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Abstract. For which (first-order complete, usually countable) T do there

exist non-isomorphic models of T which become isomorphic after forcing with

a forcing notion P? Necessarily, P is non-trivial; i.e. it adds some new set of
ordinals. It is best if we also demand that it collapses no cardinal. It is better

if we demand on the one hand that the models are non-isomorphic, and even

far from each other (in a suitable sense), but on the other hand, L -equivalent
in some suitable logic L .

In this part we give sufficient conditions: for theories with the independence
property, we prove this when P adds no new ω-sequence. We may prove it “for

some P,” but better would be for some specific forcing notions, or a natural

family. Best would be to characterize the pairs (T,P) for which we have such
models.

This work does not require any knowledge of forcings. The results say

(e.g.) that there are models M1,M2 which are not isomorphic (and even far
from being isomorphic, in a rigorous sense) which become isomorphic when we

extend the universe by adding a new branch to the tree (θ>2,C).

No knowledge of stability theory is required for this paper.
This is part of the classification and so-called main gap programs.
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P-TWINS I 3

§ 0. Introduction

We are interested in classifying theories (or classes of models — i.e. structures)
by the possible existence of models which are very similar but not identical.

Definition 0.1. 1) For a forcing notion P, we say the models M and N are P-
isomorphic when they become isomorphic after forcing with P.

2) For X a set or class of forcing notions, we say M and N are strongly X-isomorphic
when they are P-isomorphic for every P ∈ X.

3) Weakly X-isomorphic (or simply ‘X-isomorphic’) will mean“for some P ∈ X.”
E.g. ‘weakly ccc-isomorphic’ means “for some ccc forcing notion.”

Definition 0.2. 1) We say two models are P-twins when they are P-isomorphic
but not isomorphic. We say they are (P,L )-twins when they are P-twins and
L -equivalent, for L a logic.

2) We say M and N are (P, λ)-twins (or (P,L , λ)-twins) when in addition, ‖M‖ =
‖N‖ = λ.

3) Similarly for X-twins and strong X-twins.

4) We may say a theory T [or a class K of models] ‘has P-twins.’

Baldwin-Laskowski-Shelah [BLS93] and Laskowski-Shelah [LS96] investigated
the case of weak ccc-twins (i.e. X the class of ccc forcings).1 Lately, Farah raised a
similar question, for P the Random Real forcing and T an unstable theory.

§ 0(A). A panoramic picture – the long-range view.

Thesis 0.3 (The Classification Thesis). We would like to classify the theories
T : naturally, at first all complete first-order (maybe countable) ones, but later try
for more — e.g. for every AEC.

Like Janus, the thesis has two faces:

(A) Set theoretic test questions which will shed light on the complexity of T ,
leading to constructing ‘complicated’ models of a theory T , when T itself
is complicated.

(B) Finding dividing lines among the family of theories, such that
•1 Above the line, we have results as in (A).

•2 Below the line we develop structure theory, and can analyze models of
T to some extent.

(C) The thesis is that those two sides of the program are strongly connected,
because if we succeed in proving a case of the so-called main gap, we get
complementary results. So we know that the assumptions in each are the
best possible, and with this aim in mind one is driven to discover inherent
properties of T .

(D) Even if you are only interested in clause (B) •2, this thesis tells you that
having (A) and (B) in mind is a good way to advance each of them.

(E) For a given test question, a ‘Main Gap’ theorem will describe how the
theories are divided into ones with complicated models (the non-structure
side), and ones with a ‘structure theory.’

But naturally, along the way we may come across other properties which
could be of interest (possibly more than the original question).

1 There, twins were called ‘potentially isomorphic.’
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4 S. SHELAH

(F) Having the two sides gives us more than the sum of their parts; it proves
that both are maximal (in the chosen context), and that those properties
are the natural dividing line.

(Of course, not all interesting properties are like this: you may be able
to say something about binary functions on a set which is not a group,
but this is not the animating question on the class of groups. Closer are
o-minimal theories.)

* * *

The classical case was first-order complete countable theories, but there are
others; e.g. universal classes up to AEC.

In [She78] and [She90a], the set theoretic test questions were:

• I(λ, T ) ..= the number of isomorphism classes of models in ECλ(T ) (=
models of T of cardinality λ).

• IE(λ, T ) ..= the maximal number of pairwise-non-elementarily embeddable
models in ECλ(T ).

In this case, the thesis was that this classification characterizes answers to the
question “Is ModT (the class of models of T ) complicated?”, along a significant
number of measures.

With regards to those test questions, the situation can be seen in the following
trichotomy; the uninitiated reader may concentrate on �2,�3.

Theorem 0.4 (The main gap Trichotomy). 1)

�1 The countable complete first-order theories T can be divided into three
classes:

(A) Unstable or stable but unsuperstable or superstable with OTOP or super-
stable with DOP.

(B) T is not in (A), but it is deep.

(C) Neither (A) nor (B). (The antonym of deep is shallow.)

2) The classification in part (1) is by the inside properties of these theories; this is
not meaningful if you do not know them.

Let us move to the other side of the coin.

�2 If T is of type (B) or (C) it is called classifiable, and satisfies the following:
(a) A model M of T can be described by a tree T with ω levels. That

is, it is a set of finite sequences, closed under initial segments (and
countably many unary predicates).

(b) More fully, there is a tree 〈Mη : η ∈ T 〉 of countable submodels,
≺-increasing with η, “freely jointed” (i.e. this tree of models is non-
forking), and M is prime over

⋃
η∈T

Mη.

(c) Another aspect is: models of T can be characterized (up to isomor-
phism) by their theory in the logic L = L∞,ℵ1 , enriched by “cardinal-
ity quantifiers on dimension by definable dependence relations” (see
[She90a, Ch.XIII], [BS89], [She08b]).

3) Continuing in this fashion:

�3 If T satisfies (A), then a strong negation of the above holds: e.g. models
(pedantically, isomorphism classes of models) code stationary sets. Specifi-
cally, for a model M of T of cardinality λ (λ regular uncountable) we can
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P-TWINS I 5

find an invariant inv(M) = inv(M/∼=) of the form S/club, for some sta-
tionary S ⊆ λ∩ cof(ℵ0), so that every such S/club occurs (see [She87a, 2.4,
2.5(2), pp.296-7]).

4) More on �1:

�4 (a) If T satisfies �1(A) or (B), then for every cardinal λ, T has 2λ-many
pairwise non-isomorphic models of cardinality λ (the maximal number
possible).

(b) If T satisfies �1(C) then I(ℵα, T ) < iω1
(|α|) for every ordinal α. So

it fails the conclusion of clause (a) when (e.g.) GCH holds.

(c) Suppose T satisfies �1(C). If 〈Mα : α < iω1〉 is a sequence of models
of T , then for some α < β < iω1 there is an elementary embedding of
Mα into Mβ.

(d) Suppose T satisfies �1(A). Then for every λ > ℵ0 there exists a family
of 2λ-many models of T , each of cardinality λ, with no one elementarily
embeddable into another.

(e) For T that satisfy �1(B), their behavior is in the middle: for some
cardinal κ (the first beautiful cardinal2) we have
•1 If λ ∈ (ℵ0, κ) it behaves as in clause (d) above.

•2 If 〈Mα : α < κ〉 is a sequence of models of T (of any cardinality),
then for some α < β < κ there is an elementary embedding of
Mα into Mβ.

