Ax.III(b): So we are given a ≤k′ -increasing sequence 〈Mi : i < δ〉 (with cf(δ) ≥ κ),
and we need to show that M =

⋃
i<δ

Mi, as required, does exist.

Let (Ii,j , Ji,j ,M
i,j

) witness Mi ≤k′ Mj when i ≤ j < δ, and without loss of
generality 〈Ji,j : i < j < δ〉 are pairwise disjoint. Let U be the family of sets u
such that for some v ∈ [δ]≤λ,

(A) v ⊆ δ has cardinality ≤ λ and has order type of cofinality ≥ κ.

(B) u ⊆
⋃
{Ji,j : i < j are from v} has cardinality ≤ λ.

(C) For i ≤ j from v, the set u ∩ Ji,j is κ-directed under ≤Ji,j and u ∩ Ii,j is
κ-directed under ≤Ii,j .

(D) If i ≤ j ≤ k are from v then⋃{
M i,j
s : s ∈ u ∩ Ji,j

}
=
⋃{

M j,k
s : s ∈ u ∩ Ij,k

}
.

(E) If i ≤ k and j ≤ k are from v then⋃{
M i,k
s : s ∈ u ∩ Ji,k

}
=
⋃{

M j,k
s : s ∈ u ∩ Jj,k

}
.

Let the rest of the proof be as in the proof of Ax.II(a).

Ax.IV(b):
Similar, but U ..= {u ⊆ I : u has cardinality ≤ λ and is κ-directed}.

Ax.III(d):
Recall that we are assuming k satisfies Ax.III(d). Similar proof.

Ax.IV(d):
This also follows from our assumption that k satisfies Ax.IV(d).

Ax.V: Assume N0 ≤k′ M and N1 ≤k′ M , with N0 ⊆ N1. We must prove

N0 ≤k′ N1.

[Why? Let
(
I`, J`, 〈M `

s : s ∈ J`〉
)

witness N` ≤k M for ` = 0, 1; without loss of
generality J0, J1 are disjoint.

Let

U ..=
{
u ⊆ J0 ∪ J1 : |u| ≤ λ, u ∩ J` and u ∩ I` are κ-directed for ` = 0, 1,

and
⋃

s∈u∩J0

∣∣M0
s

∣∣ =
⋃

t∈u∩J1

∣∣M0
t

∣∣}.
For u ∈ U , let

• Mu = M �
⋃
{M `

s : s ∈ u ∩ J`} for i = 0, 1.

• N`,u = N` � {M `
s : s ∈ u ∩ I`}.

Let

(∗) (a) (U ,⊆) is κ-directed.

(b) N`,u ≤k M

(c) M`,u ≤k M`,v when u ⊆ v are from U and ` = 0, 1.

(d) M0,u ≤k M1,u

(e) N` =
⋃
u∈U

N`,u
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By � above we are done.

Ax.VI: LST(k′) = λ.

[Why? Let M ∈ K ′, A ⊆ M , |A| + λ ≤ χ < ‖M‖, and let 〈Ms : s ∈ I〉 witness
M ∈ K ′. Without loss of generality |A| = χ<κ. Now choose a directed I ⊆ J of
cardinality ≤ |A| = χ<κ such that A ⊆ M ′ ..=

⋃
s∈I

Ms, and so (I, J, 〈Ms : s ∈ J〉)

witnesses M ′ ≤k′ M . So as A ⊆M ′ and ‖M ′‖ ≤ |A|+ µ, we are done.] �1.30

Also, if two such DAECs have some cardinal in common then we can put them
together.

Claim 1.31. Let ι ∈ {0, 1, 2, 4}, assume λ1 < λ2 < λ3, and

(a) k1 is an (λ+2 , λ1, κ)-2-DAEC and K1 = Kk1 .

(b) k2 is a (λ3, λ2, κ)-2-DAEC.

(c) Kk1

λ2
= Kk2

λ2
and ≤k2� Kk2

λ2
= ≤k1� Kk1

λ2
.

(d) We define k as follows: Kk = Kk1 ∪Kk2 , M ≤k N iff M ≤k1 N or M ≤k2 N
or for some M ′, M ≤k1 M

′ ≤k2 N .

Then k is an (λ3, λ1, κ)-2-DAEC.

Proof. Straightforward. E.g.:

Ax.III(d): Assume I is a κ-directed system, 〈Ms : s ∈ I〉 is a ≤k-increasing
sequence, and

∑
s∈I
‖Ms‖ < λ3.

If ‖Ms‖ ≥ λ2 for some s, use 〈Mt : s ≤ t ∈ I〉 and clause (b) of the assumption.
If
⋃
s∈I

Ms has cardinality ≤ λ2, use clause (a) in the assumption. If neither one of

them holds, recall λ2 = λ<κ2 by clause (b) of the assumption, and let

U ..=
{
u ⊆ I : |u| ≤ λ2, u is κ-directed (in I), and

⋃
s∈u

Ms has cardinality λ
}
.

Easily, (U ,⊆) is λ+2 -directed. For u ∈ J , let Mu be the ≤s-union of 〈Ms : s ∈ u〉.
Now by clause (a) of the assumption

(∗)1 Mu ∈ Kk1

λ2
= Kk2

λ2

(∗)2 If u1 ⊆ v are from U then Mu ≤k1 Mv, Mu ≤k2 Mv.

Now use clause (b) of the assumption.

Ax.IV(d): Similar proof.

Axiom V: We shall freely use

(∗) k2λ2
= k1λ2

= kλ2

So assume N0 ≤k M , N1 ≤k M , N0 ⊆ N1.
Now if ‖N0‖ ≥ λ2 use assumption (b), so we can assume ‖N0‖ < λ2. If ‖M‖ ≤ λ2

we can use assumption (a), so assume ‖M‖ > λ2; by the definition of ≤k there is

M ′0 ∈ Kk1

λ2
= Kk2

λ2
such that N0 ≤k1 M

′
0 ≤k2 M .

First, assume ‖N1‖ ≤ λ2, so we can find M ′1 ∈ Kk1

λ2
such that N1 ≤k1 M

′
1 ≤k2 M .

[Why? If N1 ∈ Kk1

<λ2
by the definition of ≤k, and if N1 ∈ Kk1

λ2
just choose M ′1 = N1.]

Now by assumption (b), we can find M ′′ ∈ Kk1

λ2
such that M ′0∪M ′1 ⊆M ′′ ≤k M ,

hence by assumption (b) (i.e. Ax.V for k2) we have M ′0 ≤k M
′′, M ′1 ≤k M

′′. As
N0 ≤k M

′
0 ≤k M

′′ ∈ Kk
≤λ2

by assumption (a) we have N0 ≤k M
′′, and similarly we
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have N1 ≤k M
′′. So N0 ⊆ N1, N0 ≤k M

′′, and N1 ≤k M
′, so by assumption (b) we

have N0 ≤k N1.

