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Abstract
We prove that superclub implies s = ω1. More generally, if κ is weakly compact then
superclub implies sκ = κ+. Based on this statement, we separate tiltan from superclub at
successors of supercompact cardinals. We also use the Galvin property in order to separate
tiltan from superclub at both successors of regular and successors of singular cardinals.

Keywords Superclub · Tiltan · Splitting number · The Galvin property · Weakly compact
cardinals
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1 Introduction

One of the cornerstones of modern set theory is the diamond principle, discovered by Jensen
in [16]. A sequence of the form (Aα | α ∈ ω1) is a diamond sequence if Aα ⊆ α for every
α ∈ ω1 and if A ⊆ ω1 then SA = {α ∈ ω1 | A ∩ α = Aα} is a stationary subset of ω1. More
generally, if κ = cf(κ) > ℵ0 and S is a stationary subset of κ then an S-diamond sequence
is a sequence of sets (Aα | α ∈ S) such that Aα ⊆ α whenever α ∈ S and if A ⊆ κ then
SA = {α ∈ S | A ∩ α = Aα} is a stationary subset of κ .

One says that diamond holds (resp., diamond holds at S) if there is a diamond sequence
(resp., an S-diamond sequence). This statement is denoted by ♦ (resp., ♦S). Jensen proved
that ♦S holds in the constructible universe at every stationary S ⊆ κ = cf(κ) > ℵ0.

A related combinatorial principle was discovered by Ostaszewski at nearly the same time.
This is the club principlewhich is used in [20] to build a certain example of a topological space.
For avoiding ambiguity we shall call this principle tiltan. A tiltan sequence is a sequence of
the form (Tδ | δ ∈ lim(ω1)) such that every Tδ is an unbounded subset of δ and for every
A ∈ [ω1]ω1 the set TA = {δ ∈ lim(ω1) | Tδ ⊆ A ∩ δ} is a stationary subset of ω1. Tiltan
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holds if there exists a tiltan sequence, and this statement is denoted by ♣. Once again, if
κ = cf(κ) > ℵ0 and S is a stationary subset of κ consisting of limit ordinals, then ♣S means
that there is a tiltan sequence (Aδ | δ ∈ S). That is to say that for every A ∈ [κ]κ the set
TA = {δ ∈ S | A ∩ δ ⊇ Aδ} is stationary in κ .

It follows directly from the definitions that♦S implies♣S .1 However,♣S is strictly weaker
than ♦S . This fact is non-trivial. Maybe the simplest way to separate tiltan from diamond (at
ℵ1, for example) is to notice that one can force ♣ℵ1 with 2ω > ω1 and in such models ♦ℵ1

necessarily fails.
A reasonable program in this context would be a systematic comparison of diamond and

tiltan, by listing combinatorial upshots of diamond and checking whether tiltan is consistent
with the failure of these statements. A classical example is the continuum hypothesis which
follows from diamond. Shelah proved in [23] that tiltan is consistent with 2ω > ω1.

Let us try to understand the difference between these combinatorial principles. It seems
that there are three basic features in which tiltan differs from diamond:

(ℵ) The prediction of tiltan is based on inclusion, while the prediction of diamond is based
on equality.

(�) Diamond applies to every subset of its domain, while tiltan guesses only unbounded
subsets.

(ג) A sequence of guesses of diamond is coherent, while coherency need not exist in a
sequence of tiltan guesses.

It is helpful to analyze various statements in the light of these features. Let us consider a
few examples. If (Aα | α ∈ ω1) is a diamond sequence and A ⊆ ω then A is bounded in
ω1. Hence, if δ > ω satisfies A ∩ δ = Aδ then A = Aδ . It follows that every element of
[ω]ω appears in the diamond sequence (Aα | α ∈ ω1), thus 2ω = ω1. The consistency of
tiltan with 2ω > ω1 shows that the crucial difference here is (�), that is the fact that bounded
subsets are not predicted by tiltan.

Let us consider another example. Galvin proved that if 2ω = ω1 then every family C =
{Cα | α ∈ ω2} of clubs of ω1 contains a subfamily {Cαi | i ∈ ω1} so that ⋂i∈ω1

Cαi is a club
of ω1, see [3]. Since 2ω = ω1 follows from diamond, we see that diamond implies Galvin’s
property.

It was shown in [9] that tiltan is consistent with the failure of the Galvin property. Since
this property concentrates on unbounded subsets ofω1, it seems that (�) is not themain factor
which separates tiltan from diamond with respect to Galvin’s property. The point here is ,(ג)
namely the coherency of the guesses, as explicated in [9]. This means that if (Aα | α ∈ ω1)

is a diamond sequence, A ⊆ ω1, δ < ε < ω1 and both A ∩ δ = Aδ and A ∩ ε = Aε hold,
then Aε ∩ δ = Aδ . But if (Tδ | δ ∈ lim(ω1)) is just a tiltan sequence and Tδ, Tε ⊆ A then
there is no necessary connection between Tδ and Tε. In fact, Tδ ∩ Tε = ∅ is possible.

