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Abstract. Assume κ = κ<κ (usually ℵ0 or an inaccessible).
We shall deal with iterated forcings preserving κ>Ord and not collapsing

cardinals along a linear order. The aim is to have homogeneous ones, so that

for some natural ideals on κ2, we get a model of ZF + DCκ + “modulo this
ideal, every set is equivalent to a κ-Borel one.”

The main application is improving the consistency result of Kellner and

Shelah [KS11], and Horowitz and Shelah [HS] on saccharinity. But presently,
we only have many automorphisms of the index set L and therefore of the

iteration of iterands Q; we do not have homogeneity of Q, and we do not have

automorphisms mapping names of Q-reals onto each other.

§ 0. Introduction

§ 0(A). Aim. We fix κ = κ<κ (maybe ℵ0) and consider homogeneous iterations of
(<κ)-complete forcing notions, with a version of κ+-cc, preserving those properties.

To get homogeneity we intend to iterate along a linear order which is quite
homogeneous (and therefore very much not well-ordered).

Ever since Solovay’s celebrated work [Sol70], we know about the connection
between the following two issues:

•1 Forcing notions P with lots of automorphisms. E.g. for small P′ l P and
two relevant P-names η

˜
1, η

˜
2, generic for the same relevant forcing Q over

VP′ , there is an automorphism of P over P′ mapping η
˜

1 to η
˜

2.

•2 Models of ZF+DC+ “every set of reals is equivalent to a Borel set modulo
the null ideal (or other reasonable ideal)”. (The relevant forcing Q was
Random Real forcing for the null ideal — another prominent case: for the
meagre ideal, Cohen forcing.)

Concerning the classical case of Lebesgue measurability, another formulation is “no
non-measurable set is easily definable,” formulated1 in L[R]. See the history and
more in [RS04], [RS06].
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2 SHELAH

This applies to other ideals id(Q, η
˜

) for a definable forcing notion Q (mainly a ccc
one) and a Q-name η

˜
of a real. Generally, it was not so easy to build such forcing

notions: it required one to prove the existence of amalgamation in the relevant
class of forcings. In Kellner-Shelah [KS11] it was suggested to look at so-called
saccharine pairs (Q, η

˜
), where Q is very non-homogeneous. (E.g. forcing with Q

adds just one (Q, η
˜

)-generic, so we have few cases we need to build automorphisms
for.)

Notation 0.1. 0) Given κ, the Borel sets are the smallest family of subsets of 2κ con-
taining all basic sets of the form {ν ∈ 2κ : ν(α) = i} and closed under complements
and union of ≤κ many sets.

1) id<∂(Q, η
˜

) is the ideal consisting of the union of <∂ many Borel sets B such that
Q “η

˜
/∈ B”.

2) Let id≤∂(Q, η
˜

) be id<∂+(Q, η
˜

).

3) α, β, γ, δ, ε, ζ will denote ordinals; δ will be a limit ordinal if not stated otherwise.

4) Sλκ
..= {δ < λ : cf(δ) = κ}.

5) Recall that Lσ,σ is defined like first-order logic, but allowing
∧
i<α

ϕi for α < σ

and (∃ . . . xi . . .)i∈I with I of cardinality < σ.

Comparing [KS11] to the older results (such as Solovay):

•1.1 The forcing Q collapsed no cardinal, but was not ccc; this2 we consider a
drawback.

•1.2 The model, as in those older results, does satisfy ZF + DC.

•1.3 The iteration was along a homogeneous linear order.

•1.4 We get only a somewhat weaker version of measurability, the ideal being
id≤ℵ1(Q, η

˜
) instead of id<ℵ1(Q, η

˜
).

Alternatively,

•′1.4 Use id<ℵ1(Q, η
˜

)+X, where X is the set {η
˜

[G] : G ⊆ QL is generic over L}.

The next step was Horowitz-Shelah [HS], where:

•2.1 The forcing is ccc, which is a plus.

•2.2 The model only satisfies ZF; we do not get DC or even ACℵ0 — not so good.
•2.3 Again, the iteration is along a homogeneous linear order.

•2.4 The ideal is again id≤ℵ1(Q, η
˜

) (or as in •′1.4 above).

Here (in 4.1) we regain both ccc (as in •2.1) as well as DC (as in •1.2). Moreover,
we can demand DCℵ1 (or more — see §1) which is a significant plus.

We continue [She04b], [She], but do not rely on them. Instead of defining iter-
ations we introduce them axiomatically and allow κ > ℵ0 (in the support), but it
suffices here to demand that the memory is a set, not an ideal. Unlike [She04b],
the present paper does not address forcing a > d. Earlier continuations of [She04b]
and [She] were the parallel papers, in preparation, with preliminary number F2009
and F2029 (and later, their descendants F2330 and F2329). There, as in [She04b],

2 Note that Solovay uses Levy collapse of an inaccessible, but the later versions use ccc ones
(mainly for the meagre ideal).
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HOMOGENEOUS FORCING 1257 3

we sometimes replace the set Iss (see 1.1) by an ideal (sometimes the whole power
set) and use more general definable forcing notions.

In our iteration we are allowed to replace ℵ0 by some κ = κ<κ, so the forcing
notions are (<κ)-complete κ+-cc. But we need a forcing notion analogous to the one
in [HS]: this will hopefully be done in a continuation (in preparation, preliminary
number F2261).

§ 0(B). Preliminaries.

Hypothesis 0.2. 1) κ = κ<κ (mainly ℵ0 or an inaccessible).

2) ∂ is a regular cardinal > κ.

3) D is a normal filter on κ+ such that Sκ
+

κ
..= {δ < κ+ : cf(δ) = κ} ∈ D.

Definition 0.3. Let Q be a forcing notion.

1) We say Q is a strong κ-forcing (or ‘(κ, 1)-forcing’) when:

(A) If κ = ℵ0, then Q is Knaster (and hence ccc).

(B) When κ > ℵ0:
•1 Q satisfies ∗1κ,D (which means a strong version of the κ+-cc; see below

in 0.3(4) and more in [She22, 0.2(B)(2)a=Lx2]).

•2 Q is (<κ)-complete.

•3 Any increasing sequence of length < κ has a lub.3

2) Q is a weak κ-forcing (or ‘(κ, 2)-forcing’) when:

(A) If κ = ℵ0, then Q is a ccc forcing.

(B) As in (1)(B).

3) Whenever we just write ‘a κ-forcing,’ we mean the strong version.

4) For D a normal filter on κ+ containing Sκ
+

κ , we say the forcing notion Q satisfies
∗1κ,D when:

κ = ℵ0 and Q is ccc, or κ > ℵ0 and

∗a Given a sequence 〈pi : i < κ+〉 of members of P, there is a set4 C ∈ D and
a regressive function h on C such that

α, β ∈ C ∧ h(α) = h(β)⇒ ‘pα and pβ have a lub.’

Notation 0.4. 1) Here s will denote a combinatorial template (that is, a member of
T — see Definition 1.1).

2) Here q, r,p will denote ATIs (abstract template iterations); i.e. members of Qpre

(the weakest version — see Definition 1.5).

3) L is a linear order (usually L ⊆ Ls) and r, s, t ∈ L.

3 It seems sufficient to just demand

•′1 Instead of clause (2)a of [She22, 0.2(B)=Lx2], we use the game of length ε of [She00] (with
ε a limit ordinal < κ; the natural choice is ε = ∂).

•′2 Q is strategically ζ-complete for every ζ < κ.

•′3 There exists some θ ∈ Reg such that any increasing θ-sequence has a lub.

4 Yes! Not just ‘C ∈ D+;’ see [She22].
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4 SHELAH

L+ is derived from L, with ∞, t, t(+) ∈ L+ for t ∈ L. (See below in 1.1(2).)

4) Ls or Lq will be the relevant linear order for s or for q, etc.

5) P,Q,R denote forcing notions as in Definition 0.3 (which means quasi-orders).
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HOMOGENEOUS FORCING 1257 5

§ 1. The frame

Definition 1.1. 0) Let T be the class of (∂, κ)-combinatorial templates (defined
below), assuming ∂ = cf(∂) > κ.

(∂ serves as an upper bound on the cardinality of some objects in the template:
if there is no upper bound, we may write ∂ =∞ or we may omit it.)

1) A (∂, κ)-CT (a (∂, κ)-combinatorial template) s consists of:

(a) A linear order Ls (we could have used ‘partial order’; it does not really
matter for our purposes).

We may write x ∈ s instead of x ∈ Ls, or x <s y instead of x <L y.

(b) A sequence 〈Ist : t ∈ Ls〉, where It = Ist ⊆ {s ∈ Ls : s <Ls
t} has cardinality

< ∂.

