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1. Introduction

For a Polish space X and a set B C X x X we say that B contains a y—square (perfect square, respectively),
if there is a set Z of cardinality p (a perfect set Z, respectively) such that Z x Z C B. The problem of Borel
sets with large squares but no perfect squares was studied and resolved in Shelah [14].

Several questions can be phrased in a manner involving p—squares and/or perfect squares with some
additional structure on them. For instance, looking at a Polish group (H,+) we may ask for its Borel
subsets with many, but not too many disjoint translations (or just translations with small overlaps). This
leads to considering the spectrum of translation k—disjointness of a set A C H,
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stdi(A) = {(,y) € Hx H: [(A+2)N (A +y)| <k},

and asking if this set may contain a p—square but not a perfect square. For k = 0 this is asking for y many
pairwise disjoint translations of A without a perfect set of such translations. This direction is related to
works of Balcerzak, Rostanowski and Shelah [1], Darji and Keleti [4], Elekes and Steprans [6], Zakrzewski
[15] and Elekes and Keleti [5].

Tt is still unresolved if we may repeat the results of [14] for the disjointness context, but there is some
promising work in progress [13]. However a lot of progress has been made in the dual direction.

For a set A C H we consider its spectrum of translation k—non-disjointness,

stndg(A) = {(z,y) € H x H : [(A+2) N (A +y)| > k}.

Then a p—square included in stnd, (A) determines a family of x many pairwise k—overlapping translations.
These were studied extensively for the context of the Cantor space in Roslanowski and Rykov [9], and
Rostanowski and Shelah [11,10,12]. Those works fully utilized the algebraic properties of (“2,+), leaving
the general case of Polish groups unresolved.

In the current paper we aim at generalizing their results to perfect Abelian Polish groups. The main
difficulty in this more general case lies in quite algebraic problem (#) given below. Suppose S C H and
X C H is a set of k—intersecting translations, i.e.,

()% [(S+2)N(S+y)| >k for all 7,y € X.

Then for all ¢ € H the property (<>)§( + also holds true. Thus the properties of objects added by our forcing
should reflect some “translation invariance”. How can we know that a set Y is included in a translation of
X? Clearly, if Y C X +corY Cc— X, then Y — Y C X — X. It would be helpful in our forcing if we knew

(#) when does Y — Y C X — X imply that YV is included in a (small) neighborhood of a translation X + ¢
of X or of a translation ¢ — X of — X7

In the third section we introduce the main algebraic ingredient of our forcing notion: qifs and quasi indepen-
dent sets. In forcing, we will use them in conjunction with differences of elements of the group, but a relative
result for sums also seems interesting, so we present it in Section 4. The third and fourth section might be
of interest independently from the rest of the paper, as they address the question (#) giving interesting
(though technical) properties of perfect Abelian Polish groups with few elements of rank 2.

Like in [14], the “no perfect set” property of the forcing extension results from the use of a “splitting
rank” rk°". We remind its definition and basic properties in the second section. For the relevant proofs we
refer the reader to [14,11].

In the fifth section we prove our main consistency result for groups with few elements of rank 2. The
remaining case when H has many elements of rank 2 is treated in Section 6. We close the paper with
summary of our results and a list of open problems.

Notation: Our notation is rather standard and compatible with that of classical textbooks (like Jech [8] or
Bartoszyniski and Judah [2]). However, in forcing we keep the older convention that a stronger condition is
the larger one.

(1) For a set u we let

u? ={(z,y) euxu:x#y}
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(2) Ordinal numbers will be denoted by the lower case initial letters of the Greek alphabet «, 5,7, 4d,¢, .
Finite ordinals (non-negative integers) will be denoted by letters i, 5, k, £,m,n, J, K, L, M, N and ¢. The
Greek letters A and p will stand for uncountable cardinals.

(3) Finite sequences will be denoted o, ¢

(4) For a forcing notion P, all P-names for objects in the extension via P will be denoted with a tilde below
(e.g., 7, X), and Gp will stand for the canonical P-name for the generic filter in P.

(5) (H,+,0) is an Abelian group (in the main part of the paper it is a perfect Polish Abelian group). The
elements of H will be called a,b, ¢, d (with possible indices). For an integer ¢ and a € H, we use the
notation ta to denote the element of H obtained by repeated addition of a (or —a) || many times in

the usual way.
(6) For sets A, B C H we will write —A = {—a :a € H},

A+B={a+b:a€c ANbeB} and A—-B={a—-b:acA AN be B}
2. Splitting rank rk°°

Let us recall a rank used in previous papers which will be central for the results here too. We quote some
definitions and theorems from [11, Section 2], however they were first given in [14, Section 1].
Let A be a cardinal and M be a model with the universe A and a countable vocabulary 7.

Definition 2.1.

(1) By induction on ordinals §, for finite non-empty sets w C A we define when rk(w, M) > 4. Let w =
{ag,...;an} CA Jw=n+1.
(a) rk(w) > 0 if and only if for every quantifier free formula ¢ = ¢(xg,...,z,) € L(7) and each k < n,
if M E plag, ..., ag, ..., ap] then the set

{a EXN:ME <p[a07...,ak,l,a,akﬂ,...,an]}
is uncountable;
(b) if ¢ is limit, then rk(w, M) > ¢ if and only if rk(w, M) > ~ for all vy < §;
(c) rk(w,M) > § + 1 if and only if for every quantifier free formula ¢ = ¢(zo,...,z,) € L(7) and each
k <n,if M | ¢[ag, ...,k ...,q,] then there is a* € A\ w such that
tk(wU{a*},M) >4 and MEplag,...,qk-1,0%, Qpi1,-..,0].
By a straightforward induction on § one easily shows that if (} # v C w then
rk(w,M) > § > v = rk(v,M) > ~.

Hence we may define the rank function on finite non-empty subsets of A.

Definition 2.2. The rank rk(w, M) of a finite non-empty set w C A is defined as:
o tk(w,M) = —1 if =(rk(w, M) > 0),
o rk(w, M) = oo if rk(w, M) > ¢ for all ordinals d,
o for an ordinal §: rk(w, M) = ¢ if rk(w, M) > ¢ but =(rk(w, M) > § + 1).

Definition 2.3. For an ordinal ¢ and a cardinal A let NPr®()) be the following statement:
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“there is a model M* with the universe A and a countable vocabulary 7* such that 1+ rk(w, M*) < ¢ for
all w € [A\]<“\ {0}

Let Pr®()) be the negation of NPr®(\).
Note that NPr. of [11, Definition 2.4] differs from our NPr®: “sup{rk(w,M*) : @ # w € [\]<¥} < &”
there is replaced by “1 + rk(w, M*) < &” here. However, the proofs for [11, Propositions 2.6, 2.7] show the

following results.

Proposition 2.4.

Definition 2.5. Let 7® = {R,, ; : n,j < w} be a fixed relational vocabulary where R,, ; is an n—ary relational
symbol (for n,j < w).

Definition 2.6. Assume that ¢ < w; and X is an uncountable cardinal such that NPr®()\). By this assumption,
we may fix a model M(g, \) = M = (A, {R;LMEj}n,Kw) in the vocabulary 7& with the universe A such that:

(®)a for every m and a quantifier free formula ¢(zo,...,z,—1) € L(7®) there is j < w such that for all
QQ,y .oy Q1 € A,

M ’: Lp[()zo, . ,an_l} = Rn)j[ao, . ,Oén_l],
(®), the rank of every singleton is at least 0,
Je 1+1k(v,M) < ¢ for every v € [\]<«\ {0},
(®)a M = Rao[ap, aq] if and only if ag < o < A.

For a nonempty finite set v C A let rk"(v) = rk(v, M), and we fix witnesses j(v) < w and k(v) < |v| for the
rank of v, so that the following demands (®).—(®), are satisfied. If {ao, ..., ar,...a,—1} is the increasing
enumeration of v and k = k(v) and j = j(v), then
(®)e if 1k*P(v) > 0, then M = R, j[oo, ..., %, ..., n_1] but there is no a € X'\ v such that
rk*P(v U {a}) > rk™(v) and M = R, j[ag,...,Qp—1,Q, Qi1 ..., 0n_1],
(®)¢ if rk®(v) = —1, then M = R, j[ag, ..., u, ..., ap_1] but the set

{Oé eXN:M ': Rn’j[ao,...,ak,l,a7ak+1,...7an,1}}

is countable,
(®)g for every ﬂo, R ,ﬁn,1 < )\, if M ': Rn,j [/30, . ,ﬂnfl] then ﬂo < ... < ﬂnfl.

The choices above define functions j : [\]<¢ \ {0} — w, k : [A\|<* \ {0} — w, and rk® : [A\]<9\ {0} —
(—1}U (e +1).



Sh:1187

3.
De

(1)

A. Roslanowski, S. Shelah / Annals of Pure and Applied Logic 176 (2025) 103565 5

QIFs and differences

finition 3.1. Let (H, +,0) be an Abelian group and B C H.

A (2,n)-combination from B is any sum of the form

tobg + t1b1 + tabs + ...+ ty—1bp_1

where bg,b1,...,b,—1 € B are pairwise distinct and ¢, t1,t9,...,tn—1 € {=2,—1,0,1,2}. The
(2, n)—combination is said to be nontrivial when not all ¢q, ..., t,—1 are equal 0.

We say that the set B is quasi independent in H if |B| > 8 and no nontrivial (2, 8)—combination from
B equals to 0.

We say that a family V' of non-empty subsets of H is an n-good qif' if |V| > n, the sets in V are
pairwise disjoint and for distinct Vp,...,V,,—1 € V, for each choice of b;,b; € V; (for i < n) and every
L0y Ly« -+ s b1y 1 € {—1,0,1} such that 22:01(%- + ¢£)% # 0 we have

tobo + Lgbf) + 111 + L/lbll + .ot tpotbpr + L;L—lb;zfl # 0.

An expression as on the left hand side above will be called a nontrivial (2,V,n)-combination (or a
nontrivial (2, n)—combination from V).

Let V, W C P(H) \ {0}. We will say that W is immersed in V if there is a bijection w : W =4V such
that

o W Cn(W)foral WeW, and

o if Wo,W1 €W, and a,d’ € Wy, b € Wy, then (a — a’) + b € 7(W7).

Observation 3.2.

(1) If B is quasi independent then all elements of B have order at least 3 and {{b} : b € B} is an 8-good

qif.

(2) IfV is an 8—good qif and by € V (for V € V) then {by : V € V} is quasi independent.
(3) Assume H is an Abelian Polish group. Suppose also that, for i < N < w, V; C H are disjoint open

sets and b; € V;. Then there are open sets W; such that b; € W; CV; fori < N, and {W,; : i < N} is
immersed in {V; 11 < N}.

Proposition 3.3. Assume that

(i) (H,+,0) is a perfect Abelian Polish group,
(ii) the set of elements of H of order larger than 2 is dense in H,

(iii) Uy,...,Un—1 are nonempty open subsets of H.

Then there are disjoint open sets V; C U; (for i < n) such that {V; : i <n} is an n—good qif.

Proof. Let H> consist of all elements of H of order < 2. Then Hs is a closed subgroup of H and, by the

assumption (ii), it has empty interior. Consequently, for each a € H and ¢ < n the set (a + Hs) N U; is

meager. Therefore, for each i < n,

1

short for quasi independent family.
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(®); theset {a+ Hz:a € H and (a+ H2) NU; # 0 } is infinite.

Let mo = 10 and m; 1 = 10°T1 - [ m; + 10 (for i < n). For each i < n choose a set A; C U; \ H such that
J<i

(@)0 |A1| =m; and

(@)1 ifa,be A; and a # b, then 2a # 2b.

(The choice is possible by (®); for each ¢ < n.) For 0 < i < n let
X; = {L()CLO + ...+ ti—1ai-1 :ag € Ao, Lo, ai-1 € Ai_1 A Loy -y li—1 € {72, —1,0, 1,2}}

By the choice of m;’s we know that 2 - |X;| < m; = |4;|, so we may choose b € A, such that 2b},b; ¢ X,.
Let by € Ap be arbitrary. One easily verifies that every nontrivial (2, n)-combination from {b} : i < n} is

not zero, so for each tg, g, - -y tn—1,t,_1 € {—1,0,1} such that Z?;Ol(bi +¢4)? # 0 we have
tobly + 1oby + 11by + b + o tp—1bp—1 U, bk #0.

For each such combination we may choose disjoint open sets V? - such that b} € V*

L07L67~~~7Ln—17/‘n7 LOng)v---v"nflyL;,l
C U; and for every b;, b, € V!

/ !
L0 sesbn—15ly 1

, 1 < n, we have

tobg + L6b6 + 1161 + Lllbll + .ot tpmibp—r + [/’/n,flb’lll*l 7& 0.

Now, for i < n we set

V; = ﬂ {VLZ;),L(],...,Ln,fh%,l L0y Ly e eyl by—q € {=1,0,1} A (10— L6)2 +ooit (bpo1 — L%_l)Q > O}.
It is clear that the sets V; (for i < n) are as required. O

Lemma 3.4. Suppose that (H,+,0) is an Abelian group and p is a translation invariant metric on it. Let
W C P(H) be a finite 8—good qif. Assume that

(a) W is immersed in V, V C P(H),

(b) AACACH, |A|=8,

() A—ACU{W -W':W,W e W},

(d) ifa,be A, a#b, then p(a,b) > diam,(W) (= diam,(—W)) for all W € W.

Then:
(1) If c € H is such that A"+ ¢ CJW, then also A+c C V.
(2) If c € H is such that c — A" CJW, then also c— A C Y V.

Proof. (1) Suppose that W,V, A’ C A C H satisfy the assumptions of the Lemma and ¢ € H is such that
A +cCUW.

Assume a € A\ A’ and let us argue that a + c € V.

Let (a; : © < 8) list the elements of A’. For ¢ < 8 let b; = a; + ¢ € W; € W and note that all W;’s are
pairwise distinct (by assumption (d); remember p is translation invariant). It follows from assumption (c)
that we may choose b € W/ € W and b € W/ € W such that a — a; = b, — b}/. Then, for each ¢ < 8, we
have

a—|—c=a+(bz-—ai):(bg—b;’—kai)—!—(bi—ai)zb;—by—i—bi.
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Claim 3.4.1. There are distinct i*,j* < 8 such that
(D)ix j» Wi ¢ {WL , WL} and Wiy ¢ {W] , W[}

Proof of the Claim. If for some i9 < 8 we have [{j < 8 : Wi, = W/ A j # do}| > 3, then choose
Jo < j1 < jo < 8 distinct from iy and such that WJ’(’] = W]’; = WJ’; = W,,. Since all W;’s are distinct, we
may pick i < 8 such that i* ¢ {io, jo, j1,j2} and Wi & {W; , W} , W] }. Next let j* € {jo, j1,j2} be such
that W« ¢ {W/., W'}, Then also Wy« # W;, = Wi and clearly (©); j« holds true.

If for some g < 8 we have [{j < 8 : W;, = W[ A j # io}| > 3, then by the same argument (just
interchanging W;"’s and W}’s) we find i*, j* so that (©);- j« holds true.

So now suppose that both [{j < 7 : W7y = Wi}| < 2 and [{j < 7: W7 = W/}| < 2. Then there
are jo < j1 < jo < 7 such that Wy ¢ (W WI W W W, W]} Take j* € {jo,J1,j2} such that

W« ¢ {W], W'} and note that then (V)7 ;- holds true. O

Let distinct ¢*, j* < 8 be such that (©);« ;- holds.
It follows from assumption (d) that Wj. # W/ and Wj. # W[ (remember a;» # a # a;-). Now, if
Wi* = W/, then

a+c=0b. + (b — b)) € (W + (WL —W[)) C VL.

where W/. C V. € V (so we are done). Similarly, if W;- = W/..
So suppose towards contradiction that both W;. # W/l and W;. # W/.. Now,

/L
bie = bjx + b = a+c = b} — b +bjs,

0

(®) (bix + bl + ) = (bj= 4+ +bi2) = 0.

Considering known inequalities among W;., Wi, W/, W;., Wi , Wi, we notice that no equality between

them may involve more than two sets. Also Wi« ¢ {W;., Wi., W/}, so the expression on the left hand side

of (®) can be written as a nontrivial (2, W), 8)—combination, contradicting the assumption that W is an
8—good qif.

(2) Follows from the first part applied to —A and —A’. O

Theorem 3.5. Suppose that (H,+,0) is an Abelian group and p is a translation invariant metric on it.
Assume also that

Then ezactly one of (A), (B) below holds true:

(A) There is a ¢ € H such that A+cC Q.
(B) There is a ¢ € H such that c— A C |J Q.
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Proof. Let (a; : i < m) be a sequence of pairwise distinct elements of A. Since A — A C J{W — W' :
W, W' e W}, we may choose functions bg, by : m x m — [JW and Wo, W1 : m x m — W such that for
all i, <m

a; —aj = bo(i, ) — b1(i, ), bo(i,j) € Wo(4,4), bi(i,5) € Wi(i, J),

and bg(i,7) = b1(j,17), and by(4,5) = bo(j, 7). Let {we(io,1,12,43) : £ < 144) list all formulas of the form

Wj(imiy) - Wj’(ifb’aiy’)
for j,j' <2 and x,y, 2",y <4,z <y, 2’ <y
Let p: [m] — 14492 be a coloring of quadruples from m such that if ig < i; < iy < i3 < m, then

n({io,i1,42,13}) (¢) =1 if and only if @4 (io, 41,42, i3) holds true.

Since m — (10);1144, we may choose u € [m]lo homogeneous for p. Without loss of generality, u =
{0,1,2,3,4,5,6,7,8,9}.

Claim 3.5.1. Let ,j,k < 10 be pairwise distinct. Then

(1) Woli, )#Wl( ,J) and
(2) bo( ) ( ) (Zaj) - bl(Za]) + bO(]ak) - bl(]7k) and hence

(Woti, k) = Wai, &)) 1 ((Wolisg) = WaGi. ) + (Wo(j k) = Wa(i, k) ) # 0.