Our last example in this context is related to a question of Larson from [18]. The subject
belongs to graph theory, and it is based on the following notation. For a type τ let us say
that τ → (τ, infinite path)2 if every graph G of type τ admits either an edge-free subset
of type τ or an infinite path. Baumgartner and Larson investigated several types of graphs
in the light of this relation, and one of them is ω∗ · ω1. They obtained the negative relation
ω∗ · ω1 � (ω∗ · ω1, infinite path)2 from the diamond principle (at ℵ1), see [4].

Motivated by the (still open) problem whether the continuum hypothesis yields this
negative relation, even if diamond fails, Larson asked whether tiltan implies ω∗ · ω1 �

(ω∗ · ω1, infinite path)2. It is shown in [10] that tiltan is consistent with the positive relation

1 The implication is quite easy, but notice that it is based on the fact that if A ∈ [κ]κ then the set {α ∈ κ |
α = ⋃

(A ∩ α)} is a club of κ .
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ω∗ ·ω1 → (ω∗ ·ω1, infinite path)2. Presumably, the gist of the matter here is (ℵ), that is, the
fact that tiltan predictions are based on inclusion only.

To see this, let us define the concept of a sofinal set.2 Let δ be a limit ordinal in ω1. A
subset S of δ × ω is sofinal in δ if for unboundedly many α ∈ δ there are infinitely many
n ∈ ω so that (α, n) ∈ S. A subset S of ω1 × ω is sofinal if the relevant δ is ω1. A crucial
component in the proof of the negative relation under diamond from [4] is the prediction of
sofinal subsets by a diamond sequence. But the main point is that sofinal sets are predicted
by sofinal subsets of δ for stationarily many δ ∈ ω1.

The fact that sofinal sets are predicted by sofinal subsets is a key point within the proof.
This feature of a diamond sequence fades awaywhen the prediction is based on tiltan. Suppose
that S is sofinal and X is the preimage of S under h. Let (Tδ | δ is a limit ordinal of ω1) be a
tiltan sequence, and let Y be the union of all Tδs which are contained in X . The set h′′Y is of
size ℵ1, but it need not be sofinal. Actually, if tiltan holds and 2ω > ω1 then there must be
sofinal subsets for which the relevant h′′Y is not sofinal. Thus, the fact that the prediction of
tiltan is based on inclusion is the real reason for the difference between tiltan and diamond
with respect to infinite paths in graphs.

These observations lead to the formulation of an intermediate predicting principle, similar
to diamond in some sense but resembling tiltan in other features. The principle superclub
was defined by Primavesi in his excellent dissertation [21].

Definition 1.1 Let κ be regular and uncountable. A superclub sequence for κ is a sequence
(Sα | α ∈ κ) such that Sα ⊆ α for each α ∈ κ and for every A ∈ [κ]κ there exists B ∈ [A]κ
for which SB = {α ∈ κ | B ∩ α = Sα} is stationary in κ . We shall say that superclub holds
at κ and this will be denoted by ♣♦

κ if there exists a superclub sequence at κ .

As before, κ can be replaced by a stationary subset S of κ , in which case ♣♦
S means that

there is a superclub sequence for S. A comparison between superclub and its elder siblings
shows that ♦S ⇒ ♣♦

S ⇒ ♣S . Considering the difference between tiltan and diamond as
depicted above, superclub is more akin to tiltan. Indeed, the prediction of superclub applies
only to unbounded subsets of κ , and if A ∈ [κ]κ is predicted by some Sα then Sα ⊆ A ∩ α

and possibly Sα �= A ∩ α. However, a sequence of superclub guesses is coherent. Thus,
if A ∈ [κ]κ , B ∈ [A]κ and SB is the set of guesses, then γ, δ ∈ SB with γ < δ implies
Sδ ∩ γ = (B ∩ δ) ∩ γ = B ∩ γ = Sγ . The point is that superclub acts like diamond once
restricted to the set B.

Therefore, a study of the relationship between diamond and superclub on the one hand
and superclub and tiltan on the other hand can be guided by the above features. It turns out
that tiltan (at ℵ1) is strictly weaker than superclub, and superclub is strictly weaker than
diamond. For example, Chen proved in [7] that superclub is consistent with 2ω > ω1. Given
the fact that superclub extrapolates only unbounded subsets of ω1, this result is expected.
Likewise, it was shown in [9] that superclub implies Galvin’s property at clubs of ℵ1, and
this result is expected as well since the guesses of superclub are coherent. It shows, however,
that superclub is strictly stronger than tiltan.