So we are left with the case ‘‖N1‖ > λ.’ By assumption (b) there is N ′1 ∈ Kλ2

such that N0 ⊆ N ′1 ≤k2 N2. Also by assumption (b), we have N ′1 ≤k M , so by the
previous paragraph we get N0 ≤k N

′
1; together with the previous sentence we have

N0 ≤k1 N
′
1 ≤k2 N1, so by the definition of ≤k we are done. �1.31

Definition 1.32. If M ∈ Kχ is (χ,≥ κ)-superlimit1, let

K [M ]
χ = Kχ[M ] ..= {N ∈ Kχ : N ∼= M}

and k
[M ]
χ

..= (K
[M ]
χ ,≤k� K

[M ]
χ ). We define k[M ] as the k′ we get in 1.30(1), with

(k
[M ]
χ , k[M ]) here standing in for (kλ, k

′) there.

Claim 1.33. Assume k is an (µ, λ, κ)-0-DAEC and χ ∈ [λ, µ).

If M ∈ Kχ is (χ,≥κ)-superlimit1 (see Definition 1.26) then

•1 k
[M ]
χ is a (χ+, χ, κ)-0+-DAEC.

•2 In addition, k
[M ]
χ satisfies Ax.III(b) and Ax.IV(b).

•3 For each of the following axioms, if kχ satisfies it then so does k
[M ]
χ :

Ax.II(a), Ax.III(c), Ax.III(e), Ax.IV(a).

•4 The same is true for Ax.IV(d), provided that M is (χ,≥κ)-superlimit2.

•5 If M is (χ,≥κ)-superlimit2 then k
[M ]
χ satisfies Ax.III(d) and Ax.IV(d).

Proof. Ax.O: Easy.

Ax.I: As ≤kχ[M ]
..= ≤k � K

[M ]
χ , this is obvious.

Ax.II(a): Easy.

Ax.III(a): Holds whenever kχ satisfies it.

[Why? Let 〈Mα : α < δ < χ+〉 by ≤kχ[M ]-increasing. As kχ satisfies this axiom,

there is N ∈ Kk
χ such that α < δ ⇒Mα ≤k N . By the definition of superlimit (see

1.26(1)(a)), without loss of generality we can say N ∼= M , and so N is as required.]

Ax.II(b): Holds by Case 1 in 1.26(1)(d).

Ax.IV(a): Holds whenever kχ satisfies it.
Recalling 1.5(9) and Ax.VI, this is easy.

Ax.IV(b): Follows by Case 1 in 1.26(1)(c).

Ax.III(c): Holds whenever kχ satisfies it.

[Why? Given a ≤kχ[M ]-increasing sequence 〈Ms : s ∈ I〉 with I κ-directed of

cardinality ≤ χ, by our assumption there is N ∈ K [M ]
χ such that s ∈ I ⇒Ms ≤k N .

By 1.26(1)(a), without loss of generality we have N ∼= M , so N is as required.]

Ax.III(e): Holds whenever kχ satisfies it.

[Why? Similarly to the proof of Ax.III(c).]

Ax.IV(e): Holds whenever kχ satisfies it.

[Similar to earlier proof.]
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Ax.V: Obvious, by the definition of ≤kχ[M ].

Ax.VI: Trivial.

Ax.VII: [Amalgamation]
Holds by clause (1)(b) of Definition 1.26. �1.33
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§ 2. pr frames

Whereas in §1 we generalized AECs (abstract elementary classes), in §2 we try
to generalize the concept of a ‘good λ-frame’ from [She09b, §1].

Now ‘s is a good λ-frame’ is trying to say “this class looks like superstable first-
order theory,” but we restrict ourselves to one cardinal and (as in the case of AECs)
forget the formulas. Here we will try to get the analogue to ℵ1-saturated models.

Convention 2.1. In this section, s will denote a good (µ, λ, κ)-ι-frame and k = ks
(see 2.2).

Below, the main case is ι = 4.
Note that there is no connection between the iotas on the ι-frames here and the

index on the ι-DAECs in §1.

Definition 2.2. Here ι = 0, 1, 2, 3, 4. We say that s is a good (µ, λ, κ)-ι-frame when
s consists of the following objects satisfying the following conditions: µ, λ, κ and13

(A) k = ks is a (µ, λ, κ)-4-DAEC (see 1.4(5)), and χ ∈ [λ, µ) ⇒ LST(χ<κ) (by
1.17).

Below, we may write s instead of k.

(B) k has a (λ,≥ κ)-superlimit1 model M∗ — i.e.:
(a) M∗ ∈ Ks

λ

(b) If M1 ∈ Ks
λ then for some M2 ∈ Ks

λ, M1 <s M2 and M2 is isomorphic
to M∗.

(c) If 〈Mi : i < δ〉 is ≤s-increasing, δ < λ+, cf(δ) ≥ κ, and

i < δ ⇒Mi
∼= M

then
⋃
i<δ

Mi is isomorphic to M∗.

(d) M∗ is an amalgamation base in ks.

(C) (a) k has the amalgamation property, the JEP (joint embedding property),
and has no ≤k-maximal member.

(b) If ι ≥ 1 then k has primes over chains (i.e. Ax.III(f)).

(c) If ι ≥ 4 then k has primes over ≤s-directed sequences (i.e. Ax.IV(f)).

(D) (a) Sbs = Sbss (the class of basic types for ks) is included in
⋃

M∈Ks

S(M) and

is closed under isomorphisms including automorphisms. For M ∈ Kλ,
let Sbss (M) ..= Sbss ∩S(M); there is no harm in allowing types of finite
sequences.

(b) If p ∈ Sbss (M), then p is non-algebraic (i.e., not realized by any a ∈M).
(c) Density:

If M ≤k N are from Ks and M 6= N , then for some a ∈ N \ M
we have ortp(a,M,N) ∈ Sbs. The intention in [She09b] was that
examples would be minimal types14 and regular types for superstable
theories (but here this does not help).

(d) bs-Stability: Sbs(M) has cardinality ≤ ‖M‖<κ for M ∈ Ks.

13 So we should write µs, λs, κs, but we may ignore them when defining s.
14 On existence of minimal orbital types, see [She01] (and the revised version [She09c]).
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(E) (a)
⋃

=
⋃
s

is a four place relation called non-forking, with⋃
(M0,M1, a,M3)

implyingM0 ≤k M1 ≤k M3 are fromKs, a ∈M3\M1, ortp(a,M0,M3) ∈
Sbss (M0), and ortp(a,M1,M3) ∈ Sbs(M1). Also,

⋃
is preserved under

isomorphisms.