Proof of the Claim. (1) Follows from assumption (e) of the Theorem (remember every set from W is a
subset of a member of Q).

(2) This follows by the equality (a; — a;) + (a; — a) = a; — ax, and the choice of by(i, ), Wy(i, 5), b1 (i, §),
I/T/vl (7’7 .7) .

Claim 3.5.2. If {Wy(i,7) : i < j < 10} N {Wy(i,5) : i < j < 10} # 0, then either Wo(0,1) = W1 (1,2), or
Wl(ov 1) = W0(1a2)

Proof of the Claim. Suppose iy < jo < 10 and i; < j; < 10 are such that Wy(iq, jo) = Wi (i1,51). We shall
consider all possible orders of g, jg,%1,71 and use the homogeneity to conclude one of the clauses in the
assertion.

(a) If ig < jo < i1 < j1, then (by the homogeneity) Wy(0,1) = W1(2,3) = Wi(4,5) = Wy(2,3), so
Wo(2,3) = W1(2,3), contradicting Claim 3.5.1(1).

(b) If i < jo = 41 < j1 then also Wy(0,1) = Wy(1,2) (giving the conclusion of Claim 3.5.2).

(c) If ig < i1 < jo < j1, then Wy(1,4) = W1 (2,5) = Wy(0,3) = Wi(1,4), contradicting Claim 3.5.1(1).
(d) If ig < i1 < jo = j1, then Wy(0,3) = Wy (1,3) = Wy (2,3) = Wo(1,3), contradicting Claim 3.5.1(1).
() If ig < i1 < j1 < jo, then Wy(1,4) = Wy(2,3) = Wy(0,5) = Wi(1,4), contradicting Claim 3.5.1(1).
(f) If ig = i1 < jo < j1, then Wy(0,1) = W1(0,2) = W1(0,3) = Wy(0,2), contradicting Claim 3.5.1(1).
(g) The configuration ig = i1 < jo = j1 contradicts Claim 3.5.1(1).

(h) If ig = i1 < j1 < jo, then Wy(0,2) = W1(0,1) = Wy(0,3) = W1(0,2), contradicting Claim 3.5.1(1).
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i) The configuration i; < ig < jo < j1 is not possible similarly to (e) (just interchange Wy and W7).
j) The configuration i; < ig < jo = j1 is not possible similarly to (d).

(

(

(k) The configuration i1 < ig < j1 < jo is not possible similarly to (c).

(1) If i1 < ip = j1 < jo, then W7(0,1) = Wy(1,2) (giving the conclusion of Claim 3.5.2).
(m

) The configuration i; < j; < iy < jo, is not possible similarly to (a). O

Now, we will consider three cases, showing that the first one is not possible. In the second case we will
find ¢ € H such that {¢ —a; : ¢ <8} C |JV. Then by Lemma 3.4 we will also have ¢ — A C |J Q. Finally
in the last case we will find ¢ € H such that {a; + ¢ : i < 8} C [JV, so by Lemma 3.4 we will also have
A+cClOQ.

For £ < 2 and i < j < 10 let V,(i,j) € V be the unique set such that W,(i,5) € Vi(i, ;). Also, let
Vi = {Vy(i,5) :i < j < 10}.

CaSE 1: {Wy(i,j§) i< j <10} N {Wi(3,5):i<j <10} =0
By Claim 3.5.1(2) we have bg(0,2) — b1(0,2) = bg(0,1) — b1(0,1) + bg(1,2) — by(1,2) or

(bo(0,1) — bo(0,2) + bo(1,2)) + (b1(0,2) — by (0,1) — by(1,2)) = 0.

If [{Wo(0,1), Wo(0,2), Wo(1,2)}| < 2, then

either W5(0,1) = Wy(1,2) and by the homogeneity Wy(0,1) = Wy (i, ;) for all i < j < 9, so bg(0,1) +
bo(1,2) — bo(0,2) € Wy(0,1) + (Wy(0,1) — Wy(0,1)) € V5(0,1),

or Wy(0,2) = Wy(0,1) and then by(0, 1)—bg(0,2)+bg(1,2) € (W5(0,1)=Wy(0,1))+Wo(1,2) C Vp(1,2),

or Wy(0,2) = Wy(1,2) and then bg(1,2)—bg(0,2)+bg(0,1) € (Wo(0,2)—Wy(0,2))+Wy(0,1) C Vo(0,1)

Therefore, if [{Wo(0,1), Wo(0,2),Wy(1,2)}| < 2 then by(0,1) — bg(0,2) + by(1,2) € UVp. If ele-
ments of {Wy(0,1), WQ(O,Z) Wo(1,2)} are all distinct, then they are respectively included in disjoint
sets V5(0,1),V5(0,2),V5(1,2) (remember V is an 8-good qif). Hence we may conclude that in any case
bo(0,1) — bg(0,2) + bo(1,

Similarly, if [{W1(0,1),

2) equals to a nontrivial (2, Vp, 3)—combination.
W1(0,2), W1 (1,2)}] <2, then

either W1 (0,1) = Wi(1,2) and then —((by(0,1) — b1(0,2)) + by (1,2)) € —=Vi(1,2),
or W1(0,1) = W1(0,2) and then —((b1(0,1) — by(0,2)) + b1(1,2)) € —Vi(1,2),
or W1(0,2) = Wy(1,2) and then —((b1(1,2) — by(0,2)) + b1(0,1))) € —V1(0,1).

Therefore easily in any case b1(0,2) —b1(0,1) — by (1,2) equals to a nontrivial (2, V;, 3)-combination.
Now, in the current case we have Vo N V; = (), so we may conclude that 0 = (bg(0,1) — bo(0,2) +
bo(1,2)) + (b1(0,2) — b1(0,1) — by(1,2)) is equal to a nontrivial (2,V, 8)—combination, contradicting the
assumption that V is an 8-good qif.
Thus Case 1 cannot happen and by Claim 3.5.2 either W;(0,1) = Wy (1,2), or Wy(0,1) = Wy(1,2).

CASE 2: W(0,1) = Wi(1,2).
By the homogeneity, Wy(j,8) = W1(8,9) for each j < 8. By Claim 3.5.1(2), for every j < 8, a; — ag =
bO(.j7 8) - bl(jv 8) + b0(879) - b1(8,9)a S0

(a9 +bo(8,9)) — a; = (b1(8,9) — bo(j,8)) + b1(5,8) € (Wo(5,8) — Wo(4,8)) + W1(}, 8)

Since W is immersed in V, the set on the far right above is included in V; (4, 8). Hence for ¢ = ag + bq(8, 9)
and A’ = {a; : j < 8} we have ¢ — A’ C |JV. Using Lemma 3.4(2) we may conclude that c — A C |J Q.
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CASE 3: W1(0,1) = Wy(1,2).
By the homogeneity, W, (j,8) = Wo(8,9) for each j < 8. As before we use Claim 3.5.1(2) to get

(bl(&g) - &9) +a; = (b0(879) - bl(j’ 8)) + bo(],8) € (WO(&Q) - WO(&Q)) + WO(.]78)

Since W is immersed in V, the set on the far right above is included in Vp(j,8). Thus for ¢ = by(8,9) — ag
and A’ = {a; : j < 8} we have A’ + ¢ C |JV. By Lemma 3.4(1) we get A+ ¢ C |J Q.

Finally, to show that only one of (A) and (B) may take place, suppose A+ ¢ C|JQandd— A C |JQ
for some ¢,d € H. For a € A let Q,,Y, € Q be such that a +c € @, and d —a € Y,,.
Fix any a € A and choose b € A\ ({a}U (Yo —c)U(d—Q,)) (it is possible as by the Assumption 3.5(e),
[AN(Ya —¢)] <2and |[AN(d— Q.)| < 2). Now,
(a+c)+(d—a)=c+d=(b+c)+(d-0),

50 0 € Qq + Y, — Qp — Y. By the choice of b we have Qp # Yy, Q. # Y, and also (by 3.5(e)) Qa # Qp and
Y, #Y,. Therefore some nontrivial (2, Q, 4)—combination is equal to 0, contradicting Q is a good qif. O

4. Quasi independence and sums

In a special case when Q,V, W are all families consisting of singletons (and p is the discrete metric on
H), Theorem 3.5 gives the following result of its own interest.

Corollary 4.1. Suppose that (H,+,0) is an Abelian group and B C H is quasi independent. Assume also
that

(a‘) m— (10);144;
(by ACH, |A| >m and A— ACB—B.

Then ezxactly one of (A), (B) below holds true:

(A) There is a unique ¢ € H such that A+ ¢ C B.
(B) There is a unique ¢ € H such that c — A C B.

The above Corollary inspired our interest in its dual version when A — A and B —B are replaced by A+ A
and B + B. This dual result (given in Theorem 4.4 below) is not used in the proof of our independence

theorem, but we find it interesting.

Lemma 4.2. Suppose that (H,+,0) is an Abelian group and B C H is quasi independent. Assume that
A" C ACH and ce H are such that

(a) A+ ACB+B,
(b) A +cC B and |A'| =4.

Then A —c C B.

Proof. Suppose that A’ C A C H satisfy the assumptions (a) and (b). Assume a € A and let us argue that
a—ce B.
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Let (a; : i < 4) list the elements of A’. For i < 4 let b; = a; + ¢ € B and note that all b;’s are pairwise
distinct. Since a; + a € B + B we may also choose b;,b; € B such that a; + a = b} + b}. Then, for each

27 71
1 < 4, we have

a—c:a—(bz—al):ngrb;'—al—(bz—az):b;er;'—bl
Thus for i < j < 4 we have
() 0= (b;+b;/+bj)—(b;-+b;{+bi).

If for some i < j < 4 both sets {b},b;,b;} and {b},b7,b;} had at least 2 elements, then the right hand side
of (x); would give a (2,8)—combination from B with the value 0, so the combination would have to be a

trivial one. Therefore

()2 for each i < j < 4,
either (i) b} =0 = bj,
or (ii) b} = b7 = bi,
or (111) {b;7 bilv b]} = {b;7 b;Ia bl}
Suppose that i < j < 4 are such that (x)a(iii) holds true. Since b; # b;, we get b; € {b},b} and hence
a—c=0b+b—b; €{b,b/} CB, and we are done.

Assume towards contradiction that
(x)3 for each i < j < 4, either (x)2(i) or (x)2(ii) holds true.

Then for some ig < 4, b, = b/ whenever j # i. Necessarily,

(jo #J1 N o ¢ {j07j1}) = b, #bj,

(as a + aj, # a+ aj,). Since there are no repetitions among b;’s, we may now choose j # ig such that
bj # b;, b # bi, getting immediate contradiction with our assumption (x);. O

Lemma 4.3. Suppose that (H,+,0) is an Abelian group and B C H is quasi independent. Assume that
A’ C ACH are such that

(a) A+ ACB+B,
(b) |A'| >4, and A’ + ¢ C B for some ¢ € H.

Then A+ ¢ C B and the order of ¢ is < 2.
Proof. Let A’ + ¢ C B. It follows from Lemma 4.2 that A —c¢ C B. Applying that lemma again for A’, A, B
and —c we get A+ ¢ C B.

Concerning the second part of the assertion, suppose towards contradiction that c+c¢ # 0. Let ag, a1, as, as
be distinct elements of A. Then for distinct 7, 7 < 4 we have

a;+c#a;—c, ai+c#a;j+c, and a;—c#a;—c,
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and consequently we may find ¢ < 4 such that {ag+c, ap—c}N{a;+c,a;—c} = 0. Then, by the first paragraph
of this proof, ag + ¢, ap — ¢, a; + ¢, a; — ¢ € B are all distinct and (ag +¢) — (ag — ¢) — (a; + ¢) + (a; —¢) = 0,
contradicting the quasi independence of B. 0O

Theorem 4.4. Suppose that (H, +,0) is an Abelian group and B C H is quasi independent. Assume also that
4

(a) m — (6)2144,
(b) ACH, |A| >m and A+ AC B+ B.

Then there is a unique ¢ € H of order < 2 such that A+ ¢ C B.

Proof. Let (a; : i < m) be a sequence of pairwise distinct elements of A. Since A+ A C B + B, we may
choose symmetric functions by, by : m x m — B such that

a; + a; :bo(l,])-i-bl(l,j) for all 7,5 < m.
Let {pe(io,i1,12,13) : £ < 144) list all formulas of the form
bj(ia,iy) = by (iar, iy )

for j,j/ <2and x <y <4, 2 <y <4
Let p : [m] — 1449 be a coloring of quadruples from m such that if iy < i; < is < i3 < m, then

,u({io,il,ig,i3}) (5) =1 ifand only if  y(io,%1,2,%3) holds true.

Since m —» (6)3144, we may choose u € [m]6 homogeneous for p. Without loss of generality, u =
{0,1,2,3,4,5}.

Claim 4.4.1. If {bg(i,j) : i < j < 6} N{by(i,j) : i < j < 6} # 0, then either by(0,1) = by(1,2), or
b1(0, 1) = b0(172), or bo(o, 1) = b1(0,1).

Proof of the Claim. Suppose ig < jo < 6 and i; < j; < 6 are such that bg(ig,jo) = b1(41,71). We shall
consider all possible orders of g, jg,%1,71 and use the homogeneity to conclude one of the clauses in the
assertion.

(a) If ip < jo < 41 < ji1, then (by the homogeneity) bo(0,1) = b1(2,3) = b1(4,5) = by(2,3), so also
b(0,1) = by (0,1).

(b) If iy < jo =41 < j1 then also by(0,1) = by(1,2).

(c) Ifip < i1 < jo < J1, then bg(0,3) = b1(2,4) = by(1,4) = by(0,2) and also b(0,1) = by(1,2)
(d) If ig < i1 < jo = J1, then bp(0,3) = by1(1,3) = b1(2,3) = bg(1,3) and also by(0,1) = by (0,1)
(e) If ig < i1 < j1 < Jo, then bg(0,5) = b1(3,4) = by(1,2) = bg(0, 3) and also by(0,1) = by(1,2)
(f) If ip = i1 < jo < J1, then bg(0,1) = by(0,2) = by(0,3) = by (0, 2), so also by(0,1) = b1(0,1).
(g) If ig = iy < jo = j1 then bo(0,1) = by (0, 1).

(h) If 4o = 41 < 1 < Jo, then by(0,2) =b1(0,1) = be(0,3) = b1(0,2), so also by(0,1) = b;1(0,1).
(i) If i1 < ig < jo < j1, then by(0,1) = bg(1,2) similarly to (e), just interchange by and b;.

(j) If i1 < ip < jo = j1, then bp(0,1) = by (0, 1) similarly to (d).
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(k) If 41 < ip < j1 < jo, then by(0,1) = bg(1,2) similarly to (c).
(1) If i1 < ip = j1 < jo, then bl(O,l) = b0(1,2).
(m) If i1 < j1 < ip < Jo, then bg(0,1) = by (0, 1) similarly to (a). O

Claim 4.4.2. If bo(o, 3) = b()(l7 2), then bQ(O, 1) = bo(l, 2) = bo(?, 3) = bo(o, 3)
Similarly if by is replaced by by.

Proof of the Claim. Straightforward by the homogeneity of u. 0O
Claim 4.4.3.
bo(0,1) +b1(0,1) — bg(1,2) — b1(1,2) + bo(2,3) + b1(2,3) = bo(0, 3) + b1(0, 3).

Proof of the Claim. Follows by the choice of by(i,5), b1 (%, ;) and
(a0+a1)—(a1 +a2)+(a2+a3) =ag+asz. O

Now, we will consider six cases, showing that the first four of them are not possible. In the remaining two
cases we will find ¢ € H such that {a; + ¢:i < 4} C B. Then by Lemma 4.3 we will also have A + ¢ C B.

CASE 1: {bg(i,j) :i < j <6} N{by(i,5):i <j <6} =0and bi(0,3) ¢ {b1(0,1),b1(1,2),b1(2,3)}.
Then bl((), 3) ¢ {bo(o7 1), bl((), 1)7b0(1, 2), bl(l, 2),b0(2, 3), b1(2, 3),b0(0, 3)} and by Claim 4.4.3

bl(O7 3) = bQ(O, 1) + bl(O, 1) — bo(l, 2) — bl(l, 2) + b0(2,3) + b1(2, 3) — bQ(O, 3),

contradicting quasi independence of B.

CASE 2: {bg(i,7) :1<j<6}N{by(i,j): i< j <6} =0and bg(0,3) ¢ {bo(0,1),bp(1,2),bg(2,3)}.
By an argument similar to Case 1, one shows that this case is not possible as well.

CASE 3: {bo(i,7) 14 < j < 6}y N{by(i,j) : i < j < 6} = 0 and by(0,3) € {bo(0,1),bo(1,2),bo(2,3)} and
b1(0,3) € {b1(0,1),by(1,2),b1(2,3)}.

SUBCASE 3A: by(0,3) = bg(1,2).

Then by Claim 4.4.2, bo(0,3) = b(0,1) = by(1,2) = by (2, 3).

If b1(0,3) = by(0,1), then ag + az = ag + a1 and as = a1, a contradiction.

If b1(0,3) = by1(2,3), then ag + az = a2 + a3 and ag = a2, a contradiction.

If by1(0,3) = by (1,2), then Claim 4.4.2 implies by(0,3) = by(0,1) and we already know that this leads to a
contradiction.

Consequently Subcase 3A is not possible.

SUBCASE 3B: by1(0,3) = bq(1,2).

Similarly as in Subcase 3A one argues that this is not possible.

SUBCASE 3C: by(0,3) = bg(0,1) and by(0,3) = by(0,1).

Then ag + a1 = ag + as and a1 = as giving a contradiction.

SUBCASE 3D: bg(0,3) = bg(2,3) and by(0,3) = by(2,3).