The purpose of this paper is twofold. Firstly, we shall separate tiltan from superclub at
cardinals larger than ℵ1. This will be done by analyzing the Galvin property at normal filters
over κ = cf(κ) > ℵ1. Secondly, we shall prove that superclub at ℵ1 implies s = ω1, where
s is the splitting number. It is an interesting open problem whether tiltan implies s = ω1.3

Hence, we cannot be sure that this property separates tiltan from superclub. Nevertheless, if

2 The term sofinal is an abbreviation of strongly cofinal from [4].
3 The question appears in [5, Question 9.3(i)].
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κ is supercompact then one can force tiltan at κ+ with sκ > κ+. Since superclub implies in
this case that sκ = κ+, we obtain another separating property between tiltan and superclub
for large successor cardinals.

Our notation is mostly standard. We employ the Jerusalem forcing notation, thus we force
upwards. We mention here (a simple instance of) the polarized partition relation. Let

(
α
β

) →
(
γ
δ

)
express the statement that for every coloring c : α×β → 2 there are A ∈ [α]γ , B ∈ [β]δ

so that c � (A × B) is constant. Other notation will be introduced as the need arises.

2 Prediction principles and the Galvin property

In this section we wish to separate ♣♦
κ+ from ♣κ+ . Let Dκ+ be the club filter of κ+. Our first

theorem shows that ♣♦
κ+ implies Galvin’s property at Dκ+ . This assertion will be denoted by

Gal(Dκ+ , κ+, κ++).
Ahead of the proof we quote a basic lemma from the work of Primavesi. Since we wish

to apply this lemma to cardinals above ℵ1, we spell out the proof (in the original form it is
phrased only at ℵ1). In the proof belowwe enumerate the elements of the superclub sequence
by the limit ordinals of κ+. There is no loss of generality here since the prediction is done
over a stationary set, so we may safely assume that all of its elements are limit ordinals.

Lemma 2.1 Assume ♣♦
κ+ . There exists a sequence (Bδ | δ ∈ lim(κ+)) such that Bδ ⊆ δ is a

club subset of δ for every δ ∈ lim(κ+), and for every club C ⊆ κ+ one can find a set D ⊆ C
that is a club of κ+ such that the set {δ ∈ lim(κ+) | D ∩ δ = Bδ} is a stationary subset of
κ+.

Proof Let (Aδ | δ ∈ lim(κ+)) be a superclub sequence. For each δ ∈ lim(κ+) let Bδ =
c
(Aδ). Fix a club C ⊆ κ+. Apply ♣♦

κ+ to find A ⊆ C, |A| = κ+ for which {δ ∈ lim(κ+) |
A ∩ δ = Aδ} is a stationary subset of κ+. Let D = c
(A), so D ⊆ C and D is a club subset
of κ+. Suppose that γ ∈ {δ ∈ lim(κ+) | A ∩ δ = Aδ}. Notice that Aγ ⊆ γ and Aγ ⊆ A.
Hence, Bγ = c
(Aγ ) ⊆ c
(A) = D. Moreover, Bγ ∩ γ = c
(A) ∩ γ = D ∩ γ . Thus,
{γ ∈ lim(κ+) | D ∩ γ = Bγ } is a stationary subset of κ+, as required. 
�

Based on the above lemma, we proceed to the following:

Theorem 2.2 ♣♦
κ+ implies Gal(Dκ+ , κ+, κ++).

Proof Let (Bδ | δ ∈ lim(κ+)) be a closed superclub sequence as guaranteed by Lemma 2.1.
Suppose that C = {Cα | α ∈ κ++} ⊆ Dκ+ . For every α ∈ κ++ choose Dα ⊆ Cα such that
Dα ∈ Dκ+ and Sα = {δ ∈ lim(κ+) | Dα ∩ δ = Bδ} is stationary in κ+.

For everyα ∈ κ++ and every δ ∈ κ+ let Hαδ be the set {β ∈ κ++ | Dβ ∩δ = Bδ} provided
that Dα ∩δ = Bδ , and∅ otherwise. Thus, if Dα ∩δ = Bδ and β ∈ Hαδ then Dβ ∩δ = Dα ∩δ.
Observe that Hαδ �= ∅ for a stationary set of δ ∈ κ+, since Dα ∩ δ = Bδ implies (trivially)
that α ∈ Hαδ , which means in particular that Hαδ is not empty. Furthermore, if γ < δ and
both Hαγ , Hαδ are not empty then Hαγ ⊇ Hαδ . Indeed, if β ∈ Hαδ then Dβ ∩ δ = Dα ∩ δ.
Hence, Dβ ∩ γ = (Dβ ∩ δ) ∩ γ = (Dα ∩ δ) ∩ γ = Bγ , so β ∈ Hαγ .