We may also write M1

M3⋃
M0

a, and consider that M0 = M1 ≤k M3 are

both in Kλ. We may state M1

M3⋃
M0

a as “ortp(a,M1,M3) does not fork

over M0 (inside M3).” (This is justified by clause (b) below.)
[Explanation: The intention is to axiomatize non-forking of types, but
we allow ourselves to deal only with basic types. Note that in [She01]
(i.e. [She09c]) we know something on minimal types but other types
are something else.]

(b) Monotonicity:

If M0 ≤k M
′
0 ≤k M

′
1 ≤k M1 ≤k M3 ≤k M

′
3

and M1 ∪ {a} ⊆M ′′3 ≤k M
′
3, with all of them in Kλ, then⋃

(M0,M1, a,M3)⇒
⋃

(M ′0,M
′
1, a,M

′
3)⇔

⋃
(M ′0,M

′
1, a,M

′′
3 )

so it is legitimate to just say “ortp(a,M1,M3) does not fork over M0.”

[Explanation: non-forking is preserved by decreasing the type, increas-
ing the basis (i.e. the set over which it does not fork) and increasing or
decreasing the model inside which all this occurs. The same holds for
stable theories, only here we restrict ourselves to “legitimate” types.]

(c) Local Character:

Case 1: ι = 1, 2, 3.
If 〈Mi : i ≤ δ〉 is ≤s-semi-continuous, p ∈ Sbs(Mδ), and cf(δ) ≥ κ then
for every α < δ large enough, p does not fork over Mα.

Case 2: ι = 4.
If I is a κ-directed partial order, M = 〈Mt : t ∈ I〉 is a ≤s-directed
system, M is its ≤k-union, M ≤s N , and ortp(a,M,N) ∈ Sbs(Mδ)
then for every s ∈ I large enough ortp(a,M,N) does not fork over
Ms.

Case 3: ι = 0.
Like Case 1, using a (≥κ)-continuous M .

[Explanation — This is a replacement for the following first-order case:
assuming κ ≥ κr(T ), if p ∈ S(A) then there is a B ⊆ A of cardinality
< κ such that p does not fork over B.]

(d) Transitivity:
If M0 ≤k M

′
0 ≤k M

′′
0 ≤k M3 and a ∈M3 and ortp(a,M ′′0 ,M3) does not

fork over M ′0 and ortp(a,M ′0,M3) does not fork over M0 (all models
are in Kλ, of course, and necessarily the three relevant types are in
Sbs), then ortp(a,M ′′0 ,M3) does not fork over M0.

(e) Uniqueness:
If p, q ∈ Sbs(M1) do not fork over M0 ≤k M1 (all in Ks) and p �M0 =
q �M0 then p = q.
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(f) Symmetry:

Case 1: ι ≥ 2.
If M0 ≤s M` ≤s M3 and (M0,M`, a`) ∈ K3,pr

s (see clause (j) and
Definition 2.3 below) for ` = 1, 2, then ortps(a2,M1,M3) does not
fork over M0 iff ortps(a1,M2,M3) does not fork over M0.

Case 2: ι = 0, 1.
If M0 ≤k M3 are in kλ, and for ` = 1, 2 we have a` ∈ M3 and
ortp(a`,M0,M3) ∈ Sbs(M0), then the following are equivalent:

(α) There are M1,M
′
3 in Ks such that M0 ≤k M1 ≤K M

′
3, a1 ∈M1,

M3 ≤k M
′
3, and ortp(a2,M1,M

′
3) does not fork over M0.

(β) There are M2,M
′
3 in Kλ such that M0 ≤k M2 ≤k M

′
3, a2 ∈M2,

M3 ≤k M
′
3 and ortp(a1,M2,M

′
3) does not fork over M0.

[Explanation: this is a replacement to “ortp(a1,M0 ∪ {a2},M3) forks
over M0 iff ortp(a2,M0 ∪ {a1},M3) forks over M0,” which is not well
defined in our context.]

(g) Existence:
If M ≤s N and p ∈ Sbs(M) then there is q ∈ Sbs(N) which is a
non-forking extension of p.

(h) Continuity:
Case 1: ι = 1, 2, 3.

If 〈Mα : α ≤ δ〉 is ≤s-increasing and ≤s-semi-continuous, Mδ =⋃
α<δ

Mα (which holds if cf(δ) ≥ κ), p ∈ Ss(Mδ), and p � Mα does

not fork over M0 for α < δ then p ∈ Sbss (Mδ) and it does not fork over
M0.

Case 2: ι = 4.
Similarly, but for M = 〈Mt : t ∈ I〉, I directed, and M =

⋃
t∈I

Mt is a

≤s-upper bound of M .

Case 3: ι = 0.
Like Case 1, with M being (≥κ)-continuous.

(i) Strong continuity:
Case 1: ι = 1, 2.

We have that ortp(b,Mδ,Mδ+1) does not fork over M0 when:
•1 M = 〈Mi : i ≤ δ + 1〉 is ≤s-increasing.
•2 Mδ is prime over M � δ.
•3 b ∈Mδ+1 \Mδ

•4 ortp(b,Mi,Mδ+1) does not fork over M0 for i < δ.

Case 2: ι = 3, 4.
We have that ortp(b,N0, N1) does not fork over M0 when:
•1 M = 〈Ms : s ∈ I〉 is ≤s-increasing, I a partial order with 0 ∈ I

minimal.
•2 N0 is prime over M .
•3 b ∈ N1 \N0, where N0 ≤s N1.
•4 ortp(b,Ms, N1) does not fork over M0 for all s ∈ I.

(j) Existence of Primes

If ι ≥ 1, s has K3,pr
s -primes (see 2.3 below).

(k) If p ∈ Sbss (N) then p does not fork over M for some M ≤s N from
Kλ.
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Definition 2.3. 0) K3,bs
s

..={
(M,N, a) : M ≤s N, a ∈ N, and ortps(a,M,N) ∈ Sbss (M)

}
1) K3,pr

s
..={

(M,N, a) ∈ K3,bs
s : if M ≤ N ′, a′ ∈ N ′, ortps(a

′,M,N ′) = ortp(a,M,N)

then there is a ≤k-embedding of N into N ′ extending

idM and mapping a to a′
}

2) ks has K3,pr
s -primes if for every M ∈ Ks and p ∈ Sbss (M) there exists a pair

(N, a) such that (M,N, a) ∈ K3,pr
s and ortps(a,M,N) = p.

Observation 2.4. 1) If s is a good ι-frame then it is a good j-frame, for all
0 ≤ ι ≤ j ≤ 4.

2) If ι = 4 then clause (E)(k) of 2.2 follows from (E)(h).

Proof. 1) Clauses (C) and (E)(c),(i),(j) in Definition 2.2 are all obvious.

Clause (E)(f):
We shall prove that if s is a good j-frame and 0 ≤ ι < 2 ≤ j, then the demand

in Case 2 of clause (E)(f) holds.
So we are given that M0 ≤k M3 are in kλ, and (for ` = 1, 2) we have a` ∈ M3

and ortp(a`,M0,M3) ∈ Sbs(M0). Our job is to prove (α) ⇔ (β) as above, and by
symmetry it suffices to prove (α)⇒ (β).

