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We expand the results of Rosłanowski and Shelah [11,10] to all perfect Abelian 
Polish groups (H,+). In particular, we show that if α < ω1 and 4 ≤ k < ω, 
then there is a ccc forcing notion adding a Σ0

2 set B ⊆ H which has ℵα many 
pairwise k--overlapping translations but not a perfect set of such translations. The 
technicalities of the forcing construction led us to investigations of the question 
when, in an Abelian group, X −X ⊆ Y − Y imply that a translation of X or −X
is included in Y .

© 2025 Elsevier B.V. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

For a Polish space X and a set B ⊆ X×X we say that B contains a μ--square (perfect square, respectively), 
if there is a set Z of cardinality μ (a perfect set Z, respectively) such that Z×Z ⊆ B. The problem of Borel 
sets with large squares but no perfect squares was studied and resolved in Shelah [14].

Several questions can be phrased in a manner involving μ--squares and/or perfect squares with some 
additional structure on them. For instance, looking at a Polish group (H,+) we may ask for its Borel 
subsets with many, but not too many disjoint translations (or just translations with small overlaps). This 
leads to considering the spectrum of translation k--disjointness of a set A ⊆ H,
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stdk(A) = {(x, y) ∈ H×H : |(A + x) ∩ (A + y)| ≤ k},

and asking if this set may contain a μ--square but not a perfect square. For k = 0 this is asking for μ many 
pairwise disjoint translations of A without a perfect set of such translations. This direction is related to 
works of Balcerzak, Rosłanowski and Shelah [1], Darji and Keleti [4], Elekes and Steprāns [6], Zakrzewski 
[15] and Elekes and Keleti [5].

It is still unresolved if we may repeat the results of [14] for the disjointness context, but there is some 
promising work in progress [13]. However a lot of progress has been made in the dual direction.

For a set A ⊆ H we consider its spectrum of translation k--non-disjointness,

stndk(A) = {(x, y) ∈ H×H : |(A + x) ∩ (A + y)| ≥ k}.

Then a μ--square included in stndκ(A) determines a family of μ many pairwise k--overlapping translations. 
These were studied extensively for the context of the Cantor space in Rosłanowski and Rykov [9], and 
Rosłanowski and Shelah [11,10,12]. Those works fully utilized the algebraic properties of (ω2,+), leaving 
the general case of Polish groups unresolved.

In the current paper we aim at generalizing their results to perfect Abelian Polish groups. The main 
difficulty in this more general case lies in quite algebraic problem (♠) given below. Suppose S ⊆ H and 
X ⊆ H is a set of k--intersecting translations, i.e.,

(♦)SX |(S + x) ∩ (S + y)| ≥ k for all x, y ∈ X.

Then for all c ∈ H the property (♦)SX+c also holds true. Thus the properties of objects added by our forcing 
should rflect some ``translation invariance''. How can we know that a set Y is included in a translation of 
X? Clearly, if Y ⊆ X + c or Y ⊆ c−X, then Y −Y ⊆ X −X. It would be helpful in our forcing if we knew

(♠) when does Y − Y ⊆ X −X imply that Y is included in a (small) neighborhood of a translation X + c

of X or of a translation c−X of −X?

In the third section we introduce the main algebraic ingredient of our forcing notion: qifs and quasi indepen
dent sets. In forcing, we will use them in conjunction with differences of elements of the group, but a relative 
result for sums also seems interesting, so we present it in Section 4. The third and fourth section might be 
of interest independently from the rest of the paper, as they address the question (♠) giving interesting 
(though technical) properties of perfect Abelian Polish groups with few elements of rank 2.

Like in [14], the ``no perfect set'' property of the forcing extension results from the use of a ``splitting 
rank'' rksp. We remind its definition and basic properties in the second section. For the relevant proofs we 
refer the reader to [14,11].

In the fifth section we prove our main consistency result for groups with few elements of rank 2. The 
remaining case when H has many elements of rank 2 is treated in Section 6. We close the paper with 
summary of our results and a list of open problems.

Notation: Our notation is rather standard and compatible with that of classical textbooks (like Jech [8] or 
Bartoszyński and Judah [2]). However, in forcing we keep the older convention that a stronger condition is 
the larger one.

(1) For a set u we let

u〈2〉 = {(x, y) ∈ u× u : x 	= y}.
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(2) Ordinal numbers will be denoted by the lower case initial letters of the Greek alphabet α, β, γ, δ, ε, ζ. 
Finite ordinals (non-negative integers) will be denoted by letters i, j, k, �,m, n, J,K,L,M,N and ι. The 
Greek letters λ and μ will stand for uncountable cardinals.

(3) Finite sequences will be denoted σ, ς
(4) For a forcing notion P , all P--names for objects in the extension via P will be denoted with a tilde below 

(e.g., τ
˜
, X

˜
), and G

˜ P will stand for the canonical P--name for the generic filter in P .
(5) (H,+, 0) is an Abelian group (in the main part of the paper it is a perfect Polish Abelian group). The 

elements of H will be called a, b, c, d (with possible indices). For an integer ι and a ∈ H, we use the 
notation ιa to denote the element of H obtained by repeated addition of a (or −a) |ι| many times in 
the usual way.

(6) For sets A,B ⊆ H we will write −A = {−a : a ∈ H},

A + B = {a + b : a ∈ A ∧ b ∈ B} and A−B = {a− b : a ∈ A ∧ b ∈ B}.

2. Splitting rank rksp

Let us recall a rank used in previous papers which will be central for the results here too. We quote some 
definitions and theorems from [11, Section 2], however they were first given in [14, Section 1].

Let λ be a cardinal and M be a model with the universe λ and a countable vocabulary τ .

Definition 2.1. 

(1) By induction on ordinals δ, for finite non-empty sets w ⊆ λ we dfine when rk(w,M) ≥ δ. Let w =
{α0, . . . , αn} ⊆ λ, |w| = n + 1.
(a) rk(w) ≥ 0 if and only if for every quantfier free formula ϕ = ϕ(x0, . . . , xn) ∈ L(τ) and each k ≤ n, 

if M |= ϕ[α0, . . . , αk, . . . , αn] then the set

{
α ∈ λ : M |= ϕ[α0, . . . , αk−1, α, αk+1, . . . , αn]

}

is uncountable;
(b) if δ is limit, then rk(w,M) ≥ δ if and only if rk(w,M) ≥ γ for all γ < δ;
(c) rk(w,M) ≥ δ + 1 if and only if for every quantfier free formula ϕ = ϕ(x0, . . . , xn) ∈ L(τ) and each 

k ≤ n, if M |= ϕ[α0, . . . , αk, . . . , αn] then there is α∗ ∈ λ \ w such that

rk(w ∪ {α∗},M) ≥ δ and M |= ϕ[α0, . . . , αk−1, α
∗, αk+1, . . . , αn].

By a straightforward induction on δ one easily shows that if ∅ 	= v ⊆ w then

rk(w,M) ≥ δ ≥ γ =⇒ rk(v,M) ≥ γ.

Hence we may dfine the rank function on finite non-empty subsets of λ.

Definition 2.2. The rank rk(w,M) of a finite non-empty set w ⊆ λ is dfined as:

• rk(w,M) = −1 if ¬(rk(w,M) ≥ 0),
• rk(w,M) = ∞ if rk(w,M) ≥ δ for all ordinals δ,
• for an ordinal δ: rk(w,M) = δ if rk(w,M) ≥ δ but ¬(rk(w,M) ≥ δ + 1).

Definition 2.3. For an ordinal ε and a cardinal λ let NPrε(λ) be the following statement:
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``there is a model M∗ with the universe λ and a countable vocabulary τ∗ such that 1+ rk(w,M∗) ≤ ε for 
all w ∈ [λ]<ω \ {∅}.''

Let Prε(λ) be the negation of NPrε(λ).

Note that NPrε of [11, Definition 2.4] differs from our NPrε: ``sup{rk(w,M∗) : ∅ 	= w ∈ [λ]<ω} < ε'' 
there is replaced by ``1 + rk(w,M∗) ≤ ε'' here. However, the proofs for [11, Propositions 2.6, 2.7] show the 
following results.

Proposition 2.4. 

(1) NPr1(ω1).
(2) If NPrε(λ), then NPrε+1(λ+).
(3) If NPrε(μ) for μ < λ and cf(λ) = ω, then NPrε(λ).
(4) If α < ω1, then NPrα(ℵα) but Prα(ℶω1) holds.

Definition 2.5. Let τ⊗ = {Rn,j : n, j < ω} be a fixed relational vocabulary where Rn,j is an n--ary relational 
symbol (for n, j < ω).

Definition 2.6. Assume that ε < ω1 and λ is an uncountable cardinal such that NPrε(λ). By this assumption, 
we may fix a model M(ε, λ) = M = (λ, {RM

n,j}n,j<ω) in the vocabulary τ⊗ with the universe λ such that:

(⊛)a for every n and a quantfier free formula ϕ(x0, . . . , xn−1) ∈ L(τ⊗) there is j < ω such that for all 
α0, . . . , αn−1 ∈ λ,

M |= ϕ[α0, . . . , αn−1] ⇔ Rn,j [α0, . . . , αn−1],

(⊛)b the rank of every singleton is at least 0,
(⊛)c 1 + rk(v,M) ≤ ε for every v ∈ [λ]<ω \ {∅},
(⊛)d M |= R2,0[α0, α1] if and only if α0 < α1 < λ.

For a nonempty finite set v ⊆ λ let rksp(v) = rk(v,M), and we fix witnesses j(v) < ω and k(v) < |v| for the 
rank of v, so that the following demands (⊛)e--(⊛)g are satified. If {α0, . . . , αk, . . . αn−1} is the increasing 
enumeration of v and k = k(v) and j = j(v), then

(⊛)e if rksp(v) ≥ 0, then M |= Rn,j [α0, . . . , αk, . . . , αn−1] but there is no α ∈ λ \ v such that

rksp(v ∪ {α}) ≥ rksp(v) and M |= Rn,j [α0, . . . , αk−1, α, αk+1, . . . , αn−1],

(⊛)f if rksp(v) = −1, then M |= Rn,j [α0, . . . , αk, . . . , αn−1] but the set

{
α ∈ λ : M |= Rn,j [α0, . . . , αk−1, α, αk+1, . . . , αn−1]

}

is countable,
(⊛)g for every β0, . . . , βn−1 < λ, if M |= Rn,j [β0, . . . , βn−1] then β0 < . . . < βn−1.

The choices above dfine functions j : [λ]<ω \ {∅} −→ ω, k : [λ]<ω \ {∅} −→ ω, and rksp : [λ]<ω \ {∅} −→
{−1} ∪ (ε + 1).
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3. QIFs and differences

Definition 3.1. Let (H,+, 0) be an Abelian group and B ⊆ H.

(1) A (2,n)--combination from B is any sum of the form

ι0b0 + ι1b1 + ι2b2 + . . . + ιn−1bn−1

where b0, b1, . . . , bn−1 ∈ B are pairwise distinct and ι0, ι1, ι2, . . . , ιn−1 ∈ {−2,−1, 0, 1, 2}. The 
(2, n)--combination is said to be nontrivial when not all ι0, . . . , ιn−1 are equal 0.

(2) We say that the set B is quasi independent in H if |B| ≥ 8 and no nontrivial (2, 8)--combination from 
B equals to 0.

(3) We say that a family V of non-empty subsets of H is an n--good qif 1 if |V| ≥ n, the sets in V are 
pairwise disjoint and for distinct V0, . . . , Vn−1 ∈ V, for each choice of bi, b′i ∈ Vi (for i < n) and every 
ι0, ι

′
0, . . . , ιn−1, ι

′
n−1 ∈ {−1, 0, 1} such that 

∑n−1
i=0 (ιi + ι′i)2 	= 0 we have

ι0b0 + ι′0b
′
0 + ι1b1 + ι′1b

′
1 + . . . + ιn−1bn−1 + ι′n−1b

′
n−1 	= 0.

An expression as on the left hand side above will be called a nontrivial (2,V, n)--combination (or a 
nontrivial (2, n)--combination from V).

(4) Let V,W ⊆ P(H) \ {∅}. We will say that W is immersed in V if there is a bijection π : W 1−1 −→ V such 
that
• W ⊆ π(W ) for all W ∈ W, and
• if W0,W1 ∈ W, and a, a′ ∈ W0, b ∈ W1, then (a− a′) + b ∈ π(W1).

Observation 3.2. 

(1) If B is quasi independent then all elements of B have order at least 3 and 
{
{b} : b ∈ B

}
is an 8--good 

qif.
(2) If V is an 8--good qif and bV ∈ V (for V ∈ V) then {bV : V ∈ V} is quasi independent.
(3) Assume H is an Abelian Polish group. Suppose also that, for i < N < ω, Vi ⊆ H are disjoint open 

sets and bi ∈ Vi. Then there are open sets Wi such that bi ∈ Wi ⊆ Vi for i < N , and {Wi : i < N} is 
immersed in {Vi : i < N}.

Proposition 3.3. Assume that

(i) (H,+, 0) is a perfect Abelian Polish group,
(ii) the set of elements of H of order larger than 2 is dense in H,
(iii) U0, . . . , Un−1 are nonempty open subsets of H.

Then there are disjoint open sets Vi ⊆ Ui (for i < n) such that {Vi : i < n} is an n--good qif.

Proof. Let H2 consist of all elements of H of order ≤ 2. Then H2 is a closed subgroup of H and, by the 
assumption (ii), it has empty interior. Consequently, for each a ∈ H and i < n the set (a + H2) ∩ Ui is 
meager. Therefore, for each i < n,

1 short for quasi independent family.
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(⊗)i the set 
{
a + H2 : a ∈ H and (a + H2) ∩ Ui 	= ∅ 

}
is ifinite.

Let m0 = 10 and mi+1 = 10i+1 ·
∏
j≤i

mj + 10 (for i < n). For each i < n choose a set Ai ⊆ Ui \H2 such that

(⊕)0 |Ai| = mi and
(⊕)1 if a, b ∈ Ai and a 	= b, then 2a 	= 2b.

(The choice is possible by (⊗)i for each i < n.) For 0 < i < n let

Xi =
{
ι0a0 + . . . + ιi−1ai−1 : a0 ∈ A0, . . . , ai−1 ∈ Ai−1 ∧ ι0, . . . , ιi−1 ∈ {−2,−1, 0, 1, 2}

}
.

By the choice of mj ’s we know that 2 · |Xi| < mi = |Ai|, so we may choose b∗i ∈ Ai such that 2b∗i , b∗i / ∈ Xi. 
Let b∗0 ∈ A0 be arbitrary. One easily verfies that every nontrivial (2, n)--combination from {b∗i : i < n} is 
not zero, so for each ι0, ι′0, . . . , ιn−1, ι

′
n−1 ∈ {−1, 0, 1} such that 

∑n−1
i=0 (ιi + ι′i)2 	= 0 we have

ι0b
∗
0 + ι′0b

∗
0 + ι1b

∗
1 + ι′1b

∗
1 + . . . + ιn−1bn−1 + ι′n−1b

∗
n−1 	= 0.

For each such combination we may choose disjoint open sets V i
ι0,ι′0,...,ιn−1,ι′n−1

such that b∗i ∈ V i
ι0,ι′0,...,ιn−1,ι′n−1

⊆ Ui and for every bi, b′i ∈ V i
ι0,ι′0,...,ιn−1,ι′n−1

, i < n, we have

ι0b0 + ι′0b
′
0 + ι1b1 + ι′1b

′
1 + . . . + ιn−1bn−1 + ι′n−1b

′
n−1 	= 0.

Now, for i < n we set

Vi =
⋂{

V i
ι0,ι′0,...,ιn−1,ι′n−1

: ι0, ι′0, . . . , ιn−1, ι
′
n−1 ∈ {−1, 0, 1} ∧ (ι0 − ι′0)2 + . . . + (ιn−1 − ι′n−1)2 > 0

}
.

It is clear that the sets Vi (for i < n) are as required. �
Lemma 3.4. Suppose that (H,+, 0) is an Abelian group and ρ is a translation invariant metric on it. Let 
W ⊆ P(H) be a finite 8--good qif. Assume that

(a) W is immersed in V, V ⊆ P(H),
(b) A′ ⊆ A ⊆ H, |A′| = 8,
(c) A−A ⊆

⋃{
W −W ′ : W,W ′ ∈ W

}
,

(d) if a, b ∈ A, a 	= b, then ρ(a, b) > diamρ(W ) (= diamρ(−W )) for all W ∈ W.

Then:
(1) If c ∈ H is such that A′ + c ⊆

⋃
W, then also A + c ⊆

⋃
V. 

(2) If c ∈ H is such that c−A′ ⊆
⋃
W, then also c−A ⊆

⋃
V.

Proof. (1) Suppose that W,V, A′ ⊆ A ⊆ H satisfy the assumptions of the Lemma and c ∈ H is such that 
A′ + c ⊆

⋃
W.

Assume a ∈ A \A′ and let us argue that a + c ∈
⋃

V.
Let 〈ai : i < 8〉 list the elements of A′. For i < 8 let bi = ai + c ∈ Wi ∈ W and note that all Wi’s are 

pairwise distinct (by assumption (d); remember ρ is translation invariant). It follows from assumption (c) 
that we may choose b′i ∈ W ′

i ∈ W and b′′i ∈ W ′′
i ∈ W such that a − ai = b′i − b′′i . Then, for each i < 8, we 

have

a + c = a + (bi − ai) = (b′i − b′′i + ai) + (bi − ai) = b′i − b′′i + bi.
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Claim 3.4.1. There are distinct i∗, j∗ < 8 such that

(♥)i∗,j∗ Wi∗ / ∈ {W ′
j∗ ,W

′′
j∗} and Wj∗ / ∈ {W ′

i∗ ,W
′′
i∗}.

Proof of the Claim. If for some i0 < 8 we have |{j < 8 : Wi0 = W ′′
j ∧ j 	= i0}| ≥ 3, then choose 

j0 < j1 < j2 < 8 distinct from i0 and such that W ′′
j0

= W ′′
j1

= W ′′
j2

= Wi0 . Since all Wi’s are distinct, we 
may pick i∗ < 8 such that i∗ / ∈ {i0, j0, j1, j2} and Wi∗ / ∈ {W ′

j0
,W ′

j1
,W ′

j2
}. Next let j∗ ∈ {j0, j1, j2} be such 

that Wj∗ / ∈ {W ′
i∗ ,W

′′
i∗}. Then also Wi∗ 	= Wi0 = W ′′

j∗ and clearly (♥)i∗,j∗ holds true.
If for some i0 < 8 we have |{j < 8 : Wi0 = W ′

j ∧ j 	= i0}| ≥ 3, then by the same argument (just 
interchanging W ′′

j ’s and W ′
j ’s) we find i∗, j∗ so that (♥)i∗,j∗ holds true.

So now suppose that both |{j < 7 : W7 = W ′
j}| ≤ 2 and |{j < 7 : W7 = W ′′

j }| ≤ 2. Then there 
are j0 < j1 < j2 < 7 such that W7 / ∈ {W ′

j0
,W ′′

j0
,W ′

j1
,W ′′

j1
,W ′

j2
,W ′′

j2
}. Take j∗ ∈ {j0, j1, j2} such that 

Wj∗ / ∈ {W ′
7,W

′′
7 } and note that then (♥)7,j∗ holds true. �

Let distinct i∗, j∗ < 8 be such that (♥)i∗,j∗ holds.
It follows from assumption (d) that W ′

i∗ 	= W ′′
i∗ and W ′

j∗ 	= W ′′
j∗ (remember ai∗ 	= a 	= aj∗). Now, if 

Wi∗ = W ′′
i∗ , then

a + c = b′i∗ + (bi∗ − b′′i∗) ∈
(
W ′

i∗ + (W ′′
i∗ −W ′′

i∗)
)
⊆ V ′

i∗

where W ′
i∗ ⊆ V ′

i∗ ∈ V (so we are done). Similarly, if Wj∗ = W ′′
j∗ .

So suppose towards contradiction that both Wi∗ 	= W ′′
i∗ and Wj∗ 	= W ′′

j∗ . Now,

b′i∗ − b′′i∗ + bi∗ = a + c = b′j∗ − b′′j∗ + bj∗ ,

so

(⊗) (bi∗ + b′i∗ + b′′j∗) − (bj∗ + b′j∗ + b′′i∗) = 0.

Considering known inequalities among Wi∗ ,W
′
i∗ ,W

′′
i∗ ,Wj∗ ,W

′
j∗ ,W

′′
j∗ , we notice that no equality between 

them may involve more than two sets. Also Wi∗ / ∈ {Wj∗ ,W
′
j∗ ,W

′′
i∗}, so the expression on the left hand side 

of (⊗) can be written as a nontrivial (2,W, 8)--combination, contradicting the assumption that W is an 
8--good qif.

(2) Follows from the first part applied to −A and −A′. �
Theorem 3.5. Suppose that (H,+, 0) is an Abelian group and ρ is a translation invariant metric on it. 
Assume also that

(a) W,V,Q ⊆ P(H) are finite 8--good qifs, and W is immersed in V and V is immersed in Q,
(b) m −→

(
10

)4
2144 (the Erdős–Rado arrow notation, see [7]),

(c) A ⊆ H, |A| ≥ m and
(d) A−A ⊆

⋃{
W −W ′ : W,W ′ ∈ W

}
, and

(e) if a, b ∈ A, a 	= b, then ρ(a, b) > diamρ(Q) (= diamρ(−Q)) for all Q ∈ Q.

Then exactly one of (A), (B) below holds true:

(A) There is a c ∈ H such that A + c ⊆
⋃

Q.
(B) There is a c ∈ H such that c−A ⊆

⋃
Q.

Sh:1187



8 A. Rosłanowski, S. Shelah / Annals of Pure and Applied Logic 176 (2025) 103565 

Proof. Let 〈ai : i < m〉 be a sequence of pairwise distinct elements of A. Since A − A ⊆
⋃{

W − W ′ :
W,W ′ ∈ W

}
, we may choose functions b0,b1 : m×m −→

⋃
W and W̄0, W̄1 : m×m −→ W such that for 

all i, j < m

ai − aj = b0(i, j) − b1(i, j), b0(i, j) ∈ W̄0(i, j), b1(i, j) ∈ W̄1(i, j),

and b0(i, j) = b1(j, i), and b1(i, j) = b0(j, i). Let 〈ϕ�(i0, i1, i2, i3) : � < 144〉 list all formulas of the form

W̄j(ix, iy) = W̄j′(ix′ , iy′)

for j, j′ < 2 and x, y, x′, y′ < 4, x < y, x′ < y′.
Let μ :

[
m
]4 −→ 1442 be a coloring of quadruples from m such that if i0 < i1 < i2 < i3 < m, then

μ
(
{i0, i1, i2, i3}

)(
�) = 1 if and only if ϕ�(i0, i1, i2, i3) holds true.