We may say κ =∞ when no such cardinal exists.

But of course, there are other measures:

Problem 0.5. What if we ask for which T -s do we have a weaker version of 0.4�2,
where we replace T with a tree with ω1 levels? I.e. T consists of sequences of
countable length: say, subtrees of (ω1>λ,C).

This calls for a finer discussion of stable theories.

* * *

§ 0(B). First approach. Very similar, but not the same.
True dividing lines (and measures of complexity) discussed above are relevant

for a significant set of questions which are not a priori connected. A major case
is the Keisler order, resolved for stable T . (See a recent survey by Keisler [Kei17]
on this.) Another measure is the number of ℵ1-resplendent models in ECλ(T ), up
to isomorphism (see [Shee], which characterizes stable T ). Still another direction
is building somewhat rigid models (see [Shed] and references there).

There are also works on unstable theories – simple, dependent, and NTP – but
here we concentrate on dividing lines among stable T .

We may ask for the number of |T |+-saturated models of T (or complete metric
spaces) – see [Shec]. But closer to our problem is the following way to strengthen
our non-structure side:

Question 0.6. When do there exist models of a theory T (that is, an elementary
class) which are very similar but not isomorphic? This question can serve as a
yardstick for the complexity of T , and thus makes for a good test problem.

One interpretation of “M and N are very similar” is

2 A beautiful cardinal is a large cardinal which is compatible with ‘V = L,’ but whose existence
cannot be proved in ZFC.
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• M and N are of cardinality λ, and are equivalent for a ‘strong logic’ L .

We call this the first approach.

Discussion 0.7. We provide references for some relevant works (including those
earlier ones asking a more basic question: are there such models not restricting T?).

(A)1 Existence of L∞,λ-equivalent but non-isomorphic models of cardinality λ:
• For λ regular uncountable, this is an unpublished result of Morley.

• [She84] covers singular λ = λℵ0 .

• [She94, Ch.II, 7.4-5, p.111] proves it for almost all

λℵ0 > λ > cf(λ) > ℵ0.

(A)2 For M∗ a model of cardinality λ, what can be said about the value of

nu(M∗) ..= |KM∗/
∼=|,

where KM∗
..= {M : ‖M‖ = λ, M ≡L∞,λ M∗}?

(a) Palyutin [Pal77]: If V = L and λ ..= ℵ1, then nu(M∗) ∈ {1, 2ℵ1}.
(b) By [She81a]: if V = L and λ is regular uncountable but not weakly

compact, then nu(M∗) ∈ {1, 2λ}.
(c) By [She81b], the ‘V = L’ in clause (b) is necessary. (That is, it cannot

be proved in ZFC.)

(d) By [She82], if λ is weakly compact and θ ∈ [1, λ], then there exists a
model M with cardinality λ and nu(M) = θ.

(A)3 L∞,λ-equivalent but not isomorphic models, for T unsuperstable; see
[She87a].

(A)4 Let L ..= L(dim)
∞,λ , where the ‘(dim)’ means that we add quantifiers saying “λ

is the dimension of a definable dependence relation satisfying the Steinitz
axioms (e.g. like linear dependence in vector spaces).” By [She90a, Ch.XIII,
Th.1.4], for a (countable complete first-order) T we have the following:
•1 If T satisfies �1(B) or (C) of 0.4(1), then any L -equivalent models of

cardinality λ are isomorphic. (See also 0.4�2(c).)

•2 If T satisfies 0.4(1)�1(A) then the conclusion of •1 fails badly (see
[She87a]).

To give more details, what we really have is a separation into three classes.

(B)1 Game quantifier-equivalent but not isomorphic models of cardinality λ:3 see
[Vaa95]. See earlier [HS81] with Hodges; also [She06], [HS07] with Havlin,
and [She08a].

(B)2 For τ -models M and N , let EFα,λ(M,N) denote the Ehrenfeucht-Fräıssé
game with α-many moves (α an ordinal), each move adding < λ elements.

Like (B)1 for ‘dividing line’ T -s: see Hyttinen and Tuuri [HT91], and
Hyttinen and the author [HS94], [HS95], [HS99].

By [HT91], if T is unstable and λ = λ<λ, then there are non-isomorphic
models M,N ∈ ECλ(T ) which are aiso

ζ (M,N)-equivalent for all ζ < λ.

(I.e. the ISO player has a winning strategy: see Definition 0.19(2).) This
also applies to the version using a tree T ⊆ λ>λ with no λ-branches.

Moreover, “T has OPTOP or is superstable with DOP” will suffice. For
unsuperstable T the results are weaker.

3 So this is stronger than L∞,λ-equivalence.
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By [HS94], if T is a complete first-order theory which is stable but not
superstable and λ ..= µ+, where µ = cf(µ) ≥ |T |, then there are EFµ·ω,λ-
equivalent but non-isomorphic models in T (and even in PC(T1, T )) of
cardinality λ.

See more in [HS95], [HS99].

(C)1 The present work continues [She08b], in a sense. In the second part, we
intend to deal with a logic suggested there, suitable to be an analogue of
0.4(3), towards 0.5. We also suggest that a family of stable theories strictly
containing the superstables is relevant.

§ 0(C). Second approach. The immediate impetus for this work is

Conjecture 0.8 (The Farah Conjecture). For a (first-order countable) unstable T ,
there are non-isomorphic models M,N which become isomorphic when we extend
the universe by adding a random real; that is, they are Random-twins.

Farah has proved this for linear orders.

The background behind this question can be found in Baldwin-Laskowski-Shelah
[BLS93] and a work with Laskowski [LS96]. There, ‘similar’ was defined as “ccc-
isomorphic” (see Definition 0.1).

Our aim here is to try to sort this out.

For both approaches, a natural dream is to characterize the theories (for now,
first-order complete countable) for which this occurs. The ‘Main Gap’ had done
this for a different test question.

So Baldwin-Laskowski-Shelah [BLS93] and Laskowski-Shelah [LS96] pose (and
partly answer) the following problems.

Problem 0.9. • Characterize the (countable) T with no ccc-twins.

• Characterize the (countable) T such that for some T1 ⊇ T , ‘ccc-isomorphic
implies isomorphic’ holds in PC(T1, T ).

To explain the choices in [BLS93], recall the classification made in 0.4.
The thesis was that this classification characterizes answers to the question “Is

ModT (the class of models of T ) complicated?”, along a significant number of

measures: e.g. for İ(λ, T ) (the number of isomorphism classes of models of T of
cardinality λ) or IE(λ, T ) (the number of pairwise non-elementarily embeddable
models of T of cardinality λ).

Clearly there is a connection between the two approaches.

�1 If M and N are non-isomorphic, have different L -theories (for some logic
L ), and forcing with P preserves the L -theory of a model, then M and N
cannot be P-twins.
(I.e. 6P “M ∼= N”.)

Now the class of ccc forcings is a natural choice, as it preserves much of what we
care about; e.g. if P collapses cardinals then every T has (trivial) twins — this
motivated [BLS93].

There it is proved that:

�2 (a) If T is from subclass �1(A) of 0.4(1), then it has ccc-twins.

(b) However, some theories from �1(C) have ccc-twins as well.