The above observations mean that every α ∈ κ++ induces a sequence (Hαδ | δ ∈ κ+)

which behaves like a tower over a stationary set of δ ∈ κ+. The main point now is that for
some α ∈ κ++ this tower consists of large sets, that is, |Hαδ| = κ++ for stationarily many
δ ∈ κ+.
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For suppose not. For every α ∈ κ++ let δ(α) ∈ κ+ be the first ordinal for which Hαδ(α) �=
∅ and |Hαδ(α)| < κ++. By the pigeonhole principle there is a set A ∈ [κ++]κ++

and a fixed
ordinal δ ∈ κ+ such that α ∈ A ⇒ δ(α) = δ. Thus, |Hαδ| < κ++ for every α ∈ A, but also
Hαδ �= ∅. Since Hαδ �= ∅, it does not depend on α but only on Bδ . Since the number of Bδs
is κ+ and |A| = κ++, there is a fixed B and some T ∈ [A]κ++

such that α ∈ T ⇒ Hαδ = B.
Consequently,

⋃
α∈T Hαδ = B and, in particular, | ⋃α∈T Hαδ| < κ++. On the other hand,

α ∈ Hαδ for every α ∈ T , hence T ⊆ ⋃
α∈T Hαδ . Since |T | = κ++, one concludes that

| ⋃α∈T Hαδ| = κ++, a contradiction.
Fix, therefore, an ordinalα ∈ κ++ such that |Hαδ| = κ++ whenever Hαδ �= ∅. Enumerate

the non-empty Hαδs by {Hαε | ε ∈ κ+}. By induction on ε ∈ κ+ choose βε ∈ Hαε+1 such
that βε /∈ {βζ | ζ ∈ ε}. This is possible since |Hαε+1| = κ++.

We claim that
⋂

ε∈κ+ Dβε = �ε∈κ+ Dβε ∩ Dα . This is sufficient since
⋂

ε∈κ+ Cβε ⊇⋂
ε∈κ+ Dβε . So let us prove the above equality by double inclusion. For the easy direction,

suppose that γ ∈ ⋂
ε∈κ+ Dβε . Certainly, γ ∈ �ε∈κ+ Dβε . Pick ε > γ . Notice that γ ∈

Dβε ∩ (ε + 1). But Dβε ∩ (ε + 1) = Bδ(ε+1) = Dα ∩ (ε + 1), where δ(ε + 1) corresponds
to ε + 1 in the enumeration of the Hαδs which are not empty. Thus, γ ∈ Dα , as sought.

Assume now that γ ∈ �ε∈κ+ Dβε ∩ Dα . We must show that γ ∈ Dβε for every ε ∈ κ+.
Now if ε < γ then γ ∈ Dβε by the definition of diagonal intersection. If ε ≥ γ then
γ < ε + 1, so γ ∈ Dα ∩ (ε + 1) = Bδ(ε+1) = Dβε ∩ (ε + 1), hence once again γ ∈ Dβε .
This completes the proof. 
�

In order to separate ♣♦
κ+ from ♣κ+ , we shall prove that ♣κ+ is consistent with the failure

of the Galvin property at κ+. We consider two cases. The simpler is the case of a successor
of a regular cardinal. In the other case, a successor of a singular cardinal, we need a bit more.
In particular, we will make use of the following lemma. We are grateful to Yair Hayut for a
very helpful discussion concerning the proof of the lemma.

Lemma 2.3 Let κ be a measurable cardinal and suppose that ♣S holds where S = Sκ+
ω . Let

P be Prikry forcing at κ and let G ⊆ P be generic over the ground model. Then ♣S holds in
V [G].

Proof Fix a tiltan sequence (Tδ | δ ∈ S) in V . We may assume that otp(Tδ) = ω for every
δ ∈ S. Let A be an unbounded subset of κ+ in V [G], and let A˜ be a name of A. Fix a
condition p = (s p, Ap) ∈ P so that p � A˜ ∈ [κ+]κ+

.
For every α ∈ κ+ let Dα = {q ∈ P | p ≤ q and q � βα = min(A˜ − α)}. Each

Dα is a dense open subset of P. By the strong Prikry property, for each α ∈ κ+ there is
a pure extension p ≤∗ pα = (s p, Apα ) and there is nα ∈ ω such that for every sequence
(ν0, . . . , νnα−1) ∈ Apα one has p�

α (ν0, . . . , νnα−1) � βα = min(A˜ − α). For every α ∈ κ+
we have nα ∈ ω, hence without loss of generality nα = n for each α ∈ κ+ and some fixed
n ∈ ω.

Let B = {βα | α ∈ κ+}. For every ν̄ ∈ [κ]n let Bν̄ be the set {β ∈ κ+ | ∃q, p�(ν̄) ≤∗
q, q � β ∈ B}. Since |[κ]n | = κ < κ+, there is some ν̄ ∈ [κ]n such that |Bν̄ | = κ+. Since
Bν̄ ∈ V , there is δ ∈ S for which Tδ ⊆ Bν̄ . Suppose that Tδ = {γn | n ∈ ω}. For every n ∈ ω

let qn be such that p ≤∗ qn � γ̌n ∈ A˜ . Denote each qn by (s p, Aqn ), and let Aq = ⋂
n∈ω Aqn .