So we assume

(α) There are M1,M
′
3 in Ks such that M0 ≤k M1 ≤K M

′
3, a1 ∈M1, M3 ≤k M

′
3,

and ortp(a2,M1,M
′
3) does not fork over M0.

Let M2 ≤k M3 be such that (M0,M2, a2) ∈ K3,pr
s (this exists by clause (E)(j)) and

similarly let M ′1 ≤k M1 be such that (M0,M
′
1, a1) ∈ K3,pr

s .
By the present assumption and monotonicity (i.e. clause (E)(h)) ortp(a2,M

′
1,M

′
3)

does not fork over M0, and neither does ortp(a2,M
′
1,M3) (over M0).

By Case 1 of (E)(f), as s is a good ι-frame, ortp(a1,M2,M3) does not fork over
M0. Therefore (M ′1,M2) witnesses that clause (β) of (E)(f) Case 2 holds.

2) Easy, by Case 2 of clause (E)(h). �2.4

Claim 2.5. 1) If 〈Mi : i < δ〉 is ≤k-increasing,
∑
i<δ

‖Mi‖ < µ, pi ∈ Sbss (Mi) does

not fork over M0 for i < δ, and i < j ⇒ pj �Mi = pi, then:

(a) We can find Mδ such that i < δ ⇒Mi ≤k Mδ.

(b) For any such Mδ, we can find pδ ∈ Ss(Mδ) such that
∧
i<δ

[pδ �Mi = pi] and

pδ does not fork over M0.

(c) In clause (b), pδ is unique.

(d) If ` ≥ κ ∧ cf(δ) ≥ κ, we can add ‘M =
⋃
α<δ

Mα.’

2) Similarly for M = 〈Mt : t ∈ I〉 with I directed.
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Proof. 1) First, choose Mδ by 2.2, Clause (A). Second, choose pδ ∈ Sbss (Mδ), a non-
forking extension of p0, which exists by Axiom (g) of 2.2(E). Now pδ �Mi ∈ Sbss (Mi)
does not fork over M0 by 2.2(E)(b) and it extends p0, so it is equal to pi by (E)(e).
Third, pδ is unique by (E)(e).

2) Should be clear as well. (Just replace the role of M0 by Ms0 for some minimal
s0 ∈ I.) �2.5

Definition 2.6. 1) Assume M` ≤s N and p` ∈ Sbss (M`) for ` = 1, 2. We say
that p1, p2 are parallel when some p ∈ Sbss (N) is a non-forking extension of p` for
` = 1, 2.

2) We say s is type-full when Sbss (M) = Snaks (M) for M ∈ Ks, where

Snak (M) ..=
{
p ∈ Sk(M) : p is not algebraic

}
(That is, p is not realized by any a ∈M . ‘na’ stands for non-algebraic.)

3) We say p ∈ Sbss (M) is based on ā when:

(A) ā is a sequence of elements of M .

(B) If M ≤s N , q ∈ Sbss (N) is a non-forking extension of p, and π is an
automorphism of N over ā then π(q) = q. (See [Sheb] for how we can
guarantee the existence of such ā ∈ λM , and even ā ∈ 1M .)

3A) Similarly for p ∈ Sεs (M); similarly for part (4).

4) We say s is θ-based when in clause 2.6(3) above there is such ā ∈ θ>M .

We will show naturally that the older cases apply.

Example 2.7. Assume T is first-order complete and superstable. We define s = sT
as follows.

� (µ, λ, κ) ..= (∞, |T |,ℵ0)
(a) Ks = Kks is the class of models of T .

(b) ≤s = ≤ks means ‘is an elementary submodel of.’

(c) Pedantically, Ss(M) is{
ortp(a,M,N) : M ≤s N, a ∈ N \M, and tp(a,M,N) is a regular type

}
.

Essentially, the reader should think of this as{
tp(a,M,N) : M ≺ N, a ∈ N \M, and tp(a,M,N) is regular

}
.

(d)
⋃
s

..=
{

(M0,M1, a,M3) : M0 ≺ M1 ≺ M3 are from Ks, a ∈ M3 \

M1, and tp(a,M1,M3) is regular and does not fork over M0

}
.

(See [She90, Ch.III].)

Now,

• s is a good 4-frame.

Concerning (weak) orthogonality and dominating (see Definitions 2.10, 2.13 be-
low), they are as in [She90, Ch.V, §1-2] and have the ‘nice’ properties from 2.16-2.20,
and much more. (See more in [She90, Ch.V, §3-4].)

Example 2.8. Assume T is first-order complete and strictly stable, and κ =
cf(κ) > ℵ0. We define s as follows.

� (a) Ks is the class of κ-saturated (equivalently, Faκ-saturated) models of
T .
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(b) ≤s is defined as ≺� Ks (as in 2.5).

(c) Pedantically, Ss(M) is{
ortp(a,M,N) : M ≤s N, a ∈ N \M, and tp(a,M,N) is a regular type

}
.

Essentially, the reader should think of this as{
tp(a,M,N) : M ≺ N and a ∈ N \M, and tp(a,M,N) is regular

}
.

(d)
⋃
s

..=
{

(M0,M1, a,M3) : M0 ≺ M1 ≺ M3 are from Ks, a ∈ M3 \

M1, and tp(a,M1,M3) is regular and does not fork over M0

}
.

(See [She90, Ch.III].)

Now,

• s is a good 4-frame, and even strongly good (see 2.13 below).

The analogues of Definitions 2.10, 2.13 appear in [She90, Ch.V, §1-2] with the
basic properties from 2.13, 2.16, and more from [She90, Ch.V, §5] and [She91].

(For more, see Hernandez [Her92] and [Shea].)

Example 2.9. In [She09f], we have good 4-frames with (µ, λ, κ) = (λ+, λ,ℵ0), and
get results similar to [She90, Ch.V, §1-3].

Definition 2.10. [Assume ι ≥ 3.]

1) Assume p1, p2 ∈ Sbs(M). We say p1, p2 are weakly orthogonal (and denote it
p1⊥

wk
p2) when the following implication holds: if M0 ≤s M` ≤s M3, (M0,M`, a`) ∈

K3,pr
s , and ortps(a`,M0,M`) = p` for ` = 1, 2, then ortps(a2,M1,M3) does not fork

over M0 (this is symmetric by Axiom (f) of 2.2(E), as ι ≥ 3).

2) We say p1, p2 are orthogonal (denoted p1 ⊥ p2) when: if M ≤s M2, M1 ≤s M2

and q` ∈ Sbs(M2) is a non-forking extension of p` and q` does not fork over M1

then q1⊥
wk
q2.