2) For s ∈ T, we add new objects t(+) for all t ∈ Ls, as well as ∞, and define L+
s ,

Ls,x, L+
s,x, etc. as follows.

(a) L+
s

..= {t, t(+) : t ∈ Ls} ∪ {∞}
(b) Naturally, 〈t : t ∈ Ls〉ˆ〈t(+) : t ∈ Ls〉ˆ〈∞〉 is without repetition.

(c) <L+
s

is the closure, to a linear order, of the set{
t < t(+) : t ∈ Ls

}
∪
{
s(+) < t : s <Ls

t
}
∪
{
t(+) <∞ : t ∈ Ls

}
.

(d) For t ∈ L+
s , let Ls,t

..= {s ∈ Ls : s <L+
s
t} and L+

s,t
..= {s ∈ L+

s : s <L+
s
t}.

3) For L ⊆ Ls, we define s � L ∈ T as follows.

•1 Ls�L
..= L

•2 Is�Lt
..= Ist ∩ L.

4) For t ∈ Ls, let s � t ..= s � Ls,t.

5) We call L ⊆ Ls closed (really, ‘s-closed’) when t ∈ L⇒ Ist ⊆ L. (E.g., if LE Ls

is an end-extension of L).

6) We say s is closed when Ist is s-closed for every t ∈ Ls.

7) If t ∈ Ls and L ⊆ Ls, we may abuse notation and write Lt in place of L ∩ Ls,t.

8) We say π is an isomorphism from s1 onto s2 (for s1, s2 ∈ T) when

π : Ls1 → Ls2

is an order-preserving function mapping Is1t onto Is2π(t) for each t ∈ Ls1 .

Definition 1.2. We define a two-place relation ≤T (obviously a partial order) on
the class of combinatorial templates by:

s1 ≤T s2 iff

(a) Ls1 ⊆ Ls2 as linear orders.

(b) We use in s1 and s2 the same ∞ and t(+) for all t ∈ Ls1 .

(c) If t ∈ Ls1 then Is1t = Is2t (hence Ls1 is s2-closed).
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6 SHELAH

Claim 1.3. 1) ≤T is indeed a partial order on T.

2) If 〈sε : ε < δ〉 is ≤T-increasing then
⋃
ε<δ

sε (naturally defined) exists, is a ≤T-lub,

and is unique.

Proof. Easy. �1.3

Definition 1.4. Qwk
s is the class of weak s-ATIs (see below), and

Qwk
..=
⋃
s∈T

Qwk
s .

(ATI stands for abstract template iterations.)

Definition 1.5. For s a combinatorial template, we say q is a weak s-ATI when
it consists of the objects

• s ∈ T (we write Lq and Lq,t instead of Ls and Ls,t),
• a quasiorder P
• for all t ∈ Lq:

– a “ground model” set St,
– in case κ > ℵ0, a “ground model” function Ht : κ>(St)→ St, and
– names (for a suitable poset, see below) Q˜ t and η

˜
t,

such that the following is satisfied:

(A) (a) P is a weak κ-forcing notion (as in Definition 0.3(2)).
(b) If p ∈ P then p is a function with domain dom(p) ∈ [Lq]<κ.

(B) For t ∈ L+
q , we define Pt := {p ∈ P : dom(p) ⊆ Lq,t} (with the order from

P), and require:
(a) Pt is a weak κ-forcing, and
(b) Pt l P (a complete subforcing).
So a P-generic filter G˜ P canonically gives us, for each s ∈ L+

s , a Ps-generic
(over V) filter, which we call G˜ Ps .

(C) For t ∈ Lq,
(a) Q˜ t is a Pt-name,
(b) Pt forces that Q˜ t is a weak κ-forcing with set of elements St.

(c) η
˜
t is a Pt(+)-name of a member of St2, (which we may identify with

the subset η
˜

−1
t (1) of St),

(d) Pt(+) forces that η
˜

−1
t (1) is Q˜ t[GPt ]-generic over V[GPt ].

(e) We set η̄
˜

..= 〈η
˜
t : t ∈ Lq〉 (a P-name).

(D) (a) We require that p ∈ P iff: p is a function with dom(p) ∈ [Lq]<κ, and
for s ∈ dom(p), p(s) is a Ps-name of a member of Q˜ s (i.e., of Ss) of the

following specific form: p(s) = B(. . . , η
˜
t
p(s)
j

(ε
p(s)
j ), . . .)j<jp(s) , where

•1 t
p(s)
j ∈ Is, εp(s)j ∈ Stj and jp(s) ≤ κ.

•2 B is a κ-Borel function5 from (jp(s))2 to Ss such that the image
has cardinality ≤ κ. More concretely: There is (in V ) a S′p(s) ∈
[Ss]

≤κ such that the image of B is subset of S′.
(b) If ε, ζ ∈ Ss, then the we require that the truth value of ε ≤Q˜ s ζ

is similarly defined by such a κ-Borel function Bs,ε,ζ (this time, the
possible values of Bs,ε,ζ are the truth values 0 and 1).

5 That is, a function where the pre-image of every element of Ss is a ≤κ-Borel set. (The point
here is absoluteness.)

Paper Sh:1257, version 2025-02-17. See https://shelah.logic.at/papers/1257/ for possible updates.



HOMOGENEOUS FORCING 1257 7

(E) (a) Note that a Ps-generic filter lets us evaluate the P
t
p(s)
j (+)

-names η
˜
t
p(s)
j

,

and therefore the value of the Borel function p(s). This way we get a
Ps-name for the value, which we may write as p(s)[GPs ] or as p(s)(η̄ �
s).

(b) We require that η
˜

−1
t (1) = {p(t)[GPt ] : p ∈ G˜ Pt(+)

}.
(c) XXXX So we know that p ∈ GP implies:

(∗) For all t ∈ dom(p), νt(p(t)(ν̄ � Lq,t))) = 1.
It is unclear whether the converse automatically holds, if not we prob-
ably require it, then prove it later when we construct the iteration?

(F) We require that p ≤ q in P iff
(a) dom(p) ⊆ dom(q)
(b) If s ∈ dom(p) then q � Lq,s Ps ‘p(s)[GPs ] ≤Q˜ s q(s)[GPs ]’.

(Note that for p ∈ P and s ∈ L+
q we have p � Lq,s is in Ps.)

Note that this is a requirement and not a definition, unlike the classical
case.

(G) (a) Given p ∈ P and s ∈ dom(p), let supp(p(s)) be the set of all coordinates

used in the Borel function p(s) (i.e., the t
p(s)
j ), as well as those used in

the Borel function Bs,ε,ζ (calculating whether ε ≤Q˜ s ζ) for all ε, ζ in

S′p(s). So |supp(p(s))| ≤ κ.

(b) Set supp(p) := dom(p) ∪
⋃
s∈dom(p) supp(p(s)) ∈ [Lq]≤κ.

(c) Note that supp(p) ⊆ Lq,t iff dom(p) ⊆ Lq,t, i.e., iff p ∈ Pt.
(d) (Generalizing Ps as the restriction to Ls:)

For L ⊆ Lq s-closed, we set PL := {p ∈ P : supp(p) ⊆ L} (with the
order of P), and require
•1 PL is a weak κ-forcing, and
•2 PL l P.
•3 η̄

˜
� L is a generic of PL. (Elaborate? XXXXX)

•4 Note that if L is closed, then so is Ls for any s ∈ L+
q , and

therefore PLs l PL and PLs l Ps.
(H) If κ > ℵ0 and t ∈ Ls, then there is

Ht : κ>(St)→ St

such that:
(a) Pt “if η ∈ κ>(St) is ≤Q˜ t-increasing then Ht(η) is a lub of{

η(i) : i < g̀(η)
}

”.

(b) If η ∈ 2St and {η(0), η(1)} has a ≤Qt-lub then Ht(η) is some lub.
(I) When dealing with different ATIs qs, instead of P, ≤, Pt, St, Q˜ t, etc we may

write Pq, ≤q, Pq,t, Sq,t, Q˜ q,t etc, to indicate that we mean the component
of the respective q.

Remark 1.6. 1) Recall that Lq is just a linear order and not necessarily a well-
ordering. More concretely, we do not even exclude the possibility that there is an
infinite sequence (sn)n∈ω with sn+1 ∈ Isn .

2) As a consequence: Given Ls and a sequence of (e.g., Definitions for) Qs, it is
not clear whether there is an according iteration P; nor whether it is unique.

(In contrast, the usual forcing iteration assumes that the index set is wellordered,
and we always get a welldefined iteration from a sequence of iterands.)