Verify that q = (s p, Aq) ∈ P and p ≤∗ q � Tδ ⊆ A˜ , so we are done. 
�

There is an alternative proof of the preservation of tiltan under Prikry extensions. Let U
be a normal ultrafilter over κ , and let (Mi | i ∈ ω) be the associated sequence of iterates,
starting from the embedding j derived from U . Let Mω be the direct limit of the sequence
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and the embeddings generated from U . Finally, let κ̄ = (κi | i ∈ ω) be the sequence of
critical points.

It was discovered by Bukowský in [6] and, independently, by Dehornoy in [8] that⋂
i∈ω Mi = Mω[κ̄]. Many statements concerning Prikry forcing can be proved using the

above equality; see, e.g., [15]. The preservation of tiltan can serve as another example. Sup-
pose that there is a tiltan sequence over S in the ground model, where S = Sκ+

ω and κ is a
measurable cardinal. If A ∈ [κ+]κ+

is a new set inMω[κ̄] then each element of A comes from
some Mi . Hence, for some B ∈ [A]κ+

there will be i ∈ ω so that B ∈ Mi . An appropriate
embedding of the tiltan sequence at S will guess B and hence A as required.

We need an additional lemma about the preservation of tiltan, this time underℵ1-complete
forcing notions. It seems that this lemma is interesting in its own right, and it will also come
in handy in the proof of our next theorem. We mention here the preparatory forcing of Laver
from [19] to make a supercompact cardinal indestructible under κ-directed-closed forcing
notions.

Lemma 2.4 Let κ be an infinite cardinal. One can obtain ♣S for the set S = Sκ++
ω so that

every further extension of the universe by any ℵ1-complete forcing notion which preserves
κ++ will preserve ♣S. Moreover, one can get this setting, where κ is a Laver-indestructible
supercompact cardinal, while preserving supercompactness and indestructibility.

Proof The statement is proved in [23, I, §7] and in [9] in the case of κ = ℵ0, that is
S = Sℵ2ℵ0

. The general case is identical, and since this forcing is κ-directed-closed, one
obtains a preservation of supercompactness and Laver-indestructibility. 
�

We can prove now the consistency of tiltan with the failure of the Galvin property at
arbitrarily large successor cardinals.

Theorem 2.5 If κ is a regular cardinal then one can force ♣κ+ with ¬Gal(Dκ+ , κ+, κ++).
If there exists a supercompact cardinal κ then one can force κ to be singular with ♣κ+ and
¬Gal(Dκ+ , κ+, κ++).

Proof Fix a regular cardinal κ and suppose that κ++ carries an indestructible tiltan sequence
at S = Sκ++

ω with respect to ℵ1-complete forcing notions. Such a sequence can be forced by
virtue of Lemma 2.4. We may assume that 2κ = κ+ and 2κ+ = κ++.

Apply the forcing of Abraham and Shelah from [1] to κ++, and call the generic extension
V [G]. Thus, in V [G] there is some λ > κ++ and a family C = {Cα | α ∈ λ} ⊆ Dκ++
such that C witnesses ¬Gal(Dκ++ , κ++, κ+3). Since the forcing of Abraham and Shelah is
ℵ1-complete (and much more), we see that ♣S holds in V [G].

Let Q be the collapse of κ+ to κ as defined in V [G] and let H ⊆ Q be generic over V [G].
Denote Sκ+

ω as computed in V [G] by T . Observe that both ¬Gal(Dκ+ , κ+, κ++) and ♣T

are true in V [G][H ], as proved in [9, Theorem 2.7]. This completes the proof of the first
statement of the theorem as ♣T implies ♣κ+ .

Assume now that κ is supercompact in the ground model. Force κ to be Laver-
indestructible. Apply Lemma 2.4 to obtain a tiltan sequence at S = Sκ++

ω which is indestruc-
tible under ℵ1-complete forcing extensions. As a second step, force ¬Gal(Dκ+ , κ+, κ++)

with ♣T at T = Sκ+
ω as done in the first part of the proof. Notice that κ is supercom-

pact in V [G][H ] since both the Abraham–Shelah forcing and the collapse of κ+ to κ are
κ-directed-closed.

LetP be Prikry forcing into κ as defined in V [G][H ], and let K ⊆ P be V [G][H ]-generic.
From [2] we know that ¬Gal(Dκ+ , κ+, κ++) holds in V [G][H ][K ]. From Lemma 2.3 we
infer that ♣T holds in V [G][H ][K ]. Thus, the proof is accomplished. 
�
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We can phrase now the main result of this section:

Corollary 2.6 The principles ♣κ+ and ♣♦
κ+ are separable for every κ = cf(κ), and consis-

tently they are separable at successors of singular cardinals. The latter statement is proved
under the assumption that there are large cardinals in the ground model.

It is plausible that ♣κ+ and ♣♦
κ+ are separable in a global sense. This will be especially

interesting at successors of singular cardinals, as dictated in the following problem.