3) We say that {at : t ∈ I} is independent in (M0,M1,M2) when:

(A) at ∈M2 \M1

(B) ortps(at,M1,M2) does not fork over M0.

(C) There is a sequence 〈t(α) : α < α∗〉 listing I with no repetitions, and a
≤s-increasing sequence 〈M1,α : α ≤ α∗ + 1〉 with M1 ≤s M1,0 and
M2 ≤ M1,α∗+1 such that at(α) ∈ M1,α+1 and ortps(at(α),M1,α,M1,α+1)
does not fork over M0.

4) Let (M,N,J) ∈ K3,bs
s if M ≤s N and J is independent in (M,N).

5) Let (M,N,J) ∈ K3,qr
s if:

(A) M ≤s N

(B) J is independent in (M,N).

(C) If M ≤s N
′ and h is a one-to-one function from J into N ′ such that

(∀a ∈ J)
[
ortp(a,M,N) = ortp(h(a),M,N)

]
and (M,N ′, rang(h)) ∈ K3,bs

s , then there is a ≤s-embedding g of N into
N ′ over M extending h.

Remark 2.11. We can now imitate relations of the axioms (as in [She09b, §2]), and
basic properties of the notions introduced in 2.10.
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Claim 2.12. [Assume ι ≥ 1.]

1) (M,M,∅) ∈ K3,qr
s and (M,N,∅) ∈ K3,bs

s when M ≤s N .

2) (M,N, a) ∈ K3,pr
s iff (M,N, {a}) ∈ K3,qr

s .

3) We have (M,N,J) ∈ K3,bs
s when

•1 M = 〈Mα : α ≤ α∗〉 is ≤s-increasing.

•2 J is the disjoint union of 〈Jα : α ≤ α∗〉.
•3 (Mα,Mα+1,Jα) ∈ K3,bs

s

•4 ortp(a,Mα,Mα+1) does not fork over M0 (so it is ∈ Sbss (Mα)) for every
a ∈ Jα.

4) We have (M,N,J) ∈ K3,qr
s when

•1 M = 〈Mα : α ≤ α∗〉 is ≤s-increasing semi-continuous.

•2 J is the disjoint union of 〈Jα : α ≤ α∗〉.
•3 (Mα,Mα+1,Jα) ∈ K3,qr

s

•4 ortp(a,Mα,Mα+1) does not fork over M0 (so it is ∈ Sbss (Mα)) for every
a ∈ Jα.

5) Assume (M,N.J), 〈Mα : α ≤ α∗〉, 〈Jα : α < α∗〉 are as in part (3). If (M,N,J) ∈
K3,bs

s then there is

M
′

=
〈
M ′α : α ≤ α∗

〉
as in part (4) such that M ′α ≤s Mα for α ≤ α∗, and so (M,Mα∗ ,J) ∈ K3,qr

s and
M ′α∗ ≤s N .

6) In part (3), if β∗ ≤ α∗ then(
M,Mβ∗ ,

⋃
β<β∗

Jβ
)
∈ K3,bs

s and
(
Mβ∗ ,Mα∗ ,

⋃
α∈[β∗,α∗)

Jβ
)
∈ K3,bs

s .

7) In part (4), if β∗ ≤ α∗ then(
M,Mβ∗ ,

⋃
β<β∗

Jβ
)
∈ K3,qr

s and
(
Mβ∗ ,Mα∗ ,

⋃
α∈[β∗,α∗)

Jβ
)
∈ K3,qr

s .

Proof. Straightforward.
E.g. for part (5), let 〈aγ : γ < γ∗〉 list J, 〈βi : i ≤ α∗〉 be increasing continuous,〈

aγ : γ ∈ [βi, βi+1)
〉

list Ji, such that β0 = 0 and βα∗ = γ∗, and define f : γ∗ → α∗
such that f(γ) = i when γ ∈ [βi, βi+1).

We shall choose M ′α ≤s Mf(γ) by induction on γ ≤ γ∗ such that

(A) M ′0
..= M0

(B) If γ = β + 1 then (M ′β ,M
′
γ , aβ) ∈ K3,pr

s .

(C) If γ ≤ γ∗ is a limit ordinal, then M ′γ is ≤s-prime over 〈Mβ : β < γ〉.
Why can we carry the induction?

For α = 0: Already given.

For α = β + 1:
We know that ortp(aβ ,Mβ ,Mα) ∈ Sbss (Mβ) does not fork overM0 (by 2.12(3)•3).

For α limit:
Use 2.2(E)(i). �2.12
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Definition 2.13. 1) We say p is strongly dominated by {pt : t ∈ I} (and write
p ≤st {pt : t ∈ I})15 when:

(A) p ∈ Sbss (N) and pt ∈ Sbss (Nt).

(B) If N+ ≤s N
∗, at ∈ N∗, ortp(at, N

+, N∗) ∈ Sbss (N+) is parallel to pt and
p′ ∈ Sbss (N+) is parallel to p (see Definition 2.6), and {at : t ∈ I} is
independent in (N+, N∗), then some a ∈ N∗ realizes p′.

2) We say p is weakly dominated by {pt : t ∈ I} (and write p ≤wk {pt : t ∈ I})
when for some set J and function h from J onto I (not necessarily one-to-one) we
have p ≤st {ph(t) : t ∈ J}.

3) Let ‘dominated’ mean strongly dominated.

4) Let ι ≥ 3. We say s is a strongly good ι-frame when

(A) It is a good ι-frame.

(B) If J is the disjoint union of J1 and J2, (M,N,J) ∈ K3,bs
s , M ≤s M1 ≤s N ,

and (M,M1,J) ∈ K3,qr
s , then (M1, N,J2) ∈ K3,bs

s and ortp(a,M1, N) does
not fork over M for all a ∈ J2.

Hypothesis 2.14. For the rest of this section, assume s is a strong ι-frame with
ι ≥ 1.

Claim 2.15. [Assume ι ≥ 1.]

1) If (M,N,J) ∈ K3,bs
s and ā∗ = 〈a∗β : β < β∗〉 lists J with no repetitions, then

we can find M = 〈Mβ : β ≤ β∗〉 such that (M,N, ā,M) is as in 2.12(4) (so

(M,Mβ∗ ,J) ∈ K3,qr
s ).

2) (M,N,J) ∈ K3,bs
s iff for every finite I ⊆ J we have (M,N, I) ∈ K3,bs

s .

3) In 2.13(4)(B), it is enough to consider the case where J2 is a singleton.

4) Clause 2.2(E)(f) holds, and so s is a good 2-frame.

Proof. 1) We shall choose Mβ by induction on β ≤ β∗ such that

(∗)β (a) 〈Mγ : γ ≤ β〉 is ≤s-increasing semi-continuous.

(b) M0
..= M

(c) (Mγ ,Mγ+1, a
∗
γ) ∈ K3,pr

s for all γ < β.