Since m −→
(
10

)4
2144 , we may choose u ∈ [m]10 homogeneous for μ. Without loss of generality, u =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Claim 3.5.1. Let i, j, k < 10 be pairwise distinct. Then

(1) W̄0(i, j) 	= W̄1(i, j) and
(2) b0(i, k) − b1(i, k) = b0(i, j) − b1(i, j) + b0(j, k) − b1(j, k) and hence

(
W̄0(i, k) − W̄1(i, k)

)
∩
((

W̄0(i, j) − W̄1(i, j)
)

+
(
W̄0(j, k) − W̄1(j, k)

))
	= ∅.

Proof of the Claim. (1) Follows from assumption (e) of the Theorem (remember every set from W is a 
subset of a member of Q).
(2) This follows by the equality (ai − aj) + (aj − ak) = ai − ak and the choice of b0(i, j), W̄0(i, j),b1(i, j), 
W̄1(i, j). �
Claim 3.5.2. If {W̄0(i, j) : i < j < 10} ∩ {W̄1(i, j) : i < j < 10} 	= ∅, then either W̄0(0, 1) = W̄1(1, 2), or 
W̄1(0, 1) = W̄0(1, 2).

Proof of the Claim. Suppose i0 < j0 < 10 and i1 < j1 < 10 are such that W̄0(i0, j0) = W̄1(i1, j1). We shall 
consider all possible orders of i0, j0, i1, j1 and use the homogeneity to conclude one of the clauses in the 
assertion.

(a) If i0 < j0 < i1 < j1, then (by the homogeneity) W̄0(0, 1) = W̄1(2, 3) = W̄1(4, 5) = W̄0(2, 3), so 
W̄0(2, 3) = W̄1(2, 3), contradicting Claim 3.5.1(1).

(b) If i0 < j0 = i1 < j1 then also W̄0(0, 1) = W̄1(1, 2) (giving the conclusion of Claim 3.5.2).

(c) If i0 < i1 < j0 < j1, then W̄0(1, 4) = W̄1(2, 5) = W̄0(0, 3) = W̄1(1, 4), contradicting Claim 3.5.1(1).

(d) If i0 < i1 < j0 = j1, then W̄0(0, 3) = W̄1(1, 3) = W̄1(2, 3) = W̄0(1, 3), contradicting Claim 3.5.1(1).

(e) If i0 < i1 < j1 < j0, then W̄0(1, 4) = W̄1(2, 3) = W̄0(0, 5) = W̄1(1, 4), contradicting Claim 3.5.1(1).

(f) If i0 = i1 < j0 < j1, then W̄0(0, 1) = W̄1(0, 2) = W̄1(0, 3) = W̄0(0, 2), contradicting Claim 3.5.1(1).

(g) The cofiguration i0 = i1 < j0 = j1 contradicts Claim 3.5.1(1).

(h) If i0 = i1 < j1 < j0, then W̄0(0, 2) = W̄1(0, 1) = W̄0(0, 3) = W̄1(0, 2), contradicting Claim 3.5.1(1).
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(i) The cofiguration i1 < i0 < j0 < j1 is not possible similarly to (e) (just interchange W̄0 and W̄1).

(j) The cofiguration i1 < i0 < j0 = j1 is not possible similarly to (d).

(k) The cofiguration i1 < i0 < j1 < j0 is not possible similarly to (c).

(l) If i1 < i0 = j1 < j0, then W̄1(0, 1) = W̄0(1, 2) (giving the conclusion of Claim 3.5.2).

(m) The cofiguration i1 < j1 < i0 < j0, is not possible similarly to (a). �
Now, we will consider three cases, showing that the first one is not possible. In the second case we will 

find c ∈ H such that {c − ai : i < 8} ⊆
⋃

V. Then by Lemma 3.4 we will also have c − A ⊆
⋃

Q. Finally 
in the last case we will find c ∈ H such that {ai + c : i < 8} ⊆

⋃
V, so by Lemma 3.4 we will also have 

A + c ⊆
⋃
Q.

For � < 2 and i < j < 10 let V̄�(i, j) ∈ V be the unique set such that W̄�(i, j) ⊆ V̄�(i, j). Also, let 
V� = {V̄�(i, j) : i < j < 10}.
Case 1: {W̄0(i, j) : i < j < 10} ∩ {W̄1(i, j) : i < j < 10} = ∅. 
By Claim 3.5.1(2) we have b0(0, 2) − b1(0, 2) = b0(0, 1) − b1(0, 1) + b0(1, 2) − b1(1, 2) or

(
b0(0, 1) − b0(0, 2) + b0(1, 2)

)
+
(
b1(0, 2) − b1(0, 1) − b1(1, 2)

)
= 0.

If 
∣∣{W̄0(0, 1), W̄0(0, 2), W̄0(1, 2)}

∣∣ ≤ 2, then

either W̄0(0, 1) = W̄0(1, 2) and by the homogeneity W̄0(0, 1) = W̄0(i, j) for all i < j < 9, so b0(0, 1) +
b0(1, 2) − b0(0, 2) ∈ W̄0(0, 1) + (W̄0(0, 1) − W̄0(0, 1)) ⊆ V̄0(0, 1),

or W̄0(0, 2) = W̄0(0, 1) and then b0(0, 1)−b0(0, 2)+b0(1, 2) ∈ (W̄0(0, 1)−W̄0(0, 1))+W̄0(1, 2) ⊆ V̄0(1, 2),
or W̄0(0, 2) = W̄0(1, 2) and then b0(1, 2)−b0(0, 2)+b0(0, 1) ∈ (W̄0(0, 2)−W̄0(0, 2))+W̄0(0, 1) ⊆ V̄0(0, 1).

Therefore, if 
∣∣{W̄0(0, 1), W̄0(0, 2), W̄0(1, 2)}

∣∣ ≤ 2 then b0(0, 1) − b0(0, 2) + b0(1, 2) ∈
⋃
V0. If ele

ments of {W̄0(0, 1), W̄0(0, 2), W̄0(1, 2)} are all distinct, then they are respectively included in disjoint 
sets V̄0(0, 1), V̄0(0, 2), V̄0(1, 2) (remember V is an 8--good qif). Hence we may conclude that in any case 
b0(0, 1) − b0(0, 2) + b0(1, 2) equals to a nontrivial (2,V0, 3)--combination.

Similarly, if 
∣∣{W̄1(0, 1), W̄1(0, 2), W̄1(1, 2)}

∣∣ ≤ 2, then

either W̄1(0, 1) = W̄1(1, 2) and then −
(
(b1(0, 1) − b1(0, 2)) + b1(1, 2)

)
∈ −V̄1(1, 2),

or W̄1(0, 1) = W̄1(0, 2) and then −
(
(b1(0, 1) − b1(0, 2)) + b1(1, 2)

)
∈ −V̄1(1, 2),

or W̄1(0, 2) = W̄1(1, 2) and then −
(
(b1(1, 2) − b1(0, 2)) + b1(0, 1))

)
∈ −V̄1(0, 1).

Therefore easily in any case b1(0, 2) − b1(0, 1) − b1(1, 2) equals to a nontrivial (2,V1, 3)--combination.
Now, in the current case we have V0 ∩ V1 = ∅, so we may conclude that 0 =

(
b0(0, 1) − b0(0, 2) +

b0(1, 2)
)

+
(
b1(0, 2) − b1(0, 1) − b1(1, 2)

)
is equal to a nontrivial (2,V, 8)--combination, contradicting the 

assumption that V is an 8--good qif.
Thus Case 1 cannot happen and by Claim 3.5.2 either W̄0(0, 1) = W̄1(1, 2), or W̄1(0, 1) = W̄0(1, 2).

Case 2: W̄0(0, 1) = W̄1(1, 2). 
By the homogeneity, W̄0(j, 8) = W̄1(8, 9) for each j < 8. By Claim 3.5.1(2), for every j < 8, aj − a9 =
b0(j, 8) − b1(j, 8) + b0(8, 9) − b1(8, 9), so

(a9 + b0(8, 9)) − aj =
(
b1(8, 9) − b0(j, 8)

)
+ b1(j, 8) ∈

(
W̄0(j, 8) − W̄0(j, 8)

)
+ W̄1(j, 8)

Since W is immersed in V, the set on the far right above is included in V̄1(j, 8). Hence for c = a9 + b0(8, 9)
and A′ = {aj : j < 8} we have c−A′ ⊆

⋃
V. Using Lemma 3.4(2) we may conclude that c−A ⊆

⋃
Q.
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Case 3: W̄1(0, 1) = W̄0(1, 2). 
By the homogeneity, W̄1(j, 8) = W̄0(8, 9) for each j < 8. As before we use Claim 3.5.1(2) to get

(b1(8, 9) − a9) + aj =
(
b0(8, 9) − b1(j, 8)

)
+ b0(j, 8) ∈

(
W̄0(8, 9) − W̄0(8, 9)

)
+ W̄0(j, 8)

Since W is immersed in V, the set on the far right above is included in V̄0(j, 8). Thus for c = b1(8, 9) − a9

and A′ = {aj : j < 8} we have A′ + c ⊆
⋃
V. By Lemma 3.4(1) we get A + c ⊆

⋃
Q.

Finally, to show that only one of (A) and (B) may take place, suppose A + c ⊆
⋃

Q and d − A ⊆
⋃

Q
for some c, d ∈ H. For a ∈ A let Qa, Ya ∈ Q be such that a + c ∈ Qa and d− a ∈ Ya.

Fix any a ∈ A and choose b ∈ A \
(
{a} ∪ (Ya − c)∪ (d−Qa)

)
(it is possible as by the Assumption 3.5(e), 

|A ∩ (Ya − c)| < 2 and |A ∩ (d−Qa)| < 2). Now,

(a + c) + (d− a) = c + d = (b + c) + (d− b),

so 0 ∈ Qa + Ya −Qb − Yb. By the choice of b we have Qb 	= Ya, Qa 	= Yb and also (by 3.5(e)) Qa 	= Qb and 
Ya 	= Yb. Therefore some nontrivial (2,Q, 4)--combination is equal to 0, contradicting Q is a good qif. �
4. Quasi independence and sums

In a special case when Q,V,W are all families consisting of singletons (and ρ is the discrete metric on 
H), Theorem 3.5 gives the following result of its own interest.

Corollary 4.1. Suppose that (H,+, 0) is an Abelian group and B ⊆ H is quasi independent. Assume also 
that

(a) m −→
(
10

)4
2144 ,

(b) A ⊆ H, |A| ≥ m and A−A ⊆ B − B.

Then exactly one of (A), (B) below holds true:

(A) There is a unique c ∈ H such that A + c ⊆ B.
(B) There is a unique c ∈ H such that c−A ⊆ B.

The above Corollary inspired our interest in its dual version when A−A and B−B are replaced by A+A

and B + B. This dual result (given in Theorem 4.4 below) is not used in the proof of our independence 
theorem, but we find it interesting.

Lemma 4.2. Suppose that (H,+, 0) is an Abelian group and B ⊆ H is quasi independent. Assume that 
A′ ⊆ A ⊆ H and c ∈ H are such that

(a) A + A ⊆ B + B,
(b) A′ + c ⊆ B and |A′| = 4.

Then A− c ⊆ B.

Proof. Suppose that A′ ⊆ A ⊆ H satisfy the assumptions (a) and (b). Assume a ∈ A and let us argue that 
a− c ∈ B.

Sh:1187



A. Rosłanowski, S. Shelah / Annals of Pure and Applied Logic 176 (2025) 103565 11

Let 〈ai : i < 4〉 list the elements of A′. For i < 4 let bi = ai + c ∈ B and note that all bi’s are pairwise 
distinct. Since ai + a ∈ B + B we may also choose b′i, b

′′
i ∈ B such that ai + a = b′i + b′′i . Then, for each 

i < 4, we have

a− c = a− (bi − ai) = b′i + b′′i − ai − (bi − ai) = b′i + b′′i − bi.

Thus for i < j < 4 we have

(∗)1 0 = (b′i + b′′i + bj) − (b′j + b′′j + bi).

If for some i < j < 4 both sets {b′i, b′′i , bj} and {b′j , b′′j , bi} had at least 2 elements, then the right hand side 
of (∗)1 would give a (2, 8)--combination from B with the value 0, so the combination would have to be a 
trivial one. Therefore

(∗)2 for each i < j < 4,
either (i) b′i = b′′i = bj ,

or (ii) b′j = b′′j = bi,
or (iii) {b′i, b′′i , bj} = {b′j , b′′j , bi}.

Suppose that i < j < 4 are such that (∗)2(iii) holds true. Since bi 	= bj , we get bi ∈ {b′i, b′′i } and hence 
a− c = b′i + b′′i − bi ∈ {b′i, b′′i } ⊆ B, and we are done.

Assume towards contradiction that

(∗)3 for each i < j < 4, either (∗)2(i) or (∗)2(ii) holds true.

Then for some i0 < 4, b′j = b′′j whenever j 	= i0. Necessarily,

(
j0 	= j1 ∧ i0 / ∈ {j0, j1}

)
⇒ b′j0 	= b′j1

(as a + aj0 	= a + aj1). Since there are no repetitions among bj ’s, we may now choose j 	= i0 such that 
bj 	= b′i0 , b

′
j 	= bi0 getting immediate contradiction with our assumption (∗)3. �

Lemma 4.3. Suppose that (H,+, 0) is an Abelian group and B ⊆ H is quasi independent. Assume that 
A′ ⊆ A ⊆ H are such that

(a) A + A ⊆ B + B,
(b) |A′| ≥ 4, and A′ + c ⊆ B for some c ∈ H.

Then A + c ⊆ B and the order of c is ≤ 2.

Proof. Let A′ + c ⊆ B. It follows from Lemma 4.2 that A− c ⊆ B. Applying that lemma again for A′, A,B
and −c we get A + c ⊆ B.

Concerning the second part of the assertion, suppose towards contradiction that c+c 	= 0. Let a0, a1, a2, a3

be distinct elements of A. Then for distinct i, j < 4 we have

ai + c 	= ai − c, ai + c 	= aj + c, and ai − c 	= aj − c,
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and consequently we may find i < 4 such that {a0+c, a0−c}∩{ai+c, ai−c} = ∅. Then, by the first paragraph 
of this proof, a0 + c, a0 − c, ai + c, ai − c ∈ B are all distinct and (a0 + c)− (a0 − c)− (ai + c) + (ai − c) = 0, 
contradicting the quasi independence of B. �
Theorem 4.4. Suppose that (H,+, 0) is an Abelian group and B ⊆ H is quasi independent. Assume also that

(a) m −→
(
6
)4
2144 ,

(b) A ⊆ H, |A| ≥ m and A + A ⊆ B + B.

Then there is a unique c ∈ H of order ≤ 2 such that A + c ⊆ B.

Proof. Let 〈ai : i < m〉 be a sequence of pairwise distinct elements of A. Since A + A ⊆ B + B, we may 
choose symmetric functions b0,b1 : m×m −→ B such that

ai + aj = b0(i, j) + b1(i, j) for all i, j < m.

Let 〈ϕ�(i0, i1, i2, i3) : � < 144〉 list all formulas of the form

bj(ix, iy) = bj′(ix′ , iy′)

for j, j′ < 2 and x < y < 4, x′ < y′ < 4.
Let μ :

[
m
]4 −→ 1442 be a coloring of quadruples from m such that if i0 < i1 < i2 < i3 < m, then

μ
(
{i0, i1, i2, i3}

)(
�
)

= 1 if and only if ϕ�(i0, i1, i2, i3) holds true.

Since m −→
(
6
)4
2144 , we may choose u ∈ [m]6 homogeneous for μ. Without loss of generality, u =

{0, 1, 2, 3, 4, 5}.

Claim 4.4.1. If {b0(i, j) : i < j < 6} ∩ {b1(i, j) : i < j < 6} 	= ∅, then either b0(0, 1) = b1(1, 2), or 
b1(0, 1) = b0(1, 2), or b0(0, 1) = b1(0, 1).

Proof of the Claim. Suppose i0 < j0 < 6 and i1 < j1 < 6 are such that b0(i0, j0) = b1(i1, j1). We shall 
consider all possible orders of i0, j0, i1, j1 and use the homogeneity to conclude one of the clauses in the 
assertion.

(a) If i0 < j0 < i1 < j1, then (by the homogeneity) b0(0, 1) = b1(2, 3) = b1(4, 5) = b0(2, 3), so also 
b0(0, 1) = b1(0, 1).

(b) If i0 < j0 = i1 < j1 then also b0(0, 1) = b1(1, 2).

(c) If i0 < i1 < j0 < j1, then b0(0, 3) = b1(2, 4) = b1(1, 4) = b0(0, 2) and also b0(0, 1) = b1(1, 2).

(d) If i0 < i1 < j0 = j1, then b0(0, 3) = b1(1, 3) = b1(2, 3) = b0(1, 3) and also b0(0, 1) = b1(0, 1).

(e) If i0 < i1 < j1 < j0, then b0(0, 5) = b1(3, 4) = b1(1, 2) = b0(0, 3) and also b0(0, 1) = b1(1, 2).

(f) If i0 = i1 < j0 < j1, then b0(0, 1) = b1(0, 2) = b1(0, 3) = b0(0, 2), so also b0(0, 1) = b1(0, 1).

(g) If i0 = i1 < j0 = j1 then b0(0, 1) = b1(0, 1).

(h) If i0 = i1 < j1 < j0, then b0(0, 2) = b1(0, 1) = b0(0, 3) = b1(0, 2), so also b0(0, 1) = b1(0, 1).

(i) If i1 < i0 < j0 < j1, then b1(0, 1) = b0(1, 2) similarly to (e), just interchange b0 and b1.

(j) If i1 < i0 < j0 = j1, then b0(0, 1) = b1(0, 1) similarly to (d).
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(k) If i1 < i0 < j1 < j0, then b1(0, 1) = b0(1, 2) similarly to (c).

(l) If i1 < i0 = j1 < j0, then b1(0, 1) = b0(1, 2).

(m) If i1 < j1 < i0 < j0, then b0(0, 1) = b1(0, 1) similarly to (a). �
Claim 4.4.2. If b0(0, 3) = b0(1, 2), then b0(0, 1) = b0(1, 2) = b0(2, 3) = b0(0, 3). 
Similarly if b0 is replaced by b1.

Proof of the Claim. Straightforward by the homogeneity of u. �
Claim 4.4.3. 

b0(0, 1) + b1(0, 1) − b0(1, 2) − b1(1, 2) + b0(2, 3) + b1(2, 3) = b0(0, 3) + b1(0, 3).

Proof of the Claim. Follows by the choice of b0(i, j),b1(i, j) and
(a0 + a1) − (a1 + a2) + (a2 + a3) = a0 + a3. �
Now, we will consider six cases, showing that the first four of them are not possible. In the remaining two 

cases we will find c ∈ H such that {ai + c : i < 4} ⊆ B. Then by Lemma 4.3 we will also have A + c ⊆ B.

Case 1: {b0(i, j) : i < j < 6} ∩ {b1(i, j) : i < j < 6} = ∅ and b1(0, 3) / ∈ {b1(0, 1),b1(1, 2),b1(2, 3)}. 
Then b1(0, 3) / ∈ {b0(0, 1),b1(0, 1),b0(1, 2),b1(1, 2),b0(2, 3),b1(2, 3),b0(0, 3)} and by Claim 4.4.3

b1(0, 3) = b0(0, 1) + b1(0, 1) − b0(1, 2) − b1(1, 2) + b0(2, 3) + b1(2, 3) − b0(0, 3),

contradicting quasi independence of B.

Case 2: {b0(i, j) : i < j < 6} ∩ {b1(i, j) : i < j < 6} = ∅ and b0(0, 3) / ∈ {b0(0, 1),b0(1, 2),b0(2, 3)}. 
By an argument similar to Case 1, one shows that this case is not possible as well.

Case 3: {b0(i, j) : i < j < 6} ∩ {b1(i, j) : i < j < 6} = ∅ and b0(0, 3) ∈ {b0(0, 1),b0(1, 2),b0(2, 3)} and 
b1(0, 3) ∈ {b1(0, 1),b1(1, 2),b1(2, 3)}.
Subcase 3A: b0(0, 3) = b0(1, 2). 
Then by Claim 4.4.2, b0(0, 3) = b0(0, 1) = b0(1, 2) = b0(2, 3). 
If b1(0, 3) = b1(0, 1), then a0 + a3 = a0 + a1 and a3 = a1, a contradiction. 
If b1(0, 3) = b1(2, 3), then a0 + a3 = a2 + a3 and a0 = a2, a contradiction. 
If b1(0, 3) = b1(1, 2), then Claim 4.4.2 implies b1(0, 3) = b1(0, 1) and we already know that this leads to a 
contradiction. 
Consequently Subcase 3A is not possible.
Subcase 3B: b1(0, 3) = b1(1, 2). 
Similarly as in Subcase 3A one argues that this is not possible.
Subcase 3C: b0(0, 3) = b0(0, 1) and b1(0, 3) = b1(0, 1). 
Then a0 + a1 = a0 + a3 and a1 = a3 giving a contradiction.
Subcase 3D: b0(0, 3) = b0(2, 3) and b1(0, 3) = b1(2, 3). 
Like Subcase 3C, this is not possible.
Subcase 3E: b0(0, 3) = b0(0, 1) and b1(0, 3) = b1(2, 3). 
If we had b1(0, 1) = b1(1, 2), then also (by the homogeneity) b1(1, 2) = b1(2, 3) so b1(0, 1) = b1(0, 3) and 
we get a contradiction like in Subcase 3C. 
If we had b0(1, 2) = b0(2, 3) then also b0(2, 3) = b0(0, 1) so b0(2, 3) = b0(0, 3) and we get a contradiction 
like in Subcase 3D. 
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Consequently, there must be no repetitions in {b0(1, 2),b0(2, 3),b1(0, 1),b1(1, 2)}. By Claim 4.4.3 and the 
assumption of the current subcase we have

b1(0, 1) + b0(2, 3) − b0(1, 2) − b1(1, 2) = 0,

a contradiction with the quasi independence of B.
Subcase 3F: b0(0, 3) = b0(2, 3) and b1(0, 3) = b1(0, 1). 
Like Subcase 3E, this is not possible.

The next three cases cover the possibility when {b0(i, j) : i < j < 6} ∩ {b1(i, j) : i < j < 6} 	= ∅. By 
Claim 4.4.1, this implies that either b0(0, 1) = b1(1, 2), or b1(0, 1) = b0(1, 2), or b0(0, 1) = b1(0, 1).

Case 4: b0(0, 1) = b1(0, 1)
Then for all i < j < 6 we have b0(i, j) = b1(i, j).