Question 2.7 Is it consistent that♣λ+ holds and♣♦
λ+ fails at every singular cardinal λ simul-

taneously?

Let us indicate, with regard to this question, that we have used large cardinals in order to
separate tiltan from diamond at successors of singular cardinals. We do not know, however,
whether this separation has some consistency strength. A tentative positive answer to the
above question is plausible, and we believe that it requires large cardinals in the ground
model.

3 Superclub and the splitting number

In this sectionwe show that superclub implies s = ω1.More generally, if κ is weakly compact
then the statement sκ = κ+ follows from♣♦

κ+ . Let us commencewith the pertinent definition.

Definition 3.1 The splitting number.
Let κ be an infinite cardinal.

(ℵ) For B, S ∈ [κ]κ one says that S splits B if |B ∩ S| = |B ∩ (κ − S)| = κ .
(�) A family {Sα | α ∈ λ} ⊆ [κ]κ is a splitting family if every B ∈ [κ]κ is split by some

Sα .
(ג) The splitting number sκ is the minimal cardinality of a splitting family for [κ]κ .
As usual, if κ = ℵ0 then sκ is denoted by s. The splitting number belongs to the family of

cardinal characteristics. All of them stabilize atω1 under the continuum hypothesis, a fortiori
under diamond. Hence it is a good test problem to check the possible value of any cardinal
characteristic under tiltan.

For small characteristics the value is ω1, e.g., tiltan implies p = ω1. For large characteris-
tics, tiltan is consistent with a large value, e.g., one can force tiltan with d > ω1. In fact, one
can even force cov(M) > ω1 with tiltan. Baumgartner indicated that Shelah’s model from
[22] satisfies¬CH+MA(countable)+♣ω1 .

4 SinceMA(countable) implies cov(M) > ω1,
one obtains this statement along with tiltan at ω1.

Medium characteristics are more interesting and, in particular, it is open whether tiltan is
consistent with s > ω1. Our primary goal in this section is to prove that superclub implies s =
ω1. Let us indicate that, for some characteristics, a large value is consistent with superclub,
see [14]. In this light, the small value of the splitting number becomes more interesting.

Inasmuch as we do not know whether s > ω1 is consistent with tiltan, we cannot separate
tiltan at ℵ1 from superclub at ℵ1 on the grounds of the splitting number. However, we can do
this at larger cardinals. It was shown by Suzuki in [24] that sκ > κ iff κ is weakly compact.
We shall see that ♣♦

κ+ implies sκ = κ+ for weakly compact cardinals. On the other hand,

4 It appeared in an unpublished note of Baumgartner, as indicated by Komjáth in [17].
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♣κ+ is consistent with sκ > κ+ for sufficiently large cardinals, as proved in [9, Theorem
4.5]. Thus, another way to separate tiltan from superclub (at successors of large cardinals) is
obtained.

Theorem 3.2 Superclub implies s = ω1.

Proof From [12, Claim 2.4] we know that if s > ω1 then
(
ω1
ω

) → (
ω1
ω

)
.5 We shall prove

that superclub implies the negative relation
(
ω1
ω

)
�

(
ω1
ω

)
and conclude that s = ω1. Let

(Sδ | δ ∈ ω1) be a superclub sequence. For every 
 ∈ {0, 1} let S
 = {δ ∈ ω1 | (∀α ∈
Sδ)(α = 
 mod 2)}. Notice that S
 �= ∅ for 
 ∈ {0, 1}, since the set of even ordinals is
predicted by the superclub sequence, as well as the set of odd ordinals.

By induction on α ∈ ω1 we choose a set Aα ⊆ ω such that

(a) |Aα| = |ω − Aα| = ℵ0;
(b) if δ ∈ α ∩ S0 and B0

δ = ⋂{(ω − Aβ) | 2β ∈ Sδ} is infinite, then there are n0δ , n
1
δ ∈ B0

δ

such that n0δ /∈ Aα, n1δ ∈ Aα;
(c) if δ ∈ α ∩ S1 and B1

δ = ⋂{Aβ | 2β +1 ∈ Sδ} is infinite, then there are n0δ , n1δ ∈ B1
δ such

that n0δ /∈ Aα, n1δ ∈ Aα .

The choice is possible since for every α ∈ ω1 one has |α ∩ S0|, |α ∩ S1| ≤ ℵ0. Thus, the
number of B


δ s to consider is at most ℵ0 and by induction on ω one can pick two new distinct
elements from B


δ and send them to Aα and ω − Aα , respectively.
Define c : ω1 × ω → 2 by letting c(α, n) = 1 iff n ∈ Aα . Toward a contradiction,

suppose that there are Y ∈ [ω1]ω1 , Z ∈ [ω]ω and 
 ∈ {0, 1} such that c′′(Y × Z) = {
}. Let
Y = {α j | j ∈ ω1}, let Z be maximal with respect to the property that c′′(Y × Z) = {
} and
let X = {2α + 
 | α ∈ Y }. Let W ∈ [X ]ℵ1 be a set on which the superclub sequence acts
like diamond. Set T = {δ ∈ ω1 | W ∩ δ = Sδ}, so T is a stationary subset of ω1. For each
α ∈ ω1 let A1

α = Aα and A0
α = ω − Aα . Choose a sufficiently large δ ∈ T such that

⋂
{A


α | α ∈ Y } =
⋂

{A

α | α ∈ Y ∩ δ}.