(d)
(
M0,Mβ , {a∗γ : γ < β}

)
∈ K3,qr

s .

Now β = 0 is handled; for β limit we use 2.12, and for β = γ + 1 we use 2.13(4)(B)
with (J1,J2) =

(
{a∗α : α < γ}, {a∗γ}

)
, recalling 2.12(7).

2) We prove this by induction on θ ..= |J|. It is obvious for θ finite, and for θ infinite
we let 〈aα : α < θ〉 list J without repetition, and work as in the proof of part (1).

3) By the proof of part (1).

4) Easy. �2.15

15 This set may contain repetitions, so pedantically, we should use a sequence and write
p ≤st 〈pt : t ∈ I〉.
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Claim 2.16. 1) If p is strongly dominated by {pt : t ∈ I} then p is weakly dominated
by {pt : t ∈ I}.
2) Assume s is type-full. If p is strongly dominated by {pt : t ∈ I}, then for some
J ⊆ I of cardinality < κs, p is strongly dominated by {pt : t ∈ J}.
3) Assume s is type-full. p is weakly dominated by {pt : t ∈ I} iff for some

〈it : t ∈ I〉, p is strongly dominated by
{
p′s : s ∈ {(t, i) : t ∈ I, i < it}

}
, where

p′(t,i) = pt and it < κs for each t ∈ I.

4) In Definition 2.13(2), without loss of generality (∀s ∈ I)
[ ∣∣h−1({s})

∣∣ < κ
]
.

5) Preservation by parallelism — that is:

(A) p1 is strongly dominated by {p1t : t ∈ I} iff p2 is strongly dominated by

{p2t : t ∈ I}, assuming
(a) p` ∈ Sbss (N `), p`t ∈ Sbss (N `

t ), N `
t ≤s N

+ ∈ Ks, and N ` ≤s N
+, for

` = 1, 2.

(b) p1 and p2 are parallel.

(c) p1t and p2t are parallel for all t ∈ I.

(B) Similarly, replacing ‘strongly dominated’ by ‘weakly dominated.’

Proof. 1) Easy; in 2.15(1) we choose J ..= I and h the identity on I.

2) It suffices to prove ‘(A) ⇒ (B)’, where

(A) (M,N,J) ∈ K3,bs
s , 〈at : t ∈ I〉 lists J with no repetitions, ortp(at,M,N) is

parallel to pt for t ∈ I, and q ∈ Sbss (M) is parallel to p.

(B) There exists I∗ ⊆ I of cardinality < κ and N∗ ≤s N such that

(M,N∗, {at : t ∈ I∗}) ∈ K3,qr
s

and p is realized in N∗.

Without loss of generality

(M,N, {at : t ∈ I}) ∈ K3,qr
s

By the assumption, some b ∈ N realizes q. We will try to choose (Iε,Mε) by
induction on ε < κ such that

(∗) (a) 〈Iζ : ζ ≤ ε〉 are pairwise disjoint subsets of I of cardinality < κ.

(b) 〈Mζ : ζ ≤ ε〉 is ≤s-increasing and semi-continuous, with M0
..= M .

(c) (Mζ ,Mζ+1, {at : t ∈ Iζ+1}) ∈ K3,qr
s for all ζ < ε.

(d) For all ζ < ε, tp(b,Mζ+1, N) forks over Mζ .

Of course, if b ∈Mε we are done, and if we succeed in carrying the induction there
is Mκ

..=
⋃
ε<κ

Mε ≤s N by Ax.III(b)+Ax.IV(b).

Now we get a contradiction to clause (E)(i) of Definition 2.2.

3) By 2.16(2) and the definition.

4) By 2.16(4).

5) Easy. �2.16

Claim 2.17. Assume s is type-full. If (M,N,J) ∈ K3,bs
s and b ∈ N , then there

exist I ⊆ J and M1 such that:

(A) M ≤s M1 ≤s N

(B) |I| < κs

(C) b ∈M1

Paper Sh:1238, version 2025-01-15 2. See https://shelah.logic.at/papers/1238/ for possible updates.



32 SAHARON SHELAH

(D) (M,M1, I) ∈ K3,bs
s

Proof. Without loss of generality b /∈ J. We try to choose Ni (and if possible, Ii)
by induction on i ≤ κ such that

(∗) (a) Ni ≤s N and Ii ⊆ J \
⋃
j<i

Ij , with |Ii| < κ.

(b) If j < i then Nj ≤s Ni and (Nj , Nj+1, Ij) ∈ K3,qr
s .

(c) N0
..= M

(d) If i is a limit ordinal then Ni is ≤s-prime over 〈Nj : j < i〉.
(e) If i = j + 1 and Nj has already been defined with b /∈ Nj , and there is

I ⊆ J \
⋃
`<j

I` of cardinality < κ (or simply finite) such that(
Nj , N, I ∪ {b}

)
/∈ K3,bs

s

then we can choose such I as our Ij and choose Ni ≤s N such that

(Nj , Ni, Ij) ∈ K3,pr
s .

(f) [Follows:]
(
Ni, N,J \

⋃
j<i

Ij
)
∈ K3,bs

s .

If we carry the induction for all i < κ we get a contradiction (see 2.2(E)(c)), so for
some i∗ < κ we will hit a point where Ni∗ is well defined, but Ii∗ is not.

We prove, by induction on θ ≤ |J|, that if I ⊆ J′ ..= J \
⋃
j<i∗

Ij has cardinality

θ then
(
Ni∗ , N, I ∪ {b}

)
∈ K3,bs

s . So, using Case 1 of Definition 2.2(E)(i), we are
finished. �2.17

Claim 2.18. 1) If p ≤wk {pi : i < i∗} and i < i∗ ⇒ q ⊥ pi then q ⊥ p (see
Definition 2.3(3)).

2) Assume s is type-full. If p ≤wk {pi : i < i∗} and p ∈ Sbss (M) then p 6⊥ pi for
some i < i∗.

3) If p ≤st {pi : i < α} then p ≤st {pi : i < α, pi 6⊥ p} (see Definition 2.13).

Proof. 1) By induction on i∗: for i∗ limit we use 2.2(E)(i), and for i∗ successor use
q ⊥ pi∗−1.

2) By part (1) and 2.16(3).

3) Easy. �2.18

Claim 2.19. Assume s is type-full.
If χ = χ<κ ∈ [λ, µ), the following is impossible:

(a) 〈Mi : i < χ+〉 is ≤s-increasing ≤s-semi-continuous.

(b) 〈Ni : i < χ+〉 is ≤s-increasing, ≤s-semi-continuous.

(c) Mi ≤s Ni ∈ K≤χ
(d) For some stationary S ⊆ {δ < χ+ : cf(γ) ≥ κ}, for every i ∈ S,

• There is ai ∈ Mi+1 \Mi such that ortp(ai, Ni, Ni+1) is not the non-
forking extension of ortp(ai,Mi,Mi+1) ∈ Sbss (Mi).