If for some i0 < j0 ≤ i1 < j1 we had b0(i0, j0) = b0(i1, j1), then by the homogeneity we would have had 
b0(0, 1) = b0(i, j) = b1(i, j) for all i < j < 5 and

4b0(0, 1) = (a0 + a1) + (a1 + a2) = 2a1 + 2b0(0, 1).

Hence 2b0(0, 1) + (a0 + a1) = 4b0(0, 1) = 2a1 + 2b0(0, 1) and a0 = a1, a contradiction.
Therefore, b0(i0, j0) 	= b0(i1, j1) whenever i0 < j0 ≤ i1 < j1 ≤ 3. Now, by Claim 4.4.3,

2b0(0, 3) = b0(0, 3) + b1(0, 3) =
b0(0, 1) + b1(0, 1) − b0(1, 2) − b1(1, 2) + b0(2, 3) + b1(2, 3) =
2b0(0, 1) − 2b0(1, 2) + 2b0(2, 3).

If we had b0(0, 3) = b0(1, 2), then by the homogeneity b0(1, 2) = b0(0, 5) = b0(2, 3), contradicting what 
we said above. Therefore, b0(0, 3) 	= b0(1, 2) and b0(0, 1),b0(1, 2),b0(2, 3) are pairwise distinct. Hence

2b0(0, 1) − 2b0(1, 2) + 2b0(2, 3) − 2b0(0, 3)

is a nontrivial (2, 8)--combination with value 0, a contradiction with the quasi independence of B.
Consequently, Case 4 is also impossible.

Case 5: b0(0, 1) = b1(1, 2). 
By the homogeneity, for each j < 4 we have then b0(j, 4) = b1(4, 5). Hence for every j < 4 we have

aj + a4 = b0(j, 4) + b1(j, 4) = b1(4, 5) + b1(j, 4),

and consequently

aj + (a4 − b1(4, 5)) = b1(j, 4) ∈ B.

Thus letting c = a4 − b1(4, 5) we will have {ai + c : i < 4} ⊆ B. By Lemma 4.3 we also have A + c ⊆ B.

Case 6: b1(0, 1) = b0(1, 2). 
Similarly to Case 5, for each j < 4 we have b1(j, 4) = b0(4, 5) and

aj + a4 = b0(j, 4) + b1(j, 4) = b0(j, 4) + b0(4, 5).

Hence aj + (a4 − b0(4, 5)) = b0(j, 4) ∈ B and the rest is clear.
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Concerning the uniqueness of c, suppose towards contradiction that c 	= d are such that A + c ⊆ B and 
A + d ⊆ B. Let a0, a1, a2, a3 be distinct elements of A. Then for distinct i, j < 4 we have

ai + c 	= ai + d, ai + c 	= aj + c, and ai + d 	= aj + d,

and we may find i < 4 such that {a0+c, a0+d}∩{ai+c, ai+d} = ∅. Then the elements a0+c, a0+d, ai+c, ai+d

belong to B, they are all distinct and (a0 + c) − (a0 + d) − (ai + c) + (ai + d) = 0, contradicting the quasi 
independence of B.

Finally, Lemma 4.3 gives that c must be of order at most 2. �
5. Forcing for Abelian groups with few elements of order two

In this and the next section, we will keep the following notation/assumptions concerning our group H.

Assumption 5.1. 

(1) (H,+, 0) is an Abelian perfect Polish group with the topology generated by a complete metric ρ. We 
also require that the metric ρ is translation invariant (possible by the Birkhoff–Kakutani theorem and 
[3, Corollary 1.2.2]).

(2) D ⊆ H is a countable dense set.
(3) The open ball in the metric ρ with radius 2−n and center at 0 is denoted Bn and we let U =

{
d+ Bn :

d ∈ D ∧ n < ω
}
. By the invariance of the metric ρ, the family U is a countable base of the topology 

of H.

Note that if P ⊆ B ⊆ H then x + y ∈ (B + x) ∩ (B + y) for each x, y ∈ P . Consequently, if P ⊆ B is a 
perfect set, then it witnesses that B has a perfect set of pairwise non-disjoint translations. But for k ≥ 2 we 
may and will introduce a forcing notion adding a Borel set B ⊆ H which has many pairwise k--overlapping 
translations but no perfect set of such translations.

The technical details force us to break up the construction into two cases. First, we will assume that the 
group H has only a few elements of rank 2. So, in addition to the assumptions and notation specfied in 5.1, 
in this section we assume the following:

Assumption 5.2. 

(1) The set of elements of H of order larger than 2 is dense in H.
(2) 1 < k < ω.
(3) ε is a countable ordinal and λ is an uncountable cardinal such that NPrε(λ) holds true. The model 

M(ε, λ) and functions rksp, j and k on [λ]<ω \ {∅} are as fixed in Definition 2.6.

We will dfine a forcing notion P adding λ many (distinct) elements 〈ηα : α < λ〉 of the group H as well 
as a sequence 〈Fm : m < ω〉 of closed subsets of H. The Σ0

2 subset S =
⋃

m<ω
Fm of H will have the property 

that (in the forcing extension)

(♥)1 there is no perfect set P ⊆ H satisfying

(
∀x, y ∈ P

)(∣∣(x + S) ∩ (y + S)
∣∣ ≥ k

)
.

At the same we will make sure that
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(♥)2
∣∣(−ηα + S) ∩ (−ηβ + S)

∣∣ ≥ k for all α, β < λ.

To ensure (♥)2 holds, the forcing will also add witnesses for it: group elements νi,α,β = νi,β,α ∈ H and 
integers hα,β < ω such that ηα + νi,α,β ∈ Fhα,β

(for i < k, α, β < λ).
A condition p ∈ P will give a ``finite information'' on objects mentioned above. Thus for some finite 

wp ⊆ λ, for all distinct α, β ∈ wp, the condition p provides a basic open neighborhood Up
α(np) of ηα, basic 

open neighborhood W p
i,α,β of νi,α,β and the values of hα,β = hp(α, β). An approximation to the closed set 

Fm ⊆ H will be given by its open neighborhood

F (p,m) =
⋃{

Up
α(np) + W p

i,α,β : (α, β) ∈ (wp)〈2〉 ∧ i < k ∧ hp(α, β) = m
}
.

Clause (♥)1 as well as the ccc of the forcing P will result from the involvement of the rank rksp and additional 
technical pieces of information carried by conditions p ∈ P : basic open sets Qp

i,α,β , V
p
i,α,β and integers rpm.

Definition 5.3. (A) Let P be the collection of all tuples

p =
(
wp,Mp, r̄p, np, Ῡp, V̄ p, hp

)
=

(
w,M, r̄, n, Ῡ, V̄ , h

)

such that the following demands (⊠)1--(⊠)8 are satified.

(⊠)1 w ∈ [λ]<ω, |w| ≥ 4, 0 < M < ω, 3 ≤ n < ω and r̄ = 〈rm : m < M〉 ⊆ ω with rm ≤ n− 2 for m < M .
(⊠)2 Ῡ = 〈Ūα : α ∈ w〉 where each Ūα = 〈Uα(�) : � ≤ n〉 is a ⊆--decreasing sequence of elements of the 

basis U .
(⊠)3 V̄ = 〈Qi,α,β , Vi,α,β ,Wi,α,β : i < k, (α, β) ∈ w〈2〉〉 ⊆ U and Qi,α,β = Qi,β,α ⊇ Vi,α,β = Vi,β,α ⊇

Wi,α,β = Wi,β,α for all i < k and (α, β) ∈ w〈2〉.
(⊠)4 (a) The indexed family 〈Uα(n − 2) : α ∈ w〉
〈Qi,α,β : i < k, α, β ∈ w, α < β〉 is an 8--good qif (so 

in particular the sets in this system are pairwise disjoint), and
(b) 〈Uα(n) : α ∈ w〉
〈Wi,α,β : i < k, α, β ∈ w, α < β〉 is immersed in 〈Uα(n− 1) : α ∈ w〉
〈Vi,α,β :

i < k, α, β ∈ w, α < β〉 and 〈Uα(n−1) : α ∈ w〉
〈Vi,α,β : i < k, α, β ∈ w, α < β〉 is immersed in 
〈Uα(n− 2) : α ∈ w〉
〈Qi,α,β : i < k, α, β ∈ w, α < β〉; see Definition 3.1(4) (so all these families 
are 8--good qifs).

(⊠)5 (a) If α, β ∈ w, � ≤ n and Uα(�) ∩ Uβ(�) 	= ∅, then Uα(�) = Uβ(�), and
(b) if α, β, γ ∈ w, � ≤ n, Uα(�) 	= Uβ(�) and a ∈ Uα(�), b ∈ Uβ(�), then ρ(a, b) > diamρ

(
Uγ(�)

)
(= diamρ

(
− Uγ(�)

)
).

(⊠)6 h : w〈2〉 onto −→ M is such that h(α, β) = h(β, α) for (α, β) ∈ w〈2〉.
(⊠)7 Assume that u, u′ ⊆ w, π and � ≤ n are such that

• 4 ≤ |u| = |u′| and π : u −→ u′ is a bijection,
• rh(α,β) ≤ � for all (α, β) ∈ u〈2〉,
• Uα(�) ∩ Uβ(�) = ∅ and h(α, β) = h(π(α), π(β)) for all distinct α, β ∈ u,
• for some c ∈ H,

either for all α ∈ u, we have 
(
Uα(�) + c

)
∩ Uπ(α)(�) 	= ∅

or for all α ∈ u, we have 
(
c− Uα(�)

)
∩ Uπ(α)(�) 	= ∅.

Then rksp(u) = rksp(u′), j(u) = j(u′), k(u) = k(u′) and for α ∈ u

|α ∩ u| = k(u) ⇔ |π(α) ∩ u′| = k(u).

(⊠)8 Assume that
• ∅ 	= u ⊆ w, rksp(u) = −1, � ≤ n and
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• α ∈ u is such that |α ∩ u| = k(u), and
• rh(β,β′) ≤ � and Uβ(�) ∩ Uβ′(�) = ∅ for all (β, β′) ∈ u〈2〉.
Then there is no α′ ∈ w \ u such that Uα(�) = Uα′(�) and h(α, β) = h(α′, β) for all β ∈ u \ {α}.

(B) For p ∈ P and m < Mp we dfine

F (p,m) =
⋃{

Up
α(np) + W p

i,α,β : (α, β) ∈ (wp)〈2〉 ∧ i < k ∧ hp(α, β) = m
}
.

(C) For p, q ∈ P we declare that p ≤ q if and only if

• wp ⊆ wq, Mp ≤ Mq, r̄q↾Mp = r̄p, np ≤ nq, hq↾(wp)〈2〉 = hp, and
• if α ∈ wp and � ≤ np then Uq

α(�) = Up
α(�), and

• if (α, β) ∈ (wp)〈2〉, i < k, then Qq
i,α,β ⊆ Qp

i,α,β , V q
i,α,β ⊆ V p

i,α,β , and W q
i,α,β ⊆ W p

i,α,β , and
• if m < Mp, then F (q,m) ⊆ F (p,m).

Lemma 5.4. 

(1) (P ,≤) is a partial order of size λ.
(2) The following sets are dense in P :

(i) D0
γ,M,n =

{
p ∈ P : γ ∈ up ∧ Mp > M ∧ np > n

}
for γ < λ and M,n < ω.

(ii) D1
N =

{
p ∈ P : for all i, j < k and (α, β), (γ, δ) ∈ (wp)〈2〉 it holds that diamρ(Up

α(np − 2)) < 2−N

and diamρ(Qp
i,α,β) < 2−N and diamρ(Up

α(np − 2) + Qp
i,α,β) < 2−N and if (i, α∗, α, β) 	= (j, γ∗, γ, δ)

then 
(
Up
α∗(np) + W p

i,α,β

)
∩
(
Up
γ∗(np) + W p

i,γ,δ

)
= ∅

}
for N < ω.

(3) Assume p ∈ P . Then there is q ≥ p such that nq ≥ np + 3, wq = wp and
• for all α ∈ wp, cl

(
Uq
α(nq − 2)

)
⊆ Up

α(np), and
• for all i < k and (α, β) ∈ (wp)〈2〉,

cl
(
Uq
α(nq − 2) + Qq

i,α,β

)
⊆ Up

α(np) + W p
i,α,β and cl

(
Qq

i,α,β

)
⊆ W p

i,α,β .

Proof. (2)(i) Suppose p ∈ P and γ ∈ λ \wp. Let α∗ = min(wp) and let w = wp ∪{γ} and n = np +3. Using 
Proposition 3.3 we may choose Uα(n− 2) ∈ U (for α ∈ w) and Qi,α,β ∈ U (for i < k, α < β, α, β ∈ w) such 
that

• Uα(n− 2) ⊆ Up
α(np) and Qi,α,β ⊆ W p

i,α,β when α, β ∈ wp,
• Uγ(n− 2) ⊆ Up

α∗(np),
• 〈Uα(n− 2) : α ∈ w〉
〈Qi,α,β : i < k, α < β, α, β ∈ w〉 is an 8--good qif,
• diamρ

(
Uδ(n − 2)

)
= diamρ

(
− Uδ(n − 2)

)
< ρ(a, b) for all δ ∈ w, (α, β) ∈ w〈2〉, a ∈ Uα(n − 2) and 

b ∈ Uβ(n− 2).

Then by Observation 3.2(3) we may choose Uα(n − 1), Uα(n), Vi,α,β ,Wi,α,β ∈ U (for α < β from w and 
i < k) such that Uα(n) ⊆ Uα(n− 1) ⊆ Uα(n− 2), Wi,α,β ⊆ Vi,α,β ⊆ Qi,α,β and

• 〈Uα(n− 1) : α ∈ w〉
〈Vi,α,β : i < k, α, β ∈ w, α < β〉 is immersed in 〈Uα(n− 2) : α ∈ w〉
〈Qi,α,β : i <
k, α, β ∈ w, α < β〉, and

• 〈Uα(n) : α ∈ w〉
〈Wi,α,β : i < k, α, β ∈ w, α < β〉 is immersed in 〈Uα(n − 1) : α ∈ w〉
〈Vi,α,β : i <
k, α, β ∈ w, α < β〉.
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Put Ῡ = 〈Ūα : α ∈ w〉, where Ūα = Ūp
α

〈Uα(n − 2), Uα(n − 1), Uα(n)〉 if α ∈ wp and Ūγ = Ūp

α∗

〈Uγ(n −

2), Uγ(n − 1), Uγ(n)〉. Let Qi,β,α = Qi,α,β , Vi,β,α = Vi,α,β and Wi,β,α = Wi,α,β (for i < k, α < β from w), 
and let V̄ = 〈Qi,α,β , Vi,α,β ,Wi,α,β : i < k, (α, β) ∈ w〈2〉〉. Let M = Mp + |wp| and let h : w〈2〉 −→ M be 
such that

• h(α, β) = hp(α, β) when (α, β) ∈ (wp)〈2〉,
• h(α, γ) = h(γ, α) = Mp + j when α ∈ wp and j = |wp ∩ α|.

We also dfine r̄ : M −→ (n− 1) so that r̄↾Mp = r̄p and rm = n− 2 for m ∈ [Mp,M).
Put q = (w,M, r, n, Ῡ, V̄ , h). Let us argue that q ∈ P . To this end we have to verify conditions (⊠)1--(⊠)8

of Definition 5.3. Of these the first six demands follow immediately by our choices. To show (⊠)7, suppose 
u, u′ ⊆ w and π : u −→ u′ and � ≤ n and c ∈ H satisfy the assumptions there. If α ∈ wp then h(γ, α) ≥ Mp

and therefore γ ∈ u if and only if γ ∈ u′. If γ / ∈ u, then u ∪ u′ ⊆ wp and clause (⊠)7 for p (applied to 
min(np, �) instead of �) gives the needed conclusion. If γ ∈ u, then γ ∈ u′ too and we look at h(β, γ) for 
β ∈ u ∩ wp. Each of these values is taken by h exactly one time, so h(π(β), π(γ)) = h(β, γ) for all β ∈ wp

implies that π(γ) = γ and π(β) = β for β ∈ u ∩ wp. Hence u = u′ and π is the identity, so the desired 
conclusion follows.

Now suppose � ≤ n, α ∈ u ⊆ w are as in the assumptions of (⊠)8 (so by 2.6(⊛)b also |u| ≥ 2). If γ / ∈ u, 
then applying (⊠)8 for p to α, u and �′ = min(�, np) we see that there is no α′ ∈ wp \u with Uα(�) = Uα′(�), 
and h(α, β) = h(α′, β) for all β ∈ u \ {α}. The values of h(β, γ) (for β ∈ u) are above Mp, so they cannot 
be equal to h(β, α) either. Consequently, the conclusion of (⊠)8 holds in this case. So assume now that 
γ ∈ u \ {α}. The value of h(γ, α) is taken exactly once, so no α′ ∈ w \ {γ, α} satifies h(γ, α) = h(γ, α′)
and the desired conclusion should be clear now. Finally, assume γ = α. As we said, |u| ≥ 2 so we may take 
β ∈ u \ {γ} and look at h(γ, β). There is no α′ ∈ w \ {γ} with h(α′, β) = h(γ, β), so the desired conclusion 
follows, finishing the proof of (⊠)8.

Now one easily deduces (2)(i).

(ii) Assume p ∈ P and N < ω.
First note that if 〈U�, V� : � < m〉 ⊆ U , m < ω, then there are U ′

� ⊆ U�, V ′
� ⊆ V� from U (for � < m) such 

that (U ′
�0

+ V ′
�0

) ∩ (U ′
�1

+ V ′
�1

) = ∅ whenever �0 < �1 < m and diamρ(U ′
� + V ′

� ) < 2−N for � < m. Therefore, 
for (α, β) ∈ (wp)〈2〉 and i < k we may choose Uα(np + 1), Qi,α,β ∈ U such that Uα(np + 1) ⊆ Up

α(np), 
Qi,α,β = Qi,β,α ⊆ W p

i,α,β and ρ--diameters of Uα(np +1), Qi,α,β and Uα(np +1)+Qi,α,β are all smaller than 
2−N and if (i, α∗, α, β) 	= (j, γ∗, γ, δ) then 

(
Up
α∗(np) + W p

i,α,β

)
∩
(
Up
γ∗(np) + W p

i,γ,δ

)
= ∅.

Note that 〈Uα(np + 1) : α ∈ wp〉
〈Qi,α,β : i < k, α < β, α, β ∈ wp〉 is an 8--good qif. Next, use 
Observation 3.2 to choose Uα(np + 2), Uα(np + 3), Vi,α,β ,Wi,α,β ∈ U such that Uα(np + 3) ⊆ Uα(np + 2) ⊆
Uα(np + 1), and Wi,α,β = Wi,β,α ⊆ Vi,α,β = Vi,β,α ⊆ Qi,α,β (for (α, β) ∈ (wp)〈2〉 and i < k), and

• 〈Uα(np +3) : α ∈ wp〉
〈Wi,α,β : i < k, α < β, α, β ∈ wp〉 is immersed in 〈Uα(np +2) : α ∈ wp〉
〈Vi,α,β :
i < k, α < β, α, β ∈ wp〉, and

• 〈Uα(np +2) : α ∈ wp〉
〈Vi,α,β : i < k, α < β, α, β ∈ wp〉 is immersed in 〈Uα(np +1) : α ∈ wp〉
〈Qi,α,β :
i < k, α < β, α, β ∈ wp〉.

Now, for α ∈ wp let Ūα = Ūp
α

〈Uα(np + 1), Uα(np + 2), Uα(np + 3)〉 and then let Ῡ = 〈Ūα : α ∈ wp〉

and V̄ = 〈Qi,α,β , Vi,α,β ,Wi,α,β : i < k, (α, β) ∈ (wp)〈2〉〉. These choices clearly determine a condition 
q = (wp,Mp, r̄p, np + 3, Ῡ, V̄ , hp) ∈ D1

N stronger than p.

(3) Analogous. �
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Lemma 5.5. Suppose that p ∈ P and α, β, γ, δ ∈ wp are such that α 	= β. If
(
Up
α(np − 2) − Up

β (np − 2)
)
∩
(
Up
γ (np − 2) − Up

δ (np − 2)
)
	= ∅,

then α = γ and β = δ.

Proof. Let n = np. Suppose that a ∈ Up
α(n− 2), b ∈ Up

β (n− 2), c ∈ Up
γ (n− 2) and d ∈ Up

δ (n− 2) are such 
that a− b = c− d. Then a + (c− a) = c and b + (c− a) = d, so as ρ is invariant we have ρ(a, b) = ρ(c, d). 
Demand 5.3(A)(⊠)5(b) implies that ρ(a, b) > diamρ(Up

γ (n− 2)) and hence γ 	= δ. Now look at a+ d− b− c: 
since α 	= β and γ 	= δ it is a (2,4)--combination from an 8--good qif 〈Up

ζ (n− 2) : ζ ∈ w〉. Since the value of 
the combination is 0, it has to be trivial. Hence immediately α = γ and β = δ. �
Lemma 5.6. The forcing notion P has the Knaster property.

Proof. Suppose 〈pε : ε < ω1〉 is a sequence of pairwise distinct conditions from P . Applying standard 
Δ--lemma based cleaning procedure we may find w0 ⊆ λ and A ∈ [ω1]ω1 such that for distinct ξ, ζ ∈ A the 
following demands (∗)1 + (∗)2 are satified.

(∗)1 |wpξ | = |wpζ |, w0 = wpξ ∩ wpζ , Mpξ = Mpζ , npξ = npζ , r̄pξ = r̄pζ .
(∗)2 If π∗ : wpζ −→ wpξ is the order isomorphism, then

• π∗↾w0 is the identity,
• Ū

pζ
α (�) = Ū

pξ

π∗(α)(�) whenever α ∈ wpζ , � ≤ npζ ,

• if (α, β) ∈
(
wpζ

)〈2〉, i < k, then hpζ (α, β) = hpξ(π∗(α), π∗(β)), and

Q
pζ

i,α,β = Q
pξ

i,π∗(α),π∗(β), V
pζ

i,α,β = V
pξ

i,π∗(α),π∗(β) and W pζ

i,α,β = W
pξ

i,π∗(α),π∗(β),

• if ∅ 	= u ⊆ wpζ , then rksp(u) = rksp(π∗[u]), j(u) = j(π∗[u]) and k(u) = k(π∗[u]).

Note that then for all ξ ∈ A we have

(∗)3 if u ⊆ w0, α ∈ wpξ \ w0 and rksp(u ∪ {α}
)

= −1, then k
(
u ∪ {α}

)
	= |u ∩ α|.

[Why? Suppose towards contradiction that k
(
u ∪ {α}

)
= |u ∩ α|. For ζ ∈ A let αζ ∈ wpζ be such that 

|αζ ∩ wpζ | = |α ∩ wpξ |. By (∗)2 we have

j
def= j

(
u ∪ {α}

)
= j

(
u ∪ {αζ}

)
and k

(
u ∪ {αζ}

)
= k

(
u ∪ {α}

)
= |u ∩ α| = |u ∩ αζ | def= k.