There is such a δ since the sequence of sets (
⋂

j<i
A


α j
| i ∈ ω1) is decreasing with respect to

inclusion, and being a sequence of subsets of ω it stabilizes after countably many steps.
Notice that

⋂{A

α | α ∈ Y ∩ δ} = B


δ holds since W ∩ δ = Sδ . We know that this set is
infinite since it contains Z , and we may assume that it equals Z by taking Z to be maximal
with respect to inclusion. Fix α ∈ Y − (δ + 1). By the construction of (Aα | α ∈ ω1) there
are n0δ , n

1
δ ∈ B


δ = Z such that n0δ /∈ Aα and n1δ ∈ Aα . By definition, c(α, n0δ ) = 0 and
c(α, n1δ ) = 1, thus c′′(Y × Z) = {0, 1}, a contradiction. Since s > ω1 implies

(
ω1
ω

) → (
ω1
ω

)
,

we deduce that superclub implies s = ω1, as sought. 
�
The above proof generalizes to higher cardinals. Of course, it would be interesting only

if sκ > κ , namely in cases of weak compactness.

Claim 3.3 If κ is a weakly compact cardinal, then ♣♦
κ+ implies sκ = κ+.

Proof From a straightforward generalization of the main theorem of this section we infer that

♣♦
κ+ implies the negative relation

(
κ+
κ

)
�

(
κ+
κ

)
, where κ is weakly compact. From [13, Claim

1.2] we know that if sκ > κ+ then
(
κ+
κ

) → (
κ+
κ

)
. Thus, under superclub at κ+ necessarily

sκ = κ+, as required. 
�
5 But this statement was known earlier, as indicated by the referee. For a full description of the polarized
relation over ω depending on the value of the splitting number, see [11].
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We can derive now the following conclusion which gives an alternative way to separate
tiltan from superclub.

Corollary 3.4 If κ is supercompact, then one can force ♣κ+ with ¬♣♦
κ+ .

Proof It is proved in [9, Theorem 4.5] that ♣κ+ is consistent with sκ > κ+, where κ is
supercompact. By Claim 3.3, ♣♦

κ+ fails in this model, so we are done. 
�
One may wonder whether Galvin’s property and the splitting number are the only state-

ments which separate tiltan from superclub. Formally, suppose that♣κ+ holds and♣♦
κ+ fails.

Does it follow that either sκ > κ+ or ¬Gal(Dκ+ , κ+, κ++)? We believe that the answer is
negative.

A possible strategy towards a negative answer would be as follows. Begin with a super-
compact cardinal κ , force sκ > κ+ but keep the Galvin property. This is possible, at least
for some instances of the Galvin property. Moreover, ♣κ+ is forceable with this setting. In
such models ♣♦

κ+ necessarily fails, since it implies sκ = κ+, thus ♣♦
κ+ is separated from

♣κ+ . Now force Prikry into κ . By [2], Galvin’s property holds in the generic extension. By
Lemma 2.3,♣κ+ holds as well. Since κ remains a strong limit cardinal and becomes singular,
sκ = scf(κ) < κ . The missing part is to show that Prikry forcing does not add a superclub
sequence. This is plausible, but it requires a formal argument.

4 Open problems

In this section we introduce some open problems which arise naturally from the results in
the previous sections. The first problem has a local flavor, but it is relatively old and it seems
quite stubborn. It belongs to Brendle, see [5, Question 9.3].

Question 4.1 Is it consistent that tiltan holds and s > ω1?

This problem is strongly related to the question of possible consistency of tiltan with the
polarized relation

(
ω1
ω

) → (
ω1
ω

)
. We indicate that s > ω1 implies

(
ω1
ω

) → (
ω1
ω

)
, but not vice

versa, so these statements are not equivalent.
Of course, diamond implies s = ω1 since diamond implies 2ω = ω1. However, s = ω1

is a weaker statement than 2ω = ω1. Although s = ω1 is an assertion about sets of natural
numbers, superclub implies s = ω1. Thus, it seems that the prediction of countable sets by
a diamond sequence is not the crucial factor with respect to the statement s = ω1. We tend
to believe that s = ω1 does not follow from tiltan.

There are several interesting problems around tiltan and superclub with respect to other
cardinal characteristics, but we focus here on the splitting number. Let us introduce another
interesting problem in this context.

Question 4.2 Let κ be a supercompact cardinal and let S = Sκ+
κ . Is it consistent that ♣S

holds and sκ > κ+?