Like Subcase 3C, this is not possible.

SUBCASE 3E: by(0,3) = by(0,1) and by (0,3) = by (2,3).

If we had by(0,1) = by(1,2), then also (by the homogeneity) b;(1,2) = by(2,3) so b1(0,1) = by(0,3) and
we get a contradiction like in Subcase 3C.

If we had bg(1,2) = bg(2,3) then also bg(2,3) = bg(0,1) so by(2,3) = bg(0,3) and we get a contradiction
like in Subcase 3D.
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Consequently, there must be no repetitions in {bg(1,2),bg(2,3),b1(0,1),b1(1,2)}. By Claim 4.4.3 and the
assumption of the current subcase we have

b1(07 1) + b0(2a3) - b0(172) - b1(172) =0,

a contradiction with the quasi independence of B.

SUBCASE 3F: bo(o, 3) = bo(?, 3) and bl(O, 3) = b1(0, 1)
Like Subcase 3E, this is not possible.

The next three cases cover the possibility when {bg(%,7) : i < 7 < 6} N {by(i,5) : i < 7 < 6} # (). By
Claim 4.4.1, this implies that either bg(0,1) = b1(1,2), or by (0,1) = bo(1,2), or be(0,1) = by(0,1).

CASE 4: bg(0,1) = bq(0,1)
Then for all i < j < 6 we have bg(i,5) = b1(4, j).

If for some iy < jo < i1 < j1 we had bg(ig, jo) = bo(é1,71), then by the homogeneity we would have had
bo(0,1) = bg(i,7) = by(4,74) for all i < j < 5 and

4b0(0, 1) = ((10 —+ al) —+ (a1 + CLQ) = 2(11 —+ 2b0(0, 1)

Hence 2b(0,1) + (ao + a1) = 4by(0,1) = 2a; + 2b(0, 1) and ag = a1, a contradiction.
Therefore, by (g, jo) 7 bo(i1,j1) whenever ig < jo < i1 < j1 < 3. Now, by Claim 4.4.3,

2bo(0,3) = bo(0,3) + b1 (0,3) =
bo(0,1) 4+ by(0,1) — bg(1,2) — by (1,2) + by(2,3) + by (2,3) =
2b(0,1) — 2bg(1,2) + 2by (2, 3).

If we had bg(0,3) = bg(1,2), then by the homogeneity bg(1,2) = bg(0,5) = bg(2,3), contradicting what
we said above. Therefore, bg(0,3) # bg(1,2) and bg(0, 1), bg(1,2),bg(2,3) are pairwise distinct. Hence

2b(0, 1) — 2by(1,2) + 2by(2,3) — 2by (0, 3)

is a nontrivial (2, 8)—combination with value 0, a contradiction with the quasi independence of B.
Consequently, Case 4 is also impossible.

CASE 5: bo(o, 1) = bl(l, 2)
By the homogeneity, for each j < 4 we have then bg(j,4) = b1(4,5). Hence for every j < 4 we have

aj +as =bo(j,4) +b1(j,4) = b1(4,5) + b1(j,4),
and consequently
aj + (as —b1(4,5)) = b1(j, 4) € B.

Thus letting ¢ = a4 — b1(4,5) we will have {a; + ¢ : i < 4} C B. By Lemma 4.3 we also have A + ¢ C B.

CASE 6: bl((), 1) = bo(l, 2)
Similarly to Case 5, for each j < 4 we have by(j,4) = bg(4,5) and

a; + a4 = bO(]74) + bl(j7 4) = bO(J?4) + b0(4a 5)

Hence a; + (a4 — bo(4,5)) = bg(j,4) € B and the rest is clear.
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Concerning the uniqueness of ¢, suppose towards contradiction that ¢ # d are such that A + ¢ C B and
A+ d CB. Let ag, a1, as, a3 be distinct elements of A. Then for distinct 7,7 < 4 we have

a;+c#a;+d, a;+c#aj+c, and a;+d#a;+d,

and we may find ¢ < 4 such that {ag+c, ap+d}N{a;+c, a;+d} = 0. Then the elements ap+c, ap+d, a;+c, a;+d
belong to B, they are all distinct and (ag + ¢) — (ag + d) — (a; + ¢) + (a; + d) = 0, contradicting the quasi
independence of B.

Finally, Lemma 4.3 gives that ¢ must be of order at most 2. O

5. Forcing for Abelian groups with few elements of order two

In this and the next section, we will keep the following notation/assumptions concerning our group H.

Assumption 5.1.

(1) (H,+,0) is an Abelian perfect Polish group with the topology generated by a complete metric p. We
also require that the metric p is translation invariant (possible by the Birkhoff-Kakutani theorem and
[3, Corollary 1.2.2]).

(2) D C H is a countable dense set.

(3) The open ball in the metric p with radius 27" and center at 0 is denoted B,, and we let U = {d +B, :
deD AN n< w}. By the invariance of the metric p, the family i/ is a countable base of the topology
of H.

Note that if P C B C H then  +y € (B4 x) N (B +y) for each z,y € P. Consequently, if P C B is a
perfect set, then it witnesses that B has a perfect set of pairwise non-disjoint translations. But for k > 2 we
may and will introduce a forcing notion adding a Borel set B C H which has many pairwise k—overlapping
translations but no perfect set of such translations.

The technical details force us to break up the construction into two cases. First, we will assume that the
group H has only a few elements of rank 2. So, in addition to the assumptions and notation specified in 5.1,
in this section we assume the following;:

Assumption 5.2.

(1) The set of elements of H of order larger than 2 is dense in H.

(2) 1<k<w.

(3) € is a countable ordinal and A is an uncountable cardinal such that NPr()) holds true. The model
M(e, M) and functions rk°, j and k on [A\]<¥ \ {0} are as fixed in Definition 2.6.

We will define a forcing notion P adding A many (distinct) elements (1, : @ < A) of the group H as well
as a sequence (F,, : m < w) of closed subsets of H. The £J subset S = |J F,, of H will have the property

m<w
that (in the forcing extension)

(V)1 there is no perfect set P C H satisfying
(Vz,y € P)(|(z+5) N (y+ S)’ > k).

At the same we will make sure that
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Q) ’(_na+S)ﬁ(—n5 +S)’ >k for all o, 8 < A.

To ensure (V)2 holds, the forcing will also add witnesses for it: group elements v; o 3 = v;p,. € H and
integers ha,p < w such that 0 + Vi ap € Fr, , (fori <k, a,f <X).

A condition p € P will give a “finite information” on objects mentioned above. Thus for some finite
wP C A, for all distinct «, 5 € wP, the condition p provides a basic open neighborhood UZ(nP) of 7, basic
open neighborhood Wf 0B of v; .5 and the values of h, g = h?(a, ). An approximation to the closed set
F,, C H will be given by its open neighborhood

= J{UEM") + WP, 5 (. 8) € (@) A i<k A BP(a,B) =m}.

Clause (©); as well as the ccc of the forcing P will result from the involvement of the rank rk® and additional
technical pieces of information carried by conditions p € P: basic open sets Q’; a,p le o.f and integers 2.

Definition 5.3. (A) Let P be the collection of all tuples
p= (wp MP 7 nP, TP, VP, h”) *( ,M,F,n,T,‘_/,h)
such that the following demands (X);—(X)g are satisfied.

XK)1 we A< |Jw>4,0<M<w,3<n<wand 7= (ry, :m< M) Cwwith r,, <n—2form < M.
(X)y T = (U, : a € w) where each U, = (Uy(¢) : £ < n) is a C-decreasing sequence of elements of the
basis U.
()3 V = (Qia8 Viass Wiaap = 0 < ks (@, 8) € w®) C U and Qiap = Qipa 2 Vias = Viga 2
Wiap = Wipga foralli <k and (a,3) € w'?.
(X)4 (a) The indexed family (Uy(n —2) : @ € w) (Qiap i < k, @, € w, a < f) is an 8-good qif (so
in particular the sets in this system are pairwise disjoint), and
(b) (Ua(n) :acw)(W;ap: i<k, a,f€cw, a</f)isimmersedin (Uy(n—1):a€w)y ™ (V,as:
i<k, a,few, a<pf)and (Us(n—1):acw)(Viqg:i<k, a,f €w, a< ) isimmersed in
(Uan—2):a € w)(Qiap: i<k, a,f € w, a< f);see Definition 3.1(4) (so all these families
are 8-good qifs).
(X)s (a) If a, B € w, £ <nand Uy(€) NU(L) # O, then U, (£) = ( ), and
(b) if o, B,y € w, £ < n, Us({) # Us({) and a € Uy(£), b € Ug({), then p(a,b) > diam,(U,(¢))
(= diam, (~ U, (0))).
(®)g h:w® 28 M is such that h(e, 8) = h(B,a) for (a,8) € w®.
(X)7 Assume that u,u’ C w, 7 and £ < n are such that
e 4< |u| =|u| and 7 : u —> ¢/ is a bijection,
o Thap < L forall (a,B) € ut?,
o Us(0)NUs(¢) =0 and h(w, B) = h(m(a), m(B)) for all distinct o, 8 € u,
o for some c € H,
either for all o € u, we have (Un(€) 4+ ¢) N Uy(a)(£) # 0
or for all a € u, we have (c — Un(€)) N Uy (q) () # 0.
Then rk°P(u) = rk*P(v'), j(u) = j(u'), k(u) = k(v') and for o € u

lanul=k(u) < |r(a)Nd]=k(u).

(X)s Assume that
e D#uCw, kP(u) =—1,¢<nand
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e «a € u is such that |a Nu| = k(u), and
o Thppn < Cand Us() NUg (€) =0 for all (8,8") € ut?.
Then there is no o € w \ w such that U, (¢) = Uy (¢) and h(«, 5) = h(a/, 8) for all § € u\ {a}.

(B) For p € P and m < MP we define

F(p,m) = J{URmP) + WE, 5 (a,8) € (w")? A i<k A hP(a,B) =m}.
(C) For p,q € P we declare that p < ¢ if and only if

o wP Cwd, MP < M9, 74| MP =P nP < ni hi](wP)? = hP and

o if @ € wP and ¢ < n? then UZ(L) = UP({), and

o if (a,8) € (wP)?, i < k, then Qs CQLap Vit SV, g and W, , CWL o and
o if m < MP, then F(q,m) C F(p,m).

Lemma 5.4.

(1) (P, <) is a partial order of size A.
(2) The following sets are dense in P:

(i) Dg’M’nz{pEP:'yEup AN MP>M A np>n} fory < Xand M;n < w.

(i) Dy = {p € P: for alli,j < k and (a, B), (7,6) € (wP)? it holds that diam,(UE(nP —2)) < 27V
and diam,(QY , 5) < 27N and diam,(UE(n? —2) + QY p) <27 Noand if (i,a*, a, B) # (5,7, 7,9)
then (UE.(n?) + Wfaﬁ) N (UF.(n?) + Wl s ) =0} for N <w.

(3) Assume p € P. Then there is ¢ > p such that n? > n? + 3, w? = wP and

o foralla € w?, l(Ug(n? —2)) C UE(nP), and

o foralli <k and (o, B) € (w?)$?,

Cl(Utl)cZ(nq - 2) + Q?,aﬁ) g Ug(np) + Wﬁa,ﬁ and Cl( g,a,B) g Wipia,ﬁ'

Proof. (2)(i) Suppose p € P and v € A\ wP. Let a* = min(w?) and let w = wP U {v} and n = nP + 3. Using
Proposition 3.3 we may choose Uy (n —2) € U (for o € w) and Qo5 €U (for i < k, a < B, o, f € w) such
that

Ua(n —2) CUE(nP) and Qi a5 € W/, 5 When a, f € w?,

. Uy(n—2) C UL (a?),

(Uan—2):aew) (Qiap: i<k, a<pB, a,f € w)isan 8-good qif,

diam, (Us(n — 2)) = diam,( — Us(n — 2)) < p(a,b) for all § € w, (a,B) € w'?, a € Us(n — 2) and
be Ug(n—?).

Then by Observation 3.2(3) we may choose Uy(n — 1),Us(n), Via g, Wiaps € U (for « < § from w and
i < k) such that Uy(n) CUs(n—1) CUs(n —2), Wiap C Viag C Qiap and

o (Usn—1):acw)y ™ (Viap:i<k, a,f€w, a<f)isimmersed in (Uy(n—2):a € w) (Qiap:i<
k, o, €w, a< ), and

o (Up(n):a€cw)y ™ (Wiap:i<k, af € w, a<}f)isimmersedin (Us(n—1):a cw)y(Viap:i<
k, a,8 €w, a<p).
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Put T = (U, : a € w), where U, = UL (Uy(n — 2),Un(n — 1),Uq(n)) if @ € wP and U, = UL U, (n —
2),U,(n—1),Uy(n)). Let Qi 3.0 = Qiaps Vipa = Viapgand Wygo =W;ap (for i <k, o < from w),
and let V = (Qi.ap, Vi Wiap 11 <k, (a,8) € w?). Let M = M? 4 |wP| and let h : w'? — M be
such that

. i
. I

o, B) = h?(a, B) when (o, 8) € (wP)?,
a,y) = h(y,a) = MP + j when a € wP and j = |wP N a.
We also define 7 : M — (n — 1) so that #[M? = #? and r,, = n — 2 for m € [MP?, M).

Put ¢ = (w, M,r,n, T,V h). Let us argue that ¢ € P. To this end we have to verify conditions (X);—(K)g
of Definition 5.3. Of these the first six demands follow immediately by our choices. To show (X)7, suppose
u, v/ Cwand 7m:u — v and £ <n and ¢ € H satisfy the assumptions there. If a € w? then h(y, o) > MP
and therefore v € u if and only if v € «'. If v ¢ u, then w Uu' C w? and clause (X); for p (applied to
min(n?, ¢) instead of ¢) gives the needed conclusion. If v € u, then v € «’ too and we look at h(8,7) for
B € unNwP. Each of these values is taken by h exactly one time, so h(w(8),m(v)) = h(53,~) for all 8 € wP
implies that w(y) = v and w(8) = B for § € uNwP. Hence u = v’ and = is the identity, so the desired
conclusion follows.

Now suppose £ < n, o € u C w are as in the assumptions of (K)g (so by 2.6(®), also |u] > 2). If v & u,
then applying (X)s for p to o, u and ¢/ = min(¢, n?) we see that there is no o' € w? \ u with U, (¢) = Uy (£),
and h(a, B) = h(d/, 5) for all g € u\ {a}. The values of h(S3,~) (for 5 € u) are above MP, so they cannot
be equal to h(8,a) either. Consequently, the conclusion of (K)g holds in this case. So assume now that
v € u\ {a}. The value of h(v, @) is taken exactly once, so no o € w \ {7, a} satisfies h(y,a) = h(vy, )
and the desired conclusion should be clear now. Finally, assume v = «. As we said, |u| > 2 so we may take
B € u\ {7} and look at h(y, ). There is no o € w\ {7} with h(a/, 8) = h(7, ), so the desired conclusion
follows, finishing the proof of (K)s.

Now one easily deduces (2)(i).

(ii) Assume p € P and N < w.

First note that if (U, Vy : £ < m) CU, m < w, then there are U; C Uy, V/ C V; from U (for ¢ < m) such
that (Uj, +V,,) N (U;, + V{,) = 0 whenever £y < £; < m and diam,(U; + V/) <27V for £ < m. Therefore,
for (o, 8) € (w?)? and i < k we may choose Uy (n? + 1), Q.05 € U such that U,(nP + 1) C UE(nP),
Qi,op = Qi o © W/, 5 and p-diameters of Uy (n? +1), Qi 0,6 and Us(n? +1) + Qi o, are all smaller than
27N and if (i,0*, a, B) # (4,7*,7,0) then (U.(n?) + W}, o) N (UL (nP) + W 5) = 0.

Note that (Ua(n? +1) : @ € wP) (Qiap 11 < k, @ < B, a,f € wP) is an 8good qif. Next, use
Observation 3.2 to choose Uy (n? +2), Us(nP + 3), Vi.a.8, Wi a,p € U such that Uy (n? +3) C Uy (n? +2) C
Ua(n? +1),and Wi a5 =Wiga CVias = Viga C Qiaps (for (o, 8) € (w?)(? and i < k), and

o (Ua(nP+3):acwl) ™ Wiap: i<k, a<pf, a,f € wP)isimmersed in (Uy(n?+2) :a € wP) (Vi p:
i<k, a<pf, a,f € wP), and

o (Ua(nP+2):aecwl) ™ (Viapg: i<k a<p, af €wP)isimmersedin (Uy(nP+1):a € wP) (Qiap:
i<k, a<pf, af€uwp).

Now, for a € w? let U, = UL~ (Uy(n? + 1),Uq(n? + 2),Uq(n? + 3)) and then let T = (U, : a € wP)
and V = (Qiap, Vi, Wiap : 0 < k, (a,8) € (wP)?). These choices clearly determine a condition
q= (wP, MP, 7P nP + 3, Y,V hP) € D} stronger than p.

(3) Analogous. O
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Lemma 5.5. Suppose that p € P and «, 8,7, € wP are such that o # 3. If

(Ug(np —2) — UB(nP — 2)) N (Ug(np —9) — UP(nP — 2)) £ 0,

then a =~ and B = 4.

Proof. Let n = nP. Suppose that a € UZ(n — 2), b € Uj(n —2), ¢ € UP(n — 2) and d € Uy (n — 2) are such
that a —b=c—d. Then a+ (¢ —a) = cand b+ (¢ — a) = d, so as p is invariant we have p(a,b) = p(c,d).
Demand 5.3(A)(X)5(b) implies that p(a,b) > diam, (UL (n —2)) and hence v # 6. Now look at a +d —b—c:
since a # 5 and v # ¢ it is a (2,4)—combination from an 8-good qif <Ué’(n —2): ¢ € w). Since the value of
the combination is 0, it has to be trivial. Hence immediately « =y and § =0. O

Lemma 5.6. The forcing notion P has the Knaster property.