More fully (quoting [LS96]):
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8 S. SHELAH

If T [is superstable and] has only countably many complete
types yet has a type of infinite multiplicity, then there is
a ccc forcing Q such that in any Q-generic extension of
the universe, there are non-isomorphic models M and N
which can be forced to be isomorphic by a ccc forcing. We
give examples showing that the hypothesis on the number
of complete types is necessary.

So we still do not have the answer to our questions:

Question 0.10. 1) Can we characterize the class of T which have ccc-twins?

2) Can we characterize the class of T which have P-twins, where P is ℵ1-complete
and collapses no cardinals?

The motivation for 0.10(2) was the following.

Observation 0.11. If P is a forcing notion which collapses no cardinal and adds
no ω-sequence, then forcing by P preserves the L -theory of a model (where L is
as in 0.7(A)4 from §0(B)).

We mainly tried to deal with 0.10(2), but after [BLS93] and [LS96] further work
was delayed. However, Farah’s Conjecture gives us new inspiration to look at these
questions again, for one specific ccc forcing.

This conjecture remains open. In general, we may ask these questions for any
fixed forcing notion P: compare to [BLS93] and [LS96], where we asked about “there
is a ccc P.” (Instead of ‘(∃P)’ or P being specified in the question, we may even try
(∀P).)

Note that

�4 (a) If θ = θ<θ > ℵ0 then Cohenθ ..= (θ>2,C) is a forcing as in 0.10(2).

(b) Any Suslin tree T is a ccc forcing as in 0.10(2).

Anyhow, if P is an NNS forcing then 0.12 answers 0.10(2).

�5 If θ = θ<θ > ℵ0 then after forcing with Cohenθ, ‘θ = θ<θ > ℵ0’ still holds,
so we have existence theorems (see below).

This is the approach taken in [LS96] for the class of ccc forcing notions.

§ 0(D). The results. In this part, we concentrate on independent (first-order) T
and the forcing Cohenθ (for θ = θ<θ > ℵ0), because that is where the statements
and their proofs are most transparent.

In §1-3, we will prove

Theorem 0.12. 1) Assume T is a complete countable first-order theory which has
the independence property, and P is ℵ1-complete (or just is an NNS4 forcing.) Then
T has models M and N which are P-twins. (I.e. M 6∼= N∧ P “M ∼= N”.)

2) Moreover, M and N are far from each other, as defined in 1.10.

3) If T1 ⊇ T is also first-order countable, then we can add “ PC(T1, T ) has P-twins.”
(Specifically, M and N can be expanded to models of T1.)

4 NNS means “adds no new ω-sequence.”
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In Part II of this paper [S+a], we shall deal with unstable T (e.g. for P ..= Cohenθ
with θ = θ<θ > ℵ0) and with ccc forcing notions (e.g. Random Real) for some
of those T -s. We will continue both approaches, using the relations from [BS85]
(e.g. weaker versions of entangledness). Definitions here will be phrased so as to
apply to Part II as well.

§ 0(E). Preliminaries.

Notation 0.13. We will try to use standard notation.

1) θ, κ, λ, µ, χ will denote cardinals (infinite, if not stated otherwise). λ+ will denote
the successor of λ.

2) α, β, δ, γ, ε, ζ, ξ, i, and j will denote ordinals. δ will be a limit ordinal unless
explicitly said otherwise.

3) k, `,m, n will denote natural numbers.
(We may abuse this somewhat and use them as indices for ordinals < κ, in

statements where the default case or usual formulation is κ ..= ℵ0; if so, we will
mention it explicitly.)

4) ϕ,ψ, and ϑ will be formulas; first-order, if not said otherwise.

5) For cardinals κ < λ = cf(λ), let

Sλκ
..=
{
δ < λ : cf(δ) = cf(κ)

}
and

Sλ≤κ
..=
{
δ < λ : cf(δ) ≤ cf(κ)

}
.

6) cof(µ) will denote the class of ordinals with cofinality equal to cf(µ).

7) λ+ may be written λ(+) (and e.g. ai may be written a[i]) when they appear in
a superscript or subscript.

8) x̄[u]
..= 〈xi : i ∈ u〉

9) Forcing notions will be denoted by P and Q. We adopt the Cohen convention
that ‘p ≤ q’ means that q gives more information (as conditions in a forcing notion).

10) E means ‘is an initial segment,’ and C means it is proper.

11) T is a partial order or quasiorder, not necessarily a tree.
(Originally they were trees, but we later found it better to drop this — see the

end of §2A. But it would be no problem to resurrect it in the future.)

12) We use p to denote twinship parameters (see Definition 2.1) and m for forcing
examples: see §2B.

Notation 0.14. 1) τ will denote a vocabulary: that is, a set of predicates and
function symbols of finite arity (that is, a finite number of places). Functions and
individual constants are treated as predicates.

2) For models or structures, τ(M), τ(I), etc. are defined naturally, as their vocab-
ularies.

3) L will denote a logic. L is first order logic, Lλ,µ the usual infinitary logic.
L (τ) is the language: that is, a set of formulas ϕ(x̄) for the logic L in the

vocabulary τ .

4) T will denote a theory; complete first-order in the vocabulary τT = τ(T ), if not
said otherwise. For simplicity, it will have elimination of quantifiers. (Particularly
in §0, we may forget to say ‘countable.’)
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10 S. SHELAH

5) For such T ,

ECλ(T ) ..= {M |= T : ‖M‖ = λ}

EC(T ) ..=
⋃

λ∈Car

ECλ(T ).

For T1 ⊇ T ,

PCλ(T1, T ) ..= {M � τT : M ∈ ECλ(T )}

PC(T1, T ) ..=
⋃

λ∈Car

PCλ(T1, T ).

Convention 0.15. If not stated otherwise, we assume P is such that(
∀p ∈ P

)[
κ(P≥p) = κ(P)

]
.

Definition 0.16. For P a forcing notion, we define:

(A) κ(P) ..= min{κ : P “there is a new A ⊆ κ”}
(B) spec(P) ..={

(κ, λ, T ) : T is a subtree of κ>λ of cardinality λ such that

forcing with P adds a new η ∈ lim
κ

(T )
}

(I.e. η ∈ κλ \V with ε < κ⇒ η � ε ∈ T .)

(C) “(κ, λ) ∈ spec(P)” will be shorthand for
(
∃T
)[

(κ, λ, T ) ∈ spec(P)
]
.

Question: will spec(P) be interesting? Do we use T or Q, or just use a “new”
directed G ⊆ P?

Definition 0.17. The following definition will be used mainly in 3.3.

(a) τ(µ, κ) = τµ,κ is the vocabulary with function symbols

{Fi,j : i < µ, j < κ},

where Fi,j is a j-place function symbol and κ is a regular cardinal.

(b) Mµ,κ(I) is the free τµ,κ-algebra generated by I.

(c) We may write Mµ(I) when κ = ℵ0, and M(I) when µ = κ = ℵ0.

Remark 0.18. Concerning the first approach (see §0B) we will define some games
which witness the equivalence of two models in some strong logic.

Definition 0.19. 1) We say the models M and N are cofinally (λ, ζ)-equivalent
when there exist ⊆-increasing sequences M = 〈Mα : α < λ〉 and N = 〈Nα : α < λ〉
satisfying the following.

(A) M =
⋃
α<λ

Mα and N =
⋃
α<λ

Nα.