3) But if s is as in [She04b, §2], then it is unique.
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8 SHELAH

Definition 1.7. 1) We define Qst
s , Qst, and say ‘strong ATI’ when we replace

“weak κ-forcing” by “strong κ-forcing” wherever it appears in 1.5.

2) We define Qpre, Qpre
s as in Definition 1.5, replacing “weak κ-forcing” by “forcing”

wherever it appears in 1.5.

3) Let Q0,Q1,Q2 be shorthand for Qpre,Qwk, and Qst, respectively.

4) When we omit the subscripts, we mean ‘weak.’

5) If q ∈ Qpre and L ⊆ Lq is sq-closed, then p = q � L is defined by sp ..= sq � L
and Pp

..= Pq,L.

6) We define “π is an isomorphism from q onto p” naturally.

7) We define Q∗` (for ` = 0, 1, 2, or pre, wk and st) as the class of q ∈ Q` such that

s ∈ Lq ⇒ |Sq,s| < ∂.

(We shall only use ∂ starting with 2.4.)

Observation 1.8.

• If p ∈ P and L ⊆ dom(p), then p � L ∈ P and p � L ≤ p. If additionally L
is closed, then p � L ∈ PL.

• If L ⊆ Lq is closed, and p ∈ PL, σ a PL-name and ϕ(x) a formula absolute
between forcing extensions, then p PL ϕ(σ) iff p P ϕ(σ).

• If L ⊆ Lq is closed, and p, q in PL, then p ≤ q iff (F) holds for PL, i.e., iff
– dom(p) ⊆ dom(q), and
– If s ∈ dom(p) then q � Ls PLs ‘p(s)[GPLs ] ≤Q˜ s q(s)[GPLs ]’.

• If p ≤ q in P and s ∈ L, then p � Ls ∈ Ps and q � Ls ≤ p � Ls; and the
same holds for PL and PL,s for L closed.

Proof. Easy.

�

Observation 1.9. Let q ∈ Qpre.

1) If L ⊆ Lq is q-closed, p ∈ Pq, and p � L ≤ q in Pq,L, then

r ..=
(
p � (dom(p) \ L)

)
∪ q

is a lub of p and q.

2) For q-closed L, we have Pq,L |= “p ≤ q” iff6 (p, q ∈ Pq,L and)

•1 dom(p) ⊆ dom(q) ⊆ L
•2 If s ∈ dom(p) then for some q-closed L1 satisfying Iqs ⊆ L1 ⊆ L∩Lq,s, we

have q � L1 PL1
“p(s) ≤Q˜ s q(s)”.

3) Like (2), but in •2 we replace “for some” with “for every.”

3A) Like (2), but in •2 we demand L1 = Iqs .

4) If q is closed, then in (2)•2 we can choose L1 = Iqs .

Proof. 1) Note

6 Note that dom(p) ⊆ dom(q) ⊆ L does not imply supp(p) ⊆ supp(q); we could add that
demand, but have chosen not to.
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HOMOGENEOUS FORCING 1257 9

(∗)1 r ∈ Pq.

[Why? First, r is a well-defined function. Second, dom(r) ∈ [Lq]<κ, and third, for
s ∈ dom(r), r(s) is a Borel function as required.]

(∗)2 Pq |= ‘q ≤ r’

As r � dom(q) = q, this is trivial.

(∗)3 Pq |= ‘p ≤ r’

We have to check 1.5(F). Now (a) is trivial, as dom(p � L) ⊆ dom(q) ⊆ L; as for
(b), let s ∈ dom(p) and we have two possibilities to check: If s ∈ dom(p) \ L, then
again r(s) = p(s), so this is clear. So assume that s ∈ dom(p) ∩ L. We have to
show that r � Lq,s forces that r(s) ≥ p(s). But r � Lq,s ≤ q � Lq,s, and r(s) = q(s),
and q � Lq,s forces that q(s) ≥ p(s).

(∗)4 If Pq |= “p ≤ r′ ∧ q ≤ r′” then Pq |= r ≤ r′.

Easy as well.

2-4) Also straightforward. �1.9

Definition 1.10. 1) Let q1 ≤wk
Q q2 mean:

(a) q` is a weak s`-ATI for ` = 1, 2 (where s` = sq` ; recall that q` determines
s`).

(b) s1 ≤T s2

(c) Pq1
l Pq2

, which implies Pq1,t l Pq2,t for t ∈ Ls1 .

(d) For t ∈ Ls1 , we have Sq2,t = Sq1,t and Q˜ q1

t = Q˜ q2

t .

(e) Pq2
“η
˜

q1

t = η
˜

q2

t ” for t ∈ Ls1 .

2) We define ≤pre
Q as above, changing clause (a) to ‘q` ∈ Qpre’ and weakening clause

(c) to ‘Pq1
⊆ Pq2

.’

We define ≤Q2
..= ≤Q � Q2.

XXX what is Q2? Also, if you are not completely embedded, how can you
formulate that it is forces that both Qt are the same?

2A) If r ≤pre
Q q and p ∈ Pq, then we define q ..= p � r as follows:

•1 dom(q) = dom(p) ∩ Lr

•2 If s ∈ dom(q) then q(s) = p(s) (recalling 1.2(b) and 1.5(D)(a)).

3) If 〈qα : α < δ〉 is ≤Q-increasing then “q ..=
⋃
α<δ

qα” will mean the following:

(a) q ∈ Q

(b) sq ..=
⋃
α<δ

sqα

(c) qα ≤Q q for all α < δ.

(d) [Follows] If s ∈ Lqα then Q˜ q
s = Q˜ qα

s and η
˜

q
s = η

˜

qα
s .

4) We say q = 〈qα : α < α∗〉 is ≤Q-increasing continuous if it is ≤Q-increasing and
qδ =

⋃
α<δ

qα for every limit δ < α∗.
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10 SHELAH

Remark 1.11. 1) Note that in parts (3),(4) of Definition 1.10, for a given 〈qα : α <
δ〉, it is not a priori clear that such q exists — and even if it does, whether it is
unique.

2) Regarding 1.10(1)(c), does “Pq1
l Pq2

” follow by 1.5(G)(d), as Ls1 is q2-closed
by Definition 1.2? This is not clear. (See 1.6(2).)

3) We can only show that given q and a q-closed L ⊆ Lq, we have (q � L) ≤Q q.

Observation 1.12. 1) Assume q1 ≤pre
Q q2.

(A) If p ∈ Pq1
and q ∈ Pq2

, then we have (a)⇔ (b), where:
(a) Pq2

|= “p ≤ q”
(b) If s ∈ dom(p) then s ∈ dom(q) ∧ q � Lq1,s Pq1,s

“p(s) ≤Q˜ s q(s)”.

(B) If Pq2
|= “p ≤ q” and s ∈ dom(p) ∩ Lq1

, then

q � Lq1,s Pq1,s
“p(s) ≤Q˜ s q(s)”.

(C) Assume there exist L1
1, L

2
1, L

1
2, L

2
2 such that:

(a) L2
1 C L

2
2 E Lq2

(b)
2∧
`=1

[L1
` = L2

` ∩ Lq1
]

(c) p ∈ Pq2�L2
1

and q ∈ Pq1�L1
2
.

(d) Pq2,L2
1
|= q � L1

1 ≤ p+.

If in addition, p+ ∈ Pq2�L1
1

is ≤Pq2
-above q � Lq1�L1

1
and p � Lq1�L1

1
, then

{p, p+, q} have a common upper bound in Pq2�L2
2
.

XXX what does this mean? Please check all indices i, j, k in qi, L
j
k.

2) If x ∈ L+
s then s � Lx ∈ T and

q ∈ Qs ⇒ q � Lx ∈ Qsq�x. (See 1.1(4) and 1.5(F)(d).)

3) Assume q1 ≤Q q2.

Then

(a) If L ⊆ Lq1
then L is q1-closed iff L is q2-closed.

(b) If L1 ⊆ L2, L1 is q1-closed, and L2 is q2-closed (so Lι ⊆ Lqι for ι = 1, 2)
then
•1 Pq1,L1 l Pq2,L2

•2 If pι ∈ Pqι,Lι for ι = 1, 2, p1 = p2 � L1, and Pq1,L1
|= “p1 ≤ q”, then

p2 and q are compatible in Pq2,L2
.

Proof. 1A) First assume Pq2
|= “p ≤ q” (i.e. clause (A)(a)). Then for every s ∈

dom(p), we have s ∈ dom(q) (by 1.5(D)(a) and 1.2) and

Pq1,s
“q � Lq1,s  ‘p(s) ≤Q˜ s q(s)’ ”

by 1.9(3A). Together we get clause (A)(b).

Now assume clause (A)(b). So dom(p) ⊆ dom(q), and by 1.9(2) we get
Pq2 |= “p ≤ q”. (Note that closedness holds, so 1.9(2) applies.)