Proof. Suppose (p. : € < wy) is a sequence of pairwise distinct conditions from P. Applying standard
A-lemma based cleaning procedure we may find wo C A and A € [wq]“* such that for distinct &, ¢ € A the
following demands (x); + (*)2 are satisfied.

()1 |wPe] = JwP<], wo = wPe NwP<, MPs = MP<¢ nPe = npP< 7Pe = 7PC,
()2 If 7* : wP¢ — wPs is the order isomorphism, then

o ¥ [wy is the identity,

o Ub(0) = Upf( ,(£) whenever a € wPs, £ < nPs,

o if (0, 8) € (wP<)® i < k, then hP(a, B) = hP¢ (r*(a), 7*(B)), and

P¢ _ Pe P¢  _ y/Pe P¢
Qiap = Qi,w*(a),w*(ﬁ)’ Vias = Vizca)mp and Wi, = Wz 7 (), (8)

o if @ # u C wPe, then rk*P(u) = rk*P(7*[u]), j(u) = j(7*[u]) and k(u) = k(7*[u]).
Note that then for all £ € A we have
()3 if u C wo, a € wPs \ wo and 1k*P (u U {a}) = —1, then k(v U {a}) # [uNal.

Why? Suppose towards contradiction that k(u U {a}) = |[uNal. For ( € A let a¢ € wP< be such that
¢
lae NwP¢| = |aNwPs|. By ()2 we have

Jj= o j(uu{a}) =j(uu{ac}) and k(uU{ac}) =k(uU{a}) =lunal =|unac| e,

Therefore, letting v U {a} = {ao,...,ar_1} be the increasing enumeration, we have aj = « and
M = Rejlao, - Qr—1, 0, Qg1s - o, 0] for all ¢ € A.

However, this contradicts the choice of j, k in Definition 2.6 and the assumption rk*® (u U {a}) = —1]]

We will argue now that for £, ( € A the conditions p¢, p; are compatible. So let £ < ( be from A and let
m* : wP¢ — wP¢ be the order isomorphism. Set w = wP¢ UwP¢, M = MPs + |wp5 \wp<’ n = nP¢ + 3 and
let 7 = (r,, : m < M) be such that r,, = s if m < MP¢, and 7, = n — 2 if MP¢ <m < M.

Use Proposition 3.3 and Observation 3.2(iii) to choose Uy (n — 2), Uy(n — 1), Uy(n), Qia.8, Via,p and
Wi o5 from U for i < k and (a, 8) € w'? so that

(¥)4 (a) demands 5.3(X)5—(X)5 are satisfied and
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(b) if (a, B) € (wp€)<2>, i < k, then Uy (n —2) C U&* (nP¢) and Q;.0.5 C Wfi’ﬁ, and

(c) if (a, B) € (wp<)<2>, i <k, then Uy(n —2) C UL (nP¢) and Qi 05 C W'

i,a,B°

Let U, = U~ (Ua(n — 2),Us(n — 1),Uq(n)) if @ € wPe and U, = UL (Uqy(n — 2),Us(n — 1), Uy(n)) if
a € wP<, and let Y,V be defined naturally. Choose h : w'? — M extending both hP¢ and hP¢ in such a
manner that h(a, 8) = h(B, ) for (a,8) € w® and the mapping

(wPs \wo) x (wP< \ wo) 3 (e, B) = h(a, B)

is a bijection onto [MP¢, M). Finally we set ¢ = (w, M, 7, n, T,V h).

Let us argue that ¢ € P (once we are done with that, it should be clear that ¢ is stronger than both pe
and p¢). The only potentially unclear demands to verify are (K)7 and (X)g of 5.3.

First, to demonstrate (X)7, suppose that u,u’ C w and 7 : u — v/ and £ < n and ¢ € H are as in the
assumptions there. Let us consider the following three cases.

CASE 1: u C wPs.
Then for each (a, 8) € u'® we have h(a, 3) < MP%, so this also holds for all (v,d) € (u’)?. Consequently,
either v’ C wP¢ or v/ C wP<.

If w' C wPe, then let ¢ = min(¢,n?¢) and consider u,u’, 7, ¢'. Using clause ()7 for p; we immediately
obtain the desired conclusion.

If ' C wP¢, then we let ¢/ = min(¢,nP¢) and we consider u, 7*[u'],# and 7* o w (where, remember,

Tt wP¢ — wP¢ is the order isomorphism). By ()1 + (%)2, clause (X)7 for pe applies to them and we get

o 1k*P(u) = 1k°P (7 [u]), j(u) = j(7*[u]), k(u) = k(7*[«/]) and
o foracu, janul=k(u) < |(r*om)(a) N7*[u]| = k(u).

Now ()1, (%) immediately imply the desired conclusion.

CASE 2: u C wPs.
Same as the previous case, just interchanging ¢ and (.

CASE 3: u\ wPs # () # u\ wPe.
Choose o € u\ wP¢ and § € u\ wP¢. Then h(a, 3) > MP¢ and therefore n — 2 = ry(o,5 < £

We will argue that 7 is the identity on v and u = u’ (so the needed assertion is immediate). Suppose
towards contradiction that we got a v € u such that 7(v) # . Since |u| > 4 we may also pick 7/ € u such
that {v,7(y)} N {+,7(7')} = 0. Now we consider two subcases determined by the property of ¢ € H.

Suppose (Ug(f) + c) N Urs)(£) # 0 for all 6 € u. Then for some b € U, (£), b' € Ur(1)(£), b" € Uy/(£) and
b"" € Ur(y)(€) we have b —b = ¢ = b"" — b". However, this (and the choice of v and 7') gives immediate
contradiction with (Us(€) : 6 € w) being a good qif (remember ¢ > n — 2).

Assume now that (¢ — Us(€)) N Uyrs)(£) # O for all § € u. Then for some b € U,(£), b € Uy (0),
b" € Uy(l) and 0" € Ug(yy(£) we have b’ +b = ¢ = V" + 1", getting immediate contradiction with
(Us(¢) : 6 € w) being a good qif.

Now, concerning (X)s, suppose that u C w, £ <n and « € u are such that

o |anNu| =k(u) and rk*®(u) = —1 and
o Thppn < Cand Us() NUg () =0 for all (8,8") € ut?.

We want to argue that there is no o’ € w such that

0R) o ¢ u, ho, B) = h(c/, B) for all B € u\ {a}, and Uy (£) = Uy (£).
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This is immediate if £ > n — 2, so let us assume ¢ < nP¢. Then we must also have rpg, 5 < nP¢ for all
(B,B") € u'?, so either u C wP¢ or u C wP<. By the symmetry, we may assume that u C wPs.

If w C wPs NwP< then we may first use (X)g for pe to assert that there is no o € wPs satisfying CI5

and then in the same manner argue that no o’ € w?< satisfies (K)® .
If w C wPe but u\ wPe # () and o € wPs NwP<, then (K)g for pe implies there is no o € wP¢ satisfying
0. Also if o € wP< \ wP then for 8 € u\ wP¢ we have h(a, 8) < MP¢ < h(c/, 8), so (H)* fails then too.
Thus we are left only with the possibility that o € wP¢ \ wP<. Like before, (K)g for p¢ implies there is no
o € wPs satisfying (H)* . So suppose now o/ € wPe \ wPs. By (%)3 we know that (u\ {a})\ wP¢ # 0, so let
B € u\ wPs, B # . Then we have h(a, §) < MPs < h(d/, ), so (*I*)O‘, fails. The proof of (K)g is complete
now. 0O

Lemma 5.7. For each (o, B) € M2 and i < k,

lFp “the sets
ﬂ{Ug(np):peG]p AN acwP} and m{ngaﬁZpEG]p A a,pBew}
have exactly one element each.”

Proof. Follows from Lemma 5.4(2)(ii), (3). O
Definition 5.8.

(1) For (a, ) € A and i < k let Nas Via,p and hq g be P-names such that

IFp “{ga} = ﬂ {Ug(np) :peGp N a€ wp},
{Viap}t =(V{Wl.s:PEGP A B €w}
hap = hP(a, B) for some (all) p € Gp such that o, § € wP?”

(2) For m < w let F,;, be a P-name such that
Fp “F,, = ﬂ {F(p,m):peGp A m< MP}.”
(Remember F(p,m) was defined in Definition 5.3(B).)
Lemma 5.9.

(1) For each m < w, IFp “Fy, is a closed subset of H.”
(2) Fori <k and (o, B) € A? we have

”_]P’ “gaayi,a,,ﬁ S H, ba,ﬁ < w, Vi,a,p = Vi, and 7]0( + Vi,a,p S Fba,ﬁ'”
(3) IFp “Na,Viap i<k, a<f <A) is quasi independent (so they are also distinct).”

(4) IFp “i Na + U Em)m(_ﬂB+ U Fm)‘zk-”

m<w m<w

Proof. Should be clear (remember Lemma 5.4). O

Lemma 5.10. Let p = (w, M,7,n,Y,V,h) € D} CP (cf 5.4(2)(ii)) and az,by € H and Uy, Wy € U (for
£ < 4) be such that the following conditions are satisfied.
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(®)1 Uy € {Us(n):a cw}, Wo € {Wiap:i<k, (a,8) €w?} (fort < 4).
(®)2 « (Uo+Wo)N (UL +W1) =0,

o (U +Wh)N (Us+ Ws3) =0,

o (U2 +Wo)N (Us +W3) =10,

o (Uo+Wo)N (Uz +Wo) = 0.

(®)3 ap €Up and by e Wy and ag+bp € |J F(p,m) forl < 4.
m<M
(®)a (ao +bo) — (a1 +b1) = (a2 + b2) — (az + bs3).

Then for some (a, ) € w'? and distinct i,7 < k we have

either U() = U2 = Ua(n), U1 = Ug = U@(n), W() = W1 = Wi,a,ﬁ; and W2 = W3 = Wj’a’ﬁ,
or Uo = U1 = Ua(n), U2 = U3 = Ug(n), Wo = W2 = Wi@‘ﬁ, and W1 = W3 = Wj’a’g,

Proof. For £ < 4 let U, and V; be such that

o if Uy =Uy(n) then U, = Uy(n — 1),
o if W, = Wi a,p then Vy = V;’a,g.

Also, let

LHS, = ag —ay —as + a3, LHS, =by—b; —by+b3, and LHS=LHS,+ LHS; =0.
Put U* = {Uy, Uy, Ua, Us}, W* = {Wo, W1, Wa, W3}, U* ={Uy ,U; , Uy ,Us }, and V* = {Vo, V1, Vo, V5 }.
(a) |U*| > 1.

Why? If not, then Uy = U; = Uy = Us and by the assumption (®)s2 of the Lemma we have {Wy, W3} N
{W1,Wa} = 0. By 5.3(A)(X)4, the latter also means that {Vp, Vs} N {V1,Va} = 0. Now,

LHS = ((ao —ay) + bo) + ((a3 —as) + bg) — by — ba,
and using 5.3(A)(X)4(b) we have (ag —a1) + by € Vo, (a3 — az) +bs € V3, by € Vi and by € V;. Since

{Vo,Va} N {V1,Va} = 0 we see that LHS is a nontrivial (2,4)-combination from V*, so it cannot be 0,
contradicting assumption (®)4 of the Lemma.

(b) IW*| > 1.
Why? Fully parallel to (a).
(c) If for some W we have |{¢{ < 4: W, = W}| = 3, then LHS,, is a nontrivial (2,4)-combination from V*.
Why7 Suppose Wy = Wy = Why 75 W3. Then, by 53(A)(|Z)4(b), we have (bl — bo) + by € V5 and by € V3.
Hence LHS;, = —((b1 — bo) + bz) + b3 € =Vo 4+ V3 and V5 7é V3.

Suppose Wy = W; = W3 # Wa. Then, by 5.3(A)(X)4(b), we have (bg — b1) + b3 € V3 and by € V3, so
LHS, = (bo —b1)+b3 —by e V3 —V5 and Vo #Vg

The other cases are fully parallel.

(d) If for some U we have [{¢ < 4:U, = U}| = 3, then LHS,, is a nontrivial (2, 4)-combination from /*.
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Why? Same argument as for (c), just using U, instead of Wp.
(e) For every W we have |[{{ <4: W, =W}| < 3.

Why? We already know that |[{¢ < 4 : W, = W}| < 4 (by (b)), so suppose {{ < 4 : W, = W} has exactly
3 elements. It follows from (c) that then LHS, is a nontrivial (2,4)-combination from V*. By (a) we know
that [U*| > 1. If for some U we have [{¢ < 4 : U, = U}| = 3, then we may use (d) to claim that LHS, is
a (nontrivial) (2,4)—combination from U* and then LHS is a nontrivial (2, 8)—combination from U* U V*,
contradicting (®)4 (remember 5.3(A)(X)4).

So suppose that for each U we have [{{ < 4 : U, = U}| < 2. Then LHS, is a (possibly trivial)
(2,4)—combination from U* and consequently LHS is a nontrivial (2,8)—combination from U* U V*, so
also from U* U V*, again contradicting (®)4.

(f) Foreach U, {¢ <4:U, =U}| < 3.
Why? Same argument as for (e), just using (a) and (c) instead of (b) and (d).

Since p € D1, it follows from our assumption (®)3 that for each ¢ < 4, for some a = a(¢), 3 = 3(£), and
i = i(¢) we have Uy = Uy(n) and Wy, = W, , 5. It follows from (e)+(f) that LHS is a (2, 8)—combination

from U* UW?*. Necessarily it is a trivial combination (as LHS = 0 by (®)4). Consequently,

(@)1 either Uy = Uy # Uy = Us, or Uy = Uy # Uy = Us, and
(@)2 either Wy = Wy 7é Wy = W3, or Wy = W,y 74— Wi = Ws.

Suppose Uy = Uy # Uz = Us. Then by (®)2 we must have Wy # Wiy, Wy # W3 and by (®)2 we get
Wy = Wy and W, = Ws. Thus for some (a, ) € w'? and 4,5 < k, i # j, we have

U() = U1 = Ua(n), UQ = U3 = Ug(ﬂ), Wo = W2 = Wi,a,[}a W1 = W3 = Wjﬂﬁ.
Suppose now that Uy = Uz and Uy = Us. By (®)2 we must have then Wy # Wy and Wy # Ws. Therefore,

by (®)2, we may conclude that Wy = W, and W5 = W3. Consequently, for some (a, ) € w!? and distinct
1,J < k we have

Up=Uz=Uy(n), Uy=Us=Ug(n), Wo=W1=W;ap Wo=Wz=W;.5. 0O

Lemma 5.11. Let p = (w, M,7,n, Y,V h) € D} and X C H, |X| > 5. Suppose that a;(z,y),bi(z,y), Ui(x,y)
and Wi(x,y) for x,y € X, x #y and i < k satisfy the following demands (i)-(iv) (for all x #y, i #1i’).

(1) Ui(w,y) € {Ua(n) : 0 € w}, Wi(w,y) € {(Wjap:j <k (o,f) €w}.

(i) o (Uilz,y) + Wilz,y) N (Vily, ) + Wily,x)) =0,
o (Ui(z,y) + Wiz, y)) N (Us (2, y) + Wir(z,y)) = 0.
(iii) a;(x,y) € Ui(z,y) and bi(z,y) € Wi(z,y), and
a; z,y) + bl(xvy) € L<JMF(p7 )
(iv) = —y = (ai(z,y) + bi(z,y)) — (aiy. z) + bi(y, v)).
Then

(1) X=X CU{Ua(n—2)-Us(n—2): o, B € w}.
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(2) If (x,y) € X2 and x —y € Uy(n —2) — Ug(n —2), a, B € w, then oo # B and for each i < k we have
ai(z,y) + bi(z,y), ai(y, z) + bi(y, z) € F(p, h(e, B)).

Proof. (1) Fix z,y € X, x # y, for a moment.

Let i # 4/, 1,7 < k. We may apply Lemma 5.10 for U;(z,y), Wi(z,y), U;(y, x), Wi(y,z), a;(z,y), bi(z,y),
ai(y,x), bi(y,x) here as Uy, Wy, Uy, W1, ag, by, a1, by there and for similar objects with ¢’ in place of i as
Us, Wa,Us, W3, as, ba, as, by there. This will produce distinet « = a(z,y,4,7),8 = B(z,y,4,4') € w and
distinet j = j(z,y,4,4),5 = j'(x,y,i,i") < k such that

either (A) Ui(z,y) = Uy (z,y) = Us(n), Ui(y,x) = Uy (y,z) = Us(n),
Wiz, y) = Wiy, z) = Wjap, Wiz, y) = Wi (y,z) = Wy ap,

or (B) Ui(z,y) = Ui(y, ) = Ua(n), Us(z,y) = Ur (y, ) = Us(n),
Wiz, y) = Wi (z,y) = Wja,g, Wily,z) = Wi (y,z) = Wy a6

Note that if for some i # ', 4,4’ < k, the possibility (A) above holds, then it holds for all 7,7 < k and

2=y = (a2, ) + bilw,9) = (asly, @) + bi(y,2)) = (ai(@) + (Gilw,y) = by, ) ) — aily, @)

and a;(z,y) + (bi(z,y) — bi(y,x)) € Ua(n) + Wjas — Wjaps) C Us(n—1) C Us(n—2). Hence z — y €
Ua(n —2) = Ug(n — 2).
Now unfix z,y. By what we have said, the first assertion of the Lemma will follow once we show that

(V) for all z,y € X, = # y, there are i # i’ such that possibility (A) above holds for them.

Here the argument breaks into two cases: k > 3 and k = 2, with the former being somewhat simpler.