We indicate that the consistency of ♣κ+ with sκ > κ+ as proved in [9] comes from ♣S ,
where S = Sκ+

θ for some θ ∈ κ . The difficulties in the case S = Sκ+
κ are similar to the

difficulty of tiltan at ℵ1 with s > ω1.
Finally, in this work we separate tiltan from superclub at arbitrarily large cardinals. One

may wonder about a possible separation of superclub from diamond in a similar fashion. We
strongly believe that superclub at κ+ is weaker than diamond at κ+, where κ is arbitrarily
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large. It is known that tiltan with 2ω = ω1 implies diamond, and a fortiori for superclub. The
same is true in general, and for the sake of completeness we give here the proof (for the case
of ℵ1 see, e.g., [23, I, Fact 7.3]).

Claim 4.3 Let S be a stationary subset of κ+ which consists of limit ordinals. If 2κ = κ+,
then ♣S implies ♦S.

Proof Let (Tα | α ∈ S) be a ♣S-sequence. We elicit another sequence of sets (Dα | α ∈ S)

and we prove that this is a diamond sequence. Let (Bi | i ∈ κ+) be an enumeration of
all the bounded subsets of κ+, where each bounded subset appears κ+ many times in the
enumeration and Bi ⊆ i for every i ∈ κ+. For every α ∈ S we define Dα = ⋃

i∈Aα
Bi . We

shall show that this is a diamond sequence.
Firstly, let X be a bounded subset of κ+. By the properties of our enumeration, the set

I = {i ∈ κ+ | X = Bi } is unbounded in κ+. Hence, there is a stationary subset S0 of S such
that Tα ⊆ I for every α ∈ S0. For each α ∈ S0 one has Dα = ⋃

i∈Aα
Bi = ⋃

i∈Aα
X = X .

Pick any α > sup(X) from S0. One can see that Dα = X = X ∩ α holds, thus for an
end-segment of S0 one has X ∩ α = Dα , so we are done.

Secondly, let X be an unbounded subset of κ+. We define f : κ+ → κ+ by induction
on α ∈ κ+ as follows. Assuming that f (β) is already defined for every β ∈ α, let f (α)

be the first ordinal i ∈ κ+ greater than every element of { f (β) | β ∈ α} such that Bi =
X ∩ sup({ f (β) | β ∈ α}). By induction one can verify f (α) ≥ α for every α ∈ κ+. Let
C be a club of κ+, closed under f , that is, if δ ∈ C then f (β) ∈ δ for every β ∈ δ. Let
X ′ = { f (α) | α ∈ κ+}. Since f is increasing, X ′ is unbounded in κ+ and hence there is a
stationary subset of ordinals δ ∈ S ∩C for which Tδ ⊆ X ′. We shall show that for each such
δ one has Dδ = X ∩ δ, and this will accomplish the argument.

We shall prove the above equality by double inclusion. Let us beginwith the easy direction,
namely Dδ ⊆ X ∩ δ. Suppose, therefore, that γ ∈ Dδ holds, and since Dδ = ⋃

i∈Tδ
Bi , there

is some i ∈ Tδ for which γ ∈ Bi . Recall Tδ ⊆ X ′, and this means that i ∈ Tδ is of the form
f (α) for some α ∈ κ+. By definition, Bi = X ∩ sup({ f (β) | β ∈ α}), and in particular
Bi ⊆ X . Since γ ∈ Bi , we conclude that γ ∈ X holds. Likewise, Bi ⊆ i = f (α) < δ since
f (α) = i ∈ Tδ ⊆ δ, so γ ∈ X ∩ δ and the first inclusion is established.
Let us prove the other direction, that is, X ∩ δ ⊆ Dδ . Suppose β ∈ X ∩ δ. Firstly we

show that there exists i ∈ Tδ so that i > f (β). Indeed, β ∈ δ and hence f (β) < δ as δ ∈ C .
Likewise, Tδ is unbounded in δ and hence one can pick an ordinal γ so that f (β) < γ ∈ δ

and γ ∈ Tδ . Since Tδ ⊆ X ′, there is an ordinal α such that γ = f (α). Notice that β < α

holds since f (β) < γ = f (α), so choose i to be γ .
Now, the existence of such an ordinal i implies i = f (α) for some α ∈ κ+ since Tδ ⊆ X ′.

Observe that α > β holds since f (β) < i = f (α) and f is an increasing function. Recall
Bi = X ∩ sup({ f (β) | β ∈ α}) and conclude that β ∈ Bi ⊆ ⋃

i∈Aδ
Bi = Dδ holds, and the

proof is accomplished. 
�
From the above claim we deduce that a separation between diamond and superclub at κ+

boils down to a model of ♣♦
κ+ with 2κ > κ+. We expect a positive answer to the following

question.

Question 4.4 Is it consistent that superclub holds at κ+ and 2κ > κ+, where κ is arbitrarily
large?
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