(B) The pro-isomorphism player ISO has a winning strategy in the game
aiso
ζ (M,N) defined below.
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A play of the game aiso
ζ (M,N) between the players ISO and ANTI lasts ζ-many

moves. In the εth move, the ANTI player chooses αε ∈
( ⋃
ξ<ε

αξ, λ
)

and the ISO

player responds with an isomorphism fε : Mαε → Nαε extending
⋃
ξ<ε

fξ.

2) If ‖M‖ = ‖N‖ = λ (and for transparency, both have universe λ) then we may
define the isomorphism fε as a function from αε onto αε.

3) In part (1), we may replace the ordinal ζ by a tree T with λ-many levels and no
λ-branch.

By this we mean: in the εth move of a play of aiso
T (M,N), ANTI starts by

choosing a tε from the εth level of T which is C-above tξ for all ξ < ε, and then
αε ∈

( ⋃
ξ<ε

αξ, λ
)
. Then ISO chooses fε : Mαε → Nαε as before, losing if no legal

move exists.
Note that αε chosen exactly as in part (1), and does not depend on tε. The tree

simply functions as the game’s ‘clock:’ if ISO chooses a valid fε and ANTI has no
valid tε+1, then ISO wins the play.

E.g. we have (in other variants we get equivalence):

Claim 0.20. If M and N are two models of cardinality λ ∈ Reg and are cofinally
(λ, ω)-equivalent, then they are L∞,λ-equivalent.

The following property of linear orders will be used for proving cofinality-(λ, ξ)-
equivalence.

Definition 0.21. A model J (usually a linear order) has the λ-indiscernibility
property when:

If t̄ε ∈ ω>J for ε < λ, then for some A ∈ [λ]λ, the sequence
〈t̄ε : ε ∈ A〉 is indiscernible for the quantifier-free formulas.

Fact 0.22. If J is well-ordered and λ is regular uncountable, then it has the λ-
indiscernibility property.
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§ 1. GEM models

Below, the reader may concentrate on Kor, Korg, the order property, and the
independence property.

Recall

Notation 1.1. 1) Let K denote a class of index models which have the Ramsey
property. (See [She87b, 1.10, p.330], [Sheb, 1.15=Lc2].) Members of K are denoted
by I, J .

2) We may write Kx for (e.g.) x ∈ {or, org, org(n), tr(ω), tr(κ), tr(n̄), oi(∂)}.
In this case Kx

λ
..= {I ∈ Kx : ‖I‖ = λ}.

3) K will denote a class of index models (i.e. structures) we use for generalized
Ehrenfeucht-Mostowski models GEM(I,Φ). Members of K will be denoted by I
and J ; Φ (or Ψ) is the blueprint, and a = 〈ās : s ∈ I〉 the skeleton.

Now we can define GEM models (Generalized Ehrenfeucht-Mostowski models)
for K. On this, see [She87b, Ch.III, 1.6, p.329] (revised in [Sheb, §1B, 1.8=Lb8, p.9]).

This usually requires generalizing Ramsey’s theorem. Some examples of relevant
classes:

Example 1.2. (A) K = Kor: the class of linear orders.

(B) K = Ktr
ω = Ktr(ω): trees with ω + 1 levels. We have Pi for i ≤ ω, C the

tree order, and <lex the lexicographical order. (See [Sheb, 1.9(4)=Lb11].)

(B)κ K = Ktr
κ = Ktr(κ): similarly, but with κ + 1 levels (so we have restriction

functions �i,j). (See [She87b, 1.7(4), p.328], [Sheb, 1.9(4)=Lb11].)

(C) Korg: linearly ordered graphs. (See 2.6, and more in [Sheb, 1.18(5)=Lc14].)

(D) Kdorg (directed ordered graphs). Like Korg, but the graph is directed. (We
may also consider it as an undirected graph.)

(E) Korg(n) for n ∈ [2, ω] (see [S+a]).

(F) Kprt(σ) and Ktr(n̄) (for n̄ = 〈ni : i < σ〉 ∈ ωσ) are as in [Shea, 1.1=L1.1,
1.2=L1.2], respectively.

(Also called Kstr(n̄); see more in [S+b, Def. 5.1=Ls1, p.30].)

(G) Koi(γ); see §9, and more in [She08b, Def. 2.1=L2b.1].

(H) For any Kx such that E,Fη,ι /∈ τ(Kx) for η ∈ Tp and ι = ±1, we define
Kx
T ,ι — the main case in this paper — in 2.6(1),(2).

Definition 1.3. 1) For T a theory (not necessarily first-order) and κ a cardinal,
we define ΥK [T, κ] = Υ[T, κ,K] as the class of K-GEM blueprints Φ (see [She87b,
Ch.III, 1.6, p.329], [Sheb, 1.8=Lb8]).

� For I ∈ K, M = MI ∈ GEM(I,Φ) is a τΦ-model with skeleton a.
Pedantically, (M,a) ∈ GEM(I,Φ) satisfies

(a) τΦ is a vocabulary, and M is a τΦ-model.

(b) τΦ ⊇ τT and GEMτT (I,Φ) = GEM(I,Φ) � τT |= T .

(c) τΦ is of cardinality ≤ κ.

(d) Φ is a function with domain

QFTK
..=
{

tp(s̄,∅, J) : J ∈ K, s̄ ∈ ω>J
}
,

and Φ
(
tpqf(s̄,∅, J)

)
is a complete L(τΦ)-quantifier-free type.

(‘qf’ means quantifier-free.)

(e) a = 〈ās : s ∈ I〉 is the so-called skeleton of M .
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(f) g̀(ās) = kΦ (So members of the skeleton are k-tuples. For simplicity,
we will usually have kΦ

..= 1.)

(g) M is the closure of {ās : s ∈ I}.
(h) a is qf-indiscernible in GEM(I,Φ), where ‘qf-indiscernible’ is defined

as in clause ⊕qf below.

(i) If s̄ ∈ εI then ās̄ = 〈. . . ˆāsζˆ . . .〉ζ<ε.
(So if kΦ

..= 1 then ās̄ = 〈asζ : ζ < ε〉.)
⊕qf If (s0, . . . , sn−1), (t0, . . . , tn−1) ∈ nI realize the same quantifier-free type in

I, then ās0ˆ . . . ˆāsn−1
and āt0ˆ . . . ˆātn−1

realize the same quantifier-free
type in GEM(I,Φ).

1A) Of course, we are really interested in GEMτT (I,Φ) = GEM(I,Φ) � τT .

1B) As implied above, we define GEMτ (I,Φ) ..= GEM(I,Φ) � τ for τ ⊆ τΦ.

2) We may write ΥK
κ (T ) of ΥK(T, κ), and we may write Υx

κ(T ) for K ..= Kx

(e.g. Υor
κ (T ), Υorg

κ (T ), Υ
tr(ω)
κ (T ) for K ..= Kor,Korg,Ktr(ω), respectively).

The following definition also applies to non-first-order T (and/or ϕ, or replace
EC(T ) by a class of models). When both are first-order, by the compactness theo-
rem it suffices to use µ ..= ℵ0.

Definition 1.4. 1)

(A) We say that ϕ(x̄k, ȳk) witnesses that T has the (<λ)-order property (not
necessarily first-order) when for every µ < λ, there is M ∈ EC(T ) and
〈āα : α < µ〉 ⊆ µ(kM) such that M |= ϕ[āα, āβ ]if(α<β).