CASE k > 3.
Let z,y € X, z # y. Suppose towards contradiction that in the previous considerations both for x,y,0,1
and for x,y, 1,2 the second (i.e., (B)) possibility takes place. This gives us «, 3, j, 7' such that « # 3, j # j
and

()1 Uo(z,y) = Uo(y,z) = Ua(n),
(x)2 Ur(z,y) = Ui(y,x) = Us(n),
(*)3 Wo(x,y) = Wl(xvy) = Wj,a,ﬁa
(*)4 Wo(y,l') = Wl(va) = Wj'ﬂﬁ’

and we also get v, d, £, /' such that v # ¢ and £ # ¢/ and

It follows from ()2 + (*)5 that v = 8 and from (x)s + (*)7 we have £ = j and § = «. Finally, (%) + (x)s
imply ¢ = j'. Consequently,

Uo(l‘,y) = Ug(ﬂ?,y), Uo(y,l‘) = U2(y7x)7 Wo(l‘,y) = W2(I”y)7 Wo(y,ﬂi) = WQ(yvx)a

contradicting assumption (ii).
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CASE k = 2.
We will argue that () holds true in this case as well. First, however, we have to establish some auxiliary
facts.

For each z,y € X, x # y, we may choose o = a(z,y), f = B(z,y) and j = j(x,y) such that a # S and

either (A)907 Up(z,y) = Ur(x,y) = Ua(n), Un(y, z) = Usr(y, =) = Us(n),
Wo(z,y) = Wo(y,z) = Wja,s, Wiz, y) = Wiy, z) = Wi_jas,

or (B)g:07 Uo(x,y) = Uo(y, z) = Ua(n), Ur(z,y) = Ur(y,x) = Us(n),
Wo(z,y) = Wi(z,y) = Wias, Woly, ) = Wiy, ) = Wi_ja.s,

Note that for each (z,y) € w'?, either there are «, (3, such that (A);fé“ holds true or there are «, 3,7
such that (B)2:27 is true, but not both. Also, remembering 5.3(A)(X)4(b),

z,y

(A if (A)‘;‘gj holds, then # —y € Uy(n — 1) — Ug(n — 1) and if (B)ng is satisfied, then z —y €
Viag = Vizjap-

Define functions y : X?) — 2 and © : X2 — [w]? x 2 as follows. Assuming (z,y) € X{?,

o if for some a, 3, j the demand (A)g‘;g’j holds, then x(z,y) =1 and O(x,y) = ({«, 5}, 7),
« if for some «, 8, j the demand (3)2‘57 is satisfied, then x(x,y) = 0 and O(z,y) = ({a, 8}, 7).

Our goal is to show that the function x never takes value 0 (as this will imply that the assertion (O)
holds true). Note that

(A)g if x(x,y) = 0 and O(x,y) = ({a,},7), then x(y,2) = 0 and O(y,z) = ({o, 8},1 — j), so also
O(z,y) # O(y, z).

Also,
(A)s if z,y,2z € X are pairwise distinct and x(z,y) = x(y, z) = 1, then x(z, z) = 1.

Why? Assume x(z,z) = 0. Then, by (A);, for some j,&, ¢ we have © — z € V¢ — Vi_j ¢ . However,
z—y€eUs(n—1)—Ug(n—1)and y — 2z € Uy(n — 1) — Us(n — 1) (for some a # ( and v # 0), so

x—2z2€Uy(n—1)-Ug(n—1)4+Uy(n—1) = Us(n —1).
Thus for some a € Uy(n —1), b€ Ug(n—1), c€ Uy(n—1),d € Us(n—1), e € V¢, and f € Vi_j¢c we
have a —b+c—d+ f —e = 0. The left hand side of this equation represents a nontrivial (2,8)—combination

from (Us(n —1): ¢ € w) ™ (Vocer, Vieor : (¢, ¢") € w?) (remember o # B, v # 6, € # €), a contradiction.

(A)yg If z,y,2z € X are pairwise distinct and x(z,y) = x(y,2) = 0, then ©(x,y) = O(y,2) = O(z,z) and
x(z,z) =0.

Why? Let O(z,y) = ({, 8},4), O(y, 2) = ({7, 0}, 4), and O(z, 2) = ({£, (}, €). If {a, B} # {7, 0}, then

r—z=@—-y)+H—2) €Viap—Viciast Virs—Viejys
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and {Vp,a,8, Vi,a,8} N {Vo,4,6: Viy,6} = 0. Since either z —z € Vyg e — Vigec or oz —z € (Ug(n -1) -
Ue(n — 1)) u (UC (n—1) = Ue(n — 1))7 we easily get that some nontrivial (2,8)-combination from (U¢(n —

)¢ ew) ™ Vocer,Viee : (¢,¢) € w?) equals 0, a contradiction. Consequently, {a, 8} = {v,d}, i.e.,

Ifi#jthenz —2€Viag—Viciapg+ Viciap — Viapg. But also either . — 2 € Ug(n — 1) — Ug(n — 1),
orz—z€Us(n—1)—Usg(n—1),or x —z € Vyec—Viegec. In the first case we get

0€ ((Vias = Vias) +Ueln = 1)) = ((Vicias = Vicias) + Uc(n—1)) € Ueln—2) = Ug(n—2),

and symmetrically in the second case. In the last case we have

0¢€ ((Vi,a,ﬁ —Viap) + Ve,g,c) - ((Vl—i,a,ﬁ —Visiag) + V1—e,§,<> C Qrec— Qirec

In any case this gives a contradiction with 5.3(A)(K)4. Consequently ¢ = j and O(z,y) = O(y,z) =

({a, 8}, 1)

By considerations as above we see that necessarily x(x,z) =0 and O(z, z) = ({«, 8}, ¢). If £ = i, then
t—=2€Viap=Viiap and z—2€Viapg—Viciaps+Vias—Vi-ias

Hence

0€ ((Vi,a,ﬁ —Viap) + Vi,a,ﬁ) - ((Vl—i,a,ﬂ —Viciap) + Vl—i,a,ﬁ) C Qiap— Qiias,

a contradiction.

Consequently, =1 — i and O(z,z) = ({«, 5},1) = O(z,y) (and x(z,z) = 0).

Now, suppose towards contradiction that () is not true and z, y € X are such that z # y and x(z,y) = 0.
Let z € X\ {z,y}. We cannot have x(x,2) = x(y,2) = 1 (as then (A)s would give a contradiction with
x(x,y) = 0). So one of them is 0, and then (A)4 implies that the other is 0 as well and

x(@,y) = x(y,2) = x(x,2) =0 and  O(z,y) = O(y, 2) = O(2,2).
Taking t € X\ {z,y, z} by similar considerations we obtain
x(z,t) = x(y,t) =0 and O(z,y) =0O(y,t) = O(t,x).
Now consider z, z, t: since x(z,z) = x(z,t) = 0 we may use (A)4 to conclude that
x(z,t) =0 and O(x,z) =0(z,t) =0O(t,x).

But we have established already that O(t,z) = O(z,y) = O(z,x), a contradiction (remember (A)z). The
proof of Lemma 5.11(1) is complete now.

(2) Suppose (x,y) € X¢?. In the previous part we showed that for all i < i’ < k possibility (A) holds true.
More precisely, there are distinct «, 8 € w such that for all ¢ < k for some j < k we have a;(x,y) € Uy(n)
and a;(y, z) € Ug(n), and b;(z,y), bi(y, x) € Wj o 5. Then also

o ai(z7y) +b1(x7y) € U(X(n) + Wj,a,ﬁ g F(pa h(O{,B)),
o ai(y,z) +bi(y,x) € Ug(n) + Wja s € F(p, h(a, B)).
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We also know that for these «, 8 we have z —y € Uy(n — 2) — Ug(n — 2). To complete the proof we note
that, by Lemma 5.5, for any o/, 5’

(Ua(n—=2) = Us(n—2)) N (U (n—2) — Ug (n—2)) # 0 implies « = o’ and f = . O

Lemma 5.12.

lFp “there is no perfect set P C H such that (Vx,y € P) (‘ (x + U Fm) N (y + U Em)‘ > k) 7

m<w m<w

Proof. Suppose towards contradiction that G C P is generic over V and in V[G] the following assertion
holds true:

for some perfect set P C H we have

e+ UFn+ U D)2k

m<w m<w

for all z,y € P.

Then for any distinct x,y € P there are by, co, ..., bk—1,ck—1 € U ]j‘f,*; such that b; # b; whenever i # j
m<w

and x —y =b; — ¢; (for all i < k).
For { = (0; :i<k)Cw,m=(m;:i<k)Cwand N <w let

ZN_ = {(x,y) € P%: there are b; € ]j‘g, c; € Fg (for ¢ < k) such that

VR

r—y=>b; —c¢; and 27V < min (p(bi, b;), p(cs, cj)) for all distinct 7,5 < k}.
By our assumption on P we know that
(K)o for all z,y € P, x # v, there are £,/m and N such that (z,y) € Zévm.

Remember our Assumption 5.1: D is a fixed countable dense subset of H and B,, is the ball of radius 27"
centered at 0. Now, the sets Zé\’m C P? are X1, so they have the Baire property (in P?). Therefore, for

every open set U C H x H with U N P? # () there are dg,d; € D and the corresponding basic open set
(do +Bn,) X (d1 + By, ) C U such that [(do +B,,) x (di + Bm)] N P? # () and

e either Zévm N [(do + By,) x (di 4+ By,)] is a meager subset of P2,
o or [[(do + By,) x (d1 + By,,)] N P?]\ Z_is a meager subset of P2.

Now we may choose closed nowhere dense subsets F; of P? (for j < w) such that for each dy,d; € D and
no,n1 < w and N, £, m as before we have

()¢ if Zé\[m N [(do + By,) x (di 4+ By,)] is meager in P2, then

ng N [(do + Bn,) x (d1 +By,)] C U F,

j<w
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(@)} if [[(do +B,,) X (d1 +Bp,)]N P2] \Z%fm is meager in P2, then

[[(do +Bu,) x (d1 + By, N P*]\ 2. C | F;.

Then |J Fj is a meager subset of P2. Let B* = P2\ |J Fj.
J<w J<w
We are going to choose now a sequence 0 = nj =ng < nj <n; <nj <ng <nj <nsz <...and a system
(dy : 0 €42, 1 <w) C D such that the following demands ([1)3—(LJ)§ are satisfied.

¢ IfL<w, 0,0 €2 0+#0, then (d, + B, ) NP #0 and p(dy,dyr) > 227™.
)% If L <w, o €2, then cl(dy—~0) + By, ) Ucl(do~ay + Bn,,,) € (do + By,).
S Ifv<wand o,0’ €2, 0 #0', and

(z,y), (@',y") € B* N [(ds + By,) x (do + By,,)],
then for all £ C n*, m C n* and N < n* we have
(z,y) € ZN & (2/,y) e 2} .

(@) If L <w and 0,0" €2, 0 # ¢, and (z,y) € B* N [(dy + By,) x (dor + By,,)], then there are £ C n},
m Cnf and N < n} such that (z,y) € ngn'
(D)§ If L <w and 0,0’ € ‘2, 0 # o', then [(dy + By,) x (dor + By,,)| N U F; = 0.
Jj<u

The construction is by induction on ¢ < w. We start with choosing any d, € D such that (dy +Bo) NP # (.
We also set ng = nj = 0. Let us describe in more detail choices for ¢ = 1 as they have all the ingredients
used later. So, first find open sets VT, V1T such that VINP # 0 # VITAP and (V) Ucl(VTT) C (dyy + Bo),
(VT nel(VTT) = (. Let Ny, £y, mo be such that the set Zg?mo N [VT x V] is not meager in P? and let
n* be such that Ny < n¥, £y C nt and mo C n%. Now we repeatedly use the Baire property of the sets ZNm
to find open sets V/ C VT and V" C VTt such that VNP # (0 # V" N P and 7

(A) [(V! xV")ynP?]\ Zgomo is meager in P? (where Ng, £y, mg are the ones fixed above), and
(B) for every £ C n%, m C n} and N < n*, either [(V'xV")NP?]\ Z¥_ is meager in P2, or (V' xV")NZXN_
1 1 l,m l,m

is meager in P2.

Since Fy is a nowhere dense subset of P?, we may find open sets V* C V'’ and V** C V" such that
VENP#Q#£V*NPand (V¥ x V*)N Fy = 0. Now, after fixing some x € V*N P and y € V* N P we
choose n > nj so large that p(z,y) > 23" and x + B,, C V* and y + B,, C V**. Then we set n; = n + 2
and choose d(py € (z + By,) N D and dpy € (y + By,) N D. Note that 2 € di) + B, € 2 + B, and
(TS d<1> +B,, Cy+B,.

Assuming n} < n, <w and (d, : o0 € *2) C D have been selected, we first pick open sets (VI : ¢ € F12)
such that for all o € “2 we have V;Am) NP #0 +# V;A<1> NP, cl(V;A@) U cl(V;Au)) C (ds + B,,),
CI(VUTA@) N cl(VjAm) = (. Next, letting ((c},s/') : j < j*) be an enumeration of (“F12) @
inductively open sets V;r = Vgo D Vg1 D Vg and integers n, = NS < Ng1 <...< Ngj* (for ¢ € “T12), as
well as Nj, £;,m;, in such a manner that the following demands (a)—(d) are satisfied for all j < j*.

, we choose

(a) Tf s € 12\ {¢/,¢"}, then Vi+L = VJ and NJ+! = NJ.
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1 41 .
(b) Nj,£;,m; are such that the set ZZ . [Vj X V,,] is not meager in P? and N]+ = N7 is such that
3 .7 J .7 J

N; +NJ +NJ,, < NJ+1 (; C NJ*1 and m; C NJ+1
(c) Open bets VJ+1 C VJ and Vﬁ'l C Vj,, are such that Vﬁ'1 NP #£(# VJ//H NP and

(A) [(Vf,'s_1 Vj,,'H) N P? \Z[J_ is meager in P? (Where Nj,{;,m; are the ones fixed in (b) above).

J J R
j+1 i+1
() (Vo < V) Ur = 0.
Then we set ny,; = maX{Ngj* :¢ € “F12} and we choose inductively open sets
ch :)V] +1:>VJ 25 VJ e

(for ¢ € “*12) so that the following conditions (e)—(f) are satisfied.

(e) If ¢ € “F12)\ {c}, ¢/}, then VI i+ = Vi'+J,
(f) Open sets Vg,i“”“ C Vg, "+ and Vj, 41 C ijﬂ are such that Vfﬂ'l NP #0# Vf_jHH N P and
J J J J J J
(B) for every £ € njyy, m Cnyyy and N < nfyy, either [(V2 70 x V2, 79 0 P2\ ZN s meager
J J ’

in P2, or (V4 P+« i Hty q ZNig meager in P2
S5 Sj £,m
Next, we fix 2. € V" N P for ¢ € “+12. Choose n > n,, so large that

o plxe,mr) > 237" for distinct ¢,¢" € “T12, and
o z.+B, CV/ forallge 2.

Then we set 1,41 = n + 2 and choose d; € (z; +B,,,) ND.
This completes the description of the inductive construction.

It follows from (BJ)§ + (B)5 that for each n € “2 the set () dy¢ + By, is a singleton included in P. By
I<w
(1)§ we know that for n # '

m(dnfl + By, ) X ﬂ(dn’rl +By,) € B".
I<w I<w

For o €2 and £ < w let 0% 0=0"0,...,0) and let 2 € H be such that
——
¢

()3 {zx} = ﬂ (do*gO + BnLH); so xk € P and if 0 # ¢’ are from ‘2 then (z},z%,) € B*.

l<w

Let P, F;,nf,n,, do,zs be P-names for the objects appearing in (&d)o—(E)s. Still working in V[G], we may
choose a sequence (p,,q, : t < w) C G such that:

()¢ po IFp “P is a perfect subset of H, F; are closed nowhere dense subsets of P%, and n},n,,d,, 2} have
the properties stated in ()¢—(1)%, (D)3—(D)s, ()37, and

()4 p, decides the values of n*,n, and d,, for o € ‘2, 1 > 0,

(@) p. <q < pey1and p,q, € D N DY, . NG (see 5.4(2)) and nP* + 10 < n? and w’* = w.

The properties of conditions from P stated in 5.3(A) are absolute, so they hold in V[G] as well (with B,
being B¢ etc). Now, still working in V[G], for 0 < ¢ < w let X, = {a% : 0 € ‘2}. Note that x% # x¥, and
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(z%,2%,) € B* when o,0’ € ‘2 are distinct, and X, C X, when ¢ </ < w. It follows from ()4 + (B)3 that

g el

for x,y € X,, © # y, we have (z,y) € ZN for some N = N(z,y) < n¥, £ = l(z,y),m = m(z,y) C n*. By
clause ()$, these N (z,), {(z,y), m(z, y) may be chosen in such a manner that

(@) if 0,0 € “2, 1* < ¢, o]t* = o'v* but o(t*) # o'(1*), and ¢ = ol(¢* + 1), ¢’ = o'[(t* + 1), then
U 2o, 240) = bze, 200), ﬁl(zo,xa ) =m(ze,x), and N(xy, x5 ) = N(zc,x0).

Let J < w be such that the arrow property J — (10)3,44 holds true and fix a ¢ > J for a while.
Fix x,y € X,,  # y, and let N = N(z,y) <n’, { = {(z,y),m = m(z,y) C n’. Then there are ¢; € ]j‘g
and d; € FS, (for i < k) such that for i # ¢/ we have

r—y=c¢ —d; and 27 <27V < p(¢i,ep), and 27" < 27N < p(d;, dyr).
The reasons for the use of ¢, rather than p, in what follows will become clear at the end. Since n, < M? and

F¢ C F(q,,m) for allm < M% we get ¢; € U% (n4)+W, 5 for some j < kand (o, B) € (w3)$2) = (wp)@
and similarly for d;. Therefore, for each i < k we may pick

o Ui(z,y),Ui(y,z) € {UL(n%) : o € wh}, and
° Wi(x7y)7W( ) € {an ( B) € (wqb><2>}7 and
° ai(x»y) el (.’E y) az(yv ) Uz(yax) and b2($,y) € Wi(xvy)v bl(yax) € Wl(yvx)

such that x —y = (ai(x, y) + bi(x,y)) — (ai(y,m) + bi(y@)) and for 4 # 4’
27" < plai(z,y) + bi(2,y), ai (2,y) + by (. y)
27 < P ai(yax) + bi(y7m)a ai’(yvx) + bi’ (ya J)) .