Therefore, letting u ∪ {α} = {α0, . . . , α�−1} be the increasing enumeration, we have αk = α and

M |= R�,j [α0, . . . , αk−1, αζ , αk+1, . . . , α�−1] for all ζ ∈ A.

However, this contradicts the choice of j,k in Definition 2.6 and the assumption rksp(u ∪ {α}
)

= −1.]
We will argue now that for ξ, ζ ∈ A the conditions pξ, pζ are compatible. So let ξ < ζ be from A and let 

π∗ : wpζ −→ wpξ be the order isomorphism. Set w = wpξ ∪ wpζ , M = Mpξ +
∣∣wpξ \ wpζ

∣∣2, n = npξ + 3 and 
let r̄ = 〈rm : m < M〉 be such that rm = r

pξ
m if m < Mpξ , and rm = n− 2 if Mpξ ≤ m < M .

Use Proposition 3.3 and Observation 3.2(iii) to choose Uα(n − 2), Uα(n − 1), Uα(n), Qi,α,β , Vi,α,β and 
Wi,α,β from U for i < k and (α, β) ∈ w〈2〉 so that

(∗)4 (a) demands 5.3(⊠)3--(⊠)5 are satified and

Sh:1187



20 A. Rosłanowski, S. Shelah / Annals of Pure and Applied Logic 176 (2025) 103565 

(b) if (α, β) ∈
(
wpξ

)〈2〉, i < k, then Uα(n− 2) ⊆ U
pξ
α (npξ) and Qi,α,β ⊆ W

pξ

i,α,β , and
(c) if (α, β) ∈

(
wpζ

)〈2〉, i < k, then Uα(n− 2) ⊆ U
pζ
α (npζ ) and Qi,α,β ⊆ W

pζ

i,α,β .

Let Ūα = Ū
pξ
α


〈Uα(n − 2), Uα(n − 1), Uα(n)〉 if α ∈ wpξ and Ūα = Ū
pζ
α


〈Uα(n − 2), Uα(n − 1), Uα(n)〉 if 
α ∈ wpζ , and let Ῡ, V̄ be dfined naturally. Choose h : w〈2〉 −→ M extending both hpξ and hpζ in such a 
manner that h(α, β) = h(β, α) for (α, β) ∈ w〈2〉 and the mapping

(
wpξ \ w0

)
×

(
wpζ \ w0

)
� (α, β) �→ h(α, β)

is a bijection onto [Mpξ ,M). Finally we set q = (w,M, r̄, n, Ῡ, V̄ , h).
Let us argue that q ∈ P (once we are done with that, it should be clear that q is stronger than both pξ

and pζ). The only potentially unclear demands to verify are (⊠)7 and (⊠)8 of 5.3.
First, to demonstrate (⊠)7, suppose that u, u′ ⊆ w and π : u −→ u′ and � ≤ n and c ∈ H are as in the 

assumptions there. Let us consider the following three cases.

Case 1: u ⊆ wpξ . 
Then for each (α, β) ∈ u〈2〉 we have h(α, β) < Mpξ , so this also holds for all (γ, δ) ∈ (u′)〈2〉. Consequently, 
either u′ ⊆ wpξ or u′ ⊆ wpζ .

If u′ ⊆ wpξ , then let �′ = min(�, npξ) and consider u, u′, π, �′. Using clause (⊠)7 for pξ we immediately 
obtain the desired conclusion.

If u′ ⊆ wpζ , then we let �′ = min(�, npξ) and we consider u, π∗[u′], �′ and π∗ ◦ π (where, remember, 
π∗ : wpζ −→ wpξ is the order isomorphism). By (∗)1 + (∗)2, clause (⊠)7 for pξ applies to them and we get

• rksp(u) = rksp(π∗[u′]
)
, j(u) = j

(
π∗[u′]

)
, k(u) = k

(
π∗[u′]

)
and

• for α ∈ u, |α ∩ u| = k(u) ⇔
∣∣(π∗ ◦ π)(α) ∩ π∗[u′]

∣∣ = k(u).

Now (∗)1, (∗)2 immediately imply the desired conclusion.

Case 2: u ⊆ wpζ . 
Same as the previous case, just interchanging ξ and ζ.

Case 3: u \ wpξ 	= ∅ 	= u \ wpζ . 
Choose α ∈ u \ wpξ and β ∈ u \ wpζ . Then h(α, β) ≥ Mpξ and therefore n− 2 = rh(α,β) ≤ �.

We will argue that π is the identity on u and u = u′ (so the needed assertion is immediate). Suppose 
towards contradiction that we got a γ ∈ u such that π(γ) 	= γ. Since |u| ≥ 4 we may also pick γ′ ∈ u such 
that {γ, π(γ)} ∩ {γ′, π(γ′)} = ∅. Now we consider two subcases determined by the property of c ∈ H.

Suppose 
(
Uδ(�) + c

)
∩ Uπ(δ)(�) 	= ∅ for all δ ∈ u. Then for some b ∈ Uγ(�), b′ ∈ Uπ(γ)(�), b′′ ∈ Uγ′(�) and 

b′′′ ∈ Uπ(γ′)(�) we have b′ − b = c = b′′′ − b′′. However, this (and the choice of γ and γ′) gives immediate 
contradiction with 〈Uδ(�) : δ ∈ w〉 being a good qif (remember � ≥ n− 2).

Assume now that 
(
c − Uδ(�)

)
∩ Uπ(δ)(�) 	= ∅ for all δ ∈ u. Then for some b ∈ Uγ(�), b′ ∈ Uπ(γ)(�), 

b′′ ∈ Uγ′(�) and b′′′ ∈ Uπ(γ′)(�) we have b′ + b = c = b′′′ + b′′, getting immediate contradiction with 
〈Uδ(�) : δ ∈ w〉 being a good qif.

Now, concerning (⊠)8, suppose that u ⊆ w, � ≤ n and α ∈ u are such that

• |α ∩ u| = k(u) and rksp(u) = −1 and
• rh(β,β′) ≤ � and Uβ(�) ∩ Uβ′(�) = ∅ for all (β, β′) ∈ u〈2〉.

We want to argue that there is no α′ ∈ w such that

(✠)α′
α′ / ∈ u, h(α, β) = h(α′, β) for all β ∈ u \ {α}, and Uα(�) = Uα′(�).

Sh:1187



A. Rosłanowski, S. Shelah / Annals of Pure and Applied Logic 176 (2025) 103565 21

This is immediate if � ≥ n − 2, so let us assume � ≤ npζ . Then we must also have rh(β,β′) ≤ npζ for all 
(β, β′) ∈ u〈2〉, so either u ⊆ wpξ or u ⊆ wpζ . By the symmetry, we may assume that u ⊆ wpξ .

If u ⊆ wpξ ∩ wpζ then we may first use (⊠)8 for pξ to assert that there is no α′ ∈ wpξ satisfying (✠)α′

and then in the same manner argue that no α′ ∈ wpζ satifies (✠)α′ .
If u ⊆ wpξ but u \ wpζ 	= ∅ and α ∈ wpξ ∩ wpζ , then (⊠)8 for pξ implies there is no α′ ∈ wpξ satisfying 

(✠)α′ . Also if α′ ∈ wpζ \wpξ then for β ∈ u\wpζ we have h(α, β) < Mpξ ≤ h(α′, β), so (✠)α′ fails then too.
Thus we are left only with the possibility that α ∈ wpξ \wpζ . Like before, (⊠)8 for pξ implies there is no 

α′ ∈ wpξ satisfying (✠)α′ . So suppose now α′ ∈ wpζ \wpξ . By (∗)3 we know that (u \ {α}) \wpζ 	= ∅, so let 
β ∈ u \ wpζ , β 	= α. Then we have h(α, β) < Mpξ ≤ h(α′, β), so (✠)α′ fails. The proof of (⊠)8 is complete 
now. �
Lemma 5.7. For each (α, β) ∈ λ〈2〉 and i < k,

⊩P “the sets ⋂{
Up
α(np) : p ∈ G

˜ P ∧ α ∈ wp
}

and 
⋂{

W p
i,α,β : p ∈ G

˜ P ∧ α, β ∈ wp
}

have exactly one element each.''

Proof. Follows from Lemma 5.4(2)(ii), (3). �
Definition 5.8. 

(1) For (α, β) ∈ λ〈2〉 and i < k let η
˜
α, ν

˜ i,α,β and h
˜α,β be P--names such that

⊩P “{η
˜
α} =

⋂{
Up
α(np) : p ∈ G

˜ P ∧ α ∈ wp
}
,

{ν
˜ i,α,β} =

⋂{
W p

i,α,β : p ∈ G
˜ P ∧ α, β ∈ wp

}
h
˜α,β = hp(α, β) for some (all) p ∈ G

˜ P such that α, β ∈ wp.''

(2) For m < ω let F
˜ m be a P--name such that

⊩P ``F
˜ m =

⋂{
F (p,m) : p ∈ G

˜ P ∧ m < Mp
}
.”

(Remember F (p,m) was dfined in Definition 5.3(B).)

Lemma 5.9. 

(1) For each m < ω, ⊩P ``F
˜ m is a closed subset of H.''

(2) For i < k and (α, β) ∈ λ〈2〉 we have

⊩P ``η
˜
α, ν˜ i,α,β ∈ H, h

˜α,β < ω, ν
˜ i,α,β = ν

˜ i,β,α and η
˜
α + ν

˜ i,α,β ∈ F
˜ h

˜α,β
.”

(3) ⊩P ``〈η
˜
α, ν˜ i,α,β : i < k, α < β < λ〉 is quasi independent (so they are also distinct).''

(4) ⊩P ``
∣∣∣(− η

˜
α +

⋃
m<ω

F
˜ m

)
∩
(
− η

˜
β +

⋃
m<ω

F
˜ m

)∣∣∣ ≥ k.''

Proof. Should be clear (remember Lemma 5.4). �
Lemma 5.10. Let p = (w,M, r̄, n, Ῡ, V̄ , h) ∈ D1

1 ⊆ P (cf. 5.4(2)(ii)) and a�, b� ∈ H and U�,W� ∈ U (for 
� < 4) be such that the following conditions are satified.
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(⊛)1 U� ∈ {Uα(n) : α ∈ w}, W� ∈ {Wi,α,β : i < k, (α, β) ∈ w〈2〉} (for � < 4).
(⊛)2 • (U0 + W0) ∩ (U1 + W1) = ∅,

• (U1 + W1) ∩ (U3 + W3) = ∅,
• (U2 + W2) ∩ (U3 + W3) = ∅,
• (U0 + W0) ∩ (U2 + W2) = ∅.

(⊛)3 a� ∈ U� and b� ∈ W� and a� + b� ∈
⋃

m<M

F (p,m) for � < 4.

(⊛)4 (a0 + b0) − (a1 + b1) = (a2 + b2) − (a3 + b3).

Then for some (α, β) ∈ w〈2〉 and distinct i, j < k we have

either U0 = U2 = Uα(n), U1 = U3 = Uβ(n), W0 = W1 = Wi,α,β, and W2 = W3 = Wj,α,β,
or U0 = U1 = Uα(n), U2 = U3 = Uβ(n), W0 = W2 = Wi,α,β, and W1 = W3 = Wj,α,β.

Proof. For � < 4 let U−
� and V� be such that

• if U� = Uα(n) then U−
� = Uα(n− 1),

• if W� = Wi,α,β then V� = Vi,α,β .

Also, let

LHSa = a0 − a1 − a2 + a3, LHSb = b0 − b1 − b2 + b3, and LHS = LHSa + LHSb = 0.

Put U∗ = {U0, U1, U2, U3}, W∗ = {W0,W1,W2,W3}, U∗
− = {U−

0 , U−
1 , U−

2 , U−
3 }, and V∗ = {V0, V1, V2, V3}.

(a) |U∗| > 1.

Why? If not, then U0 = U1 = U2 = U3 and by the assumption (⊛)2 of the Lemma we have {W0,W3} ∩
{W1,W2} = ∅. By 5.3(A)(⊠)4, the latter also means that {V0, V3} ∩ {V1, V2} = ∅. Now,

LHS =
(
(a0 − a1) + b0

)
+
(
(a3 − a2) + b3

)
− b1 − b2,

and using 5.3(A)(⊠)4(b) we have (a0 − a1) + b0 ∈ V0, (a3 − a2) + b3 ∈ V3, b1 ∈ V1 and b2 ∈ V2. Since 
{V0, V3} ∩ {V1, V2} = ∅ we see that LHS is a nontrivial (2, 4)--combination from V∗, so it cannot be 0, 
contradicting assumption (⊛)4 of the Lemma.

(b) |W∗| > 1.

Why? Fully parallel to (a).

(c) If for some W we have |{� < 4 : W� = W}| = 3, then LHSb is a nontrivial (2, 4)--combination from V∗.

Why? Suppose W0 = W1 = W2 	= W3. Then, by 5.3(A)(⊠)4(b), we have (b1 − b0) + b2 ∈ V2 and b3 ∈ V3. 
Hence LHSb = −

(
(b1 − b0) + b2

)
+ b3 ∈ −V2 + V3 and V2 	= V3.

Suppose W0 = W1 = W3 	= W2. Then, by 5.3(A)(⊠)4(b), we have (b0 − b1) + b3 ∈ V3 and b2 ∈ V2, so 
LHSb = (b0 − b1) + b3 − b2 ∈ V3 − V2 and V2 	= V3.

The other cases are fully parallel.

(d) If for some U we have |{� < 4 : U� = U}| = 3, then LHSa is a nontrivial (2, 4)--combination from U∗
−.
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Why? Same argument as for (c), just using U� instead of W�.

(e) For every W we have |{� < 4 : W� = W}| < 3.

Why? We already know that |{� < 4 : W� = W}| < 4 (by (b)), so suppose {� < 4 : W� = W} has exactly 
3 elements. It follows from (c) that then LHSb is a nontrivial (2, 4)--combination from V∗. By (a) we know 
that |U∗| > 1. If for some U we have |{� < 4 : U� = U}| = 3, then we may use (d) to claim that LHSa is 
a (nontrivial) (2, 4)--combination from U∗

− and then LHS is a nontrivial (2, 8)--combination from U∗
− ∪ V∗, 

contradicting (⊛)4 (remember 5.3(A)(⊠)4).
So suppose that for each U we have |{� < 4 : U� = U}| ≤ 2. Then LHSa is a (possibly trivial) 

(2, 4)--combination from U∗ and consequently LHS is a nontrivial (2, 8)--combination from U∗ ∪ V∗, so 
also from U∗

− ∪ V∗, again contradicting (⊛)4.

(f) For each U , |{� < 4 : U� = U}| < 3.

Why? Same argument as for (e), just using (a) and (c) instead of (b) and (d).
Since p ∈ D1

1, it follows from our assumption (⊛)3 that for each � < 4, for some α = α(�), β = β(�), and 
i = i(�) we have U� = Uα(n) and W� = Wi,α,β . It follows from (e)+(f) that LHS is a (2, 8)--combination 
from U∗ ∪W∗. Necessarily it is a trivial combination (as LHS = 0 by (⊛)4). Consequently,

(�)1 either U0 = U1 	= U2 = U3, or U0 = U2 	= U1 = U3, and
(�)2 either W0 = W1 	= W2 = W3, or W0 = W2 	= W1 = W3.

Suppose U0 = U1 	= U2 = U3. Then by (⊛)2 we must have W0 	= W1, W2 	= W3 and by (�)2 we get 
W0 = W2 and W1 = W3. Thus for some (α, β) ∈ w〈2〉 and i, j < k, i 	= j, we have

U0 = U1 = Uα(n), U2 = U3 = Uβ(n), W0 = W2 = Wi,α,β , W1 = W3 = Wj,α,β .

Suppose now that U0 = U2 and U1 = U3. By (⊛)2 we must have then W0 	= W2 and W1 	= W3. Therefore, 
by (�)2, we may conclude that W0 = W1 and W2 = W3. Consequently, for some (α, β) ∈ w〈2〉 and distinct 
i, j < k we have

U0 = U2 = Uα(n), U1 = U3 = Uβ(n), W0 = W1 = Wi,α,β , W2 = W3 = Wj,α,β . �
Lemma 5.11. Let p = (w,M, r̄, n, Ῡ, V̄ , h) ∈ D1

1 and X ⊆ H, |X| ≥ 5. Suppose that ai(x, y), bi(x, y), Ui(x, y)
and Wi(x, y) for x, y ∈ X, x 	= y and i < k satisfy the following demands (i)--(iv) (for all x 	= y, i 	= i′).

(i) Ui(x, y) ∈ {Uα(n) : α ∈ w}, Wi(x, y) ∈ {Wj,α,β : j < k, (α, β) ∈ w〈2〉}.
(ii) •

(
Ui(x, y) + Wi(x, y)

)
∩
(
Ui(y, x) + Wi(y, x)

)
= ∅,

•
(
Ui(x, y) + Wi(x, y)

)
∩
(
Ui′(x, y) + Wi′(x, y)

)
= ∅.

(iii) ai(x, y) ∈ Ui(x, y) and bi(x, y) ∈ Wi(x, y), and
ai(x, y) + bi(x, y) ∈

⋃
m<M

F (p,m).

(iv) x− y =
(
ai(x, y) + bi(x, y)

)
−
(
ai(y, x) + bi(y, x)

)
.

Then

(1) X − X ⊆
⋃{

Uα(n− 2) − Uβ(n− 2) : α, β ∈ w
}
.
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(2) If (x, y) ∈ X〈2〉 and x− y ∈ Uα(n− 2) − Uβ(n − 2), α, β ∈ w, then α 	= β and for each i < k we have 
ai(x, y) + bi(x, y), ai(y, x) + bi(y, x) ∈ F (p, h(α, β)).

Proof. (1) Fix x, y ∈ X, x 	= y, for a moment.
Let i 	= i′, i, i′ < k. We may apply Lemma 5.10 for Ui(x, y), Wi(x, y), Ui(y, x), Wi(y, x), ai(x, y), bi(x, y), 

ai(y, x), bi(y, x) here as U0,W0, U1,W1, a0, b0, a1, b1 there and for similar objects with i′ in place of i as 
U2,W2, U3,W3, a2, b2, a3, b3 there. This will produce distinct α = α(x, y, i, i′), β = β(x, y, i, i′) ∈ w and 
distinct j = j(x, y, i, i′), j′ = j′(x, y, i, i′) < k such that

either (A) Ui(x, y) = Ui′(x, y) = Uα(n), Ui(y, x) = Ui′(y, x) = Uβ(n),
Wi(x, y) = Wi(y, x) = Wj,α,β, Wi′(x, y) = Wi′(y, x) = Wj′,α,β ,

or (B) Ui(x, y) = Ui(y, x) = Uα(n), Ui′(x, y) = Ui′(y, x) = Uβ(n),
Wi(x, y) = Wi′(x, y) = Wj,α,β , Wi(y, x) = Wi′(y, x) = Wj′,α,β .

Note that if for some i 	= i′, i, i′ < k, the possibility (A) above holds, then it holds for all i, i′ < k and

x− y =
(
ai(x, y) + bi(x, y)

)
−
(
ai(y, x) + bi(y, x)

)
=

(
ai(x, y) +

(
bi(x, y) − bi(y, x)

))
− ai(y, x)

and ai(x, y) +
(
bi(x, y) − bi(y, x)

)
∈ Uα(n) +

(
Wj,α,β −Wj,α,β

)
⊆ Uα(n − 1) ⊆ Uα(n − 2). Hence x − y ∈

Uα(n− 2) − Uβ(n− 2).
Now ufix x, y. By what we have said, the first assertion of the Lemma will follow once we show that

(♥) for all x, y ∈ X, x 	= y, there are i 	= i′ such that possibility (A) above holds for them.

Here the argument breaks into two cases: k ≥ 3 and k = 2, with the former being somewhat simpler.

Case k ≥ 3. 
Let x, y ∈ X, x 	= y. Suppose towards contradiction that in the previous considerations both for x, y, 0, 1
and for x, y, 1, 2 the second (i.e., (B)) possibility takes place. This gives us α, β, j, j′ such that α 	= β, j 	= j′

and

(∗)1 U0(x, y) = U0(y, x) = Uα(n),
(∗)2 U1(x, y) = U1(y, x) = Uβ(n),
(∗)3 W0(x, y) = W1(x, y) = Wj,α,β,
(∗)4 W0(y, x) = W1(y, x) = Wj′,α,β ,

and we also get γ, δ, �, �′ such that γ 	= δ and � 	= �′ and

(∗)5 U1(x, y) = U1(y, x) = Uγ(n),
(∗)6 U2(x, y) = U2(y, x) = Uδ(n),
(∗)7 W1(x, y) = W2(x, y) = W�,γ,δ,
(∗)8 W1(y, x) = W2(y, x) = W�′,γ,δ.

It follows from (∗)2 + (∗)5 that γ = β and from (∗)3 + (∗)7 we have � = j and δ = α. Finally, (∗)4 + (∗)8
imply �′ = j′. Consequently,

U0(x, y) = U2(x, y), U0(y, x) = U2(y, x), W0(x, y) = W2(x, y), W0(y, x) = W2(y, x),

contradicting assumption (ii).
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Case k = 2. 
We will argue that (♥) holds true in this case as well. First, however, we have to establish some auxiliary 
facts.

For each x, y ∈ X, x 	= y, we may choose α = α(x, y), β = β(x, y) and j = j(x, y) such that α 	= β and

either (A)α,β,jx,y U0(x, y) = U1(x, y) = Uα(n), U0(y, x) = U1(y, x) = Uβ(n),
W0(x, y) = W0(y, x) = Wj,α,β , W1(x, y) = W1(y, x) = W1−j,α,β ,

or (B)α,β,jx,y U0(x, y) = U0(y, x) = Uα(n), U1(x, y) = U1(y, x) = Uβ(n),
W0(x, y) = W1(x, y) = Wj,α,β , W0(y, x) = W1(y, x) = W1−j,α,β ,

Note that for each (x, y) ∈ w〈2〉, either there are α, β, j such that (A)α,β,jx,y holds true or there are α, β, j
such that (B)α,β,jx,y is true, but not both. Also, remembering 5.3(A)(⊠)4(b),

(�)1 if (A)α,β,jx,y holds, then x − y ∈ Uα(n − 1) − Uβ(n − 1) and if (B)α,β,jx,y is satified, then x − y ∈
Vj,α,β − V1−j,α,β .

Dfine functions χ : X〈2〉 −→ 2 and Θ : X〈2〉 −→ [w]2 × 2 as follows. Assuming (x, y) ∈ X〈2〉,

• if for some α, β, j the demand (A)α,β,jx,y holds, then χ(x, y) = 1 and Θ(x, y) = ({α, β}, j),
• if for some α, β, j the demand (B)α,β,jx,y is satified, then χ(x, y) = 0 and Θ(x, y) = ({α, β}, j).