(B) Let T be first-order complete. We say ϕ witnesses that T is unstable if ϕ
is first-order and T has the ℵ0-order property as witnessed by ϕ.

2)

(A) We say that ϕ(x̄k, ȳk) witnesses that T has the (<λ)-independence property
(not necessarily first-order) when for every µ < λ and graph G on µ, there
are M ∈ EC(T ) and 〈āα : α < µ〉 ⊆ kM such that

α < β < µ⇒
[
M |= ϕ[āα, āβ ]⇔ G |= “α R β”

]
.

(B) Let T be first-order complete. We say T is independent (or has the in-
dependence property) when some first-order ϕ(x̄, ȳ) ∈ L(τT ) witnesses the
ℵ0-independence property.

Remark 1.5. For all the examples in 1.2, for the relevant (first-order) T , ϕ, or ϕ,
there exists a suitable Φ. (Usually we need that K satisfies the Ramsey property;
see [She87b, III] or [Sheb, §1].)

E.g.

Claim 1.6. 1) If T is first-order unstable (as witnessed by ϕ = ϕ(x̄, ȳ)) and T1 ⊇ T ,
then there is Φ ∈ Υor(T1) such that:

(a) |τΦ| = |T1|
(b) kΦ = g̀(x̄) = g̀(ȳ)

(c) GEM(I,Φ) |= ϕ[ās, āt]
if(s<It)

2) Let µ ≥ i((2λ)+). If T ⊆ Lλ+,ℵ0(τ1) has the (<µ)-order property, as witnessed
by ϕ(x̄[k], ȳ[k]), then the conclusion in part (1) holds. (See more in [Sheb].)

Note that the definition below formalizes the statements in 1.5.
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Definition 1.7. 1) For Φ ∈ Υκ[K], we say Φ represents (ϕ,R) when:

(A) R ∈ τ(K) has arity n.

(B) ϕ = ϕ(x̄0, . . . , x̄n−1) ∈ L (τΦ) for some logic L , with g̀(x̄`) = k.

(C) If I ∈ K, (M, ā) = GEM(I,Φ), and t̄ ∈ nI, then

M |= ϕ[āt0 , . . . , ātn−1 ]⇔ (t0, . . . , tn−1) ∈ RI .

2) We may write ϕ instead of (ϕ,R) when R is clear from the context. (E.g. it is
‘x < y’ for Kor, and x R y in Korg.)

3) Similarly for “Φ represents (ϕ,R),” where ϕ = 〈ϕε(x̄0, . . . , x̄mε−1) : ε < κ〉.

The following definitions are natural ways to make demands even stronger than
“M1 and M2 are not isomorphic.”

Definition 1.8. 1) For τ -models M1,M2 and ϕ = ϕ(x0, . . . , xn−1) ∈ L (τ), we say
M1 is (λ, ϕ)-far from M2 when there is a witness 〈aα : α < λ〉 ∈ λ(M1).

By this, we mean:

If U ∈ [λ]λ and (∀α ∈ U)[bα ∈M2], then for some α0 < . . . < αn−1

from U , we have

M1 |= ϕ[aα0
, . . . , aαn−1

]⇔M2 |= ¬ϕ[bα0
, . . . , bαn−1

].

2) If ϕ = ϕ(x̄0, . . . , x̄n−1) ∈ L (τ) with (∀` < n)[ g̀(x̄`) = k] for some k < ω, then
above we will write āα ∈ kM1, b̄α ∈ kM2.

3) We say M1 and M2 are (λ, ϕ)-far when M1 is (λ, ϕ)-far from M2 and M2 is
(λ, ϕ)-far from M1.

4) For a large L , τ -models M1,M2, and ϕ = ϕ(x̄) ∈ L (τ), we say f is a ϕ-
embedding of M1 into M2 when for every ā ∈ g̀(x̄)M1 we have

M1 |= ϕ[ā]⇔M2 |= ϕ[f(ā)].

5) “ϕ-far” is defined similarly, for ϕ = 〈ϕn : n ∈ [2,n]〉.

Remark 1.9. 1) In 1.8(1)-(5), if M1 and M2 are P-twins and

λ = cf(λ) ≤ max(‖M1‖, ‖M2‖),

thenM1 andM2 cannot be ‘far’ in any of those definitions. So Definitions 1.10(1),(2)
below are an attempt to formulate notions of being ‘far’ for which we might try to
build examples.

2) In clause 1.10(3)(C), we may demand that αi is increasing with i.

3) They will be used in 3.7 and its relatives.

4) Sometimes negation is not so handy. Then we may replace ϕ by 〈ϕpos, ϕneg〉 in
1.8+1.10, where ϕpos = ϕpos(x̄0, . . . , x̄n−1) (and similarly for ϕneg).

What this means is that, in all occurrences,

•1 If M1 |= ϕpos[ā0, . . .] then M2 |= ϕpos[f(ā0), . . .].

•2 If M1 |= ϕneg[ā0, . . .] then M2 |= ϕneg[f(ā0), . . .].

•3 For no ` ∈ 1, 2 and ā0, . . . ān−1 ∈ kM` do we have

M` |= ϕpos[ā0, . . . , ān−1] ∧ ϕneg[ā0, . . . , ān−1].
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Definition 1.10. 1) For τ -models M1,M2 and ϕ = ϕ(x0, . . . , xn−1) ∈ L (τ), we
say M1 is (λ, σ, ϕ)-far from M2 when there is a witness 〈ai : i < σ〉, where ai =
〈ai,α : α < λ〉 ∈ λ(M1).

By this, we mean:

If Ui ∈ [λ]λ for i < σ, then there does not exist a function

f : {ai,α : i < σ, α ∈ Ui} →M1

preserving the satisfaction of ϕ.

2) Similarly for ϕ = ϕ(x̄0, . . . , x̄n−1) ∈ L (τ) with g̀(x̄0) = . . . = g̀(x̄n−1) = k.

3) We may replace ϕ by ∆ ⊆ L (τ), or by 〈∆u : u ∈ [σ]<ℵ0〉, with the natural
meaning:

(A) ∆u ⊆
{
ϕ(. . . , x̄i, . . .)i∈u : ϕ ∈ L (τ)

}
(B) g̀(āi,α) = g̀(x̄i) = ki

(C) There are Ui ∈ [λ]λ and b̄i,α ∈ ki(M2) (for i < σ and α ∈ Ui) such that if
u ∈ [σ]<ℵ0 , ϕ(. . . , x̄i, . . .)i∈u ∈ ∆u, and αi ∈ Ui for i ∈ u, then

M1 |= ϕ[. . . , āi,αi , . . .]i∈u ⇒M1 |= ϕ[. . . , b̄i,αi , . . .]i∈u.

4) We may add 〈ni : i < σ〉 with ni ≤ ω, so ϕ ∈ ∆u may have ≤ ni copies of x̄i in
our block of arguments.

Paper Sh:1261, version 2025-04-17 2. See https://shelah.logic.at/papers/1261/ for possible updates.
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§ 2. Toward P-twins

The idea below is that Tp is a forcing notion. However, sometimes we do not
use the forcing notion we are interested in, but rather a derived one (e.g. for Sacks
forcing, we may use Tp ..= (ω>2,C)). Even if Tp is the forcing notion which interests
us, Bp (see 2.2) will not necessarily be the family of all dense open subsets of T .