1B) Similar proof.

1C) Use the proof of 1.9(1).

2-3) Easy. �1.12
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Claim 1.13. If 〈qα : α < δ〉 is a ≤Q-increasing continuous sequence of (∂, κ)-
combinatorial templates (Note: when κ > ℵ0 this does NOT mean that 〈Pqα : α < δ〉
is ⊆-increasing continuous!) and cf(δ) ≥ κ, then

⋃
α<δ

qα exists and is unique.

Proof. Straightforward — anyhow, we shall use 2.1 for Q ∈ {Qwk,Qst}. �1.13
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§ 2. Unions

Claim 2.1. 1) If q = 〈qα : α < δ〉 is ≤Qwk
-increasing continuous (see 1.10(4)) then

qδ ..=
⋃
α<δ

qα exists and is unique, belongs to Qwk, and qˆ〈qδ〉 is ≤Q-increasing

continuous.

2) Similarly for ≤Qst
.

Remark 2.2. Note that this is not a repeat of 1.13, as we have dropped the assump-
tion on cf(δ).

Proof. 1) Let sα ..= sqα and Lα ..= Lsα for α < δ.

Note that s = sq ..=
⋃
α<δ

sα is well defined (by 1.3),7 but when cf(δ) < κ we

cannot choose Pq
..=

⋃
α<δ

Pqα . We have to choose q = qδ as follows:

(∗)1 (a) sq = sδ ..=
⋃
α<δ

sα, and let Lδ ..= Lsδ .

(b) p ∈ Pq iff
•1 dom(p) ∈ [Ls,δ]

<κ

•2 If s ∈ dom(p) then p � {s} ∈
⋃
α<δ

Pqα .

(Recall 1.5(D)(a).)

(c) ‘p ≤Pq q’ is defined by 1.9(2); that is, dom(p) ⊆ dom(q) and(
∀s ∈ dom(p)

)[
q � Lqβ Pqβ

“p(s) ≤Q˜ s q(s)”
]
,

where β = β(s) ..= min{α < δ : s ∈ Lα}. (Recall 1.9(3A) and note
that Isδ,s = Isβ ,s.)

Let q = 〈qα : α ≤ δ〉. Easily,

(∗)2 (a) α < δ ⇒ Pqα ⊆ Pq (As partial orders, of course.)

(b) If β < δ and L ⊆ Lβ is sδ-closed, then Pq,L = Pqβ ,L.

(c) L ⊆ Lδ is q-closed iff L ∩ Lα is qα-closed for every α < δ.

(d) If L is sδ-closed then Pq,L is defined from 〈qα � (L ∩Lqα) : α < δ〉, as
qδ was defined from 〈qα : α < δ〉.

Why? Obvious, but we will elaborate.

Clause (a): Let α < δ.

First, if p ∈ Pqα , then by (∗)2.1+(∗)2.2 below we have p ∈ Pqδ .

(∗)2.1 dom(p) ⊆ Lqα is of cardinality < κ, by 1.5(D)(a). Also,
Lα ⊆ Lqδ by (∗)1(a), so p satisfies (∗)1(b)•1.

(∗)2.2 If s ∈ dom(p) then p � {s} ∈ Pqα by 1.5(D)(a), hence p � {s} ∈ Pqδ .

Second, assume p, q ∈ Pqα . Then

Pqα |= “p ≤ q”⇒ Pqδ |= “p ≤ q”
by (∗)2(b) and 1.12(1)(B).

7 Really, the linear order on Lsq is

Lsq |= “s < t”⇔ (∃α < δ)[Lsα |= “s < t”],

recalling that Lsα is increasing with α (as linear orders).
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Clauses (b)-(d): Similarly.

So (∗)2 does indeed hold.

(∗)3 (a) α < δ ⇒ Pqα l Pq

(b) If L ⊆ Lq is q-closed then Pq,L l Pq.

(c) η̄
˜

= 〈η
˜
s : s ∈ Lδ〉 is a generic for Pqδ .

(That is, Pqδ
“V[η̄

˜
] = V[GPqδ

]”.)

(d) If L ⊆ Lδ is s-closed then 〈η
˜
s : s ∈ L〉 is a generic for Pqδ�L.

(e) Clause 1.5(C)(d) holds.

To prove clause (a), let p ∈ Pq. By the assumptions, 〈sqβ : β < δ〉 is increasing. So
easily, recalling (∗)1(c), letting pβ ..= p � (dom(p) ∩ Lβ) for β ∈ [α, δ), we have

(∗)β Pqα |= “pα ≤ q”⇒ p and q are compatible in Pq.

See 1.9(1). This is okay even for p = pδ which are the union of
〈
pβ : β ∈ [α, δ)

〉
.

So clause (a) holds. The proof of clause (b) is similar.

As for (c), let Gδ ⊆ Pqδ be generic over V. By clause (a), Gα
..= Gδ ∩ Pqα

is a generic subset of Pqα for α < δ. So p ∈ Gδ ⇒ p � Lα ∈ Gα, recalling
p ∈ Pqδ ⇒ p � Lδ ≤Pqδ

p.

Also,

p ∈ Pqδ ∧
∧
α<δ

[
p � Lα ∈ Gα

]
⇒ p ∈ Gδ

because Pqδ is (<κ)-complete, and Pqδ |= “
∧
α<δ

[p � Lα ≤ q]” implies Pqδ |= “p ≤ q”.

Together, 〈η
˜
s : s ∈ Lα〉 determines Gα for α < δ and 〈Gα : α < δ〉 determines

Gδ, hence
〈
ηs : s ∈

⋃
α<δ

Lα
〉

determines Gδ.

So clause (c) holds. Clauses (d) and (e) are proved similarly.

Next,

(∗)4 If L is sδ-closed then Pqδ,L is a weak κ-forcing.

Why? If κ = ℵ0 then 〈Pqα,L∩Lα : α < δ〉 is a l-increasing continuous sequence of
ccc forcing notions with union Pqδ,L, and so this is known. Therefore we assume
κ > ℵ0, and then prove that Pqδ,L satisfies ∗1κ,D for D and κ as in 0.3(4).

Let 〈pi : i < κ+〉 ∈ κ+

(PL) be given. First, let ui ..= dom(pi), so ui ∈ [L]<κ. As
κ = κ<κ, there are C ∈ D and h : C → C such that:

(∗)4.1 (a) (∀α ∈ C)[cf(α) = κ]

(b) h is a regressive function on C.

(c) If ζ ∈ rang(h), then for some vζ ⊆ L we have

i 6= j ∈ C ∧ h(i) = h(j) = ζ ⇒ ui ∩ uj = vζ .

[Why? This holds not by the ∆-system lemma, but by its proof (using Fodor’s
Lemma).]

(∗)4.2 (a) Without loss of generality, ζ ∈ rang(h)⇒ h−1({ζ}) ∈ D+.

(b) For s ∈ Lqδ , let α(s) ..= min{α : s ∈ Lqα}.

Paper Sh:1257, version 2025-02-17. See https://shelah.logic.at/papers/1257/ for possible updates.
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[Why? For clause (a), recall that D is a normal filter on κ+.]

The proof of (∗)4 now splits into cases.

Case 1: cf(δ) ≤ κ.

Without loss of generality δ ≤ κ, hence there is a function g : κ+ → κ ∩ (δ + 1)
such that i < κ+ ⇒ pi ∈ Pqg(i)

. Without loss of generality g(i) is a limit ordinal.

(Recall that we are presently assuming κ = cf(κ) > ℵ0).

Now, using qα ∈ Qwk for α < δ, consider 〈pi � Lqα : i < κ+〉. There are Cα ∈ D
and hα (a regressive function on Cα) as follows from ‘Pqα satisfies ∗1κ,D.’

Now, recalling κ = κ<κ and (∀γ ∈ C)[cf(γ) = κ], we can find C∗ and h∗ such
that

(∗)4.3 (a) C∗ ∈ D and

C∗ ⊆
{
j ∈ C ∩

⋂
ζ<κ

Cζ : (∃k ∈ C ∩ j)
[
h(j) = h(k)

]}
.

(b) h∗ is a regressive function on C∗.

(c) If j1, j2 ∈ C∗, h∗(j1) = h∗(j2), and g(j1) = g(j2), then h(j1) = h(j2)
and ζ ≤ g(j1)⇒ hζ(j1) = hζ(j2).

[Why? Easy, but we elaborate.

Let C∗1
..=
{
ζ ∈

⋂
α<δ

Cα : ζ a limit ordinal < κ+
}

. So C∗1 ∈ D, as Dα is a normal

filter on κ+ and every Cα belongs to D by our choices. As C∗1 and C belong to the
filter D, clearly C∗1 ∩ C does as well.