Since the metric p is invariant (and by ([J)%), we also have

27 < pla,y) = p(ai(.y) + bi(@ ). aily. 2) + by, ) ).

Since ¢, € D2 we know that for all relevant j, o, 3,

diam,, (Ug (n) + Wk

.
Mﬁ)<2 :

and consequently each of the sets UZ(n) + Wq‘  contains at most one element from each of the
sets {a;(z,y) +b<(xy) ai(y,x) + bi(y,z)}, {azxy + bi(x,y), a0 (x,y) + bi(z,y)} and {a;i(y,z) +
bi(y,x),ay(y,z) + bir(y,z)}. Since q, € D2 , different sets of the form UZ (n%) + Wi 5 are disjoint, and
thus we see that the assumptlons (i)—(iv) of Lemma 5.11 are satisfied.

Unfixing z,y, we may use Lemma 5.11(1) to conclude that

(@) X, — X, CYU{UZL(n® —2) — Ug(n® —2):a,B8 € wi }

and hence also X, — X, C |J{UZ (nP+) — Up(nP) : o, B € wP+ }. Moreover, by 5.11(2), we also conclude
that

(@)7 if 2,y € X, and 0 # 2 — y € Ul (n® —2) — Ug(n?% — 2), then a # B and m(z,y)(i) = Uz, y) (i) =
hi(a, 8) = hP (v, B) for all 4 < k.
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Since {UE(nP) : a € wP}, {UB(nP — 1) : a € wP}, {UB(n? —2) : o € wP*} and X, satisfy the
assumptions of Theorem 3.5, we get that exactly one of (4),, (B), below holds true.

(A), There is a ¢, € H such that X, + ¢, € J{UE (nP* —2) : a € wP }.
(B), Thereis a ¢, € H such that ¢, — X, C J{UE (n? — 2) : & € wP" }.

Unfixing ¢ < w we let

A={t<w:J<and case (A), holds true }
B={t<w:J<and case (B), holds true }.

One of the sets A, B is infinite and this leads us to two very similar cases.

CASE: The set A is infinite.
For v € Alet X,, ¢, be as before. Let w, = {a € wP* : U2 (nP* —2) N (X, + ¢,) # 0}. Since diam,, (UL (n?+ —
2)) <27™ < p(z,y) for a € w, and distinct z,y € X,, we get [UZ(n? —2) N (X, +¢,)| =1 for a € w,.
Consequently, we have a natural bijection ¢, : X, — w, such that x + ¢, € Uf;i(x) (nPr — 2).

For « < ¢/ from A we have X, C X,, and the mapping m,,, = ¢, © cp:l :w, — w, is an injection.
Clearly, if z € X,, a = ¢,(z) € w, then

()s z+cy € (Ug“ (nPr —2) + (¢, — cb)) NUP  (nPe —2) £,

7,0 (@)

Suppose now that z,y € X,, x # y. By ()s, there are a, 5 € w? such that z—y € U (n% 72)7Ug“ (n% —2)
(and, by ()7, @ # ). Then also

v—ye (U};L (nP —2) — U (nP — 2)) N (Ug:(m)(n’" —2) ~UP (7 — 2)).
By Lemma 5.5 we conclude that a = ¢, (z) and 8 = ¢,(y). Together with ([J); this gives us that
(B4 if (z,y) € (X,)?, then m(x,y)(i) = L(z,y)(i) = hP(p,(z), p.(y)) for all i < k.
Putting together ()} and (E)4 we see that
()10 if ¢ < ¢/ are from A and (z,7) € (X,)?, then

hP(u(x), 0u(y)) = WP (o (), 00 ()-
In other words, if (o, 3) € w, then
hP(a, B) = WP (a, B) = PP (7, (@), 7000 (B))-
It follows from (&)s + ()10 and 5.3(A)(K)7 that for ¢ < ¢/ from A we have
(D1 1k (w,) = 1k (7 v fw.]), j(w,) = (70 [w]), k(w,) = k(7. [w.]) and
laNw,| =k(w,) < |0 N7T,w] =kw,) for all a € w,.

(Note that rhy’ < nP — 2 when m = h?/ (o, ), @, B € w, C WP, o # f3.)
Choose a strictly increasing sequence (t(¢) : £ < w) C A such that
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(B)12 for each ¢ < w,
2211 < diam,, (Ug (n® — 2)) = diam, (U7 (o) - 2))
(remember n,’s were chosen in ([)2 and p,(p) € Dgﬁnh(z)’m(z) so also 0 € wP®).
Fix ¢ < w for a moment and suppose ¢ € “92 is such that

lue) (25) Nw, )| = k(w,(ey))-

Let ¢* € “*12 be such that ¢ <1 ¢*, ¢*(n) = 0 for n € [1(£),¢(¢ + 1)), and let o € ““+1D2 be such that
Ml +1)—1) <o and o(c(¢ + 1) — 1) = 1. Then zf. = z¥ and p(zi.,2}) < 287 ™¢+0-1. By ()12 we
have then p(z¥ + ¢,(o41), Tj + ¢ o41)) = p(ale,2}) < dlam (Upb(“”(npb(f) — 2)). Consequently,

Q)1 UPEHD (nPeo) — 2) = P+

Pue) _ 9
Pues1y(xE) 501,(/z+1)(30;*7)(n )

remember 5.3(A)(K)s5(b)). It follows from (E)5? + (&)5 that for each z € X, z*} we have l(z, z*) =
2 (0) S S

Uz, x%) and m(z,z?) = m(z, %), so by (III)B(ZH) we also have

()14 WP (@y041) (), Pugerny (7)) = PP (@ 041) (1), ey (25)) -

Condition 5.3(A)(X)7 for p,(r11) together with (E)1; imply now that, letting w*" = (s ,(e41) [w.(0)] \
{ouer)y(@)}) U{ouesr)(zs)}, we have

(@15 1k (WD) = 1k (m,0) w1y [wi(0)]) = 1K (wypy),
J (WD) = §(m 00 [Wi0)]) = 3(wie)), and
k(w') = k(ﬂ(@)w(ﬂlﬂwb(@]) k(wL = |@uer) (zy) Nw®-].

(Remember, rp:“*" < nPu» —2 when m = hP«e+0 (o, B), o, f € T(0),u(e+1) [Wu(e) | are distinct.) Consequently,
if Tk*P(w,(¢)) = 0 then k™ (w,(p11)) < 1k (m,00)0 0041 [Woey] U {uer1)(@5)}) < 1k*P(w,(r)) (remember
Definition 2.6(®).).

Unfixing £ < w, we see that for some £* we have rk®”(w,+)) = —1. However, applying to £* the proce-
dure described above we get o € ‘" 12 such that @, (e=41)(z}) contradicts clause 5.3(A)(X)g for p,(p41)
(remember (J)13 + (E)15).

CASE: The set B is infinite.
Almost identical to the previous case. Defining ¢, we use the condition ¢, — x € Up : (np' —2), but then
not much other changes is needed. Even in ([J)s we have

(n? —2) #0

o —x=(c,—x)+ (v —c)€ (UgL' (n” —2) + (e — Ct)) UﬁL (@)
(where o = ¢, (z) € w,). O
The following theorem is the consequence of results presented in this section.

Theorem 5.13. Assume that

(1) (H,+,0) is an Abelian perfect Polish group,



Sh:1187

A. Roslanowski, S. Shelah / Annals of Pure and Applied Logic 176 (2025) 103565 33

(2) the set of elements of H of order larger than 2 is dense in H,
(3) 2<k<wand
(4) & <wy and X is an uncountable cardinal such that NPr®(X) holds true.

Then there is a ccc forcing notion P of cardinality X such that

Ikp “for some XY subset B of H we have:
there is a set X C H of cardinality A such that
(Va,y € X)(|(@+B) N (y+ B)| > k)
but there is no perfect set P C H such that
(Vz,y € P)(|[(z+ B)n(y+ B)| > k)"

6. Forcing for groups with all elements of order < 2

Let us consider the situation when the main (algebraic) assumption of the previous section fails: the set
of elements of H of order larger than 2 is NOT dense in H. Let Hy = {a € H: a4+ a = 0}, so Hs is a closed
subgroup of H and its complement H \ Hj is not dense in H. Consequently, the interior of Hs is not empty
and thus also Hs is an open subset of H. If H is a perfect Polish group, so is Hy. Each coset of Hs is clopen
and consequently H/Hs is countable.

Suppose that T C Hs is a Borel set with A many k—overlapping translations but without a perfect set of
such translations. Then T is also a Borel subset of H and it still has A many k—overlapping translations. If
P C H is a perfect set, then (as |H/Hz| < w) for some a € H the intersection PN (Hz + a) is uncountable.
Consider ) = (P N(Hy+ a)) —a C Hy — it is a closed uncountable subset of Hs (so contains a perfect set)
and by the assumptions on T there are ¢,d € @ such that |(T +c)nN (T + d)| < k. Thenc+a,d+a € P
and [(T + (c+a)) N (T+ (d+a)|=|(T+c)N (T +d)) +a| <k

Consequently, to completely answer the problem of Borel sets with non—disjoint translations it is enough
to deal with the case of all elements of H being of order < 2. The arguments in this case are similar to those
from Section 5, but they are simpler. However, there is one substantial difference. If H is a Polish group
with all elements of order < 2 and B C H is an uncountable Borel set, then B has a perfect set of pairwise
2—overlapping translations. Namely, choosing a perfect set P C B we will have x+y,0 € (B+z)N(B+vy) for
each z,y € P. Moreover, if x +by = y-+ b1, then also x+b; = y+bg. Therefore, if z # y and (B+z)N(B+y)
is finite, then |(B + ) N (B + y)| must be even. For that reason the meaning of k in our forcing here will
be slightly different: the translations of the new Borel set will have at least 2k elements.

Assumption 6.1. In the rest of the section we assume the following:

(1) (H,+,0), D, p and U are as in Assumption 5.1.

(2) All elements of H have orders at most 2.

(3) 1<k<w.

(4) € is a countable ordinal and A is an uncountable cardinal such that NPr®()) holds true. The model
M(e, A) and functions rk*", j and k on [A|<¢ \ {0} are as fixed in Definition 2.6.

In groups with all elements of order two we should use a weaker notion of independence.
Definition 6.2. Let (H, +,0) be an Abelian group

(1) A set B C H is quasi™ independent in H if |B| > 8 and if for all distinct bg, b1, bs, ..., b7 € B and any
€0, €1,€2,...,e7 € {0,1} not all equal 0, we have
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eobo + e1b1 + eaba + e3bs + esbs + esbs + egbs + e7by # 0.

(2) A family {V; : ¢ < n} of disjoint subsets of H is a qif~ if for each choice of b; € V;, i < n, the set
{b; : i < n} is quasi~ independent.

Proposition 6.3. Assume that

(i) (H,+,0) is a perfect Abelian Polish group,
(ii) Uo,...,U, are nonempty open subsets of H, n > T.

Then there are non-empty open sets V; C U; (for i < n) such that {V; : i < n} is a qif".
Proof. Similar to Proposition 3.3. O

The forcing notion used in the case of groups with all elements of order < 2 is almost the same as the one
introduced in Definition 5.3. The only difference is that instead of 8—good qifs we use the weaker concept of
qifs™. (There are no 8-good qifs in the current case.) Since in the current case, a —b = a + b for a,b € H,
we still can repeat all needed ingredients of Section 5. To stress the importance of this property we will
consistently use the addition + rather than subtraction —.

Definition 6.4. (A) Let Q be the collection of all tuples
p= (wp7Mp,Fp,np7Tp,f/p,hp) = (w,M,F,n,T,f/,h)
such that the following demands (®);—(®)s are satisfied.

(®)71 we N, |w>4,0<M<w,3<n<wand 7= (ry, : m< M) where r,, <n —2 for m < M.
(®)2 T = (U, : a € w) where each U, = (U, (¢) : £ < n) is a C-decreasing sequence of elements of .
(®)s V = (Qiap Vieaps Wisap 1 i < ky (a,8) € w?) C U and Qiap = Qipa 2 Vias = Vipa 2
iop = Wi g foralli <kand (a,3) € w?.
(®)s (a) The indexed family (Uy(n —2) : @ € w) (Qiap i < k, o, € w, a < B) is a qif~ (so in
particular the sets in this system are pairwise disjoint), and
(b) ({Ua(n) :a e w)(Wiap: i<k, a,f€w, a<pf)isimmersed in (Uy(n —1):a € w)y (Vias:
i<k, a,few, a<B)and (Uy(n—1):a€cw) Viaps:i<k, a,f € w, a < ) is immersed
in (Uy(n—2):acw) ™ (Qiap:i<k, a,f€w, a<pf).
(®)s (a) If a, B € w, £ <nand Uy(f) NUg (L) # 0, then U, (¢) = Up(¥), and
(b) if o, B,y € w, £ < n, Us(¥) # Us(€) and a € Uy (£), b € Ug((), then p(a,b) > diam, (U, (¢)).
(®)¢ h:w'? 2 M is such that h(a, B) = h(B,a) for (o, B) € w?.
(®)7 Assume that u,u’ C w, m and £ < n are such that
e 4 < |ul =u| and 7 : u — ¢’ is a bijection,
o Thia,p) < L forall (a,B) € ul?,
o Us(0)NUs(¢) =0 and h(w, B) = h(m(a), m(B)) for all distinct «, 8 € u,
o for some c € H, for all « € u, we have (Un(€) + ¢) N Uy (a)(£) # 0.
Then rk°P(u) = rk*P(v'), j(u) = j(v'), k(u) = k(u’) and for a € u

I

lanul =k(u) < |r(a)nd|=k(u).

(®)s Assume that
e D#uCw, kP(u) =—1,¢<nand
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e «a € u is such that |a Nu| = k(u), and
o Thigpy < Cand Us(t) NUg (€) =0 for all (8,8") € ul?.
Then there is no o € w \ u such that U, (£) = Uy (¢) and h(a, 8) = h(d/, B) for all g € u\ {a}.

(B) For p € Q and m < MP we define
= J{UEMmP) + WP, 51 (. B) € @P)® A i<k A BP(a,B) =m}.
(C) For p,q € Q we declare that p < ¢ if and only if

o wP Cwd, MP < M9, 74 MP =7 nP < ni hi](wP)? = hP and

o if @ € w? and £ < nP then UL(¢) = UE(¢), and

o if (a,8) € (wP) P, i <k, then Qf, ; C QY 5, Vi s CVE 4 and W, , CW?P 5, and
e if m < MP, then F(q,m) C F(p,m).

Lemma 6.5.

(1) (Q,<) is a partial order of size A.
(2) The following sets are dense in Q:
(i) D27M7n:{p€Q:7€up AN MP>DM A np>n} fory < Xand M,n < w.

(ii) Dy ={p € Q: for alli,j < k and (o, 8),(7,6) € (w P)2) it holds that diam,(UP(nP — 2)) < 27N
and diam,(Q7 , 5) < 27N and diam, (UE(nP — 2)+Q7 .5 <27 Noand if (i,o*, o, B) # (4, 7*,7,6)
then (Un.(n?) + W/, 5) 0 (UL (n?) + W} 5) = 0}. forN < w.

(iii) D% = {p € D} : for some ( fap it <koap€wa<pB) CU the system (U(n —3) : a €
wP)NQ} 511 <k, B €wP a0 < B) is a qif and (UX(n —2) : a € wP) (Qiap i <k, B €
wP, a0 < B) is immersed in it }

(3) Assume p € Q. Then there is ¢ > p such that n? > n? + 3, w? = w? and

o forall a € w?, (Ud(n? —2)) C UE(nP), and

o foralli <k and (a,B) € (w?)?,

A(Ud(n? —2)+ Q7 5) CULMP)+WF, 5 and Q] 5) SWE, 5
Proof. Same as for 5.4 (just using Proposition 6.3). O

Lemma 6.6. Suppose that p € D} and «, 3,7, € wP are such that o # (3. If

(Ug(np —2) + UB(n? — 2)) N (Ug(np —2) + UP(nP — 2)) £0,
then {a, 5} = {v,0}.

Proof. Similar to 5.5, remembering (UE(n — 2) : o € wP) is immersed in a qif~ (UE(n — 3) : a € wP); see
6.5(2)(iv). O

Lemma 6.7. The forcing notion Q has the Knaster property.

Proof. Same as Lemma 5.6, but when defining a bound ¢ to pe, pc modify the demands to have n? = nP< 44
and ¢ € D?. O
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Lemma 6.8. For each (o, B) € M2 and i < F,

lFg “the sets
ﬂ{Ug(np):peGQ A acuwP} and ﬂ{Wfoﬁﬁ:pEGQ A a,Bewl}
have exactly one element each.”

Proof. Follows from Lemma 6.5. O

Definition 6.9.

(1) For (o, B) € A2 and i < k let Nas Visa,p and bo g be Q-names such that

Fo “fna} =(){UE(N"):peGo N acw'},
{Wiasy=({Wos:p€Co A afeur)
hap = hP(a, B) for some (all) p € Gg such that o, 8 € wP”

(2) For m < w let F,,, be a Q—name such that
o “Fn = m {F(p,m) :m< MP A pe G@}.”
Lemma 6.10.

(1) For each m < w, kg “F., is a closed subset of H.”
(2) Fori <k and (o, B) € A? we have

“_Q ‘{yavyi,a,ﬁ S H, boz,,B < w, Via,p = Vi, B« and Z’a + Vi,a,B S Ehm[y 7
(3) IFQ “Nas Vi, 10 <k, a < B <) is quasi~ independent.”