§ 2(A). The Frame.

Convention 2.1. If not stated otherwise, p is a fixed weak twinship parameter
(although we will sometimes have different definitions for the tree-like and non-
tree-like version).

Earlier we thought it necessary to assume T is a tree; now it seems this is not
necessary, but neither option would be harmful to us so far.

Definition 2.2. 1) We say p is a weak twinship parameter (or simply ‘a twinship
parameter’) when it consists of:5

(A) A partial order T such that any two elements η, ν ∈ T have a maximal
lower bound6 (call it η ∧ ν).

(B) θ = cf(θ) ≥ ℵ0

(C) B, a family of subsets of T satisfying the following.
(a) B is closed under finite intersections, and each D ∈ B is dense in T .

(b) If η ∈ T then {ν ∈ T : η <T ν or η ⊥ ν} ∈ B (or at least contains a
member of B).

(c) If θ > ℵ0 then the intersection of countably many members of B will
always contain some other member of B.

1A) We say p is a strong twinship parameter when we add the following to clause
(C):

(d) No directed G ⊆ T meets every D ∈ B.

2) We say p is tree-like when in addition,

(A) T is a tree with θ-many levels.

(B) (∀η ∈ T )(∀ε < θ)(∃ν ∈ T )[η ≤T ν ∧ levT (ν) ≥ ε].
(C) If η ∈ D ∈ B then η <T ν ⇒ ν ∈ D.

3) We say p is well-founded when Tp has no infinite decreasing sequence.

Remark 2.3. 0) We would like to add the following demand to 2.1(2), but it would
hinder 2.23:

(D) (∀ε < θ)(∃D ∈ B)(∀η ∈ D)[lev(η) ≥ ε].

1) Originally the main cases were Kor (the class of linear orders), Ktr(ω) (trees with
ω + 1 levels), and most importantly Korg (ordered graphs), but now it appears
Ktr(ω) is of limited importance.

2) Our aim, for a given p, is to find non-isomorphic models (preferably far, as well)
for (e.g.) a suitable complete first-order theory T such that if a forcing adds a new
directed G ⊆ T meeting every D ∈ Bp (and if T is a tree, then a new θp-branch of
T meeting every D ∈ Bp) then they become isomorphic.

5 So T = Tp, etc.
6 Many of the usual forcing notions fail this, but it will not be a problem to fix this.
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Of course, if the forcing collapses some cardinal then this is trivially true (e.g. for
first-order countable T ). We can rectify this by restricting ourselves to ‘interest-
ing’ P-s (e.g. ccc, Cohenℵ1 assuming CH, or (<θ)-complete θ+-cc for suitable θ)
or requiring the models to be equivalent in some suitable logic. At any rate, to
get something non-trivial, T has to be somewhat complicated. This leads us to
classification theory, so this is part of the classification program.

Definition 2.4. 1) We say G ⊆ Tp solves p when it is a ⊆-directed subset meeting
every D ∈ Bp.

2) We say M and N are p-isomorphic when for any forcing notion P,

P “if some G ⊆ Tp solves p, then M ∼= N”.

3) We say p witnesses the forcing notion P when in any forcing extension V′ of V,
p is solved in V′ iff in V′ there exists a subset of P generic over V.

4) We say ‘M and N are p-twins’ when they are p-isomorphic but not isomorphic.

5) For p a weak twinship parameter, we say the models M and N are strictly
p-isomorphic when for any forcing notion P we have

P “if some downward closed G ⊆ Tp solves p and G /∈ V, then M ∼= N”.

Definition 2.5. 1) We define

Ωp
..=
{
o =

〈
(η`, ι`) : ` < k

〉
: k < ω, η` ∈ Tp, ι` = ±1

}
.

We may also denote o by the pair (η̄, ῑ) = (η̄o, ῑo) =
(
〈η` : ` < k〉, 〈ι` : ` < k〉

)
.

As always, η` = ηo,`, ι` = ιo,`, and k = ko ..= g̀(o).

2) For o ∈ Ωp and Fη`,ι` a partial permutation of some set U (for ` < ko), we define
Fo naturally by induction on g̀(o):

• F〈 〉 ..= idU (I.e. F〈 〉(a) = a iff a ∈ U .)

• If o2 = o1ˆ
〈
(η, ι)

〉
then Fo2(a) ..= Fo1(Fη,ι(a)).

3) For o and Fη`,ι` as above, the o-orbit of a ∈ U is the sequence ā = 〈a` : ` ≤ k〉,
where ak ..= a and a` ..= Fη`,ι`(a`+1).

(Note that this sequence may not exist, as we do not require that dom(Fη`,ι`) = U .)

4) We say that the orbit ā is reduced when a` 6= am for all ` < m ≤ g̀(ā).

5) We say that o =
〈
(η`, ι`) : ` < g̀(o)

〉
∈ Ωp is formally reduced when

• If `+ 1 < g̀(o) and η` = η`+1, then ι` = ι`+1.

6) Ωfr = Ωfr
p will denote the set of o ∈ Ωp which are formally reduced.

7) ΩS and Ωfr
S are defined similarly, replacing Tp by any set S.

We first give a special case of the main definition, combining Korg with p.

Definition 2.6 (Main Definition). 0) τorg
..= {<,R}, where < and R are two-

place predicates, and

Korg
..=
{
I =

(
|I|, <I , RI

)
: <I is a linear order and

(
|I|, RI

)
is a graph

}
.

1) Let τorg
p

..= {<,E,R, Fη,ι : η ∈ Tp, ι = ±1}, where

• < and E are two-place predicates.

• Fη,ι is a unary function symbol (interpreted as a partial function).
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1A) However, “x ∈ dom(Fη,ι)” is considered an atomic formula, and even
“x ∈ dom(Fo)” for o ∈ Ωp.

2) Let Korg
T ,0 be the class of τorg

p -structures I such that:

(A) <I is a linear order on I.

(B) For η ∈ T , Fη,ι = F Iη,ι is a partial automorphism of (|I|, <I , RI), increasing
with η, satisfying the following:
(a) Fη,−ι = F−1

η,ι .

(b) If a ∈ I and ι = ±1, then
{
η : dom(Fη,ι) 3 a

}
∈ B.

(c) F Io is well-defined and a partial automorphism for all o ∈ Ωp.

(d) For a ∈ I, let

DI
a

..=
{
η ∈ Tp : dom(F Iη,1) 3 a

}
∈ B.

(e) [Follows:] If ι = ±1, F Iη`,ι(s`) = t` for ` = 1, 2, and η1, η2 are ≤T -
compatible, then

s1R
I s2 ⇔ t1R

I t2.

(C) (|I|, RI) is a graph.

(D) EI is the closure of{(
a, F Iη,ι(a)

)
: a ∈ dom(F Iη,ι), η ∈ Q, ι = ±1

}
to an equivalence relation.

3) Let Korg
T ,1 be the class of I ∈ Korg

T ,0 such that if o ∈ Ωfr, g̀(o) = k ≥ 1, ak ∈ I,
and a0, . . . , ak is an o-orbit, then ak 6= a0.