As κ = κ<κ, there is a one-to-one function cd : κ>(κ+)→ κ+ such that

β < κ+ ∧ η ∈ κ>(β + κ)⇒ cd(η) < β + κ.

Let

C∗2
..=
{
ζ < κ+ : α ∈ κ>ζ ⇒ cd(α) < ζ

}
;

it is a club of κ+, hence C∗ ..= C∗1 ∩ C∗2 ∩ C ∈ D.

Lastly, define the function h∗ with domain C∗ by

ζ 7→ cd(
〈
g(ζ)

〉
ˆ
〈
hα(ζ) : α < g(δ)

〉
).

It is easy to check that C∗ and h∗ are as desired.]

(∗)4.4 If i, j ∈ C∗ with h∗(i) = h∗(j), then

(∀α < δ)
[
{pi � α, pj � α} has a ≤Pqα

-lub
]
,

hence pi and pj have a ≤Pqδ
-lub.

[Why? Easy. (By 0.3(1)(B)•3.)]

Together we are done. That is, C∗ and h∗ are as required.

Case 2: cf(δ) > κ+.

For some α < δ, {pi : i < κ+} ⊆ Pqα so the conclusion is obvious.

Case 3: cf(δ) = κ+.

Without loss of generality δ = κ+; hence
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(∗)4.5 In clause (∗)4.1, without loss of generality, for each ζ ∈ rang(h) and
i ∈ h−1({ζ}), we have
• vζ ⊆ Lqi and i < j ∈ C ⇒ pi ∈ Pqj .

• C∗ and h∗ are as in (∗)4.3.

(Recall from (∗)4.1(c) that dom(pi)∩dom(pj) is constant for all i, j ∈ h−1({ζ}); we
denoted this set by vζ .)

Now easily i, j ∈ C∗ ∧ h∗(i) = h∗(j)⇒ “pi and pj are comparable.”

So clearly we have proved (∗)4.

(∗)5 q ∈ Qwk

[Why? We have to check all clauses of Definition 1.5; this is straightforward by
(∗)1–(∗)4.]

(∗)6 qα ≤Q qδ for α < δ.

[Why? We should check Definition 1.10(1). Clause (a) holds by (∗)5. Clause (b)
holds by (∗)1(a) (recalling p ≤Q q ⇒ sp ≤T sq and 1.3(2)). Clause (c) is covered
by (∗)3(a), and clauses (d) and (e) are obvious.]

(∗)7 qδ =
⋃
α<δ

qα

[Why? We should check Definition 1.10(3):

Clause (a): (q ∈ Q)

Holds by (∗)5.

Clause (b): (sqδ =
⋃
α<δ

sqα)

Holds by (∗)1(a), recalling qα ≤Q qβ ⇒ sα ≤T sβ and Claim 1.3(2).

Clause (c): (qα ≤Q q)

Holds by (∗)6.]

2) Similarly, as in the nontrivial case κ = ℵ0, the Knaster condition is preserved by
the union of l-increasing continuous chains.

So we are done proving 2.1. �2.1

Claim 2.3. 1) We have ‘(A) implies (B),’ where:

(A) (a) r ∈ Qst

(b) Q˜ is a Pr-name of a strong κ-forcing.

(b)+ Moreover, it is a Pr�L0
-name, where L0 ⊆ LE Lr is r-closed.

(B) There are q ∈ Qst and t∗ ∈ Lq \ Lr such that
(a) r ≤st

Q q

(b) Lq = L+ {t∗}+ (Lr \ L) as linear orders.

(c) Q˜ q,t∗ = Q˜ and Iqt∗ = L0.

2) Identical to part (1), but replacing ‘strong’ by ‘weak’ everywhere (so of interest
only when κ = ℵ0) and adding to the antecedent:
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(A)(c) L0 is r-closed and Pr,L0
≺Lσ,σ Pr, where σ = (2κ)+. (See 0.1(5).)

3) In part (2) we can weaken (A)(c) to

(A)(c)′ If κ = ℵ0 then Pq,L0
“MAℵ1”.

Proof. Easy. �2.3

Claim 2.4. 1) For every r ∈ Q∗st — that is, with8 ∂ = cf(∂) > sup
t∈Lr

|Sr,t| such that

(∀α < ∂)
[
|α|2κ < ∂

]
— there is a q ∈ Q∗st such that:

(A)1
∂ (a) r ≤Q∗st

q

(b) ‖Pq‖ ≤
∥∥Pr

∥∥<∂
(c) [Follows] |Sq,t| < ∂ for all t ∈ Lq.

(B)1
∂ (a) q satisfies cf(Lq) ≥ ∂.

(b) If t ∈ Lq then cf(Lq,t) ≥ ∂.

(c) If LC Lq is of cofinality ≥ ∂, L0 ⊆ L is q-closed, Q˜ is a Pq,L0
-name

of a weak κ-forcing of cardinality < ∂, and

κ = ℵ0 ⇒ Pr,L0
≺Lσ,σ Pr

(where σ ..= (2κ)+) then
• For some s ∈ L, Q˜ is a Pq,s-name and

Pq,s “Q˜ q,s and Q˜ are isomorphic”.

2) Similar to part (1), but r,q ∈ Q∗wk, (∀α < ∂)
[
|α|κ < ∂

]
, and

(A)2
∂ (a) r ≤wk

Q q

(b) As above.

(B)2
∂ (a) As above.

(b) As above.

(c) Like (B)1
∂(c), but replacing ‘weak κ-forcing’ by ‘strong κ-forcing’ and

omitting Pr,L0
≺Lσ,σ Pr.

3) Like part (1), but replacing

“κ = ℵ0 ⇒ Pr,L0
≺Lσ,σ Pr”

by Pr,L0
“MAℵ1”.

(We shall call the resulting clauses (A)0.5
∂ and (B)0.5

∂ .)

Proof. 1) We shall prove more. Let Q∗ be the class of q ∈ Q∗st satisfying (A)1
∂ .

(E.g. r ∈ Q∗.) Consider the statement

� If p ∈ Q∗ then there exists q ∈ Q∗ such that:
(a) p ≤Q2

q

(b) There is t∗ ∈ Lq such that (∀s ∈ Lp)[s <Lq t∗].

(c) If t ∈ Lp, L0 ⊆ Lq,t is q-closed, and Q˜ is a Pq,L0
-name of a weak

κ-forcing of cardinality < ∂, then •1 or •2 holds, where

8 If we omit “∂ = cf(∂) > sup
t∈Lr

|Sr,t|,” then in 2.3 we need to expand by S′
s ⊆ Sq,s of cardinality

< ∂ for s ∈ L, and make further changes.
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•1 For some s ∈ Lq,t we have

Pq “Q˜ q,s
∼= Q˜ ”.

•2 Pq “Q˜ is not ccc”.

We shall prove that � is both true and sufficient, which is more than is needed to
prove part (1).

Why � is true:

Let

Y ..=
{

(t, L,Q˜ ) : t ∈ L ∪ {∞}, L a p-closed subset of Lp,t

of cardinality < ∂, and Q˜ a Pq,L-name of a

forcing notion with set of elements an ordinal < ∂
}
.

[Is this well-defined? t is defined in terms of L and L is defined in terms
of t.]

Easily, |Y| ≤ ‖Pp‖<∂ , and we can find a sequence
〈
(tα, Lα,Q˜ α) : α < |Y|

〉
listing

Y.

Now we choose pα by induction on α ≤ |Y| such that

⊕1
α (a) pα ∈ Q∗

(b) p0
..= p

(c) 〈pβ : β ≤ α〉 is ≤Q-increasing continuous.

(d) If α = β + 1, then
•1 If Ppβ

“Q˜ β is not a strong κ-forcing” then Q′β ..= (κ>2,C), and

if it is, then Q′β ..= Q˜ β .

•2 For some sβ , Lpα \ Lpβ = {sβ}, Lpβ ,tβ < sβ <Lpα
tβ , and

Q˜ pα,sβ = Q˜ ′β .

Why can we carry the induction? The base case is covered by clause (b), and for
α a limit ordinal we use Claim 2.1. For α ≤ |Y| successor we use Claim 2.3 (with
pβ , Lα, Lpβ ,tβ , Q˜ ′α, sα, pα here standing in for r, L0, L1,Q, t∗,q there).

So � does indeed hold.

Why � is sufficient:

We choose qα by induction on α ≤ ∂ such that

⊕2
α (a) qα ∈ Q∗

(b) q0
..= p

(c) 〈qβ : β ≤ α〉 is ≤Q-increasing continuous.

(d) If α = β + 1 then � is satisfied, with (qβ ,qα) standing in for (p,q).