Our goal is to show that the function χ never takes value 0 (as this will imply that the assertion (♥)
holds true). Note that

(�)2 if χ(x, y) = 0 and Θ(x, y) = ({α, β}, j), then χ(y, x) = 0 and Θ(y, x) = ({α, β}, 1 − j), so also 
Θ(x, y) 	= Θ(y, x).

Also,

(�)3 if x, y, z ∈ X are pairwise distinct and χ(x, y) = χ(y, z) = 1, then χ(x, z) = 1.

Why? Assume χ(x, z) = 0. Then, by (�)1, for some j, ξ, ζ we have x − z ∈ Vj,ξ,ζ − V1−j,ξ,ζ . However, 
x− y ∈ Uα(n− 1) − Uβ(n− 1) and y − z ∈ Uγ(n− 1) − Uδ(n− 1) (for some α 	= β and γ 	= δ), so

x− z ∈ Uα(n− 1) − Uβ(n− 1) + Uγ(n− 1) − Uδ(n− 1).

Thus for some a ∈ Uα(n− 1), b ∈ Uβ(n− 1), c ∈ Uγ(n − 1), d ∈ Uδ(n− 1), e ∈ Vj,ξ,ζ , and f ∈ V1−j,ξ,ζ we 
have a− b+ c− d+ f − e = 0. The left hand side of this equation represents a nontrivial (2,8)--combination 
from 〈Uζ(n− 1) : ζ ∈ w〉
〈V0,ζ,ζ′ , V1,ζ,ζ′ : (ζ, ζ ′) ∈ w〈2〉〉 (remember α 	= β, γ 	= δ, ξ 	= ζ), a contradiction.

(�)4 If x, y, z ∈ X are pairwise distinct and χ(x, y) = χ(y, z) = 0, then Θ(x, y) = Θ(y, z) = Θ(z, x) and 
χ(x, z) = 0.

Why? Let Θ(x, y) = ({α, β}, i), Θ(y, z) = ({γ, δ}, j), and Θ(x, z) = ({ξ, ζ}, �). If {α, β} 	= {γ, δ}, then

x− z = (x− y) + (y − z) ∈ Vi,α,β − V1−i,α,β + Vj,γ,δ − V1−j,γ,δ
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and {V0,α,β, V1,α,β} ∩ {V0,γ,δ, V1,γ,δ} = ∅. Since either x − z ∈ V�,ξ,ζ − V1−�,ξ,ζ or x − z ∈
(
Uξ(n − 1) −

Uζ(n− 1)
)
∪
(
Uζ(n− 1) − Uξ(n− 1)

)
, we easily get that some nontrivial (2,8)--combination from 〈Uζ(n−

1) : ζ ∈ w〉
〈V0,ζ,ζ′ , V1,ζ,ζ′ : (ζ, ζ ′) ∈ w〈2〉〉 equals 0, a contradiction. Consequently, {α, β} = {γ, δ}, i.e., 
Θ(x, y) = ({α, β}, i) and Θ(y, z) = ({α, β}, j) for some α, β, i, j.

If i 	= j then x− z ∈ Vi,α,β − V1−i,α,β + V1−i,α,β − Vi,α,β . But also either x− z ∈ Uξ(n− 1) − Uζ(n− 1), 
or x− z ∈ Uζ(n− 1) − Uξ(n− 1), or x− z ∈ V�,ξ,ζ − V1−�,ξ,ζ . In the first case we get

0 ∈
((

Vi,α,β − Vi,α,β

)
+ Uξ(n− 1)

)
−

((
V1−i,α,β − V1−i,α,β

)
+ Uζ(n− 1)

)
⊆ Uξ(n− 2) − Uζ(n− 2),

and symmetrically in the second case. In the last case we have

0 ∈
((

Vi,α,β − Vi,α,β

)
+ V�,ξ,ζ

)
−
((

V1−i,α,β − V1−i,α,β

)
+ V1−�,ξ,ζ

)
⊆ Q�,ξ,ζ −Q1−�,ξ,ζ .

In any case this gives a contradiction with 5.3(A)(⊠)4. Consequently i = j and Θ(x, y) = Θ(y, z) =
({α, β}, i).

By considerations as above we see that necessarily χ(x, z) = 0 and Θ(x, z) = ({α, β}, �). If � = i, then

x− z ∈ Vi,α,β − V1−i,α,β and x− z ∈ Vi,α,β − V1−i,α,β + Vi,α,β − V1−i,α,β .

Hence

0 ∈
((

Vi,α,β − Vi,α,β

)
+ Vi,α,β

)
−

((
V1−i,α,β − V1−i,α,β

)
+ V1−i,α,β

)
⊆ Qi,α,β −Q1−i,α,β ,

a contradiction.
Consequently, � = 1 − i and Θ(z, x) = ({α, β}, i) = Θ(x, y) (and χ(x, z) = 0).
Now, suppose towards contradiction that (♥) is not true and x, y ∈ X are such that x 	= y and χ(x, y) = 0. 

Let z ∈ X \ {x, y}. We cannot have χ(x, z) = χ(y, z) = 1 (as then (�)3 would give a contradiction with 
χ(x, y) = 0). So one of them is 0, and then (�)4 implies that the other is 0 as well and

χ(x, y) = χ(y, z) = χ(x, z) = 0 and Θ(x, y) = Θ(y, z) = Θ(z, x).

Taking t ∈ X \ {x, y, z} by similar considerations we obtain

χ(x, t) = χ(y, t) = 0 and Θ(x, y) = Θ(y, t) = Θ(t, x).

Now consider x, z, t: since χ(x, z) = χ(x, t) = 0 we may use (�)4 to conclude that

χ(z, t) = 0 and Θ(x, z) = Θ(z, t) = Θ(t, x).

But we have established already that Θ(t, x) = Θ(x, y) = Θ(z, x), a contradiction (remember (�)2). The 
proof of Lemma 5.11(1) is complete now.

(2) Suppose (x, y) ∈ X〈2〉. In the previous part we showed that for all i < i′ < k possibility (A) holds true. 
More precisely, there are distinct α, β ∈ w such that for all i < k for some j < k we have ai(x, y) ∈ Uα(n)
and ai(y, x) ∈ Uβ(n), and bi(x, y), bi(y, x) ∈ Wj,α,β. Then also

• ai(x, y) + bi(x, y) ∈ Uα(n) + Wj,α,β ⊆ F (p, h(α, β)),
• ai(y, x) + bi(y, x) ∈ Uβ(n) + Wj,α,β ⊆ F (p, h(α, β)).
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We also know that for these α, β we have x − y ∈ Uα(n − 2) − Uβ(n − 2). To complete the proof we note 
that, by Lemma 5.5, for any α′, β′

(
Uα(n− 2) − Uβ(n− 2)

)
∩
(
Uα′(n− 2) − Uβ′(n− 2)

)
	= ∅ implies α = α′ and β = β′. �

Lemma 5.12. 

⊩P “there is no perfect set P ⊆ H such that 
(
∀x, y ∈ P

)(∣∣(x +
⋃

m<ω

F
˜ m

)
∩
(
y +

⋃
m<ω

F
˜ m

)∣∣ ≥ k
)
.''

Proof. Suppose towards contradiction that G ⊆ P is generic over V and in V[G] the following assertion 
holds true:

for some perfect set P ⊆ H we have

∣∣∣(x +
⋃

m<ω

F
˜
G
m

)
∩
(
y +

⋃
m<ω

F
˜
G
m

)∣∣∣ ≥ k

for all x, y ∈ P .

Then for any distinct x, y ∈ P there are b0, c0, . . . , bk−1, ck−1 ∈
⋃

m<ω
F
˜
G
m such that bi 	= bj whenever i 	= j

and x− y = bi − ci (for all i < k).
For �̄ = 〈�i : i < k〉 ⊆ ω, m̄ = 〈mi : i < k〉 ⊆ ω and N < ω let

ZN
�̄,m̄

= {(x, y) ∈ P 2 : there are bi ∈ F
˜
G
�i
, ci ∈ F

˜
G
mi

(for i < k) such that
x− y = bi − ci and 2−N < min

(
ρ(bi, bj), ρ(ci, cj)

)
for all distinct i, j < k}.

By our assumption on P we know that

(⊡)0 for all x, y ∈ P , x 	= y, there are �̄, m̄ and N such that (x, y) ∈ ZN
�̄,m̄

.

Remember our Assumption 5.1: D is a fixed countable dense subset of H and Bn is the ball of radius 2−n

centered at 0. Now, the sets ZN
�̄,m̄

⊆ P 2 are Σ1
1, so they have the Baire property (in P 2). Therefore, for 

every open set U ⊆ H × H with U ∩ P 2 	= ∅ there are d0, d1 ∈ D and the corresponding basic open set 
(d0 + Bn0) × (d1 + Bn1) ⊆ U such that 

[
(d0 + Bn0) × (d1 + Bn1)

]
∩ P 2 	= ∅ and

• either ZN
�̄,m̄

∩
[
(d0 + Bn0) × (d1 + Bn1)

]
is a meager subset of P 2,

• or 
[
[(d0 + Bn0) × (d1 + Bn1)] ∩ P 2] \ ZN

�̄,m̄
is a meager subset of P 2.

Now we may choose closed nowhere dense subsets Fj of P 2 (for j < ω) such that for each d0, d1 ∈ D and 
n0, n1 < ω and N, �̄, m̄ as before we have

(⊡)a1 if ZN
�̄,m̄

∩
[
(d0 + Bn0) × (d1 + Bn1)

]
is meager in P 2, then

ZN
�̄,m̄

∩
[
(d0 + Bn0) × (d1 + Bn1)

]
⊆

⋃
j<ω

Fj ,
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(⊡)b1 if 
[
[(d0 + Bn0) × (d1 + Bn1)] ∩ P 2] \ ZN

�̄,m̄
is meager in P 2, then

[
[(d0 + Bn0) × (d1 + Bn1)] ∩ P 2] \ ZN

�̄,m̄
⊆

⋃
j<ω

Fj .

Then 
⋃
j<ω

Fj is a meager subset of P 2. Let B∗ = P 2 \
⋃
j<ω

Fj .

We are going to choose now a sequence 0 = n∗
0 = n0 < n∗

1 < n1 < n∗
2 < n2 < n∗

3 < n3 < . . . and a system 
〈dσ : σ ∈ ι2, ι < ω〉 ⊆ D such that the following demands (⊡)a2--(⊡)e2 are satified.

(⊡)a2 If ι < ω, σ, σ′ ∈ ι2, σ 	= σ′, then (dσ + Bnι
) ∩ P 	= ∅ and ρ(dσ, dσ′) > 22−nι .

(⊡)b2 If ι < ω, σ ∈ ι2, then cl
(
dσ�〈0〉 + Bnι+1

)
∪ cl

(
dσ�〈1〉 + Bnι+1

)
⊆ (dσ + Bnι

).
(⊡)c2 If ι < ω and σ, σ′ ∈ ι2, σ 	= σ′, and

(x, y), (x′, y′) ∈ B∗ ∩
[
(dσ + Bnι

) × (dσ′ + Bnι
)
]
,

then for all �̄ ⊆ n∗
ι , m̄ ⊆ n∗

ι and N < n∗
ι we have

(x, y) ∈ ZN
�̄,m̄

⇔ (x′, y′) ∈ ZN
�̄,m̄

.

(⊡)d2 If ι < ω and σ, σ′ ∈ ι2, σ 	= σ′, and (x, y) ∈ B∗ ∩
[
(dσ + Bnι

) × (dσ′ + Bnι
)
]
, then there are �̄ ⊆ n∗

ι , 
m̄ ⊆ n∗

ι and N < n∗
ι such that (x, y) ∈ ZN

�̄,m̄
.

(⊡)e2 If ι < ω and σ, σ′ ∈ ι2, σ 	= σ′, then 
[
(dσ + Bnι

) × (dσ′ + Bnι
)
]
∩

⋃
j<ι

Fj = ∅.

The construction is by induction on ι < ω. We start with choosing any d〈〉 ∈ D such that (d〈〉+B0)∩P 	= ∅. 
We also set n0 = n∗

0 = 0. Let us describe in more detail choices for ι = 1 as they have all the ingredients 
used later. So, first find open sets V †, V †† such that V †∩P 	= ∅ 	= V ††∩P and cl(V †)∪cl(V ††) ⊆ (d〈〉+B0), 
cl(V †) ∩ cl(V ††) = ∅. Let N0, �̄0, m̄0 be such that the set ZN0

�̄0,m̄0
∩
[
V † × V ††] is not meager in P 2 and let 

n∗
1 be such that N0 < n∗

1, �̄0 ⊆ n∗
1 and m̄0 ⊆ n∗

1. Now we repeatedly use the Baire property of the sets ZN
�̄,m̄

to find open sets V ′ ⊆ V † and V ′′ ⊆ V †† such that V ′ ∩ P 	= ∅ 	= V ′′ ∩ P and

(A)
[
(V ′ × V ′′) ∩ P 2] \ ZN0

�̄0,m̄0
is meager in P 2 (where N0, �̄0, m̄0 are the ones fixed above), and

(B) for every �̄ ⊆ n∗
1, m̄ ⊆ n∗

1 and N < n∗, either 
[
(V ′×V ′′)∩P 2]\ZN

�̄,m̄
is meager in P 2, or (V ′×V ′′)∩ZN

�̄,m̄

is meager in P 2.

Since F0 is a nowhere dense subset of P 2, we may find open sets V ∗ ⊆ V ′ and V ∗∗ ⊆ V ′′ such that 
V ∗ ∩ P 	= ∅ 	= V ∗∗ ∩ P and (V ∗ × V ∗∗) ∩ F0 = ∅. Now, after fixing some x ∈ V ∗ ∩ P and y ∈ V ∗∗ ∩ P we 
choose n > n∗

1 so large that ρ(x, y) > 23−n and x + Bn ⊆ V ∗ and y + Bn ⊆ V ∗∗. Then we set n1 = n + 2
and choose d〈0〉 ∈ (x + Bn1) ∩ D and d〈1〉 ∈ (y + Bn1) ∩ D. Note that x ∈ d〈0〉 + Bn1 ⊆ x + Bn and 
y ∈ d〈1〉 + Bn1 ⊆ y + Bn.

Assuming n∗
ι < nι < ω and 〈dσ : σ ∈ ι2〉 ⊆ D have been selected, we first pick open sets 〈V †

ς : ς ∈ ι+12〉
such that for all σ ∈ ι2 we have V †

σ�〈0〉 ∩ P 	= ∅ 	= V †
σ�〈1〉 ∩ P , cl(V †

σ�〈0〉) ∪ cl(V †
σ�〈1〉) ⊆ (dσ + Bnι

), 

cl(V †
σ�〈0〉) ∩ cl(V †

σ�〈1〉) = ∅. Next, letting 〈(ς ′j , ς ′′j ) : j < j∗〉 be an enumeration of 
(
ι+12

)〈2〉, we choose 

inductively open sets V †
ς = V 0

ς ⊇ V 1
ς ⊇ . . . V j∗

ς and integers nι = N0
ς ≤ N1

ς ≤ . . . ≤ N j∗
ς (for ς ∈ ι+12), as 

well as Nj , �̄j , m̄j , in such a manner that the following demands (a)--(d) are satified for all j < j∗.

(a) If ς ∈ ι+12 \ {ς ′j , ς ′′j }, then V j+1
ς = V j

ς and N j+1
ς = N j

ς .
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(b) Nj , �̄j , m̄j are such that the set ZNj

�̄j ,m̄j
∩
[
V j
ς′j
×V j

ς′′j

]
is not meager in P 2 and N j+1

ς′j
= N j+1

ς′′j
is such that 

Nj + N j
ς′j

+ N j
ς′′j

< N j+1
ς′j

, �̄j ⊆ N j+1
ς′j

and m̄j ⊆ N j+1
ς′j

.
(c) Open sets V j+1

ς′j
⊆ V j

ς′j
and V j+1

ς′′j
⊆ V j

ς′′j
are such that V j+1

ς′j
∩ P 	= ∅ 	= V j+1

ς′′j
∩ P and

(A)
[
(V j+1

ς′j
× V j+1

ς′′j
) ∩ P 2] \ ZNj

�̄j ,m̄j
is meager in P 2 (where Nj , �̄j , m̄j are the ones fixed in (b) above).

(d)
(
V j+1
ς′j

× V j+1
ς′′j

)
∩

⋃
i≤ι

Fi = ∅.

Then we set n∗
ι+1 = max{N j∗

ς : ς ∈ ι+12} and we choose inductively open sets

V j∗

ς ⊇ V j∗+1
ς ⊇ V j∗+2

ς ⊇ . . . V j∗+j∗

ς

(for ς ∈ ι+12) so that the following conditions (e)--(f) are satified.

(e) If ς ∈ ι+12 \ {ς ′j , ς ′′j }, then V j∗+j+1
ς = V j∗+j

ς .
(f) Open sets V j∗+j+1

ς′j
⊆ V j∗+j

ς′j
and V j∗+j+1

ς′′j
⊆ V j∗+j

ς′′j
are such that V j∗j+1

ς′j
∩ P 	= ∅ 	= V j∗+j+1

ς′′j
∩ P and

(B) for every �̄ ⊆ n∗
ι+1, m̄ ⊆ n∗

ι+1 and N < n∗
ι+1, either 

[
(V j∗+j+1

ς′j
× V j∗+j+1

ς′′j
) ∩ P 2] \ ZN

�̄,m̄
is meager 

in P 2, or (V j∗+j+1
ς′j

× V j∗+j+1
ς′′j

) ∩ ZN
�̄,m̄

is meager in P 2.

Next, we fix xς ∈ V 2j∗
ς ∩ P for ς ∈ ι+12. Choose n > n∗

ι+1 so large that

• ρ(xς , xς′) > 23−n for distinct ς, ς ′ ∈ ι+12, and
• xς + Bn ⊆ V j∗

ς for all ς ∈ ι+12.

Then we set nι+1 = n + 2 and choose dς ∈ (xς + Bnι+1) ∩ D.
This completes the description of the inductive construction.
It follows from (⊡)a2 + (⊡)b2 that for each η ∈ ω2 the set 

⋂
�<ω

dη↾� + Bn�
is a singleton included in P . By 

(⊡)e2 we know that for η 	= η′

⋂
�<ω

(dη↾� + Bn�
) ×

⋂
�<ω

(dη′↾� + Bn�
) ⊆ B∗.

For σ ∈ ι2 and � < ω let σ ∗� 0 = σ
〈0, . . . , 0︸ ︷︷ ︸
� 

〉 and let x∗
σ ∈ H be such that

(⊡)3 {x∗
σ} =

⋂
�<ω

(
dσ∗�0 + Bnι+�

)
; so x∗

σ ∈ P and if σ 	= σ′ are from ι2 then (x∗
σ, x

∗
σ′) ∈ B∗.

Let P
˜
, F
˜ j , n˜

∗
ι , n˜ ι, d˜σ, x˜

∗
σ be P--names for the objects appearing in (⊡)2--(⊡)3. Still working in V[G], we may 

choose a sequence 〈pι, qι : ι < ω〉 ⊆ G such that:

(⊡)a4 p0 ⊩P ``P
˜

is a perfect subset of H, F
˜ j are closed nowhere dense subsets of P 2, and n

˜
∗
ι , n˜ ι, d˜σ, x˜

∗
σ have 

the properties stated in (⊡)a1--(⊡)b1, (⊡)a2--(⊡)e2, (⊡)3'', and
(⊡)b4 pι decides the values of n

˜
∗
ι , n˜ ι and d

˜σ for σ ∈ ι2, ι > 0,
(⊡)c4 pι ≤ qι ≤ pι+1 and pι, qι ∈ D2

nι
∩D0

0,nι,nι
∩G (see 5.4(2)) and npι + 10 < nqι and wpι = wqι .

The properties of conditions from P stated in 5.3(A) are absolute, so they hold in V[G] as well (with B�

being BG
� etc). Now, still working in V[G], for 0 < ι < ω let Xι = {x∗

σ : σ ∈ ι2}. Note that x∗
σ 	= x∗

σ′ and 
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(x∗
σ, x

∗
σ′) ∈ B∗ when σ, σ′ ∈ ι2 are distinct, and Xι ⊆ Xι′ when ι ≤ ι′ < ω. It follows from (⊡)d2 + (⊡)3 that 

for x, y ∈ Xι, x 	= y, we have (x, y) ∈ ZN
�̄,m̄

for some N = N(x, y) < n∗
ι , �̄ = �̄(x, y), m̄ = m̄(x, y) ⊆ n∗

ι . By 

clause (⊡)c2, these N(x, y), �̄(x, y), m̄(x, y) may be chosen in such a manner that

(⊡)5 if σ, σ′ ∈ ι2, ι∗ < ι, σ↾ι∗ = σ′↾ι∗ but σ(ι∗) 	= σ′(ι∗), and ς = σ↾(ι∗ + 1), ς ′ = σ′↾(ι∗ + 1), then 
�̄(xσ, xσ′) = �̄(xς , xς′), m̄(xσ, xσ′) = m̄(xς , xς′), and N(xσ, xσ′) = N(xς , xς′).

Let J < ω be such that the arrow property J −→ (10)42144 holds true and fix a ι ≥ J for a while.
Fix x, y ∈ Xι, x 	= y, and let N = N(x, y) < n∗

ι , �̄ = �̄(x, y), m̄ = m̄(x, y) ⊆ n∗
ι . Then there are ci ∈ F

˜
G
�i

and di ∈ F
˜
G
mi

(for i < k) such that for i 	= i′ we have

x− y = ci − di and 2−nι < 2−N < ρ(ci, ci′), and 2−nι < 2−N < ρ(di, di′).

The reasons for the use of qι rather than pι in what follows will become clear at the end. Since nι < Mqι and 
F
˜
G
m ⊆ F (qι,m) for all m < Mqι , we get ci ∈ Uqι

α (nqι)+W qι
j,α,β for some j < k and (α, β) ∈ (wqι)〈2〉 = (wpι)〈2〉

and similarly for di. Therefore, for each i < k we may pick

• Ui(x, y), Ui(y, x) ∈ {Uqι
α (nqι) : α ∈ wqι}, and

• Wi(x, y),Wi(y, x) ∈ {W qι
j,α,β : (α, β) ∈ (wqι)〈2〉}, and

• ai(x, y) ∈ Ui(x, y), ai(y, x) ∈ Ui(y, x) and bi(x, y) ∈ Wi(x, y), bi(y, x) ∈ Wi(y, x)

such that x− y =
(
ai(x, y) + bi(x, y)

)
−

(
ai(y, x) + bi(y, x)

)
and for i 	= i′

2−nι < ρ
(
ai(x, y) + bi(x, y), ai′(x, y) + bi′(x, y)

)

2−nι < ρ
(
ai(y, x) + bi(y, x), ai′(y, x) + bi′(y, x)

)
.