Proof. For some club E of χ+, we have

i ∈ E ∧ j ∈ [i, χ+)⇒ Ni ∩Mj = Mi.

For each i ∈ S ∩ E, by 2.2(E)(c), there is a ji < i such that ortp(ai,Mi,Mi+1)
does not fork over Mji . By clause (E)(i) of 2.2, for some j ∈ [ji, i), we have
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that ortp(ai, Nj , Ni+1) is not the non-forking extension of ortp(ai,Mji ,Mi+1), so
without loss of generality this holds for j = ji.

By Fodor’s Lemma, for some j∗ < j, the set S′ ..= {i ∈ S ∩ E : ji = j∗} is
stationary. So {bi : i ∈ S′} is independent in

(⋃
j

Mj ,Mj+1

)
. By part (3) we are

done.
Also, there is a sequence 〈Mj∗,ε : ε ≤ ε∗ ≤ κ〉 which is εs-increasing continuous,

with Mj∗,0 = Mj∗ , Mj∗,ε = Nj∗ , and (Mj∗,ε,Mj∗,ε+1, cε) ∈ K3,pr
s . Now we can

choose ζε < χ+ by induction on ε < ε∗, increasing continuous, such that{
ai : i ∈ [ζi, χ

+)
}

is independent in (Mj∗,ε,
⋃
j

Nj) and ortp(ai,Mj∗,ε, Ni+1) does not fork over Mj∗

for i ∈ [ζ, χ+) — an easy contradiction. The induction works for ε = 0 trivially, for
ε limit by 2.16(6), and for ε = ξ + 1 we use 2.17. �2.19

Claim 2.20. If p, pi ∈ Sbss (M) for i < κs and i < j ⇒ pi ⊥ pj, then p ⊥ pi for
every i < κ large enough.

Proof. Follows from 2.19. (See more in [Shea, 1.6=Lj20].) �2.20

Remark 2.21. This is used in [BS18, 2.4=Lj35].
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§ 3. Thoughts on the main gap

Here we address two problems: type theory (i.e. dimension, orthogonality, etc. as
in [She98, Ch.V]) for strictly stable classes, and the main gap concerning somewhat
saturated models. The hope always was that advances in the first will help the
second.

Concerning the first-order case, work was started in [She90, Ch.V] (particularly
§5) and [She91] and was advanced much further in Hernandez [Her92]; but this was
not enough for the main gap for somewhat saturated models.

In the third part [Shea] we shall deal with the type dimension in a general
framework.

∗ ∗ ∗

The motivation for [She90] was

Remark 3.1 (The Main Gap thesis). This tells us that

1) For a reasonable class K of models, we have a dichotomy: either the class of
models in a large enough cardinal is hopelessly complicated, or we have a structure
theorem.

2) The original interpretation depends too much on cardinal arithmetic. It was as
follows: we have many non-isomorphic models, so ‘maximally complicated’ means
I(λ, κ) = 2λ, but under strong violation of GCH

ℵα ≥ ℵω ⇒ 2|α| = 2ℵα .

However, some very uncomplicated theories have 2|α|+ℵ0 in ℵα (e.g. the theory of
one equivalence relation).

3) So we had better assume GCH, or change the question to “can the isomorphism
type of M code a stationary set?”

The main gap for ℵ1-saturated models of a countable first order theory is open. A
priori, it has looked easier than the one for models (which was preferred, being “the
original question”) because of the existence of prime models over any set A ⊆ M ,
but is still open. (The problem for uncountable first-order |T |+-saturated models
is as well).

Why doesn’t the proof in [She90, Ch.XII] work? What’s missing is, in Ceq,

~ If M0 ≺ M1 ≺ M2 are ℵ1-saturated, a ∈ M2 \M1, and (a/M1) 6⊥ M0,then
for some b ∈M2 \M1 we have b

⋃
M0

M1.

The central case is when a/M1 is orthogonal to q if q ⊥M0.

Possible Approach 1: For T being first order countable, stable NDOP (even
shallow) can try to understand types. See [LS06].

Possible Approach 2: We use the context dealt with in this paper. We are poorer
in knowledge on the class but we have a richer Ceq, so we may prove ~ even if it fails
for T in the elementary case (this is a connection between [Sheb] and this work).

Possible Approach 3: We start with the context here. If things are not OK, we
define such a derived DAEC; this was done in [She09g] and [She09b]. It may have
non-structure properties — enough to get the maximal number of models up to
isomorphism. If not, we arrive to a finer k, but still a case of our context. Similarly
in limit. If we succeed enough times we shall prove that all is OK.
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Possible Approach 4: Now we have a maximal non-forking tree 〈Mη, aη : η ∈ T 〉
inside a somewhat saturated model; for [She90], e.g. ‖Mη‖ ≤ λ, the models are
λ+-saturated, but we use content from here. If M is prime over

⋃
η∈T

Mη we are

done, but maybe there is a residue. This appears in the following way: for η ∈ T
and p ∈ Sbs(Mη), the dimension of p is not exhausted by{

aηˆ〈α〉 : ηˆ〈α〉 ∈ T and (aηˆ〈α〉/Mη) 6⊥ p
}

but the lost part is not infinite! This imposes ≤ λ unary functions from T to
T . Now it seems to us that the question of whether this possible non-exhaustion
can arise16 is not a good dividing line, as though its negation is informative it is
not clear whether it has any consequence. However, there are two candidates for
dividing lines (actually, their disjunction seems to be what we want).

(A∗) We can find M , 〈Mη, aη : η ∈ T 〉 as above and η∗ ∈ T with g̀(η) = 2,
ν∗ ∈ T with g̀(ν∗) = 1, η∗ � 1 6= ν∗, and p ∈ Sbs(Mη∗), p ⊥ Mη�1 with a
residue as above such that we need Mν∗ to explicate it.

More explicitly,

(∗)′ If M ′ ≤s M is prime over
⋃
η∈T

Mη and we can find aη∗,ν∗ ∈ M \M ′ such

that ortp
(
C (aη∗,ν∗ ,M

′),
⋃
η∈T

Mη

)
marks (Mη∗ ,Mν∗).

Even in (∗)′ we have to say more in order to succeed in using it.
From (∗)′ we can prove a non-structure result: on T we can code any two-place

relation R on {η ∈ T : g̀(η) = 1, Mη,Mη∗�1 are isomorphic over M〈 〉} which is of
the form

η1 R η2 ⇔ (∃ν)
∧
`

[
there is η′ with η` / η

′ ∈ T and g̀(η′) = 2,

ν ∈ T with g̀(ν) = 1, and there is aη′,ν as above
]
.

More complicated is the case

(B)∗ We can fix M and 〈Mη, aη : η ∈ T 〉 as above, and find η∗, ν, ν∗ ∈ T with
g̀(η∗) = g̀(ν) = g̀(ν∗) = 1 such that (η∗, ν), (η∗, ν∗) are as above.