4) For I, J ∈ Korg
T ,0, let ‘I ⊆ J ’ mean <I = <J � |I| and F Io = F Jo � I for all o ∈ Ωp.

Similarly, we can define

Definition 2.7. Let K = Kx be as in 1.1(1A) and E,Fη,ι /∈ τ(Kx), where
{Fη,ι : η ∈ T , ι = ±1} are unary function symbols and E a binary predicate.

1) Let τx
T

..= τ(Kx) ∪ {Fη,ι : η ∈ T , ι = ±1} ∪ {E}.
2) Kx

T ,0 is the class of structures J such that:

(A) (a) J is a τx
T -model.

(b) J � τ(Kx) ∈ Kx

(c) Every F Jη,ι is a partial automorphism of J � τ(Kx) ∈ Kx, increasing
with η ∈ T .

(B) Clauses 2.6(2)(B)(a)-(d) all hold, but (e) is replaced by:
(e)′ For R any predicate from τ(Kx), if F Iη`(s`) = t` for ` < arity(R) and

{η` : ` < arity(R)} has a common upper bound, then〈
s` : ` < arity(R)

〉
∈ RI ⇒

〈
t` : ` < arity(R)

〉
∈ RI .

(Recall that we are assuming τ(Kx) has only predicates: function symbols
and individual constants will be treated as predicates.)

(C),(D) As in Definition 2.6(2)(C),(D).

3-4) As in 2.6(3),(4).

Definition 2.8. 1) Let ≤Ω be the following two-place relation on Ωp.

~ o1 ≤Ω o2 iff (o1,o2 ∈ Ωp and)
(a) g̀(o1) = g̀(o2)
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(b) ῑ1 = ῑ2 (where o` = (η̄`, ῑ`)).

(c) η1
k E η

2
k for all k < g̀(o1) = g̀(o2).

2) o1 ‖Ω o2 will be shorthand for “o1 and o2 are compatible” (i.e. have a common
≤Ω-upper bound).

Definition 2.9. 1) For J ∈ Kx
T ,1 and s ∈ J , let ΩJs

..= {o ∈ Ωfr
p : dom(F Jo ) 3 s}.

2) For D ∈ B (see Hypothesis 2.1) let

ΩD ..=
{
o ∈ Ωfr

p : {ηo,` : ` < g̀(o)} ⊆ D
}
.

3) Let Kx
T ,2 = Kx

p,2 be the class of J ∈ Kx
T ,1 such that

(A) (∀s ∈ J)(∃D ∈ B)[ΩJs = ΩD]

(B) If F Jo (s) = t then there exists o′ ≤Ω o such that F Jo′(s) = t and

(∀o′′ <Ω o′)
[
s /∈ dom(F Jo′′)

]
.

Note that

Fact 2.10. 1) If p (i.e. Tp) is well-founded, then clause (B) of 2.9(3) always holds.

2) If p it tree-like then it is well-founded.

Proof. 1) This follows immediately from p being well-founded — {o′ : o′ ≤Ω o}
has no infinite decreasing sequence for any o ∈ Ω.

2) Easy as well. �2.10

Remark 2.11. The assumption that p is well-founded is not a serious hindrance, by
2.23.

Claim 2.12. 1) ≤Ω is a partial order on Ωp.

2) o1 ‖Ω o2 iff g̀(o1) = g̀(o2) and for ` < g̀(o1), ιo1,` = ιo2,` and ηo1,`, ηo2,` are
≤T -compatible.

3) Assume p is tree-like.

(a) If θp ..= ℵ0, then for all o ∈ Ωp, the set {o′ : o′ ≤Ω o} is finite.

(b) There is no infinite decreasing sequence in (Ω, <Ω).

4) Any o1,o2 ∈ Ωp have a maximal common ≤Ω-lower bound; we will denote it by
o1 ∧ o2.

Proof. Easy. �2.12

Claim 2.13. 1) If J ∈ Kx
T ,0 and V1

..= VP (or an extension), then (A) ⇒ (B),
where

(A) G ∈ V1 solves p: that is, it is a directed subset of Tp such that

(∀D ∈ Bp)[G ∩D 6= ∅].

(B) FG
..=

⋃
η∈G

F Iη,1 is an automorphism of J � τorg (so in 3.5, it will map I1 to

I2).

2) If p is tree-like, then clause (A) is equivalent to

(A)′ •1 Tp ⊆ θ>λ is a tree, V1 |= “η ∈ θλ”, and (∀η < θ)[η � ε ∈ T ].

•2 G ..= {η � ε : ε < θ} solves p.
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Proof. First,

(∗)1 FG is a well-defined function.

[Why? As G ⊆ Tp, each F Iη is a function. Furthermore, if η, ν ∈ G then there is

ρ ∈ G such that η ≤T ρ∧ ν ≤T ρ (because G is directed) and F Iη ⊆ F Iρ ∧F Iν ⊆ F Iρ
(recalling I ∈ Kx

p and 2.6(2)(B)(c)).]

(∗)2 FG is a partial automorphism of I � τx.

[Why? Similarly to the proof of (∗)1.]

(∗)3 dom(FG) = J .

[Why? Recall 2.6(2)(B)(d), and that G meets every D ∈ Bp.]

By either clause (A)(a) or (b) •2 of the assumption,

(∗)4 rang(FG) = J .

[Why? Like (∗)3, recalling dom(F Iη,1) = rang(F Iη,−1).]
Together we are done. �2.13

Observation 2.14. For every D ∈ Bp there exists I ∈ Korg
T ,2 such that:

(a) ΩIs = ΩD for every s ∈ I.

(b) For every s ∈ I, I = {F Io (s) : o ∈ ΩD}.

Proof. Straightforward. �2.14

§ 2(B). Examples. First we present examples of p with θp = ℵ0 (so they do not
fit the theorems in §3).

Claim 2.15 (Example / Claim).

1) The following example is a strong twinship parameter witnessing the Cohen Real
forcing.

Let p = pCohen = p[Cohen] consist of:7

(a) Tp = (ω2,C) (so it is tree-like, and θ = ℵ0).

(b) Bp, the set of open dense subsets of ω>2.

2) If λ ..= cov(meagre), then for some B ⊆ Bp[Cohen] of cardinality λ, the pair(
(ω2,C),B

)
satisfies Definition 2.1.

3) Let T be (ω>2,C), or a subtree of (δ>2,C) for some δ such that

(∀η ∈ T )(∀ε < δ)(∃ν ∈ T ∩ ε2)[ν E η ∨ η E ν].

Define p = p[T ] by Tp ..= T and Bp ..= {T \ ε≥2 : ε < δ}.
Then p is a weak twinship parameter.

4) All of the examples above are well-founded.

Proof. 1) Covered in the proof of part (2).

2) Let 〈Zα : α < λ〉 be a sequence of meagre subsets of ω2 such that
⋃
α<λ

Zα = ω2.

Let Zα ⊆
⋃
n
Zα,n, where Zα,n is a closed nowhere dense subset of ω2, ⊆-increasing

with n. Let B ..= {Du,n : u ∈ [λ]<ℵ0 , n < ω}, where

Du,n
..=
{
η ∈ ω>2 : ¬

(
∃ρ ∈

⋃
α∈u

Zα,n
)[
η C ρ

]}
.

7 So T = Tp, etc.
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Now check.

3-4) Easy. �2.15

Claim 2.16 (Example / Claim). The following example is a strong well-founded
twinship parameter which witnesses the Random Real forcing.