We can carry the induction, using � for α a successor. Now,

⊕3 q∂ is as required.

Why? We shall check 2.4(1)(A),(B).

Clauses (A)(a),(b): This means q∂ ∈ Q∗, which holds by ⊕2
∂ .

Clause (B)(a): This says cf(Lq) ≥ ∂.
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It holds because 〈Lqα : α < ∂〉 is increasing continuous and Lqβ is bounded in

Lqβ+1
, by �(b) and ⊕2

α(d).

Clause (B)(b):

Similarly, using �(c) we can find L0 ⊆ Lq∂ ,t as required, because

(∀α < ∂)
[
|α|2

κ

< ∂
]
,

because necessarily L0 ⊆ Lqβ for some β < ∂, and by our choice of qβ+1.

Clause (B)(c): Similarly to (B)(b).

So we are done proving part (1).

2) Repeat the proof of part (1), but this time we choose Q∗ ..= Q∗wk.

3) Straightforward. �2.4

Definition 2.5. We say q is strongly (<∂)-homogeneous when

• If L` ⊆ Lq is q-closed and of cardinality < ∂ for ` = 1, 2, and π1 is an
isomorphism from L1 onto L2 mapping q � L1 to q � L2, then there is an
automorphism π2 of Lq extending π1 and mapping q to itself. Hence it
induces an automorphism π̂2 of Pq (e.g. mapping η

˜
t to η

˜
π2(t)).

Claim 2.6. 1) If q ∈ Q` for ` ∈ {1, 2} and L ⊆ Lq is q-closed, then Pq/Pq,L is a
(κ, `)-forcing. (See 0.3.)

2) (Qst,≤Qst
) satisfies amalgamation.

3) For κ = ℵ0, Q1 satisfies a weak version of amalgamation:9

(∗) If q0 ∈ Q1, q0 ≤wk
Q q` for ` = 1, 2, Lq1 ∩ Lq2 = Lq0 , and Pq0

“MAℵ1”
then there is a q3 ∈ Q1 such that q` ≤ q3 for ` = 0, 1, 2.

4) In (3)(∗) above, we may replace Pq0
“MAℵ1” with the demand “q0 ≺Lσ,σ q1, ”

where σ ..= (2ℵ1)+.

Proof. 1) Case 1: κ > ℵ0 (so the choice of ` is immaterial).

Proving “Pq/Pq,L is (<κ)-complete” is easy when κ > ℵ0, and the existence of
least upper bounds follows as well. So it suffices to do the following:

� (a) Assume p∗ Pq,L “q
˜
α ∈ Pq/G˜ Pq,L for α < κ+”.

(b) Now find p∗∗ ∈ Pq,L above p∗ and Pq,L-names C˜ , h
˜

as required in
∗1κ,D.

Now

(∗)1 For each α < κ+, we can choose 〈pα,ι, qα,ι : ι < ι(α) ≤ κ〉 such that:10

(a) For ι < ι(α), pα,ι ∈ Pq,L is above p∗, and

pα,ι Pq,L “q
˜
α = qα,ι”.

(b) Without loss of generality, Pq,L |= ‘(q∗α,ι � L) ≤ pα,ι’ for ι < ι(α).

(c) Therefore, rα,ι ..= pα,ι ∪ (qα,ι � (Lq \ L)) is a ≤Pq-lub of pα and qα,ι.

9For κ > ℵ0 this is not interesting, and is already covered by 2.10(1).
10 Ignoring the trivial case, we can assume ι(α) ..= κ.
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(d) 〈pα,ι : ι < κ〉 is a maximal antichain of Pq,L.

[Why? Because Pq,L satisfies the κ+-cc.]

Next,11

(∗)2 There are Cι, hι, and ūι (for ι < κ) such that
(a) Cι ∈ D
(b) hι is a pressing-down function on Cι.

(c) ūι =
〈
uιζ : ζ ∈ rang(hι)

〉
(d) If ζ ∈ rang(hι) then

•1 The set Sιζ
..= h−1

ι ({ζ}) belongs to D+.

•2 〈dom(rα,ι) : α ∈ Sιζ〉 is a ∆-system with heart uιζ .

(e) If α, β ∈ Cι and hι(α) = hι(β), then qα,ι and qβ,ι have a lub.

(∗)3 (a) Without loss of generality, Cι is constant in ι; call this set C.

(b) Without loss of generality, 〈rang(hι) : ι < κ〉 is a sequence of pairwise
disjoint sets.

(c) Let j
˜

be a Pq,L-name of a function κ+ → κ such that for G ⊆ Pq,L

generic over V, we have

j
˜

(α)[G] = ι iff pα,ι ∈ G.

[Why? Straightforward.]

(∗)4 Let G ⊆ Pq,L be generic over V.
(a) Let j• ..= j

˜
[G]. We have C ∈ D (so j• is a function from C into κ).

(b) h• : C → κ+ will be defined as α 7→ hj•(α)(α).
Now,

(∗)5 (a) h• is regressive.

(b) If α, β ∈ C with h•(α) = h•(β), then
•1 j•(α) = j•(β)

•2 qα,j•(α) and qβ,j•(β) have a lub in Pq (and hence in Pq[G]), noting
that q

˜
α[G] = qα,j•(α) and q

˜
β [G] = qβ,j•(β).

[Also straightforward.]

This finishes the proof of Case 1 (that is, κ > ℵ0).

Case 2: κ = ℵ0 and ` = 1.

Well-known.

Case 3: κ = ℵ0 and ` = 2.

Like Case 1, but simpler.

2) So assume

(∗)0 for ` = 0, 1, 2,
(a) q` ∈ Q2

(b) q0 ≤Q2
q`

(c) Lq1
∩ Lq2

= Lq0
for transparency.

11 See details in the proof of (∗)4 in the proof of 2.1(1).
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(∗)1 Let L be a linear order with set of elements Lq1
∪ Lq2

, and Lq` ⊆ L as
linear orders.

(∗)2 We define s ∈ T such that Ls = L and Is,t = Isq` ,t for t ∈ Lq` .

(∗)3 We define q ∈ Q2
s above q` (for ` ≤ 2) naturally.

We have to prove that q ∈ Q2. Being (<κ)-complete (with κ > ℵ0) is easy;
satisfying ∗1κ,D or Knaster is a consequence of 2.6(1).

3) Like part (1), but easier.

4) The point here is proving the implication ‘(A) ⇒ (B),’ where

(A) (a) P0 l P` (for ` = 1, 2) are ccc forcing notions.

(b) P0 ≺Lσ,σ P1

(B) P ..= P1 ∗P0
P2 is ccc.

Why does this hold?

Assume (pα,1, pα,2) ∈ P1 ∗P0
P2 for α < ω1, and we need to prove that for some

α < β < α0, (pα,1, pα,2) and (pβ,1, pβ,2) have a common upper bound in P1 ∗P0
P2.

[α0 isn’t defined or used anywhere.]

Let qα ∈ P0 force ‘pα,1 ∈ P1/G˜ P0
’ and ‘pα,2 ∈ P2/G˜ P0

.’ For α, β < ω1, let
〈qα,β,i : i < ι(α, β) ≤ ω〉 be a maximal antichain of P0 such that each qα,β,i forces
a truth value to “pα,` and qβ,` are compatible in P`/G˜ P0

”, for ` = 1, 2.

Now, finding a sequence 〈p′α,1 : α < ω1〉 ∈ ω1P0 similar enough to 〈pα,1 : α < ω1〉
over {

qα : α < ω1

}
∪
{
qα,β,i : α, β < ω1, i < ι(α, β)

}
will contradict “P2 satisfies the ccc.”

Let us elaborate on what we mean by ‘similar enough.’

(∗)1 If α < ω1 then qα and p′α,1 are compatible in P0.

(∗)2 For α < β < ω1 and i < ι(α, β), we have ‘(a) ⇒ (b),’ where
(a) There is no r ∈ P1 such that p1,α ≤P1

r, p1,β ≤P1
r, qα,β,i ≤P1

r, and

qα,β,i P1 “pα,2 and pβ,2 are compatible in P2/P1”.

(b) There is no r ∈ P0 such that p1,α ≤P1
r, p1,β ≤P1

r, qα,β,i ≤P1
r, and

qα,β,i P1
“p′α,2 and p′β,2 are compatible in P2/P1”.

Now for α < ω1, let p+
α,1 ∈ P0 be a common upper bound for p′α,1 and qα. Hence

the conditions p+
α,1 and pα,2 are compatible in P2, and let p+

α,2 ∈ P2 be such a

common upper bound. As P2 satisfies the ccc, there are α < β < ω1 such that p+
α,2

and p+
β,2 have a common upper bound — call it rα,β ∈ P2. Therefore rα,β is an

upper bound of {p′α,1, p′α,2, pα,2, pβ,2}.