But whereas for (A∗) we have to make both η∗ and ν∗ not redundant in (B∗),
in order to get non-structure we have to use a case of (B∗) which is not a “fake;”
e.g. we cannot replace (Mη∗ , aη∗) by two such pairs.

That is, the “faker” is a case where we can find M ′η∗ ,M
′′
η∗ such that:17

• NF(M〈 〉,M
′
η∗ ,M

′′
η∗ ,Mη∗)

• Mη∗ is prime over M ′η∗ ∪M
′′
η∗ .

• Only (M ′η∗ ,Mν) and (M ′′η∗ ,Mν∗) relate.

(C∗) If both (A∗) and (B∗), in the right formulation, do not appear then
(α) A good possibility

We can prove a structure theory: for M , 〈Mη, aη : η ∈ T 〉 as above;
that is, on each sucT (η) we have a two-place relation, but it is very
simple: you have to glue some together or expand the set of successors
by a tree structure.

If this fails, we may fall back to approach (3).

We may consider (see [She08], [PS18]):

16 Essentially: there is a non-algebraic p ∈ (M⊥)⊥ which does not 1-dominate any q ∈ S(M).
17 NF stands for non-forking; see [PS].
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Question 3.2. 1) For an AEC k, when does the theory of a model in the logic
L ..= “L∞,κ[k] enriched by dimension quantifiers” characterize models of k up to
isomorphism? (Similarly, also enriching by game quantifiers of length ≤ κ.)

2) Prove the main gap theorem in the version: “if s is n-beautiful then the main
gap holds for Kλ+n .” (See [She09f, §12].) In particular, if s has NDOP, then every
M ∈ Kλ+n is prime over some non-forking tree of ≤ks-submodels 〈Mη : η ∈ T 〉,
where each Mη is of cardinality ≤ λ and T ⊆ ω>(λ+n). If s is shallow then the tree
has depth at most Depth(s) < λ+, and we can draw a conclusion on the number of
models.

Discussion 3.3. Assume stability in λs.
Let M0 ∈ Ks, λ

+
s -saturated, at least for the time being.

1) Assume

�1 N0 ≤s N1 ≤s M , N` ∈ Ks
λ, a ∈ N0, and (N0, N1, a) ∈ K3,pr

s .

We choose (N+
1,i, N1,i, Ii) and also, if possible, (M1, ai) by induction on i ≤ λ+s such

that

(∗) (a) N0,i ≤s N1,i ≤s N
+
1,i ≤s M

(b) Ii ⊆ {c ∈M : ortp(c,N1,i,M0) ⊥ N0} is independent in (N1,i, N
+
1,i,M)

and minimal.

(c) 〈Nj : j ≤ i〉 is ≤s-semi-continuous; also, 〈N+
j : j ≤ i〉 is as well.

(d) If i = j+1 then N+
1,i is≤s-universal over N+

1,j and (N0, N1,i, a) ∈ K3,pr
s .

(e) If j < i then Ij \ (Ni ∩ Ij) ⊆ Ii.

(f) If possible:
(α) Ni ≤s M

+
i ≤s M

(β) (Ii \Mi) is independent in (Mi,M).

(γ) ai ∈M \ (Ii)

(δ) ortp(ai,M
∗
1 ,M) ∈ Sbss (N+

i ) is ⊥ Ni.
(ε) N∗i ≤ N1,i+1

(g) If i = j + 1 and there are (b,N+
∗ , N∗∗) such that b ∈ N+

1,j \N1,j ,

N1,i ≤s N∗ ≤s N∗∗ ∈ Ks
λs
,

N+
1,i ≤s N∗∗, and ortps(b,N∗, N∗∗) forks over N1,j then, for some

b ∈ N+
1,j \N1,j , the type ortps(N1,i, N

+
1,i) forks over N1,j .

There is no problem to carry the induction.

�2 The following subsets of λ+s are not stationary — say, disjoint to the club
C:
• S ..= {i < λ+s : cf(i) ≥ κs and (Mi, ai) is well defined}
• S2

..=
{
i : cf(i) ≥ κs and for some b ∈ N+

1,i, tp(b,N1,i, N
+
1,i) = N0

}
.

2) Similarly, without (N0, a) (and hence without “⊥ N0;” it’s just simpler).

Definition 3.4. We say (N, ā, Ī) is a decreasing pair for M when for some n:

(A) N = 〈N` : ` ≤ n〉 is ≤s-increasing.

(B) N` ≤s M , N` ∈ Ks
λs

(C) ā = 〈a` : ` < n〉
(D) (N`, Ni+1, a`) ∈ K3,pr

s

(E) Ī = 〈I` : ` ≤ n〉
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(F) I` is independent in (N`,M).

(G) I` ⊆ {c ∈M : ortp(c,N`,M) ∈ Sbss (N`) is ⊥ Nk if k < `}
(H) If N` ≤s N ≤s M , b ∈ M \ N0 \ I`, and ortp(b,N,M) is 6⊥ N` but is

orthogonal to Nk for k < ` then b depends on I` in (N`,M).

Attempt to prove decomposition
We assume dimensional continuity to prove decomposition. If we would like to

get rid of “M is λ+s -saturated”, we must assume we have a somewhat weaker version
s∗ of s where λs∗ < λs and 〈N0,i : i < λs〉 does ≤s∗-represent N0, and work with
that. Assuming CH, |T | = ℵ0 is fine. Without dimensional discontinuity, we will
call ‘nice’ any (N̄ , ā, Ī) of length ≤ κs!

∗ ∗ ∗

Definition 3.5. We say d = (I,N, ā, Ī) = (Id, Nd, ād, Īd) is a partial decomposi-
tion of when:

� (a) I ⊆ ω>Ord is closed under initial segments.

(b) N = 〈Nη : η ∈ I〉 (so Nη = Nd,η).

(c) ā =
〈
aη : η ∈ I \ {〈 〉}

〉
(so aη = ad,η).

(d) Ī = 〈Iη = Id,η : η ∈ I〉
(e) If η ∈ I then(〈

Nη�` : ` ≤ g̀(η)
〉
,
〈
āη�(`+1) : ` < g̀(η)

〉
,
〈
Iη�` : ` ≤ g̀(η)

〉)
is nice in M .

(f) If η ∈ I then 〈aηˆ〈α〉 : ηˆ〈α〉 ∈ I〉 is a sequence of members of Iη with
no repetitions.

Definition 3.6. Let ≤µ be the following two-place relation on the set of decom-
positions of M :

d̄1 ≤M d2 iff

(A) Id1
⊆ Id1

(B) Nd1
= Nd2

� Id1
(C) ād1

= ād2
� (Id1

\ {< j})
(D) Īd1

= Īd2 � Id1
.
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