Since the metric ρ is invariant (and by (⊡)a2), we also have

2−nι < ρ(x, y) = ρ
(
ai(x, y) + bi(x, y), ai(y, x) + bi(y, x)

)
.

Since qι ∈ D2
nι

we know that for all relevant j, α, β,

diamρ

(
Uqι
α (nqι) + W qι

j,α,β

)
< 2−nι ,

and consequently each of the sets Uqι
α (nqι) + W qι

j,α,β contains at most one element from each of the 
sets 

{
ai(x, y) + bi(x, y), ai(y, x) + bi(y, x)

}
, 
{
ai(x, y) + bi(x, y), ai′(x, y) + bi′(x, y)

}
and 

{
ai(y, x) +

bi(y, x), ai′(y, x) + bi′(y, x)
}
. Since qι ∈ D2

nι
, different sets of the form Uqι

α (nqι) + W qι
j,α,β are disjoint, and 

thus we see that the assumptions (i)--(iv) of Lemma 5.11 are satified.
Ufixing x, y, we may use Lemma 5.11(1) to conclude that

(⊡)6 Xι − Xι ⊆
⋃{

Uqι
α (nqι − 2) − Uqι

β (nqι − 2) : α, β ∈ wqι
}

and hence also Xι − Xι ⊆
⋃{

Upι
α (npι) − Upι

β (npι) : α, β ∈ wpι
}
. Moreover, by 5.11(2), we also conclude 

that

(⊡)7 if x, y ∈ Xι and 0 	= x − y ∈ Uqι
α (nqι − 2) − Uqι

β (nqι − 2), then α 	= β and m̄(x, y)(i) = �̄(x, y)(i) =
hqι(α, β) = hpι(α, β) for all i < k.

Sh:1187



A. Rosłanowski, S. Shelah / Annals of Pure and Applied Logic 176 (2025) 103565 31

Since 
{
Upι
α (npι) : α ∈ wpι

}
, 
{
Upι
α (npι − 1) : α ∈ wpι

}
, 
{
Upι
α (npι − 2) : α ∈ wpι

}
and Xι satisfy the 

assumptions of Theorem 3.5, we get that exactly one of (A)ι, (B)ι below holds true.

(A)ι There is a cι ∈ H such that Xι + cι ⊆
⋃{

Upι
α (npι − 2) : α ∈ wpι

}
.

(B)ι There is a cι ∈ H such that cι − Xι ⊆
⋃{

Upι
α (npι − 2) : α ∈ wpι

}
.

Ufixing ι < ω we let

A = {ι < ω : J ≤ ι and case (A)ι holds true }
B = {ι < ω : J ≤ ι and case (B)ι holds true }.

One of the sets A,B is ifinite and this leads us to two very similar cases.

Case: The set A is ifinite. 
For ι ∈ A let Xι, cι be as before. Let wι = {α ∈ wpι : Upι

α (npι − 2)∩ (Xι + cι) 	= ∅}. Since diamρ

(
Upι
α (npι −

2)
)
< 2−nι < ρ(x, y) for α ∈ wι and distinct x, y ∈ Xι, we get 

∣∣Upι
α (npι − 2) ∩ (Xι + cι)

∣∣ = 1 for α ∈ wι. 
Consequently, we have a natural bijection ϕι : Xι −→ wι such that x + cι ∈ Upι

ϕι(x)(n
pι − 2).

For ι < ι′ from A we have Xι ⊆ Xι′ and the mapping πι,ι′ = ϕι′ ◦ ϕ−1
ι : wι −→ wι′ is an injection. 

Clearly, if x ∈ Xι, α = ϕι(x) ∈ wι then

(⊡)8 x + cι′ ∈
(
U

pι′
α (npι − 2) + (cι′ − cι)

)
∩ U

pι′
πι,ι′ (α)(n

pι − 2) 	= ∅.

Suppose now that x, y ∈ Xι, x 	= y. By (⊡)6, there are α, β ∈ wqι such that x−y ∈ Uqι
α (nqι−2)−Uqι

β (nqι−2)
(and, by (⊡)7, α 	= β). Then also

x− y ∈
(
Upι
α (npι − 2) − Upι

β (npι − 2)
)
∩
(
Upι

ϕι(x)(n
pι − 2) − Upι

ϕι(y)(n
pι − 2)

)
.

By Lemma 5.5 we conclude that α = ϕι(x) and β = ϕι(y). Together with (⊡)7 this gives us that

(⊡)ι9 if (x, y) ∈ (Xι)〈2〉, then m̄(x, y)(i) = �̄(x, y)(i) = hpι(ϕι(x), ϕι(y)) for all i < k.

Putting together (⊡)ι9 and (⊡)ι′9 we see that

(⊡)10 if ι < ι′ are from A and (x, y) ∈ (Xι)〈2〉, then

hpι(ϕι(x), ϕι(y)) = hpι′ (ϕι′(x), ϕι′(y)).

In other words, if (α, β) ∈ wι then

hpι(α, β) = hpι′ (α, β) = hpι′ (πι,ι′(α), πι,ι′(β)).

It follows from (⊡)8 + (⊡)10 and 5.3(A)(⊠)7 that for ι < ι′ from A we have

(⊡)11 rksp(wι) = rksp(πι,ι′ [wι]
)
, j(wι) = j

(
πι,ι′ [wι]

)
, k(wι) = k

(
πι,ι′ [wι]

)
and

|α ∩ wι| = k(wι) ⇔ |πι,ι′(α) ∩ πι,ι′ [wι]| = k(wι) for all α ∈ wι.

(Note that rpι′
m ≤ npι − 2 when m = hpι′ (α, β), α, β ∈ wι ⊆ wpι , α 	= β.)

Choose a strictly increasing sequence 〈ι(�) : � < ω〉 ⊆ A such that
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(⊡)12 for each � < ω,

22−nι(�+1)−1 < diamρ

(
U

pι(�)
0 (npι(�) − 2)

)
= diamρ

(
U

pι(�+1)
0 (npι(�) − 2)

)

(remember nι’s were chosen in (⊡)2 and pι(�) ∈ D0
0,nι(�),nι(�)

so also 0 ∈ wpι(�)).

Fix � < ω for a moment and suppose ς ∈ ι(�)2 is such that

∣∣ϕι(�)(x∗
ς ) ∩ wι(�)

∣∣ = k(wι(�))).

Let ς∗ ∈ ι(�+1)2 be such that ς ◁ ς∗, ς∗(n) = 0 for n ∈ [ι(�), ι(� + 1)), and let σ ∈ ι(�+1)2 be such that 
ς∗↾(ι(� + 1) − 1) ◁ σ and σ(ι(� + 1) − 1) = 1. Then x∗

ς∗ = x∗
ς and ρ(x∗

ς∗ , x
∗
σ) < 21−nι(�+1)−1 . By (⊡)12 we 

have then ρ(x∗
ς + cι(�+1), x

∗
σ + cι(�+1)) = ρ(x∗

ς∗ , x
∗
σ) < diamρ

(
U

pι(�+1)
0 (npι(�) − 2)

)
. Consequently,

(⊡)13 U
pι(�+1)
ϕι(�+1)(x∗

ς )(n
pι(�) − 2) = U

pι(�+1)
ϕι(�+1)(x∗

σ)(n
pι(�) − 2)

(remember 5.3(A)(⊠)5(b)). It follows from (⊡)c,d2 + (⊡)5 that for each x ∈ Xι(�) \ {x∗
ς } we have �̄(x, x∗

ς ) =
�̄(x, x∗

σ) and m̄(x, x∗
ς ) = m̄(x, x∗

σ), so by (⊡)ι(�+1)
9 we also have

(⊡)14 hpι(�+1)
(
ϕι(�+1)(x), ϕι(�+1)(x∗

ς )
)

= hpι(�+1)
(
ϕι(�+1)(x), ϕι(�+1)(x∗

σ)
)
.

Condition 5.3(A)(⊠)7 for pι(�+1) together with (⊡)11 imply now that, letting wι(�),σ =
(
πι(�),ι(�+1)

[
wι(�)

]
\

{ϕι(�+1)(x∗
ς )}) ∪ {ϕι(�+1)(x∗

σ)}, we have

(⊡)15 rksp(wι(�),σ) = rksp(πι(�),ι(�+1)[wι(�)]
)

= rksp(wι(�)),
j
(
wι(�),σ) = j

(
πι(�),ι(�+1)[wι(�)]

)
= j(wι(�)), and

k
(
wι(�),σ) = k

(
πι(�),ι(�+1)[wι(�)]

)
= k(wι(�)) =

∣∣ϕι(�+1)(x∗
σ) ∩ wι(�),σ

∣∣.

(Remember, rpι(�+1)
m ≤ npι(�)−2 when m = hpι(�+1)(α, β), α, β ∈ πι(�),ι(�+1)

[
wι(�)

]
are distinct.) Consequently, 

if rksp(wι(�)) ≥ 0 then rksp(wι(�+1)) ≤ rksp(πι(�),ι(�+1)
[
wι(�)

]
∪ {ϕι(�+1)(x∗

σ)}
)
< rksp(wι(�)) (remember 

Definition 2.6(⊛)e).
Ufixing � < ω, we see that for some �∗ we have rksp(wι(�∗)) = −1. However, applying to �∗ the proce

dure described above we get σ ∈ ι(�∗+1)2 such that ϕι(�∗+1)(x∗
σ) contradicts clause 5.3(A)(⊠)8 for pι(�∗+1)

(remember (⊡)13 + (⊡)15).

Case: The set B is ifinite. 
Almost identical to the previous case. Defining ϕι we use the condition cι − x ∈ Upι

ϕι(x)(n
pι − 2), but then 

not much other changes is needed. Even in (⊡)8 we have

cι′ − x = (cι − x) + (cι′ − cι) ∈
(
Upι′
α (npι − 2) + (cι′ − cι)

)
∩ U

pι′
πι,ι′ (α)(n

pι − 2) 	= ∅

(where α = ϕι(x) ∈ wι). �
The following theorem is the consequence of results presented in this section.

Theorem 5.13. Assume that

(1) (H,+, 0) is an Abelian perfect Polish group,
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(2) the set of elements of H of order larger than 2 is dense in H,
(3) 2 ≤ k < ω and
(4) ε < ω1 and λ is an uncountable cardinal such that NPrε(λ) holds true.

Then there is a ccc forcing notion P of cardinality λ such that

⊩P “for some Σ0
2 subset B of H we have:

there is a set X ⊆ H of cardinality λ such that (
∀x, y ∈ X

)(∣∣(x + B) ∩ (y + B)
∣∣ ≥ k

)
but there is no perfect set P ⊆ H such that (

∀x, y ∈ P
)(∣∣(x + B) ∩ (y + B)

∣∣ ≥ k
)
”.

6. Forcing for groups with all elements of order ≤ 2

Let us consider the situation when the main (algebraic) assumption of the previous section fails: the set 
of elements of H of order larger than 2 is NOT dense in H. Let H2 = {a ∈ H : a+ a = 0}, so H2 is a closed 
subgroup of H and its complement H \H2 is not dense in H. Consequently, the interior of H2 is not empty 
and thus also H2 is an open subset of H. If H is a perfect Polish group, so is H2. Each coset of H2 is clopen 
and consequently H/H2 is countable.

Suppose that T ⊆ H2 is a Borel set with λ many k--overlapping translations but without a perfect set of 
such translations. Then T is also a Borel subset of H and it still has λ many k--overlapping translations. If 
P ⊆ H is a perfect set, then (as |H/H2| ≤ ω) for some a ∈ H the intersection P ∩ (H2 + a) is uncountable. 
Consider Q =

(
P ∩ (H2 +a)

)
−a ⊆ H2 �- it is a closed uncountable subset of H2 (so contains a perfect set) 

and by the assumptions on T there are c, d ∈ Q such that 
∣∣(T + c) ∩ (T + d)

∣∣ < k. Then c + a, d + a ∈ P

and 
∣∣(T + (c + a)) ∩ (T + (d + a))

∣∣ =
∣∣((T + c) ∩ (T + d)

)
+ a

∣∣ < k.
Consequently, to completely answer the problem of Borel sets with non–disjoint translations it is enough 

to deal with the case of all elements of H being of order ≤ 2. The arguments in this case are similar to those 
from Section 5, but they are simpler. However, there is one substantial difference. If H is a Polish group 
with all elements of order ≤ 2 and B ⊆ H is an uncountable Borel set, then B has a perfect set of pairwise 
2--overlapping translations. Namely, choosing a perfect set P ⊆ B we will have x+y, 0 ∈ (B+x)∩(B+y) for 
each x, y ∈ P . Moreover, if x+b0 = y+b1, then also x+b1 = y+b0. Therefore, if x 	= y and (B+x)∩(B+y)
is finite, then |(B + x) ∩ (B + y)| must be even. For that reason the meaning of k in our forcing here will 
be slightly different: the translations of the new Borel set will have at least 2k elements.

Assumption 6.1. In the rest of the section we assume the following:

(1) (H,+, 0), D, ρ and U are as in Assumption 5.1.
(2) All elements of H have orders at most 2.
(3) 1 < k < ω.
(4) ε is a countable ordinal and λ is an uncountable cardinal such that NPrε(λ) holds true. The model 

M(ε, λ) and functions rksp, j and k on [λ]<ω \ {∅} are as fixed in Definition 2.6.

In groups with all elements of order two we should use a weaker notion of independence.

Definition 6.2. Let (H,+, 0) be an Abelian group

(1) A set B ⊆ H is quasi− independent in H if |B| ≥ 8 and if for all distinct b0, b1, b2, . . . , b7 ∈ B and any 
e0, e1, e2, . . . , e7 ∈ {0, 1} not all equal 0, we have
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e0b0 + e1b1 + e2b2 + e3b3 + e4b4 + e5b5 + e6b6 + e7b7 	= 0.

(2) A family {Vi : i ≤ n} of disjoint subsets of H is a qif− if for each choice of bi ∈ Vi, i ≤ n, the set 
{bi : i ≤ n} is quasi− independent.

Proposition 6.3. Assume that

(i) (H,+, 0) is a perfect Abelian Polish group,
(ii) U0, . . . , Un are nonempty open subsets of H, n ≥ 7.

Then there are non-empty open sets Vi ⊆ Ui (for i ≤ n) such that {Vi : i ≤ n} is a qif−.

Proof. Similar to Proposition 3.3. �
The forcing notion used in the case of groups with all elements of order ≤ 2 is almost the same as the one 

introduced in Definition 5.3. The only difference is that instead of 8--good qifs we use the weaker concept of 
qifs−. (There are no 8--good qifs in the current case.) Since in the current case, a− b = a + b for a, b ∈ H, 
we still can repeat all needed ingredients of Section 5. To stress the importance of this property we will 
consistently use the addition + rather than subtraction −.

Definition 6.4. (A) Let Q be the collection of all tuples

p =
(
wp,Mp, r̄p, np, Ῡp, V̄ p, hp

)
=

(
w,M, r̄, n, Ῡ, V̄ , h

)

such that the following demands (⊗)1--(⊗)8 are satified.

(⊗)1 w ∈ [λ]<ω, |w| ≥ 4, 0 < M < ω, 3 ≤ n < ω and r̄ = 〈rm : m < M〉 where rm ≤ n− 2 for m < M .
(⊗)2 Ῡ = 〈Ūα : α ∈ w〉 where each Ūα = 〈Uα(�) : � ≤ n〉 is a ⊆--decreasing sequence of elements of U .
(⊗)3 V̄ = 〈Qi,α,β , Vi,α,β ,Wi,α,β : i < k, (α, β) ∈ w〈2〉〉 ⊆ U and Qi,α,β = Qi,β,α ⊇ Vi,α,β = Vi,β,α ⊇

Wi,α,β = Wi,β,α for all i < k and (α, β) ∈ w〈2〉.
(⊗)4 (a) The indexed family 〈Uα(n − 2) : α ∈ w〉
〈Qi,α,β : i < k, α, β ∈ w, α < β〉 is a qif− (so in 

particular the sets in this system are pairwise disjoint), and
(b) 〈Uα(n) : α ∈ w〉
〈Wi,α,β : i < k, α, β ∈ w, α < β〉 is immersed in 〈Uα(n− 1) : α ∈ w〉
〈Vi,α,β :

i < k, α, β ∈ w, α < β〉 and 〈Uα(n− 1) : α ∈ w〉
〈Vi,α,β : i < k, α, β ∈ w, α < β〉 is immersed 
in 〈Uα(n− 2) : α ∈ w〉
〈Qi,α,β : i < k, α, β ∈ w, α < β〉.

(⊗)5 (a) If α, β ∈ w, � ≤ n and Uα(�) ∩ Uβ(�) 	= ∅, then Uα(�) = Uβ(�), and
(b) if α, β, γ ∈ w, � ≤ n, Uα(�) 	= Uβ(�) and a ∈ Uα(�), b ∈ Uβ(�), then ρ(a, b) > diamρ

(
Uγ(�)

)
.

(⊗)6 h : w〈2〉 onto −→ M is such that h(α, β) = h(β, α) for (α, β) ∈ w〈2〉.
(⊗)7 Assume that u, u′ ⊆ w, π and � ≤ n are such that

• 4 ≤ |u| = |u′| and π : u −→ u′ is a bijection,
• rh(α,β) ≤ � for all (α, β) ∈ u〈2〉,
• Uα(�) ∩ Uβ(�) = ∅ and h(α, β) = h(π(α), π(β)) for all distinct α, β ∈ u,
• for some c ∈ H, for all α ∈ u, we have 

(
Uα(�) + c

)
∩ Uπ(α)(�) 	= ∅.

Then rksp(u) = rksp(u′), j(u) = j(u′), k(u) = k(u′) and for α ∈ u

|α ∩ u| = k(u) ⇔ |π(α) ∩ u′| = k(u).

(⊗)8 Assume that
• ∅ 	= u ⊆ w, rksp(u) = −1, � ≤ n and
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• α ∈ u is such that |α ∩ u| = k(u), and
• rh(β,β′) ≤ � and Uβ(�) ∩ Uβ′(�) = ∅ for all (β, β′) ∈ u〈2〉.
Then there is no α′ ∈ w \ u such that Uα(�) = Uα′(�) and h(α, β) = h(α′, β) for all β ∈ u \ {α}.

(B) For p ∈ Q and m < Mp we dfine

F (p,m) =
⋃{

Up
α(np) + W p

i,α,β : (α, β) ∈ (wp)〈2〉 ∧ i < k ∧ hp(α, β) = m
}
.

(C) For p, q ∈ Q we declare that p ≤ q if and only if

• wp ⊆ wq, Mp ≤ Mq, r̄q↾Mp = r̄p, np ≤ nq, hq↾(wp)〈2〉 = hp, and
• if α ∈ wp and � ≤ np then Uq

α(�) = Up
α(�), and

• if (α, β) ∈ (wp)〈2〉, i < k, then Qq
i,α,β ⊆ Qp

i,α,β , V q
i,α,β ⊆ V p

i,α,β , and W q
i,α,β ⊆ W p

i,α,β , and
• if m < Mp, then F (q,m) ⊆ F (p,m).

Lemma 6.5. 

(1) (Q,≤) is a partial order of size λ.
(2) The following sets are dense in Q:

(i) D0
γ,M,n =

{
p ∈ Q : γ ∈ up ∧ Mp > M ∧ np > n

}
for γ < λ and M,n < ω.

(ii) D1
N =

{
p ∈ Q: for all i, j < k and (α, β), (γ, δ) ∈ (wp)〈2〉 it holds that diamρ(Up

α(np − 2)) < 2−N

and diamρ(Qp
i,α,β) < 2−N and diamρ(Up

α(np − 2) +Qp
i,α,β) < 2−N and if (i, α∗, α, β) 	= (j, γ∗, γ, δ)

then 
(
Up
α∗(np) + W p

i,α,β

)
∩
(
Up
γ∗(np) + W p

i,γ,δ

)
= ∅

}
. for N < ω.

(iii) D2
N =

{
p ∈ D1

N : for some 〈Q∗
i,α,β : i < k, α, β ∈ wp, α < β〉 ⊆ U the system 〈Up

α(n − 3) : α ∈
wp〉
〈Q∗

i,α,β : i < k, α, β ∈ wp, α < β〉 is a qif− and 〈Up
α(n − 2) : α ∈ wp〉
〈Qi,α,β : i < k, α, β ∈

wp, α < β〉 is immersed in it 
}
.

(3) Assume p ∈ Q. Then there is q ≥ p such that nq ≥ np + 3, wq = wp and
• for all α ∈ wp, cl

(
Uq
α(nq − 2)

)
⊆ Up

α(np), and
• for all i < k and (α, β) ∈ (wp)〈2〉,

cl
(
Uq
α(nq − 2) + Qq

i,α,β

)
⊆ Up

α(np) + W p
i,α,β and cl

(
Qq

i,α,β

)
⊆ W p

i,α,β .

Proof. Same as for 5.4 (just using Proposition 6.3). �
Lemma 6.6. Suppose that p ∈ D2

1 and α, β, γ, δ ∈ wp are such that α 	= β. If

(
Up
α(np − 2) + Up

β (np − 2)
)
∩
(
Up
γ (np − 2) + Up

δ (np − 2)
)
	= ∅,

then {α, β} = {γ, δ}.

Proof. Similar to 5.5, remembering 〈Up
α(n − 2) : α ∈ wp〉 is immersed in a qif− 〈Up

α(n − 3) : α ∈ wp〉; see 
6.5(2)(iv). �
Lemma 6.7. The forcing notion Q has the Knaster property.

Proof. Same as Lemma 5.6, but when defining a bound q to pξ, pζ modify the demands to have nq = npζ +4
and q ∈ D2

1. �
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Lemma 6.8. For each (α, β) ∈ λ〈2〉 and i < k,

⊩Q “the sets ⋂{
Up
α(np) : p ∈ G

˜ Q ∧ α ∈ wp
}

and 
⋂{

W p
i,α,β : p ∈ G

˜ Q ∧ α, β ∈ wp
}

have exactly one element each.''

Proof. Follows from Lemma 6.5. �
Definition 6.9. 

(1) For (α, β) ∈ λ〈2〉 and i < k let η
˜
α, ν

˜ i,α,β and h
˜α,β be Q--names such that

⊩Q “{η
˜
α} =

⋂{
Up
α(np) : p ∈ G

˜ Q ∧ α ∈ wp
}
,

{ν
˜ i,α,β} =

⋂{
W p

i,α,β : p ∈ G
˜ Q ∧ α, β ∈ wp

}
h
˜α,β = hp(α, β) for some (all) p ∈ G

˜ Q such that α, β ∈ wp.''

(2) For m < ω let F
˜ m be a Q--name such that

⊩Q ``F
˜ m =

⋂{
F (p,m) : m < Mp ∧ p ∈ G

˜ Q

}
.”