We know qα,β,i ≤P2
r for some i < ι(α, β), so necessarily qα,β,i ∈ P0 forces that

pα,2 and pβ,2 have a common upper bound in P2 and that p′α,1 and p′β,1 have a

common upper bound in P2 (hence in P0).

But this implies

qα,β,i  “pα,1 and pβ,1 have a common upper bound in P2”.

All together, by the definition of P ..= P1 ∗P0
P2, the conditions (pα,1, pα,2) and

(pβ,1, pβ,2) are compatible in P, finishing the proof. �2.6
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Claim 2.7. 1) Assume p ∈ Q∗2, L` is a p-closed subset of Lp (for ` = 1, 2), and
π : L1 → L2 is an isomorphism which induces an isomorphism π̂ : Pp,L1

→ Pp,L2
.

Then we can find q, π1, L+
1 , L+

2 such that

(a) p ≤Q2
q ∈ Q∗2

(b) For ` = 1, 2, L` ⊆ L+
` ⊆ Lq, L+

` is q-closed, and Lp ⊆ L+
1 .

(c) π1 ⊇ π is an isomorphism from L+
1 onto L+

2 which induces an isomorphism
π̂1 : Pq,L+

1
→ Pq,L+

2
.

2) ‘If (A) then (B),’ where

(A) (a) q = 〈qα : α ≤ δ∗〉 ⊆ Q∗2 is ≤Q-increasing continuous.

(b) 〈αε = α(ε) : ε < ζ〉 is an increasing continuous sequence of ordinals
with limit δ∗.

(c) L1
α(ε) and L2

α(ε) are qα(ε)-closed subsets of Lα(ε).

(d) πε : L1
α(ε) → L2

α(ε) is order-preserving and onto.

(e) πε induces an isomorphism from qα(ε) � L1
α(ε) onto qα(ε) � L2

α(ε).

(f) L1
α(ε), L

2
α(ε), πε are increasing continuously with ε.

(g) For ` = 1, 2, if Lqα(ε)
6⊆ L`α(ε)+1 then Lqα(ε)+1

⊆ L`α(ε)+2.

(B) π ..=
⋃
ε<ζ

πε is an automorphism of qδ∗ .

Proof. 1) By 2.6(2).

2) Easy. �2.7

Definition 2.8. 1) For ` = 1, 2, we say q is (∂, `)-saturated when it satisfies
2.4(`)(B)`∂ .

2) We say q = 〈qα : α < α∗〉 is (∂, `)-saturated when:

(a) q is ≤Q`
-increasing continuous, recalling 1.7(3) and 1.10(2).

(b) qα is (∂, `)-saturated for α < α∗ non-limit.

Remark 2.9. Recall 1.7(3), so e.g. we denote Qst and Qwk by Q1,Q2, respectively.
We may replace them by other classes.

Claim 2.10. 1) If λ = λ<∂ and ∂ = cf(∂) > κ (recalling Q∗st is from 1.7(7) and
λ, ∂, κ are from Hypothesis 0.2) then there is a q ∈ Qst such that

(a) Lq and Pq have cardinality λ.

(b) q is strongly homogeneous.

(c) q is (∂, 2)-saturated.

2) We can combine part (1) with 2.6(3); that is, if ∂ = cf(∂) > κ = ℵ0 and λ = λ<∂ ,
then there exists a q ∈ Qwk

∂,κ such that

(a) Lq has cardinality λ.

(b) q is weakly homogeneous, when we restrict ourselves to an L ⊆ Lq such
that Pq,L “MAℵ1”.

(c) q is (∂, 1)-saturated.
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3) Similarly for the ≺Lσ,σ -version.

Proof. 1) By 2.7.

2,3) Easy as well. �2.10
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§ 3. More on the iteration

Definition 3.1. 1) For ι ≤ 5, we say Q is a (κ, ι)-forcing when

(A) (a) If ι = 0 it is a forcing.

(b) If ι = 1 it is a weak κ-forcing.

(c) If ι = 2 then it is a strong κ-forcing.

(B) If ι = 3 then Q = (Q,≤, tr) = (Q,≤Q, trQ) satisfies the following.
(a) It is a strong κ-forcing.

(b) trQ is a function Q→ H(κ).

(c) ∂(−) is a function with domain rang(trQ).

(d) For each x ∈ rang(tr), for some ∂(x) = ∂Q(x) ∈ [2, κ], any < 1 + ∂(x)
members of {p ∈ Q : tr(p) = x} have a common upper bound.

(C) If ι = 4 then as in (B), but we add
(d) If σ < κ then {p ∈ Q : ∂(tr(p)) ≥ σ} is dense.

(D) If ι = 5 then as in (B), but ∂(x) = κ for every x ∈ rang(trQ).

2) For ι ≤ 5, let Qι be the class of q such that12

(A) q ∈ Qpre

(B) If t ∈ Lq then Pq,t “Q˜ t is an ι-forcing”, and if L ⊆ Lq is q-closed then
Pq,L is a (κ, ι)-forcing.

(C) If ι = 3, 4, 5 then
•1 If p ∈ Pq and s ∈ dom(p), then trQs(p(s)) is an object, not just a

name.

•2 If L ⊆ Lq is q-closed then Pq,L is a (κ, 2)-forcing.

(D) If ι = 4 then in addition to •1 and •2,
•3 If σ < κ and L ⊆ Lq is q-closed, then{

p ∈ Pq :
(
∀s ∈ dom(p)

)[
∂Qs(p(s)) ≥ σ

]}
is dense in Pq,L.

3) For ι ≤ 5, let Qι∂,θ be the class of q ∈ Qι such that

t ∈ Lq ⇒ |Iq,t| < ∂

and q is strongly (<θ)-homogeneous.

Claim 3.2. 1) For ι = 0, 1, 2, the definition of Qι in 3.1(2) agrees with the one in
1.7.

2) For ι = 3, 4, 5, we can repeat the work done for ι = 2 (i.e. Q2) in §1-2.

Proof. 1) Easy to check.

2) Repeating previous proofs, using Definition 3.1. �3.2

Definition 3.3. If clause (A) holds, then we define Ps̄ as in clause (B), where:

12We may just demand that for q-closed L, we have that

{p ∈ Pq,L : s ∈ dom(p)⇒ trQs (p(s)) is an object}

is dense. In this case, if κ > ℵ0 then this follows.
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(A) (a) q ∈ Q1 and κ = ℵ0.

(b) s̄ = 〈si : i < α〉 ∈ α(Lq) and ui ⊆ α for i < α.

(c) Lq |= “si < sj” for i < j < α.

(d) ui ..= {j < i : sj ∈ Iq,si}
(e) Qq,si is definable from η̄

˜
i = 〈η

˜
sj : j ∈ ui〉 (say we have a definition

ϕi,η̄ for any η̄ ∈ Xi
..=

∏
ε∈ui

Sε2, where Sε ..= Sq,sε).

(B) Ps̄ ..= Pq � L, where

L ..=
{
p ∈ Pq : dom(p) ⊆ {si : i < α}, and if si ∈ dom(p)

then supp(p(si)) ⊆ {sj : j ∈ ui}
}
.

Claim 3.4. 1) For κ = ℵ0 and q, n, s̄, Xi (for i < α) as in 3.3(A)(e), we have
Pq,s̄ l Pq when

�1 If i < α then the demand on Qϕi,η̄
˜

holds absolutely (i.e. even after forcing

by any κ-forcing).

�2 Assuming G ⊆ Pq is generic over V and η̄ = 〈η
˜
t[G] : t ∈ Lq〉, we have:

if V[〈ηsj : j ∈ ui〉] |= “J is a maximal antichain of Q[〈ηsj : j ∈ ui〉]” then
V[η̄ � Lq,si ] |= “J is a maximal antichain of Q[η̄ � Lq,si ]” for i < α.

2) Q2
n from [HS, Defs. 2,4,5] satisfies the criteria above. Moreover, so does any

Suslin ccc forcing (see [JS88]).

3) Similarly to parts (1), (2) for s̄ = 〈sα : α < α∗〉, where sα ∈ Lq is <q-increasing.

Proof. 1,2) By (3).

3) Straightforward by induction on α∗. �3.4
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§ 4. A consequence

We prove the result promised in the introduction, continuing Kellner-Shelah
[KS11] and Horowitz-Shelah [HS].

Theorem 4.1. Let κ = ℵ0, ∂ = (2ℵ0)+ (or just ∂ = ∂ℵ0 = cf(∂), ∂ > 2ℵ0 for
simplicity), and ∂ ≤ θ ≤ λ = λ<θ.