4) Fo “Vowps--sVk—1.0.8s Ma + 18 + V0,0,8)s - » (Mo + N3 + Vk—1,0,8) are distinct elements of (ya +
U Fn)0(ms+ U Frn)”

m<w m<w

Proof. Should be clear. O

Lemma 6.11. Let p = (w, M,7,n, T,V h) € D} CQ (cf 6.5(ii)) and ag,by € H and Uy, Wy €U (for £ < 4)
be such that the following conditions are satisfied.

®

1 Ur€{Us(n):acw}, We€ {Winp:i<k, (a,8) €w®} (fort<4).
@) (Ue+Wo)N(Up +We) =0 for £ < V' < 4.
®)3 ag €Uy and by € Wy and ag+be € |J F(p,m) for £ < 4.

)

m<M

(
(
(
(®)a (a0 +bo) + (a1 +b1) = (a2 + b2) + (az + b3).

®

Then for some (a, ) € w® and distinct i,j < k one of the following three conditions holds.

(A) {{Uo + Wo, U, + Wl}, {U2 + WQ, Us + Wg}} =

{{Ua(n) + Wi a,p, Uﬁ(n) + Wi,a,ﬁ}v {Ua(n) + Wj.a,8,Us (n) + Wj,aﬁ}}‘
(B) {{U() + Wo, Uy + Wi}, {Us + Wo, Us + Wg}} =

{{Ua(n) + Wiz, Ua(n) + Wj,a,/i’}v {U@(n) + Wi,a,8, Uﬂ(”) + Wj,a,ﬂ}}'
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(©) {{Uo + Wo. Ur + Wi}, {Us + W, Us + Wy} } =
{{Ua(n) + Wi,a,ﬂ, UB(TL) + VVj,a”g}7 {Ua(n) + W?%B’ Uﬂ(?’b) + Wi,a,B}}-

Proof. The arguments here are very similar to those in Lemma 5.10. Note that the assumption (®)s here
is slightly stronger than there (to compensate for weaker qifs). Also our conclusion here is arguably weaker,
but this is a necessity caused by the fact that a — b = a + b in H.

For { <41let U, ,U, ~ and V,, Q¢ be such that

o ifUy=Uy(n) then U, =Us(n—1), U, ~ =Uq(n —2),
o if WZ = Wi,a,,B then ‘/Z = V;,oz,ﬂa QZ = Qi,a,5~

Using steps as in 5.10, one can show that
(*) For every W, U we have
He<4:W, =W} <3 and [{{<4:U,=U}| <3.
Now, since p € D?, it follows from our assumption (®)3 that
(**) for each ¢ < 4, for some o = a(¢), 8 = B(¢), and i = i(£) we have Uy = Uy(n) and Wy =W, o .
By assumption (®)4 we know that
0cUg+ Ui +Us+Us+Wo+ Wi+ Wa+ Ws.

If all of U;’s are distinct, then 0 € Uy +U; + U, + U; + X, where X = {0} or X = W; + W; for
some i < j < 4 with W; # W; or X = Wy + Wy + Wy + W3 with all W;’s distinct (remember (*)). This
contradicts 6.4(A)(®)4. Similarly if all W;’s are distinct.

So suppose [{Uy, U1, Us,Us}| = 3. Then for some ¢ < ¢’ < 4, Uy # Uy and

OGUZ_+U€7+WO+W1+W2+W3gUe__‘i’Ue_/_‘i’X,

where X = {0} or X = W; + W; for some ¢ < j < 4 with W; # W; or X = Wy + Wy + W5 + W3 with all
W;’s distinct (remember (*)). This again contradicts 6.4(A)(®)4. Similarly if [{Wp, W1, Wy, Ws}| = 3.
Consequently, [{Uy, Uy, Uz, Us}| = 2 = [{Wy, W1, Wa, W3}|. Moreover for some distinct o, § € w we have

He<4:Up=Us(n)}|={l<4:U;=Us(n)} =2
and for some (i,,9d) # (j,¢,¢) we have
<4 - Wy=Wi st ={0<4:Wy=W;c}H =2

Now we consider all possible configurations.

CASE 1 Uy = Uy, Uy = Us, say they are respectively Uy (n) and Ug(n).
Necessarily Wy # Wy and Wy # Ws.

If Wy = Wy, W = W3 then recalling (**) above, we also get {7,d} = {¢,{} = {«, 8} and (possibly after
interchanging i and j) Wy = W; o 3, W1 = W, o 5. This gives conclusion (B).

If Wy = W3, Wi = Wy then again by (**) above, we get {v,0} = {¢,(} = {a,} and (possibly after
interchanging i and j) Wy = W; o 3, W1 = W, o 5. This also gives conclusion (B).
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CASE 2 Uy = U, Uy = Us, say they are respectively U, (n) and Ug(n).
Necessarily Wy #= Ws and Wy # W3,

If Wy = Wy, Wy = W3 then recalling (**) above, we also get {v,0} = {¢,(} = {«a, 8}. After possibly
interchanging i and j, Wo = W; o 3, Wa = W, o g and we get conclusion (A).

If Wy = W3, Wy = W, then again by (**), we have {v,d} = {¢,(} = {a, 8}. After possibly interchanging
i and j, Wy = W; o3, W1 = W, o g. This leads to conclusion (C).

CASE 3 Uy = Us, Uy = Uy, say they are respectively U,(n) and Ug(n).
Necessarily Wy #= W3 and Wy # Wa.

If Wy = Wy, Wy = W3 then like above we get {v,d} = {¢,{} = {«, 8}. After possibly interchanging i
and j, Wo = W, o 3, Wo = W, o g and we get conclusion (A).

If Wo = Wy, W7 = W3 then we also have {v,d} = {¢,(} = {«, 8} and after possibly interchanging i and
J, Wo =W, a8, Wi = W o 3. This leads to conclusion (C). O

Lemma 6.12. Let p = (w, M,7,n, Y,V h) € D} and X C H, |X| > 5. Suppose that a;(z,y),b;(z,y), Ui(x,y)
and Wi(z,y) for x,y € X, x #y and i < k satisfy the following demands (i)-(iv) (for all x £y, i #i').

(i) Ui(z,y) € {Ua(n) : « € w}, Wi(z,y) € {Wjap:j<k, (a,B) € w?},

(i) + (Uilw9) + Wile,) 0 (Uil 2) + Wily, 2)) =0,
o (Ui(z,y) + Wiz, ) 0 (Ui (z,y) + Wi (z,y)) =0,
o (Uilz,y) + Wilz,y) N (Ui (y, 2) + Wi (y, z)) = 0.

(iii) ai(z,y) € Us(x,y) and b;(x,y) € Wi(z,y), and
ai('ray)+bl x,y) € L<JMF(p7m)

(IV) Tty= ( (iL‘,y) + bi<x7y>) + (al(yv )+ b (ya ))

Then

(1) X+ X CU{Ualn—2)+Us(n—2):a,B8 € w}.
(2) If (z,y) € X2 and x +y € Uy(n —2) + Us(n — 2), a, 8 € w, then a # 3 and for each i < k we have
ai(x7y) + bi(zvy)ﬂai(yax) + bl(y,x) € F(p7h(aaﬂ))

Proof. (1) Fix z,y € X, x # y, for a moment.

Let i # ¢/, 1,7 < k. We may apply Lemma 6.11 for U;(z,y), Wi(x,y), U;(y, x), Wiy, z), a;(z,y), bi(x,y),
a;(y,x), bi(y,x) here as Uy, Wy, Uy, W1, ag, by, a1, by there and for similar objects with i’ in place of i as
Us, Wa,Us, W3, az,ba, as, by there. This will produce distinct « = a(z,y,4,7),8 = B(z,y,4,7') € w and
distinet j = j(z,y,4,4),5 = j'(x,y,i,i") < k such that

either (A)szﬂ/ :

{Ui(z y) + Wiz, y), Us(y, 2) + Wily, )}, {Us (2, y) + Wi (z,9), Us (y, 2) + Wi (y, )} } =
{H{Ua(n) + Wja,5.Us(n) + Wjas}, {Ua(n) + Wy a5, Us(n) + Wy a5} },

or (3)3535 :

{Ui(x y) + Wiz, y), Ui(y, @) + Wiy, 2)}, {Us (2, 9) + Wir(z,y), Ui (y,2) + Wi (y,2)}} =
{Ua(n) + Wja.8,Ua(n) + Wi a5}, {Us(n) + Wja.5,Us(n) + Wi o s} },

or (C)2 03"

{{U T y) +W(Z‘ y) U( ,33) +W1(y,x)},{U1/(x,y) +Wi’(x7y)’Ui’(y7x) —|—W1/(y,x)}} =
{Ua(n) + Wja,8,Us(n) + Wit a6}, {Ua(n) + Wjr a5, Us(n) + Wjas}}-

Plainly,
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(@)1 if for some i # i’ and «, 3, 7,7’ the clause (A)gffl],/ holds true,
then x +y € Uy(n — 2) + Ug(n — 2).

It should be also clear that for each x # y and distinct ,4’, 4",

(®)q if (B)O"ﬁ’j’j/ holds true, then also (B)Q’B’j’j/ holds true,

z,Y,%,1" z,y,5,8"

and

(®)s if (C)gffﬂ,/ holds true, then also (C);‘ffﬂ,’ holds true,
Consequently, if £ > 3 then by argument similar to 5.11 (case k > 3) for any = # y from X neither of
possibilities (B);’gfﬂl nor (0)35%, can hold. Therefore we may easily finish the proof of Lemma 6.12
(when k > 3).

So assume k = 2. For each x # y from X we fix a = a(z,y) and 8 = B(x,y) such that either (A)gfooll
or (B)220L or (C)220L Let x(z,y) = x(y,z) € {A,B,C} and 0(z,y) = 0(y,z) € [w]2 be such that

z,y,0, z,y,0,1 "
(X(% y))i(z,g)l,o,l holds true.

Claim 6.12.1. If z,y,z € X are distinct and x(x,y) = x(y,2) = A, then x(z,z) = A.

Proof of the Claim. Let x(z,y) = A = x(y,2) and 0(z,y) = {a, S}, 0(y,2) = {7,d}. Assume towards
contradiction that x(z,2) € {B,C} and let §(z, z) = {&,(}. Then for some &', ¢’ € {&,(} we have

z+2z€Ueg(n)+Us(n)+Woec+ Wigee.
o If [{o, 8} 1 {7, 6} = 1, say @ =, § # 6, and {£,¢} = {€/,¢'} = (8,6}, then
z+z€Uy(n)+Uy(n)+Usg(n) +Us(n) + Wiasg+Wias+Wjas+ Wias
but also « + z € Ug(n) + Us(n) + Wy 3,5 + W1 g,5. Consequently,

0 € ((Ua(n) +Ua(n)) + Ug(n)) + (Ug(n) + (Us(n) + Us(n)))+
(Wisa,s + Wia,8) + Wos) + (Wjas + Wjas) + Wigs) C
Us(n—1)+Us(n—1)+Vogs+ Vigs C Qops+ Q1

This immediately contradicts 6.4(A)(®)4.

o It [{a, B} N {7,6}| = L, say o = 7, B # 6, and & # (', [{€', ('} N {B,8}| = 1, say & = B, then by similar
considerations we arrive to

0e ((Ua(n) +Us(n)) + U(;(n)) + ((Ug(n) +Us(n)) + U (n))+
(Wiap + Wia ) + Wogc) + (Wjas + Wias) + Wige) C
Us(n—=1)+ U (n—1)+ Vo +Viper-

In our case necessarily § # ¢’ so we easily get contradiction with 6.4(A)(®)4.
o If [{o, B} N{y, 0} =1,say a =, B#6,and & # ¢ and {¢', '} N{B,0} =0, then

0 € ((Ua(n) 4+ Ua(n)) + Us(n)) + Us(n) + Ug(n) + Uc(n)+
(Wisa,s +Wias) + Woee) + (Wyas +Wjas) + Wige) C
Us(n —1) + Us(n) + Ug(n) + Uc(n) + Voec + Vieo,
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and 3,0, ¢, ¢ are all pairwise distinct. This again contradicts 6.4(A)(®)4.
o Tf [{0, B} N {,6}] = 1, say o=, § £, and € = (', then

0e ((Ua(n) + Uq(n)) + Ug(n)) + ((Ugl (n) + Ug(n)) + U&(n))—i—
(Wisas + Wia,) + Woec) + (Wyas + Wias) + Wige) C
Us(n —1) +Us(n — 1) + Voec + Vig,

and 8 # 6. Again contradiction with 6.4(A)(®)4.
o If {o, B} = {,d}, then we arrive to

0 € ((Ua(n) + Ua(n)) + Ue(n)) + ((Us(n) + Us(n)) + Uer(n)) +
(Wiaus + Wias) + Woec) + (Wias + Wias) + Wiee) ©
Ug/ (n — 1) + U(f (n — 1) + Voﬁg@ + V1,§,<.

Considering cases £’ = ¢’ and &' # (' separately we easily get a contradiction with 6.4(A)(®)4.
o If {o, 8} N{~,0} =0, then

0€ (Wia,p +Wia,) +Ua(n) + (Wjn5 + Wins) + Us(n))+
U,(n)+Us(n) +Ug(n) + U (n) + Woec + Wiee C
Ua(n—1) +Us(n—1) + U,(n) + Us(n) + Ues/(n) + Uer(n) + Woe.c + Wiec.

If ¢ = ¢’ then this gives
0€Uy(n—1)+ U/@(nfl) + U.Y(TL) +Us(n—1)+ Woec +Wiee,

a contradiction. So & # ¢’ and we ask what is the intersection {¢’, ('} N {a, 8,7,d}. In each possible case
we also get a contradiction. O

Claim 6.12.2. If x(z,y) = A and z € X\ {x,y}, then either x(x,z) # A or 6(z,z) # 0(z,y).

Proof of the Claim. Suppose x(z,y) = x(z,2) = A and 0(z,y) = 0(z, z) = {a, }. By 6.12.1 we know that
Xx(y, z) = A. Hence for some £ # ¢ and i < 2 we have

y+2€Uc(n)+Uc(n) + Wigc+Wigc.
Also,
y+z=y+z+ax+z€Uy(n)+Usn)+Woas+Woaps+Us(n)+Us(n)+Woas+ Woas
Hence 0 € Ug(n — 1) + Uc(n — 1) + Vi e c + Vie,c, and we get contradiction as usual. O
Claim 6.12.3. x(z,y) # B for any distinct x,y € X.

Proof of the Claim. Suppose x(z,y) = B, 0(z,y) = {a,f}. By 6.12.2 we may choose z € X\ {x,y} such
that

(%) (x(x,2),0(x,2)) # (A {o, B}) # (x(y,2),0(y, 2)).

[Why is it possible? First take t ¢ {x, y} and ask if it has the property described in (x);. If not, then 6(z,t) =
0(y,t) = {a, B} and either x(x,t) = A or x(y,t) = A. Say the former holds true. Pick v € X\ {z,y,t} and
ask if this element has the property (x),. By Claim 6.12.2 we have
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(X(l‘v U’)a 0(‘7:7 u)) # (X(-L t)a 9('1" t)) = (A7 {a, 6})7

so if (x), fails this can be only because (x(y,u),0(y,u)) = (A4,{e,B}). Taking z € X\ {z,y,t,u} and
applying Claim 6.12.2 twice (with {z,¢} and {y,u}) we immediately see that (x), holds true.]

By Claim 6.12.1 we know that either x(z,z) # A or x(y,z) # A; by the symmetry we may assume
x(x, z) # A. Now we consider the other possibilities for the value of x(z, 2).
i) If x(x,z) = B and 6(z, z) = {a, §}, then

z+y,x+2€Usn) +Us(n) + Woaps+ Wiags.

Hence y+ 2z € Uy(n — 1) + Uy(n — 1) + Uy (n) + Uq(n). Also, for some &', (" € 6(y,z) = {£,¢} and i,5 < 2
we have

y+z€€Ug(n)+Us(n)+Wiec+Wiere,
where either &' # ¢’ or ¢ # j. Thus
0 € Un(n — 1)+ Ua(n — 1) + Ua(n) + Ua(n) + Ug (n) + Ues (n) + Wigc + Wiee = V.
If ¢ = ¢’ then i # j and
Y CUs(n—1)4+Us(n—1)+Us(n—1)+Us(n) + Woec + Wiee € Qo+ Quec,
and we get a contradiction with 6.4(A)(®)4. If &' # ¢’ then
YCUs(n—2)+Uc(n—1)+Wiec+Wjee

and regardless of ¢ being equal to j or not, we may get a contradiction too.
(i) If x(=,2) = B and 0(z, z) = {v,0} # {a, B}, then

z+zeUyn)+U,(n)+Wos+Wiys and
z+y € Us(n)+Us(n) +Woap+ Wiag.

Hence y+2z € Vo 4.5 + Wi ,4.6 + Vo,a,8 + Wi,q 5. Like before, for some &',¢" € 8(y,z) = {£,¢} and 4,5 < 2 we
have

y+zeUs(n)+Us(n)+Wiee+ Wiec,
where either ¢ # (" or i # j. Since {Vo.4.5, Vi4.6} N {Vo,a,8: V1,a,8} = 0, like before we get a contradiction

with 6.4(A)(®)a.
(iii) If x(x, 2) = C and 0(z, z) = {«, 8}, then

z+yeUsn)+Us(n)+Woap+Wiagp
z+z € Uy(n) +Usg(n) + Woa+ Wiags.

Also, y+ z € Ug(n) + Uer(n) + Wie e + Wiee, where &, € 0(y, z) = {£,(}, 4,7 < 2 and either ¢’ # ¢’ or
1 # 7. We consider 2 subcases now.