Lemma 6.10. 

(1) For each m < ω, ⊩Q ``F
˜ m is a closed subset of H.''

(2) For i < k and (α, β) ∈ λ〈2〉 we have

⊩Q ``η
˜
α, ν˜ i,α,β ∈ H, h

˜α,β < ω, ν
˜ i,α,β = ν

˜ i,β,α and η
˜
α + ν

˜ i,α,β ∈ F
˜ h

˜α,β
.”

(3) ⊩Q ``〈η
˜
α, ν˜ i,α,β : i < k, α < β < λ〉 is quasi− independent.''

(4) ⊩Q ``ν
˜0,α,β , . . . , ν˜k−1,α,β , (ηα + ηβ + ν

˜0,α,β), . . . , (ηα + ηβ + ν
˜k−1,α,β) are distinct elements of 

(
η
˜
α +⋃

m<ω
F
˜ m

)
∩
(
η
˜
β +

⋃
m<ω

F
˜ m

)
.''

Proof. Should be clear. �
Lemma 6.11. Let p = (w,M, r̄, n, Ῡ, V̄ , h) ∈ D1

1 ⊆ Q (cf. 6.5(ii)) and a�, b� ∈ H and U�,W� ∈ U (for � < 4) 
be such that the following conditions are satified.

(⊛)1 U� ∈ {Uα(n) : α ∈ w}, W� ∈ {Wi,α,β : i < k, (α, β) ∈ w〈2〉} (for � < 4).
(⊛)2 (U� + W�) ∩ (U�′ + W�′) = ∅ for � < �′ < 4.
(⊛)3 a� ∈ U� and b� ∈ W� and a� + b� ∈

⋃
m<M

F (p,m) for � < 4.

(⊛)4 (a0 + b0) + (a1 + b1) = (a2 + b2) + (a3 + b3).

Then for some (α, β) ∈ w〈2〉 and distinct i, j < k one of the following three conditions holds.

(A)
{
{U0 + W0, U1 + W1}, {U2 + W2, U3 + W3}

}
={

{Uα(n) + Wi,α,β , Uβ(n) + Wi,α,β}, {Uα(n) + Wj,α,β, Uβ(n) + Wj,α,β}
}
.

(B)
{
{U0 + W0, U1 + W1}, {U2 + W2, U3 + W3}

}
={

{Uα(n) + Wi,α,β , Uα(n) + Wj,α,β}, {Uβ(n) + Wi,α,β , Uβ(n) + Wj,α,β}
}
.
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(C)
{
{U0 + W0, U1 + W1}, {U2 + W2, U3 + W3}

}
={

{Uα(n) + Wi,α,β , Uβ(n) + Wj,α,β}, {Uα(n) + Wj,α,β, Uβ(n) + Wi,α,β}
}
.

Proof. The arguments here are very similar to those in Lemma 5.10. Note that the assumption (⊛)2 here 
is slightly stronger than there (to compensate for weaker qifs). Also our conclusion here is arguably weaker, 
but this is a necessity caused by the fact that a− b = a + b in H.

For � < 4 let U−
� , U−−

� and V�, Q� be such that

• if U� = Uα(n) then U−
� = Uα(n− 1), U−−

� = Uα(n− 2),
• if W� = Wi,α,β then V� = Vi,α,β , Q� = Qi,α,β .

Using steps as in 5.10, one can show that

(*) For every W,U we have

|{� < 4 : W� = W}| < 3 and |{� < 4 : U� = U}| < 3.

Now, since p ∈ D2
1, it follows from our assumption (⊛)3 that

(**) for each � < 4, for some α = α(�), β = β(�), and i = i(�) we have U� = Uα(n) and W� = Wi,α,β .

By assumption (⊛)4 we know that

0 ∈ U0 + U1 + U2 + U3 + W0 + W1 + W2 + W3.

If all of Ui’s are distinct, then 0 ∈ U−
0 + U−

1 + U−
2 + U−

3 + X, where X = {0} or X = Wi + Wj for 
some i < j < 4 with Wi 	= Wj or X = W0 + W1 + W2 + W3 with all Wi’s distinct (remember (*)). This 
contradicts 6.4(A)(⊗)4. Similarly if all Wi’s are distinct.

So suppose |{U0, U1, U2, U3}| = 3. Then for some � < �′ < 4, U� 	= U�′ and

0 ∈ U−
� + U−

�′ + W0 + W1 + W2 + W3 ⊆ U−−
� + U−−

�′ + X,

where X = {0} or X = Wi + Wj for some i < j < 4 with Wi 	= Wj or X = W0 + W1 + W2 + W3 with all 
Wi’s distinct (remember (*)). This again contradicts 6.4(A)(⊗)4. Similarly if |{W0,W1,W2,W3}| = 3.

Consequently, |{U0, U1, U2, U3}| = 2 = |{W0,W1,W2,W3}|. Moreover for some distinct α, β ∈ w we have

|{� < 4 : U� = Uα(n)}| = |{� < 4 : U� = Uβ(n)}| = 2

and for some (i, γ, δ) 	= (j, ε, ζ) we have

|{� < 4 : W� = Wi,γ,δ}| = |{� < 4 : W� = Wj,ε,ζ}| = 2.

Now we consider all possible cofigurations.

Case 1 U0 = U1, U2 = U3, say they are respectively Uα(n) and Uβ(n). 
Necessarily W0 	= W1 and W2 	= W3.

If W0 = W2, W1 = W3 then recalling (**) above, we also get {γ, δ} = {ε, ζ} = {α, β} and (possibly after 
interchanging i and j) W0 = Wi,α,β , W1 = Wj,α,β . This gives conclusion (B).

If W0 = W3, W1 = W2 then again by (**) above, we get {γ, δ} = {ε, ζ} = {α, β} and (possibly after 
interchanging i and j) W0 = Wi,α,β , W1 = Wj,α,β . This also gives conclusion (B).
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Case 2 U0 = U2, U1 = U3, say they are respectively Uα(n) and Uβ(n). 
Necessarily W0 	= W2 and W1 	= W3.

If W0 = W1, W2 = W3 then recalling (**) above, we also get {γ, δ} = {ε, ζ} = {α, β}. After possibly 
interchanging i and j, W0 = Wi,α,β , W2 = Wj,α,β and we get conclusion (A).

If W0 = W3, W1 = W2 then again by (**), we have {γ, δ} = {ε, ζ} = {α, β}. After possibly interchanging 
i and j, W0 = Wi,α,β , W1 = Wj,α,β . This leads to conclusion (C).

Case 3 U0 = U3, U1 = U2, say they are respectively Uα(n) and Uβ(n). 
Necessarily W0 	= W3 and W1 	= W2.

If W0 = W1, W2 = W3 then like above we get {γ, δ} = {ε, ζ} = {α, β}. After possibly interchanging i
and j, W0 = Wi,α,β , W2 = Wj,α,β and we get conclusion (A).

If W0 = W2, W1 = W3 then we also have {γ, δ} = {ε, ζ} = {α, β} and after possibly interchanging i and 
j, W0 = Wi,α,β , W1 = Wj,α,β . This leads to conclusion (C). �
Lemma 6.12. Let p = (w,M, r̄, n, Ῡ, V̄ , h) ∈ D2

1 and X ⊆ H, |X| ≥ 5. Suppose that ai(x, y), bi(x, y), Ui(x, y)
and Wi(x, y) for x, y ∈ X, x 	= y and i < k satisfy the following demands (i)--(iv) (for all x 	= y, i 	= i′).

(i) Ui(x, y) ∈ {Uα(n) : α ∈ w}, Wi(x, y) ∈ {Wj,α,β : j < k, (α, β) ∈ w〈2〉}.
(ii) •

(
Ui(x, y) + Wi(x, y)

)
∩
(
Ui(y, x) + Wi(y, x)

)
= ∅,

•
(
Ui(x, y) + Wi(x, y)

)
∩
(
Ui′(x, y) + Wi′(x, y)

)
= ∅,

•
(
Ui(x, y) + Wi(x, y)

)
∩
(
Ui′(y, x) + Wi′(y, x)

)
= ∅.

(iii) ai(x, y) ∈ Ui(x, y) and bi(x, y) ∈ Wi(x, y), and
ai(x, y) + bi(x, y) ∈

⋃
m<M

F (p,m).

(iv) x + y =
(
ai(x, y) + bi(x, y)

)
+
(
ai(y, x) + bi(y, x)

)
.

Then

(1) X + X ⊆
⋃{

Uα(n− 2) + Uβ(n− 2) : α, β ∈ w
}
.

(2) If (x, y) ∈ X〈2〉 and x + y ∈ Uα(n− 2) + Uβ(n − 2), α, β ∈ w, then α 	= β and for each i < k we have 
ai(x, y) + bi(x, y), ai(y, x) + bi(y, x) ∈ F (p, h(α, β)).

Proof. (1) Fix x, y ∈ X, x 	= y, for a moment.
Let i 	= i′, i, i′ < k. We may apply Lemma 6.11 for Ui(x, y), Wi(x, y), Ui(y, x), Wi(y, x), ai(x, y), bi(x, y), 

ai(y, x), bi(y, x) here as U0,W0, U1,W1, a0, b0, a1, b1 there and for similar objects with i′ in place of i as 
U2,W2, U3,W3, a2, b2, a3, b3 there. This will produce distinct α = α(x, y, i, i′), β = β(x, y, i, i′) ∈ w and 
distinct j = j(x, y, i, i′), j′ = j′(x, y, i, i′) < k such that

either (A)α,β,j,j
′

x,y,i,i′ :{
{Ui(x, y) + Wi(x, y), Ui(y, x) + Wi(y, x)}, {Ui′(x, y) + Wi′(x, y), Ui′(y, x) + Wi′(y, x)}

}
={

{Uα(n) + Wj,α,β, Uβ(n) + Wj,α,β}, {Uα(n) + Wj′,α,β , Uβ(n) + Wj′,α,β}
}
,

or (B)α,β,j,j
′

x,y,i,i′ :{
{Ui(x, y) + Wi(x, y), Ui(y, x) + Wi(y, x)}, {Ui′(x, y) + Wi′(x, y), Ui′(y, x) + Wi′(y, x)}

}
={

{Uα(n) + Wj,α,β, Uα(n) + Wj′,α,β}, {Uβ(n) + Wj,α,β, Uβ(n) + Wj′,α,β}
}
,

or (C)α,β,j,j
′

x,y,i,i′ :{
{Ui(x, y) + Wi(x, y), Ui(y, x) + Wi(y, x)}, {Ui′(x, y) + Wi′(x, y), Ui′(y, x) + Wi′(y, x)}

}
={

{Uα(n) + Wj,α,β, Uβ(n) + Wj′,α,β}, {Uα(n) + Wj′,α,β , Uβ(n) + Wj,α,β}
}
.

Plainly,
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(�)x,y1 if for some i 	= i′ and α, β, j, j′ the clause (A)α,β,j,j
′

x,y,i,i′ holds true, 
then x + y ∈ Uα(n− 2) + Uβ(n− 2).

It should be also clear that for each x 	= y and distinct i, i′, i′′,

(�)2 if (B)α,β,j,j
′

x,y,i,i′ holds true, then also (B)α,β,j,j
′

x,y,i,i′′ holds true,

and

(�)3 if (C)α,β,j,j
′

x,y,i,i′ holds true, then also (C)α,β,j,j
′

x,y,i,i′′ holds true,

Consequently, if k ≥ 3 then by argument similar to 5.11 (case k ≥ 3) for any x 	= y from X neither of 
possibilities (B)α,β,j,j

′

x,y,i,i′ nor (C)α,β,j,j
′

x,y,i,i′ can hold. Therefore we may easily finish the proof of Lemma 6.12
(when k ≥ 3).

So assume k = 2. For each x 	= y from X we fix α = α(x, y) and β = β(x, y) such that either (A)α,β,0,1x,y,0,1

or (B)α,β,0,1x,y,0,1 or (C)α,β,0,1x,y,0,1 . Let χ(x, y) = χ(y, x) ∈ {A,B,C} and θ(x, y) = θ(y, x) ∈ [w]2 be such that (
χ(x, y)

)θ(x,y),0,1
x,y,0,1 holds true.

Claim 6.12.1. If x, y, z ∈ X are distinct and χ(x, y) = χ(y, z) = A, then χ(x, z) = A.

Proof of the Claim. Let χ(x, y) = A = χ(y, z) and θ(x, y) = {α, β}, θ(y, z) = {γ, δ}. Assume towards 
contradiction that χ(x, z) ∈ {B,C} and let θ(x, z) = {ξ, ζ}. Then for some ξ′, ζ ′ ∈ {ξ, ζ} we have

x + z ∈ Uξ′(n) + Uζ′(n) + W0,ξ,ζ + W1,ξ,ζ .

• If |{α, β} ∩ {γ, δ}| = 1, say α = γ, β 	= δ, and {ξ, ζ} = {ξ′, ζ ′} = {β, δ}, then

x + z ∈ Uα(n) + Uα(n) + Uβ(n) + Uδ(n) + Wi,α,β + Wi,α,β + Wj,α,δ + Wj,α,δ

but also x + z ∈ Uβ(n) + Uδ(n) + W0,β,δ + W1,β,δ. Consequently,

0 ∈
(
(Uα(n) + Uα(n)) + Uβ(n)

)
+
(
Uβ(n) + (Uδ(n) + Uδ(n))

)
+(

(Wi,α,β + Wi,α,β) + W0,β,δ
)

+
(
(Wj,α,δ + Wj,α,δ) + W1,β,δ

)
⊆

Uβ(n− 1) + Uβ(n− 1) + V0,β,δ + V1,β,δ ⊆ Q0,β,δ + Q1,β,δ.

This immediately contradicts 6.4(A)(⊗)4.
• If |{α, β} ∩ {γ, δ}| = 1, say α = γ, β 	= δ, and ξ′ 	= ζ ′, |{ξ′, ζ ′} ∩ {β, δ}| = 1, say ξ′ = β, then by similar 
considerations we arrive to

0 ∈
(
(Uα(n) + Uα(n)) + Uδ(n)

)
+

(
(Uβ(n) + Uβ(n)) + Uζ′(n)

)
+(

(Wi,α,β + Wi,α,β) + W0,β,ζ′
)

+
(
(Wj,α,δ + Wj,α,δ) + W1,β,ζ′

)
⊆

Uδ(n− 1) + Uζ′(n− 1) + V0,β,ζ′ + V1,β,ζ′ .

In our case necessarily δ 	= ζ ′ so we easily get contradiction with 6.4(A)(⊗)4.
• If |{α, β} ∩ {γ, δ}| = 1, say α = γ, β 	= δ, and ξ′ 	= ζ ′ and {ξ′, ζ ′} ∩ {β, δ} = ∅, then

0 ∈
(
(Uα(n) + Uα(n)) + Uβ(n)

)
+ Uδ(n) + Uξ(n) + Uζ(n)+(

(Wi,α,β + Wi,α,β) + W0,ξ,ζ
)

+
(
(Wj,α,δ + Wj,α,δ) + W1,ξ,ζ

)
⊆

Uβ(n− 1) + Uδ(n) + Uξ(n) + Uζ(n) + V0,ξ,ζ + V1,ξ,ζ ,
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and β, δ, ξ, ζ are all pairwise distinct. This again contradicts 6.4(A)(⊗)4.
• If |{α, β} ∩ {γ, δ}| = 1, say α = γ, β 	= δ, and ξ′ = ζ ′, then

0 ∈
(
(Uα(n) + Uα(n)) + Uβ(n)

)
+
(
(Uξ′(n) + Uξ′(n)) + Uδ(n)

)
+(

(Wi,α,β + Wi,α,β) + W0,ξ,ζ
)

+
(
(Wj,α,δ + Wj,α,δ) + W1,ξ,ζ

)
⊆

Uβ(n− 1) + Uδ(n− 1) + V0,ξ,ζ + V1,ξ,ζ ,

and β 	= δ. Again contradiction with 6.4(A)(⊗)4.
• If {α, β} = {γ, δ}, then we arrive to

0 ∈
(
(Uα(n) + Uα(n)) + Uξ′(n)

)
+
(
(Uβ(n) + Uβ(n)) + Uζ′(n)

)
+(

(Wi,α,β + Wi,α,β) + W0,ξ,ζ
)

+
(
(Wj,α,β + Wj,α,β) + W1,ξ,ζ

)
⊆

Uξ′(n− 1) + Uζ′(n− 1) + V0,ξ,ζ + V1,ξ,ζ .

Considering cases ξ′ = ζ ′ and ξ′ 	= ζ ′ separately we easily get a contradiction with 6.4(A)(⊗)4.
• If {α, β} ∩ {γ, δ} = ∅, then

0 ∈
(
(Wi,α,β + Wi,α,β) + Uα(n)

)
+

(
(Wj,γ,δ + Wj,γ,δ) + Uβ(n)

)
+

Uγ(n) + Uδ(n) + Uξ′(n) + Uζ′(n) + W0,ξ,ζ + W1,ξ,ζ ⊆
Uα(n−1) + Uβ(n−1) + Uγ(n) + Uδ(n) + Uξ′(n) + Uζ′(n) + W0,ξ,ζ + W1,ξ,ζ .

If ξ′ = ζ ′ then this gives

0 ∈ Uα(n−1) + Uβ(n−1) + Uγ(n) + Uδ(n− 1) + W0,ξ,ζ + W1,ξ,ζ ,

a contradiction. So ξ′ 	= ζ ′ and we ask what is the intersection {ξ′, ζ ′} ∩ {α, β, γ, δ}. In each possible case 
we also get a contradiction. �
Claim 6.12.2. If χ(x, y) = A and z ∈ X \ {x, y}, then either χ(x, z) 	= A or θ(x, z) 	= θ(x, y).

Proof of the Claim. Suppose χ(x, y) = χ(x, z) = A and θ(x, y) = θ(x, z) = {α, β}. By 6.12.1 we know that 
χ(y, z) = A. Hence for some ξ 	= ζ and i < 2 we have

y + z ∈ Uξ(n) + Uζ(n) + Wi,ξ,ζ + Wi,ξ,ζ .

Also,

y + z = y + x + x + z ∈ Uα(n) + Uβ(n) + W0,α,β + W0,α,β + Uα(n) + Uβ(n) + W0,α,β + W0,α,β .

Hence 0 ∈ Uξ(n− 1) + Uζ(n− 1) + Vi,ξ,ζ + Vi,ξ,ζ , and we get contradiction as usual. �
Claim 6.12.3. χ(x, y) 	= B for any distinct x, y ∈ X.

Proof of the Claim. Suppose χ(x, y) = B, θ(x, y) = {α, β}. By 6.12.2 we may choose z ∈ X \ {x, y} such 
that

(�)z
(
χ(x, z), θ(x, z)

)
	=

(
A, {α, β}

)
	=

(
χ(y, z), θ(y, z)

)
.

[Why is it possible? First take t / ∈ {x, y} and ask if it has the property described in (�)t. If not, then θ(x, t) =
θ(y, t) = {α, β} and either χ(x, t) = A or χ(y, t) = A. Say the former holds true. Pick u ∈ X \ {x, y, t} and 
ask if this element has the property (�)u. By Claim 6.12.2 we have
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(χ(x, u), θ(x, u)) 	= (χ(x, t), θ(x, t)) = (A, {α, β}),

so if (�)u fails this can be only because (χ(y, u), θ(y, u)) = (A, {α, β}). Taking z ∈ X \ {x, y, t, u} and 
applying Claim 6.12.2 twice (with {x, t} and {y, u}) we immediately see that (�)z holds true.]

By Claim 6.12.1 we know that either χ(x, z) 	= A or χ(y, z) 	= A; by the symmetry we may assume 
χ(x, z) 	= A. Now we consider the other possibilities for the value of χ(x, z). 
(i) If χ(x, z) = B and θ(x, z) = {α, β}, then

x + y, x + z ∈ Uα(n) + Uα(n) + W0,α,β + W1,α,β .

Hence y + z ∈ Uα(n− 1) + Uα(n− 1) + Uα(n) + Uα(n). Also, for some ξ′, ζ ′ ∈ θ(y, z) = {ξ, ζ} and i, j < 2
we have

y + z ∈ Uξ′(n) + Uζ′(n) + Wi,ξ,ζ + Wj,ξ,ζ ,

where either ξ′ 	= ζ ′ or i 	= j. Thus

0 ∈ Uα(n− 1) + Uα(n− 1) + Uα(n) + Uα(n) + Uξ′(n) + Uζ′(n) + Wi,ξ,ζ + Wj,ξ,ζ
def= Y.

If ξ′ = ζ ′ then i 	= j and

Y ⊆ Uα(n− 1) + Uα(n− 1) + Uα(n− 1) + Uα(n) + W0,ξ,ζ + W1,ξ,ζ ⊆ Q0,ξ,ζ + Q1,ξ,ζ ,

and we get a contradiction with 6.4(A)(⊗)4. If ξ′ 	= ζ ′ then

Y ⊆ Uξ′(n− 2) + Uζ′(n− 1) + Wi,ξ,ζ + Wj,ξ,ζ

and regardless of i being equal to j or not, we may get a contradiction too. 
(ii) If χ(x, z) = B and θ(x, z) = {γ, δ} 	= {α, β}, then

x + z ∈ Uγ(n) + Uγ(n) + W0,γ,δ + W1,γ,δ and
x + y ∈ Uα(n) + Uα(n) + W0,α,β + W1,α,β .

Hence y+ z ∈ V0,γ,δ +W1,γ,δ +V0,α,β +W1,α,β . Like before, for some ξ′, ζ ′ ∈ θ(y, z) = {ξ, ζ} and i, j < 2 we 
have

y + z ∈ Uξ′(n) + Uζ′(n) + Wi,ξ,ζ + Wj,ξ,ζ ,

where either ξ′ 	= ζ ′ or i 	= j. Since {V0,γ,δ, V1,γ,δ} ∩ {V0,α,β , V1,α,β} = ∅, like before we get a contradiction 
with 6.4(A)(⊗)4. 
(iii) If χ(x, z) = C and θ(x, z) = {α, β}, then

x + y ∈ Uα(n) + Uα(n) + W0,α,β + W1,α,β
x + z ∈ Uα(n) + Uβ(n) + W0,α,β + W1,α,β .

Also, y + z ∈ Uξ′(n) + Uζ′(n) + Wi,ξ,ζ + Wj,ξ,ζ , where ξ′, ζ ′ ∈ θ(y, z) = {ξ, ζ}, i, j < 2 and either ξ′ 	= ζ ′ or 
i 	= j. We consider 2 subcases now.