Let n ∈ N be special, in the sense of [HS, Definitions 2,4] (and so Tn is a finite-
branching subtree of ω>ω as defined there). Let (Q2

n, η
˜

2
n) be as in [HS, Def. 5],

except that we restrict ourselves to the (dense) subset of
p ∈ Q2

n such that for some m� g̀(trp(α)),

ν ∈ p(α)⇒ nor(sucpw(ν)) ≥ 1 +
1

m

(as done in the proof of [HS, Claim 21]).

Then there is a q ∈ Q2
∂,θ such that:

(a) Lq has cardinality λ, cf(Lq) = cf(λ), and t ∈ Lq ⇒ |Iq,t| < λ.

(b) For every t ∈ Lq, Qq,t = Q2
n[Vη̄

˜
�It ], so η

˜
t ∈ limTn is η

˜

2
n (recalling [HS] —

that is, 3.4(2)).

(c) q is strongly (<θ)-homogeneous (see 2.5).

(d) Letting V0 = V, V2 = VPq , and V1 = HOD
({
η̄
˜
� u : u ∈ [Lq]<θ

})
:

(α) V1 |= ZF + DC<θ

(β) In V1, modulo the ideal

J = Jn,<θ ..= id<θ(Q2
n, η

˜

2
n),

we have:
•1 lim(Tn) ≡ {η

˜
t : t ∈ Lq} mod J

•2 Every subset of lim(Tn) is equivalent to a Borel set modulo J .

Remark 4.2. 1) The difference from the results in [HS] is that there we do not have
“V1 satisfies ACℵ0” (to say nothing of DC), whereas here we have DC (even DC<θ,
with θ > ℵ1).13

2) In id<θ(Q2
n, η

˜

2
n), is the ‘<θ’ necessary? ([HS, Def. 18] uses id≤ℵ1 , in our nota-

tion.) That is, can we use id≤ℵ0(Q2
n, η

˜

2
n)?

For this we have to use “amoeba for Qn,” hence we have to prove stronger
amalgamation (which is far from clear). But see 4.5 below.

Proof. Let Qn be the set of q ∈ Q which satisfy 4.1(b). Now we can replace Q by
Qn in 2.6, and we rely on 4.3, 4.4, and 4.5 below. �4.1

Claim 4.3. For q as in 4.1,

Pq “if η ∈ lim(Tn) is (Q2
n, η

˜

2
n)-generic over V then η ∈ {η

˜
s : s ∈ Lq}”.

Proof. We continue [HS, p.15, Claim 21] (but there it sufficed to consider iterations
of finite length).

So assume

(∗)1 p∗ Pq “η
˜
∈ lim(Tn)”.

13 As wrongly stated in [JS93], for the ideal of meagre sets.
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(∗)2 For n < ω, let p̄n ..= 〈pn,` : ` < ω〉 be a maximal antichain of Pq such that
pn,`  η

˜
� n = νn,`.

Let L∗ ..=
⋃

n,`<ω

supp(pn,`) ∪ supp(p∗); it is a countable subset of Lq.

(∗)3 (a) For η ∈ Tn, define:

Wn,η
..=
{
w ⊆ sucTn(η) : nornη (w) ≥ 2

}
.

(b) For n < ω define Λn ..= {η ∈ Tn : g̀(η) < n}, so Tn =
⋃
n<ω

Λn.

(c) Define
•1 Sn ..= {w = 〈wη : η ∈ Λn〉 : wη ∈Wn,η} for n < ω.

•2 S ..=
⋃
n<ω

Sn

•3 (S,E) is a tree with ω levels such that each level is finite.

•4 lim(S) = {w = 〈wη : η ∈ Tn〉 : w � Λn ∈ Sn for every n}.
(d) For w ∈ lim(S) let

Bw
..= {ρ ∈ lim(Tn) : for every n large enough, ρ � (n+ 1) ∈ wρ�n}.

(∗)4 So Bw =
⋃
m<ω

Bw,m, where

Bw,m
..=
{
ρ ∈ lim(Tn) : (∀n ≥ m)[ρ � (n+ 1) ∈ wρ�n]

}
is a closed subset of lim(Tn).

As proved there,

(∗)5 For ι = 1, 2, Qιn “η
˜

ι
n ∈ Bw” for every w ∈ lim(S)V”.

Hence as in [HS],

� By (∗)1, it suffices to prove p∗ 6Pq “η
˜
∈ Bw for some w ∈ lim(S)V”.

Toward contradiction, assume

Pq “η
˜

is generic for (Q2
n, η

˜

2
n) over V”,

or we just choose 〈pw : w ∈ lim(S)〉 such that p∗ ≤ pw and pw  η
˜
∈ Bw. Note that

for r ∈ dom(pw), tr(pw(r)) is an object (not just a Pq,s-name) because q ∈ Q2
∂,κ.

We continue as there. �4.3

Claim 4.4. 1) Forcing with Q2
n adds a Cohen real.

2) If Q adds a Cohen real then Q“(limTn)V ∈ id≤ℵ0(Q2
n, η

˜

2
n)”.

Proof. See [HS, Claim 19]. �4.4

Claim 4.5. In the conclusion of Claim 4.1, we can replace id<∂(Q2
n, η

˜

2
n) by the

ideal J ′ ..= id≤ℵ0(Q2
n, η

˜

2
n) + Y , where in V1 we define

Y ..=
⋃{

BV1 : B is a Borel subset of Tn defined in V0 such that Q2
n

“η
˜

2
n /∈ B”

}
.

Proof. The same proof as in 4.1; that is, in clause (d)(β) we use the ideal J ′ above
instead of Jn,<∂ . �4.5

* * *
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Definition 4.6. 1) Let Φκ be the set of pairs (ϕ, ν
˜

) such that

(a) ϕ is a definition of a κ+-cc forcing notion Qi = Qϕ,i in H(κ+) from a
parameter ci ∈ κH(κ).

(b) Qϕ,i “ν
˜
∈ κH(κ)”; naturally the generic, but this is not necessary.

(c) Moreover, any κ-forcing preserves the properties of (a) and (b). Further-
more, the properties

“p ∈ Qϕ,i, p ≤Qϕ,i q, 〈pε : ε < ε∗〉 is a Qϕ,i-MAC”

will be absolute between VP1 and VP2 , where P` ..= Pq` , q1 ≤Q q2, and
ci ∈ V[Pq1

].

(A Q-MAC is a maximal antichain of the forcing notion Q.)

2) For (ϕ, ν
˜

) ∈ Φκ and ∂ > κ, we define the ideal id(ϕ, ν
˜

) on P(κH(κ)) as usual.

Claim 4.7. Assume λ = λ<∂ and ∂ = cf(∂) > 2κ. Then there is q such that

(A) q ∈ Q∂,κ, Lq has cardinality λ, and cf(Lq) = cf(λ).

(B) For every t ∈ Lq there are (ϕt, ν
˜

) ∈ Φκ and c
˜
t (a Pq,Lt-name of a member

of κH(κ)) such that Qq,t = (Q˜ ϕt,c˜t)V[η], and let ν
˜
t be chosen naturally.

(C) For every c
˜

(a Pq-name of a member of κH(κ)), letting
X ..=

{
t ∈ Lq : (ϕt, c

˜
t) = (ϕ, c

˜
)
}

and Y ..= {ν
˜
t : t ∈ X}, we have

(a) Pq Y /∈ id<θ(Qϕc
˜

, ν
˜

)

(b) Let V0
..= V, V2

..= VPq , and

V1
..= HODV2

({
η̄ � L : L ∈ [Lq]<θ

}
,
{
Y
}
,V
)
.

Then V1 is a model of ZF + DC<θ + “every Z ⊆ Y ⊆ κH(κ) is equal
to a κ-Borel set modulo the ideal generated by

id<θ(Q˜ ϕ,c˜ , ν˜) ∪
{
κH(κ) \ Y

}
∪
{
κH(κ)V[η̄

˜
�Lt] : t ∈ Lq

}
”.

(c) If (Qϕ,c
˜
, ν
˜

) does not commute with itself (see below) then we can use

the ideal id<θ(Q˜ ϕ,c˜ , ν˜) ∪
{
κH(κ) \ Y

}
.

(d) If we restrict the parameter c
˜
t to be from V, we can use V1 for all

(ϕ, c).

Remark 4.8. In 4.7(C)(c) the assumption is very weak. It fails for Cohen reals and
Random reals. By [She94], [She04a], among ccc Suslin forcings Q (see [JS88]) if Q
is not bounding then only Cohen forcings do not commute with themselves.

Probably among the bounding ones, ‘Random real’ is the only one.

Proof. Straightforward. �4.7
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