If i = j then (¢’ # ¢’ and) x(y, 2) = A so by the choice of z at the beginning we know that 6(y, z) # {«a, 5}.
So we arrive to
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0¢€ ((Ua (n)) + Ua(n)) + (Wigc + Wiee) + Us(n))+

( Wo B + Wo a8) +Ue(n)) + (Wiap + Wiap) + Uc(n)) C

Us(n—1)+Ug(n—1)+Us(n—1)+Us(n—1)

/_\/_\

and since {&,(} # {a, 8} a contradiction follows.
If ¢ # j then we get
0e ((Ua (1)) + Ua(n)) + (Wo,a,5 + Wo,a,8) + Us(n))+
( W1 a,B + W1 a8) +Uer(n)) +Uer(n) + Woe e + Wi C
Ua(n - 1) + U/j(n - 1) + Uf’ (n — 1) + UC’ (n) + Wo’g’g + Wl’g’g,

/\/\

and again a contradiction.

(iv) If x(z,2) = C and (z, z) = {~,0} # {«, 8}, then

z+z€Uy(n)+Us(n)+Wy 5+ Wi,ys and
z+yeUsn)+Us(n)+Woap+Wiag, and
Yy+z€ Ug/ (n) + UC/ (n) + Wi’g’g + Wj,g,Q

where &', (" € 0(y,z) = {&,(}, 4,5 < 2 and either £ # ¢’ or ¢ # j. Thus

0 € (Uy(n) 4+ (Ua(n) + Ua(n))) + Us(n) + Wo 5.5 + W14,6+
Wo,a8 +Wias+Ug(n) + Uo(n) + Wige +Wiee ©
U,(n—1)+Us(n) + Ug(n) + Usr (n)+
Worns +Wins +Woaps+Wiag+Wiege+Wiec.

Since Wo .5, Wi,v,6, Wo,a,8 and Wi o g are all distinct we get a contradiction in the usual manner. O
Claim 6.12.4. x(z,y) # C for any distinct x,y € X.

Proof of the Claim. Suppose towards contradiction x(z,y) = C and let 8(z,y) = {«, 8}. Let z € X\ {x,y}.
By 6.12.1 we know that either x(z,z) # A or x(y,z) # A; by the symmetry we may assume x(z, z) # A.
By 6.12.3 we know that x(z,z) # B, so x(z,z) =C

If O(z,y) = 0(x, 2) = {a, B}, then y + 2z € Uy (n — 1) + Us(n) + Ug(n — 1) + Ug(n). We know that x(y, z) €
{A, C} and in both cases y + z € U,(n) + Us(n) + W; 5.6 + W .5, where 0(y, z) = {v,6} and ¢,j < 2. Now
we may conclude

0 € Un(n —1) + Ua(n) + Us(n — 1) + Us(n) + Uy (n) + Us(n) + Wiy + Wjn 5 = S.

If i # j then S C Uy(n —2) + Us(n —2) + Wy 4,5 + W1 4,5 and an immediate contradiction with 6.4(A)(®)a4
follows. If ¢ = j then S C Uy(n —2) + Us(n — 2) + Wi 45 + Wiys € Uy(n — 3) + Us(n — 3) and we get a

contradiction with p € D3.
It 9('1:7 Z) = {57 C} 7& 9(33,:(/) = {O{,ﬁ}, then {WO,&Q W17§7<} n {WO701»57 Wl,a,ﬁ} = @ and

y+z€Ualn) +Us(n) + Woa,p +Wias + Us(n) + Uc(n) + Woec + Wi
Now, by considerations as before, we get a contradiction with 6.4(A)(®)4. O

Therefore,

(®) x(z,y) = A for all distinct z,y € X.
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Hence, if z # y are from X and 0(x,y) = {a, 8}, then x +y € Uy(n —2) + Ug(n — 2).
(2) Like Lemma 5.11, using Lemma 6.6. O
Lemma 6.13. Let p = (w, M, 7,n,Y,V,h) € D? and X C H, |X| > 5. Suppose that

(a) X+ X CH{Uq(n) +Us(n) : o, B € w}, and
(b) diam, (Ua(n)) < p(z,y) for all a € w, (z,y) € X2,

Then there is a ¢ € H such that

X+ecC U{Ua(n—l) ta € wh
Proof. By assumption (b), if z,y € X are distinct and = +y € U, (n) + Ug(n), a, 8 € w, then o # 5. Also,
if (z,y) € X and 2 +y € (Ua(n) + Us(n)) N (Uy(n) + Us(n)), then {a, B} = {7,6} (by 6.4(A)(®)4).
Consequently, for each (z,7) € X we may let 6(z,y) to be the unique {a, 5} € [w]2 such that x +y €
Ua(n) + Ug(’n)
Claim 6.13.1.

0(z,y) NO(z,2)| =1

whenever x,y,z € X are distinct.

Proof of the Claim. Let 6(z,y) = {«, 8}, 0(x,2) = {v,d} and (y, z) = {{,(}. Then
y+ 2 € (Un(n) + Us(n) + Uy (n) + Us(n) ) (1 (Ue(n) + U (n).
Hence 0 € Uy (n) + Ug(n) + Uy (n) + Us(n) + Ug(n) + Us(n). Since a # B, v # § and & # ¢ we conclude that
{o, B} N {v,0} # 0 (remember 6.4(A)(®)4). If we had {«, 8} = {7,6}, then 0 € Ug(n — 1) + Uc(n — 1), a
contradiction as well. Consequently [{«, 5} N {v,0}|=1. O
Fix distinct xo,yo,20 € X. Let 0(zo,y0) = {0, B0}, 0(x0,20) = {70, a0} and let a’,a” € U,,(n), by €
Ug,(n), co € Uy, (n) be such that zo + yo = @’ + by and x¢ + 2o = a” + ¢o.

Let ¢ = a’ + 9. We will show that  + ¢ € [J{Un(n — 1) : @ € w} for all x € X. To this end, first note
that

e zogt+c=xg+a +x9=20a €U, (n),
e Yotcec=yo+a +xo=0+by+a =byeUg(n),
« dotc=zo+d +zo=a"+co+a €Uy(n)+ (Uay(n) + Uag(n) € Uy (n —1).
Now suppose z € X \ {z0,%0,20}. Let 0(x,z9) = {0,(},  + 29 =d + e, d € Us(n), e € Ue(n).

(*) a0 €{4,C}-

Why? By Claim 6.13.1 we have |0(zo,x) N 0(x0,y0)| = |0(x0,x) N (0, 20)| = 1. Hence if ag ¢ {0,(}, then
0(z,x0) = {Po, 10} Take 2’ € X\ {0, Yo, 20, x} and note that (again by Claim 6.13.1)

|0(z0,2") N {0, Bo}| = |0(x0,2") N {a0,70}| = |8(z0, ') N {70, Bo}| = 1,
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and this is clearly impossible.
By symmetry we may assume g = §. But now

r+c=x+zo+ad =(d+d)+eecUs(n—1),
so we are done. 0O

Lemma 6.14.

lFq “there is no perfect set P C H such that (Vx,y € P) (} (:,E + U Em) N (y + U ]j‘m)‘ > 2k:) 7
m<w m<w

Proof. Suppose towards contradiction that G C Q is generic over V and in V[G] the following assertion
holds true:

for some perfect set P C H we have

for all z,y € P.

Then for any distinct z,y € P there are by, cq, ...,bp_1,ck—1 € |J FS such that x +y = b; + ¢; (for all
m<w

i < k)and {b;,c;} N{byr,cp} =0 (for i < i’ < k); remember x + y = b; + ¢; implies that = + b;,z + ¢; are

distinct elements of (z+ |J F$)Nn(y+ U FS). For 0= (¢; :i <k) Cw,m=(m; :i<k) Cwand

m<w m<w

N < w let

Zévm = {(x,y) € P?: there are ¢; € ]j‘g,di € FS. (for i < k) such that
r4+y="b;+¢; and 27N < min (p(bi,b;), p(ci, b;), p(bs, c;))
for all distinct 4,7 < k }

Now we continue as in 5.12, but instead of 3.5 we use 6.13. In (E)§) as there we demand p,,q, € D2 . Also
under current assumptions on H, X, + ¢, = ¢, — X,, so we have only one case. Otherwise the same proof
works. O

The following theorem is a consequence of results presented in this section.

Theorem 6.15. Assume that

(1) (H,+,0) is an Abelian perfect Polish group,

(2) all elements of H have order at most 2,

(3) 2<k<wand

(4) € < wy and X is an uncountable cardinal such that NPr®()\) holds true.

Then there is a ccc forcing notion Q of cardinality A such that

kg “for some XY subset B of H we have:
there is a set X C H of cardinality A such that
(¥2,y € X)(|(z+ B)N (y + B)| > 2k)
but there is no perfect set P C H such that
(Vz,y € P)(|(x+ B)N (y + B)| > 2k) "
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7. Conclusions and questions

Let us recall from the Introduction, that the spectrum of translation k—non-disjointness of a set A C H
is
stnd(A) = stndg (A, H) = {(z,y) e H x H: [(A+2) N (A +y)| > k}.
By the definition, X x X C stndg(A) if and only if

(Vz,y € X)(‘(l‘-FA)ﬁ (y—|—A)| > k).

In particular, there is a perfect square P x P included in stndg(A) if and only if A has a perfect set P of
k—overlapping translations.

Conclusion 7.1. Assume that

(a) H = (H,0,+) is a perfect Abelian Polish group,
(b) 1 <t <w and
o k=1if {ceH:c+c#0} is dense in H, and
e k = 2. otherwise,

(¢) Ais an uncountable cardinal such that NPr®()) holds true for some countable ordinal &, and
(d) A= A% < p=plo.

Then there is a ccc forcing notion P* and a P*-name B for a 39 subset of H such that

(1) rp 2% =,

(2) IFp« “there is a set X C H of cardinality A such that X x X C stndg(B)”, but
(3) IFp« “there is no set X C H of cardinality A* such that X x X C stndg(B)”, and
(4) IFp« “there is no perfect set P C H such that P x P C stnd(B)”.

Proof. Let us consider the case when (in assumption (b) of the Corollary) the set {¢ € H : ¢+ ¢ # 0} is
dense in H. The other case is fully parallel. So we assume

o (H,+,0), D, p and U are as in Assumption 5.1 and Assumption 5.2,
e k,e, A\ 1k j k and p satisfy Assumption 5.2 and assumption (d) of the Corollary.
Let P be the forcing notion discussed in Section 5 (cf Theorem 5.13) and let C,, be the forcing notion adding
1 Cohen reals, where conditions are finite functions with domains included in p and values 0, 1.
Let P* =P x C,.
By standard arguments, P* is a ccc forcing notion and IFp. 2% = p. Let B be a P-name for the 39

subset of H added by P < P*.

Claim 7.1.1.
(2) IFp« “there is a set X CH of cardinality A such that
(Vz,ye X)(|[(z+B)n(y+ B)| > k)",

but
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(4) IFp+ “there is no perfect set P C H such that
(Vz,y € P)(|(z +B) N (y+ B)| > k)"

Proof of the Claim. If H C C, is generic over V, then in V[H] we may look at the definition of the forcing
notion P as all the ingredients still have the required properties. Identifying BY with BX[H] we easily see
that PV = PVIH] Hence P* is equivalent to the iteration C « * P and consequently the results of Section 5
give the desired conclusion. O

Claim 7.1.2.

(3) Ikp« “there is no set X C H of cardinality A\t such that
(Vz,y € X)(|(x+B) N (y + B)| > k)"

Proof of the Claim. Assume A < p (otherwise clear). Suppose towards contradiction that G = Gy x G C
P x C,, is generic over V and in V[G][G4] there are distinct 2, € H (for o« < A™) such that

|(za + BY) N (x5 + BY)| > k for a, B < AT,

Then in V[Gy] we may find a condition ¢ € G; and C,—names z,, o < AT, for elements of the group H
such that

qlrc, “za#xp and |(za+ B)N(zs+ B)| >k

for all @ < 8 < A*. Each of the names g, is actually a C4_—name for some countable set A, C u. Since

V[Go] = 2% = A, we may choose a set I € [)\+]/\+ and a set u C p such that the following two demands
are satisfied (in V[Gy]).

()1 otp(Ay) = otp(Ap) for o, B € 1.
()2 For each a < § from I, letting 7o 5 : Aa — Ag be the order isomorphism, we have

u=A,NAz, waplu=id, and A, )\ u is infinite.

Let v* = uUdom(q) C p. Dismissing finitely many elements of I we may assume that A, \ u = A, \ v* for
allv e 1.

Let G; = G1NC,~ and let us work in V[Gy][G7] for a moment. Each name g, (for o € I') can be thought of
as a Cy,\,+—name now. Let § = otp(A, \ u*) for some (equivalently, all) o € I. Since V[Go][G3] = 2% = A,

we may find I* € [I]AJr and a Borel function 7 : $2 — H such that

()3 IF 2o = 7(ca 0 7), where 7 : £ — Ay \ u* is the order isomorphism and ¢, is (a name for) the
Cohen real added by C4_\ -

Consequently, if a # 3 are from I*, then

(e ©7) + B) 1 (r(es 0 7%) + B)| > k and
r(ea 0 7) # 7(gs 0 7)"

(*)4 ”_(CA *XCA/S\“* “

Therefore,
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()5 if do,d; € €2 are (mutually) Cohen reals over V[Gy][G}], then

VI[Go][Gi][do, d1] = |(7(do) + B) N (7(dr) + BY)| > k and 7(do) # 7(dy).

Adding one Cohen real ¢ over V results in adding a perfect set P such that (in V|[]) if z,y € P are distinct
then z is a Cohen real over Vy]. Thus taking o € I we will have that in V* = V[Go][G7][G1 N C4 \u-]
there is a perfect set P C €2 of mutually Cohen reals over V[Gy][G}]. By (&)5 we know

V* |= 7| P is one-to-one and |(7(z) + BE) N (t(y) + BG°)| >k for x,y € P.
By upward absoluteness of Y3 sentences we may assert now that

VI[Gy x G1] | there is a perfect set P* C H such that
(Vz,y € P*)(|(z + BS) N (y + B)| > k).

This, however, contradicts Claim 7.1.1. O O

Conclusion 7.2 (See [11, Proposition 3.3(5)]). Assume that
(1) H is a perfect Polish group and B C H is a Borel set,

(2) a cardinal X is such that Pr®()\) holds true for every € < wy, and
(3) 1<k <w,and

(4) there is a set X C H of cardinality A such that X x X C stndy(B).

Then there is a perfect set P C H such that P x P C stndy(B).

Proof. Under our assumptions on A, if an analytic set B C “2 x “2 includes a A—square, it includes a perfect
square (see [14, Claim 1.12(1)]).

The space H is Borel isomorphic with “2; let f : H — “2 be a Borel isomorphism and let fo : HxH —
w2 x 92 : (z,y) = (f(z), f(y)). Then the set fo[stndy(B)] is analytic and f[X] x f[X] C fa[stndg(B)].
Consequently there is a perfect set P* C “2 such that P* x P* C fa[stndg(B)]. We may choose a perfect
set P C f~1[P*] C H - it will also satisfy P x P C stnd;(B). O

Now, in Claim 7.1.2 we used the upward absoluteness to show IFp« “(3)”. If the group H is compact
and B C H is X9, then the set stndy(B) is 9 and hence the assertion in (4) of 7.1 is I3, so also
absolute. However, in the case of general H the corresponding assertion appears to be II} so not so obviously
absolute. The absoluteness would be helpful for natural consequences under MA. In [10] a similar issue in the
Cantor space “2 was dealt with by consideration of “finite approximations” to a perfect set of non-disjoint
translations and a rank function on those approximations.

Problem 7.3. Develop the rank and the results parallel to ndrk, and cute Y ZR-systems presented in [10]
for the case of general perfect Abelian Polish groups.

The forcing notions presented in this article for various Abelian Polish groups look similar, but the
particular group structures may have different impacts.

Problem 7.4. Is it consistent that for some perfect Abelian Polish groups Hy, H; and 2 < k < w and an
uncountable cardinal A\ we have:

(1) for some Borel set By C Hy,
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(a) thereis aset X C Hy of cardinality A such that X x X C stndy(Bg, Ho) (i.e., stndg(Bo, Ho) includes
a A-square), but
(b) there is no perfect set P C Hy such that P x P C stndg(By, Ho) (i.e., stndg(Bg, Hp) does not
include any perfect square)
and
(2) for every Borel set B C Hjy, if stndg (B, H;) includes a A—square, then it includes a perfect square?

Considering differences caused by various choices of parameters, it is natural to ask about the impact of
k.

Problem 7.5. Is it consistent that for some perfect Abelian Polish group H and 2 < k < £ < w and an
uncountable cardinal A\ the following two statements are true.

(1) For some Borel set By C H,
(a) there is a set X C H of cardinality A such that X x X C stndy(By, H), but
(b) there is no perfect set P C Hy such that P x P C stnd,(Bg, Hp).
(2) For every Borel set B C H, if stnd; (B, H) includes a A—square, then it includes a perfect square.
Of course, the next steps could be to investigate stnd,, and stnd,, :

Problem 7.6. Let H be a perfect Abelian Polish group. Is it consistent that for some Borel set B C H:

o there is an uncountable set X C H such that (B + x) N (B + y) is uncountable for every z,y € X, but
o for every perfect set P C H there are x,y € P with (B + z) N (B + y) countable?

Similarly if “uncountable / countable” are replaced with “infinite / finite”, respectively.
Let us also remind two other questions related to our results. The first one calls for a “dual” results.
Problem 7.7. Is it consistent to have a Borel set B C H such that

e B has uncountably many pairwise disjoint translations, but
e there is no perfect of pairwise disjoint translations of B?

Assumptions of Conclusion 7.1 and Conclusion 7.2 bring the question what is the value of the first
cardinal A = A\, such that Pr®(\) holds true every ¢ < wy.

Problem 7.8. Is \,,, = X, ? Does Pr°(R,, ) hold true for all € < wy?
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