If i = j then (ξ′ 	= ζ ′ and) χ(y, z) = A so by the choice of z at the beginning we know that θ(y, z) 	= {α, β}. 
So we arrive to
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0 ∈
(
(Uα(n) + Uα(n)) + Uα(n)

)
+

(
(Wi,ξ,ζ + Wi,ξ,ζ) + Uβ(n)

)
+(

(W0,α,β + W0,α,β) + Uξ(n)
)

+
(
(W1,α,β + W1,α,β) + Uζ(n)

)
⊆

Uα(n− 1) + Uβ(n− 1) + Uξ(n− 1) + Uζ(n− 1)

and since {ξ, ζ} 	= {α, β} a contradiction follows.
If i 	= j then we get

0 ∈
(
(Uα(n) + Uα(n)) + Uα(n)

)
+

(
(W0,α,β + W0,α,β) + Uβ(n)

)
+(

(W1,α,β + W1,α,β) + Uξ′(n)
)

+ Uζ′(n) + W0,ξ,ζ + W1,ξ,ζ ⊆
Uα(n− 1) + Uβ(n− 1) + Uξ′(n− 1) + Uζ′(n) + W0,ξ,ζ + W1,ξ,ζ ,

and again a contradiction. 
(iv) If χ(x, z) = C and θ(x, z) = {γ, δ} 	= {α, β}, then

x + z ∈ Uγ(n) + Uδ(n) + W0,γ,δ + W1,γ,δ and
x + y ∈ Uα(n) + Uα(n) + W0,α,β + W1,α,β , and
y + z ∈ Uξ′(n) + Uζ′(n) + Wi,ξ,ζ + Wj,ξ,ζ ,

where ξ′, ζ ′ ∈ θ(y, z) = {ξ, ζ}, i, j < 2 and either ξ′ 	= ζ ′ or i 	= j. Thus

0 ∈
(
Uγ(n) + (Uα(n) + Uα(n))

)
+ Uδ(n) + W0,γ,δ + W1,γ,δ+

W0,α,β + W1,α,β + Uξ′(n) + Uζ′(n) + Wi,ξ,ζ + Wj,ξ,ζ ⊆
Uγ(n− 1) + Uδ(n) + Uξ′(n) + Uζ′(n)+
W0,γ,δ + W1,γ,δ + W0,α,β + W1,α,β + Wi,ξ,ζ + Wj,ξ,ζ .

Since W0,γ,δ,W1,γ,δ,W0,α,β and W1,α,β are all distinct we get a contradiction in the usual manner. �
Claim 6.12.4. χ(x, y) 	= C for any distinct x, y ∈ X.

Proof of the Claim. Suppose towards contradiction χ(x, y) = C and let θ(x, y) = {α, β}. Let z ∈ X\{x, y}. 
By 6.12.1 we know that either χ(x, z) 	= A or χ(y, z) 	= A; by the symmetry we may assume χ(x, z) 	= A. 
By 6.12.3 we know that χ(x, z) 	= B, so χ(x, z) = C

If θ(x, y) = θ(x, z) = {α, β}, then y + z ∈ Uα(n− 1) + Uα(n) + Uβ(n− 1) + Uβ(n). We know that χ(y, z) ∈
{A,C} and in both cases y + z ∈ Uγ(n) + Uδ(n) + Wi,γ,δ + Wj,γ,δ, where θ(y, z) = {γ, δ} and i, j < 2. Now 
we may conclude

0 ∈ Uα(n− 1) + Uα(n) + Uβ(n− 1) + Uβ(n) + Uγ(n) + Uδ(n) + Wi,γ,δ + Wj,γ,δ
def= S.

If i 	= j then S ⊆ Uγ(n− 2) +Uδ(n− 2) +W0,γ,δ +W1,γ,δ and an immediate contradiction with 6.4(A)(⊗)4
follows. If i = j then S ⊆ Uγ(n − 2) + Uδ(n − 2) + Wi,γδ + Wi,γδ ⊆ Uγ(n − 3) + Uδ(n − 3) and we get a 
contradiction with p ∈ D3

1. 
If θ(x, z) = {ξ, ζ} 	= θ(x, y) = {α, β}, then {W0,ξ,ζ ,W1,ξ,ζ} ∩ {W0,α,β ,W1,α,β} = ∅ and

y + z ∈ Uα(n) + Uβ(n) + W0,α,β + W1,α,β + Uξ(n) + Uζ(n) + W0,ξ,ζ + W1,ξ,ζ .

Now, by considerations as before, we get a contradiction with 6.4(A)(⊗)4. �
Therefore,

(�) χ(x, y) = A for all distinct x, y ∈ X.

Sh:1187



A. Rosłanowski, S. Shelah / Annals of Pure and Applied Logic 176 (2025) 103565 43

Hence, if x 	= y are from X and θ(x, y) = {α, β}, then x + y ∈ Uα(n− 2) + Uβ(n− 2).

(2) Like Lemma 5.11, using Lemma 6.6. �
Lemma 6.13. Let p = (w,M, r̄, n, Ῡ, V̄ , h) ∈ D2

1 and X ⊆ H, |X| ≥ 5. Suppose that

(a) X + X ⊆
⋃
{Uα(n) + Uβ(n) : α, β ∈ w}, and

(b) diamρ

(
Uα(n)

)
< ρ(x, y) for all α ∈ w, (x, y) ∈ X〈2〉.

Then there is a c ∈ H such that

X + c ⊆
⋃

{Uα(n− 1) : α ∈ w}.

Proof. By assumption (b), if x, y ∈ X are distinct and x + y ∈ Uα(n) + Uβ(n), α, β ∈ w, then α 	= β. Also, 
if (x, y) ∈ X〈2〉 and x + y ∈

(
Uα(n) + Uβ(n)

)
∩
(
Uγ(n) + Uδ(n)

)
, then {α, β} = {γ, δ} (by 6.4(A)(⊗)4). 

Consequently, for each (x, y) ∈ X〈2〉 we may let θ(x, y) to be the unique {α, β} ∈ [w]2 such that x + y ∈
Uα(n) + Uβ(n).

Claim 6.13.1. 

|θ(x, y) ∩ θ(x, z)| = 1

whenever x, y, z ∈ X are distinct.

Proof of the Claim. Let θ(x, y) = {α, β}, θ(x, z) = {γ, δ} and θ(y, z) = {ξ, ζ}. Then

y + z ∈
(
Uα(n) + Uβ(n) + Uγ(n) + Uδ(n)

)
∩
(
Uξ(n) + Uζ(n)

)
.

Hence 0 ∈ Uα(n) +Uβ(n) +Uγ(n) +Uδ(n) +Uξ(n) +Uζ(n). Since α 	= β, γ 	= δ and ξ 	= ζ we conclude that 
{α, β} ∩ {γ, δ} 	= ∅ (remember 6.4(A)(⊗)4). If we had {α, β} = {γ, δ}, then 0 ∈ Uξ(n − 1) + Uζ(n − 1), a 
contradiction as well. Consequently |{α, β} ∩ {γ, δ}| = 1. �

Fix distinct x0, y0, z0 ∈ X. Let θ(x0, y0) = {α0, β0}, θ(x0, z0) = {γ0, α0} and let a′, a′′ ∈ Uα0(n), b0 ∈
Uβ0(n), c0 ∈ Uγ0(n) be such that x0 + y0 = a′ + b0 and x0 + z0 = a′′ + c0.

Let c = a′ + x0. We will show that x + c ∈
⋃
{Uα(n − 1) : α ∈ w} for all x ∈ X. To this end, first note 

that

• x0 + c = x0 + a′ + x0 = a′ ∈ Uα0(n),
• y0 + c = y0 + a′ + x0 = a′ + b0 + a′ = b0 ∈ Uβ0(n),
• z0 + c = z0 + a′ + x0 = a′′ + c0 + a′ ∈ Uγ0(n) + (Uα0(n) + Uα0(n)) ⊆ Uγ0(n− 1).

Now suppose x ∈ X \ {x0, y0, z0}. Let θ(x, x0) = {δ, ζ}, x + x0 = d + e, d ∈ Uδ(n), e ∈ Uζ(n).

(*) α0 ∈ {δ, ζ}.

Why? By Claim 6.13.1 we have |θ(x0, x) ∩ θ(x0, y0)| = |θ(x0, x) ∩ θ(x0, z0)| = 1. Hence if α0 / ∈ {δ, ζ}, then 
θ(x, x0) = {β0, γ0}. Take x′ ∈ X \ {x0, y0, z0, x} and note that (again by Claim 6.13.1)

∣∣θ(x0, x
′) ∩ {α0, β0}

∣∣ =
∣∣θ(x0, x

′) ∩ {α0, γ0}
∣∣ =

∣∣θ(x0, x
′) ∩ {γ0, β0}

∣∣ = 1,
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and this is clearly impossible.
By symmetry we may assume α0 = δ. But now

x + c = x + x0 + a′ = (d + a′) + e ∈ Uζ(n− 1),

so we are done. �
Lemma 6.14. 

⊩Q “there is no perfect set P ⊆ H such that 
(
∀x, y ∈ P

)(∣∣(x +
⋃

m<ω

F
˜ m

)
∩
(
y +

⋃
m<ω

F
˜ m

)∣∣ ≥ 2k
)
.''

Proof. Suppose towards contradiction that G ⊆ Q is generic over V and in V[G] the following assertion 
holds true:

for some perfect set P ⊆ H we have
∣∣∣(x +

⋃
m<ω

F
˜
G
m

)
∩
(
y +

⋃
m<ω

F
˜
G
m

)∣∣∣ ≥ 2k

for all x, y ∈ P .

Then for any distinct x, y ∈ P there are b0, c0, . . . , bk−1, ck−1 ∈
⋃

m<ω
F
˜
G
m such that x + y = bi + ci (for all 

i < k) and {bi, ci} ∩ {bi′ , ci′} = ∅ (for i < i′ < k); remember x + y = bi + ci implies that x + bi, x + ci are 
distinct elements of 

(
x +

⋃
m<ω

F
˜
G
m

)
∩
(
y +

⋃
m<ω

F
˜
G
m

)
. For �̄ = 〈�i : i < k〉 ⊆ ω, m̄ = 〈mi : i < k〉 ⊆ ω and 

N < ω let

ZN
�̄,m̄

=
{
(x, y) ∈ P 2 : there are ci ∈ F

˜
G
�i
, di ∈ F

˜
G
mi

(for i < k) such that 
x + y = bi + ci and 2−N < min

(
ρ(bi, bj), ρ(ci, bj), ρ(bi, cj)

)
for all distinct i, j < k

}
.

Now we continue as in 5.12, but instead of 3.5 we use 6.13. In (⊡)c4) as there we demand pι, qι ∈ D2
nι

. Also 
under current assumptions on H, Xι + cι = cι − Xι, so we have only one case. Otherwise the same proof 
works. �

The following theorem is a consequence of results presented in this section.

Theorem 6.15. Assume that

(1) (H,+, 0) is an Abelian perfect Polish group,
(2) all elements of H have order at most 2,
(3) 2 ≤ k < ω and
(4) ε < ω1 and λ is an uncountable cardinal such that NPrε(λ) holds true.

Then there is a ccc forcing notion Q of cardinality λ such that

⊩Q “for some Σ0
2 subset B of H we have:

there is a set X ⊆ H of cardinality λ such that (
∀x, y ∈ X

)(∣∣(x + B) ∩ (y + B)
∣∣ ≥ 2k

)
but there is no perfect set P ⊆ H such that (

∀x, y ∈ P
)(∣∣(x + B) ∩ (y + B)

∣∣ ≥ 2k
)
”.
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7. Conclusions and questions

Let us recall from the Introduction, that the spectrum of translation k--non-disjointness of a set A ⊆ H

is

stndk(A) = stndk(A,H) = {(x, y) ∈ H×H : |(A + x) ∩ (A + y)| ≥ k}.

By the definition, X ×X ⊆ stndk(A) if and only if

(
∀x, y ∈ X

)(∣∣(x + A) ∩ (y + A)
∣∣ ≥ k

)
.

In particular, there is a perfect square P × P included in stndk(A) if and only if A has a perfect set P of 
k--overlapping translations.

Conclusion 7.1. Assume that

(a) H = (H, 0,+) is a perfect Abelian Polish group,
(b) 1 < ι < ω and

• k = ι if {c ∈ H : c + c 	= 0} is dense in H, and
• k = 2ι otherwise,

(c) λ is an uncountable cardinal such that NPrε(λ) holds true for some countable ordinal ε, and
(d) λ = λℵ0 ≤ μ = μℵ0 .

Then there is a ccc forcing notion P∗ and a P∗--name B
˜

for a Σ0
2 subset of H such that

(1) ⊩P∗ ``2ℵ0 = μ'',
(2) ⊩P∗ ``there is a set X ⊆ H of cardinality λ such that X ×X ⊆ stndk(B˜

)'', but
(3) ⊩P∗ ``there is no set X ⊆ H of cardinality λ+ such that X ×X ⊆ stndk(B˜

)'', and
(4) ⊩P∗ ``there is no perfect set P ⊆ H such that P × P ⊆ stndk(B˜

)''.

Proof. Let us consider the case when (in assumption (b) of the Corollary) the set {c ∈ H : c + c 	= 0} is 
dense in H. The other case is fully parallel. So we assume

• (H,+, 0), D, ρ and U are as in Assumption 5.1 and Assumption 5.2,
• k, ε, λ, rksp, j,k and μ satisfy Assumption 5.2 and assumption (d) of the Corollary.

Let P be the forcing notion discussed in Section 5 (cf Theorem 5.13) and let Cμ be the forcing notion adding 
μ Cohen reals, where conditions are finite functions with domains included in μ and values 0, 1.

Let P∗ = P ×Cμ.
By standard arguments, P∗ is a ccc forcing notion and ⊩P∗ 2ℵ0 = μ. Let B

˜
be a P--name for the Σ0

2
subset of H added by P ⋖ P∗.

Claim 7.1.1. 

(2) ⊩P∗ ``there is a set X ⊆ H of cardinality λ such that

(
∀x, y ∈ X

)(∣∣(x + B
˜

) ∩ (y + B
˜

)
∣∣ ≥ k

)
”,

but
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(4) ⊩P∗ ``there is no perfect set P ⊆ H such that
(
∀x, y ∈ P

)(∣∣(x + B
˜

) ∩ (y + B
˜

)
∣∣ ≥ k

)
”.

Proof of the Claim. If H ⊆ Cμ is generic over V, then in V[H] we may look at the definition of the forcing 
notion P as all the ingredients still have the required properties. Identifying BV

n with BV[H]
n we easily see 

that PV = PV[H]. Hence P∗ is equivalent to the iteration Cμ ∗ P and consequently the results of Section 5
give the desired conclusion. �
Claim 7.1.2. 

(3) ⊩P∗ ``there is no set X ⊆ H of cardinality λ+ such that
(
∀x, y ∈ X

)(∣∣(x + B
˜

) ∩ (y + B
˜

)
∣∣ ≥ k

)
”.

Proof of the Claim. Assume λ < μ (otherwise clear). Suppose towards contradiction that G = G0 ×G1 ⊆
P ×Cμ is generic over V and in V[G0][G1] there are distinct xα ∈ H (for α < λ+) such that

∣∣(xα + B
˜

G) ∩ (xβ + B
˜

G)
∣∣ ≥ k for α, β < λ+.

Then in V[G0] we may find a condition q ∈ G1 and Cμ--names x
˜α, α < λ+, for elements of the group H

such that

q ⊩Cμ
``x
˜α 	= x

˜β and 
∣∣(x

˜α + B
˜

) ∩ (x
˜β + B

˜
)
∣∣ ≥ k”

for all α < β < λ+. Each of the names x
˜α is actually a CAα

--name for some countable set Aα ⊆ μ. Since 

V[G0] |= 2ℵ0 = λ, we may choose a set I ∈ [λ+]λ
+

and a set u ⊆ μ such that the following two demands 
are satified (in V[G0]).

(♣)1 otp(Aα) = otp(Aβ) for α, β ∈ I.
(♣)2 For each α < β from I, letting πα,β : Aα −→ Aβ be the order isomorphism, we have

u = Aα ∩Aβ , πα,β↾u = idu and Aα \ u is infinite.

Let u∗ = u∪ dom(q) ⊆ μ. Dismissing finitely many elements of I we may assume that Aα \ u = Aα \ u∗ for 
all α ∈ I.

Let G∗
1 = G1∩Cu∗ and let us work in V[G0][G∗

1] for a moment. Each name x
˜α (for α ∈ I) can be thought of 

as a CAα\u∗--name now. Let ξ = otp(Aα \u∗) for some (equivalently, all) α ∈ I. Since V[G0][G∗
1] |= 2ℵ0 = λ, 

we may find I∗ ∈ [I]λ
+

and a Borel function τ : ξ2 −→ H such that

(♣)3 ⊩ x
˜α = τ

(
c
˜α ◦ πα

)
, where πα : ξ −→ Aα \ u∗ is the order isomorphism and c

˜α is (a name for) the 
Cohen real added by CAα\u∗ .

Consequently, if α 	= β are from I∗, then

(♣)4 ⊩CAα\u∗×CAβ\u∗ ``
∣∣(τ(c

˜α ◦ πα) + B
˜

G0) ∩ (τ(c
˜β ◦ πβ) + B

˜
G0)

∣∣ ≥ k and
τ
(
c
˜α ◦ πα

)
	= τ

(
c
˜β ◦ πβ

)
''

Therefore,
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(♣)5 if d0, d1 ∈ ξ2 are (mutually) Cohen reals over V[G0][G∗
1], then

V[G0][G∗
1][d0, d1] |=

∣∣(τ(d0) + B
˜

G0) ∩ (τ(d1) + B
˜

G0)
∣∣ ≥ k and τ(d0) 	= τ(d1).

Adding one Cohen real c over V results in adding a perfect set P such that (in V[c]) if x, y ∈ P are distinct 
then x is a Cohen real over V[y]. Thus taking α ∈ I we will have that in V∗ = V[G0][G∗

1][G1 ∩ CAα\u∗ ]
there is a perfect set P ⊆ ξ2 of mutually Cohen reals over V[G0][G∗

1]. By (♣)5 we know

V∗ |= τ↾P is one-to-one and 
∣∣(τ(x) + B

˜
G0) ∩ (τ(y) + B

˜
G0)

∣∣ ≥ k for x, y ∈ P.

By upward absoluteness of Σ1
3 sentences we may assert now that

V[G0 ×G1] |= there is a perfect set P ∗ ⊆ H such that (
∀x, y ∈ P ∗)(∣∣(x + B

˜
G0) ∩ (y + B

˜
G0)

∣∣ ≥ k
)
.

This, however, contradicts Claim 7.1.1. � �
Conclusion 7.2 (See [11, Proposition 3.3(5)]). Assume that

(1) H is a perfect Polish group and B ⊆ H is a Borel set,
(2) a cardinal λ is such that Prε(λ) holds true for every ε < ω1, and
(3) 1 < k < ω, and
(4) there is a set X ⊆ H of cardinality λ such that X ×X ⊆ stndk(B).

Then there is a perfect set P ⊆ H such that P × P ⊆ stndk(B).

Proof. Under our assumptions on λ, if an analytic set B ⊆ ω2×ω2 includes a λ--square, it includes a perfect 
square (see [14, Claim 1.12(1)]).

The space H is Borel isomorphic with ω2; let f : H −→ ω2 be a Borel isomorphism and let f2 : H×H −→
ω2 × ω2 : (x, y) �→ (f(x), f(y)). Then the set f2[stndk(B)] is analytic and f [X] × f [X] ⊆ f2[stndk(B)]. 
Consequently there is a perfect set P ∗ ⊆ ω2 such that P ∗ × P ∗ ⊆ f2[stndk(B)]. We may choose a perfect 
set P ⊆ f−1[P ∗] ⊆ H -- it will also satisfy P × P ⊆ stndk(B). �

Now, in Claim 7.1.2 we used the upward absoluteness to show ⊩P∗ ``(3)''. If the group H is compact 
and B ⊆ H is Σ0

2, then the set stndk(B) is Σ0
2 and hence the assertion in (4) of 7.1 is Π1

2, so also 
absolute. However, in the case of general H the corresponding assertion appears to be Π1

3 so not so obviously 
absolute. The absoluteness would be helpful for natural consequences under MA. In [10] a similar issue in the 
Cantor space ω2 was dealt with by consideration of ``finite approximations'' to a perfect set of non-disjoint 
translations and a rank function on those approximations.

Problem 7.3. Develop the rank and the results parallel to ndrkι and cute YZR--systems presented in [10] 
for the case of general perfect Abelian Polish groups.

The forcing notions presented in this article for various Abelian Polish groups look similar, but the 
particular group structures may have different impacts.

Problem 7.4. Is it consistent that for some perfect Abelian Polish groups H0, H1 and 2 < k < ω and an 
uncountable cardinal λ we have:

(1) for some Borel set B0 ⊆ H0,
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(a) there is a set X ⊆ H0 of cardinality λ such that X×X ⊆ stndk(B0,H0) (i.e., stndk(B0,H0) includes 
a λ--square), but

(b) there is no perfect set P ⊆ H0 such that P × P ⊆ stndk(B0,H0) (i.e., stndk(B0,H0) does not 
include any perfect square)

and
(2) for every Borel set B ⊆ H1, if stndk(B,H1) includes a λ--square, then it includes a perfect square?

Considering differences caused by various choices of parameters, it is natural to ask about the impact of 
k.

Problem 7.5. Is it consistent that for some perfect Abelian Polish group H and 2 < k < � < ω and an 
uncountable cardinal λ the following two statements are true.

(1) For some Borel set B0 ⊆ H,
(a) there is a set X ⊆ H of cardinality λ such that X ×X ⊆ stnd�(B0,H), but
(b) there is no perfect set P ⊆ H0 such that P × P ⊆ stnd�(B0,H0).

(2) For every Borel set B ⊆ H, if stndk(B,H) includes a λ--square, then it includes a perfect square.

Of course, the next steps could be to investigate stndω and stndω1 :

Problem 7.6. Let H be a perfect Abelian Polish group. Is it consistent that for some Borel set B ⊆ H:

• there is an uncountable set X ⊆ H such that (B + x) ∩ (B + y) is uncountable for every x, y ∈ X, but
• for every perfect set P ⊆ H there are x, y ∈ P with (B + x) ∩ (B + y) countable?

Similarly if ``uncountable / countable'' are replaced with ``ifinite / finite'', respectively.

Let us also remind two other questions related to our results. The first one calls for a ``dual'' results.

Problem 7.7. Is it consistent to have a Borel set B ⊆ H such that

• B has uncountably many pairwise disjoint translations, but
• there is no perfect of pairwise disjoint translations of B?

Assumptions of Conclusion 7.1 and Conclusion 7.2 bring the question what is the value of the first 
cardinal λ = λω1 such that Prε(λ) holds true every ε < ω1.

Problem 7.8. Is λω1 = ℵω1? Does Prε(ℵω1) hold true for all ε < ω1?
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