Let T∗ be the set of sequences T = 〈Tn : n < ω〉 such that:

(A) Tn is a subtree of ω>2.

(B) Leb(
⋃

n∈[m,ω)

lim Tn) = 1 for every m < ω.

(C) Let ηn ..= tr(Tn) (the trunk of Tn). The sequence 〈ηn : n < ω〉 is without
repetition, and

ηn C ηm /∈ Tn ⇒ (∃ρ ∈ ω>2 \ Tn)[ηn C ρC ηm].

Let T ..= {Tα : α < λ} ⊆ T∗ be such that⋂
α<λ

⋃
n<ω

lim Tα,n = ∅

(e.g. with λ ..= cov(null)).
Let p = pRandom = pRandom(T) consist of:

(a) Tp = (ω2,C) (so θ = ℵ0).

(b) Bp ..= {Du,n : u ∈ [λ]<ℵ0 , n < ω}, where

Du,n
..=
{
η ∈ ω>2 : g̀(η) ≥ n, (∀α ∈ u)(∃m)

[
tr(Tα,m)E η ∈ Tα,m

]}
Proof. Similar to the proof of 2.15. �2.16

The following wide family of examples cover Random Real forcing, Cohen forc-
ing, and virtually every forcing which adds a new set of ordinals (even e.g. Prikry
forcing).

Definition 2.17. 1) We say m = (λ, θ, T ,P, η
˜

) = (λm, θm, . . .) is a forcing example
when

(A) λ ≥ 2 and θ = cf(θ) ≥ ℵ0.

(B) T is a subtree of (θ>λ,C) (so it is closed under initial segments).

(C) P is a forcing notion.

(D) η
˜

is a P-name of a member of θλ.

(E) P “η
˜
/∈ V and (∀ε < θ)[η

˜
ε ∈ T ]”, where η

˜
ε

..= η
˜
� ε ∈ ελ.

(F) For transparency, we demand (∀ν ∈ T )(∃p ∈ P)[p  “ν C η
˜

”].

2) For m as above, let p = pm = (Tm,Bm, θm) be defined as follows.

(A) Tp ..= Tm, θp ..= θm.

(B) Bm ..=
{
DI,f ⊆ T : (I, f) ∈ set(P)

}
, where

(a) set(P) is the set of pairs (I, f) such that:
•1 I is a maximal antichain of P, or its completion.

•2 f : I→ T
•3 f(p) = ν ⇒ p P “ν C η

˜
”

(b) DI,f
..=
{
ν ∈ T : (∃p ∈ I)[f(p)E ν]

}
.

3) For a forcing notion P, we define p[P] as Tp ..= P, and Bp the dense open subsets
of P.
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Remark 2.18. In 2.17(1), we can use p′m = (Tm,B′m, θm), where B′m is a subset of
Bm containing {T \ ε≥2 : ε < δ}, closed under finite intersections and satisfying the
demands in 2.2, with no solution. (See 2.4.)

Claim 2.19. 0) If P is a forcing notion, and λ and κ are minimal such that

P “there is a new η ∈ κλ”,

then there exists T ⊆ κ>λ and a forcing example m such that

(λm, θm, Tm,Pm) = (λ, κ, T ,P).

1) If m is a forcing example then pm is a tree-like strong twinship parameter.

1A) In particular, if θm > ℵ0 then this tree-like strong twinship parameter satisfies
clause 2.1(B)(c). (Pedantically, that clause is no longer vacuous.)

2) If m is a forcing example and Pm is (<ℵ1)-complete (or at least adds no new
ω-sequence of ordinals), then necessarily θm > ℵ0 (and the previous clause applies).

3) If m = (λ, θ, T ,P, η
˜

) is a forcing example and D ∈ Bpm , then

•1 P (∀∞ε < θ)[η
˜
� ε ∈ D]

•2 pm has a solution in VP.

4) If P is a non-trivial forcing then p[P] (see 2.17(3)) is a strong twinship parameter
and P “p[P] has a solution”.

5) If T is a Suslin tree, then there exists a forcing example m with Pm
..= T and

θm ..= ℵ1.

6) All of the p-s defined above are well-founded.

Proof. Easy. �2.19

Remark 2.20. In 2.19(3) •2, we may use a smaller B′ ⊆ Bp[P] as in previous exam-
ples.

Claim 2.21. 1) Assume m is a forcing example.

(a) If Pm is Cohen forcing then θm = ℵ0.

(b) If Pm is (<ℵ1)-complete then θm ≥ ℵ1.

(c) If Pm adds no new ω-sequence of ordinals then θm ≥ ℵ1.

2) Assume P is a non-trivial forcing (i.e. above every p ∈ P there are two incom-
patible members). Let κ(P) be as in 0.16, 0.15.

Then for some λ ≤ |P|, there is a forcing example m with Pm = P, θm = κ(P),
and λm = λ.

Proof. Easy. �2.21

Claim 2.22. Assume m is a forcing example with θm > ℵ0.

1) Pm 6= Sacks. In fact, Sacks forcing adds no solution to p.

1A) Similarly for the forcing notions from Ros lanowski-Shelah [RS99] (and [GS12]).

2) If Q is a definition of a forcing notion, is non-trivial and ccc, and the truth
values of “p ≤Q q”, “p ⊥Q q”, and “Q is ccc” are preserved in VQ, then Pm 6= Q.
Moreover, Q adds no solution to p.

2A) If θm > ℵ1 then the preservation assumption may be omitted.

3) Pm fails the θm-Knaster condition (e.g. Random).
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Proof. Let p ..= pm, P ..= Pm, etc.
Towards contradiction, suppose

P “ν
˜
∈ lim Tp is a new θp-branch”.

1) Let η
˜
∈ ω2 be the generic real for Sacks forcing. By a suitable game, for a dense

set of p ∈ Sacks, p forces that for some u ∈ [θ]ℵ0 we can compute η
˜

from ν
˜
� u.

So, letting ζ ..=
⋃
α∈u

α+ 1, we have p P “ν
˜
� ζ is a new sequence”. This gives us

our contradiction.

1A) Similarly — see more in [S+a].

2) Toward contradiction, assume p ∈ Q and p Q “η
˜

solves pm” (so it is a θm-
branch of Tpm meeting every D ∈ Bpm).

For every ε < θ, let

Λε ..= {ν ∈ Tpm : g̀(ν) = ε, and some q ∈ Q above p forces “ν C η
˜

”}.
As Q satisfies the countable chain condition, clearly Λε is countable and

(∀ε < ζ < θ)[ν ∈ Λζ ⇒ ν � ε ∈ Λε].

Also,
(∀ε < ζ < θpm)(∀ν ∈ Λε)(∃ρ ∈ Λζ)[ν C ρ];

moreover, as η
˜

solves pm, we have Q “η
˜
/∈ V”, hence(

∀ε < θpm

)(
∀ν ∈ Λε

)(
∃ζ ∈ [ε, θpm)

)(
∃ρ1, ρ2 ∈ Λζ

)[
ρ1 6= ρ2 ∧ ν C ρ1 ∧ ν C ρ2

]
.

This implies
⋃
ε<θp

Λε is a tree with no θp-branches.

Let G ⊆ Q be generic over V and contain p. Now in V[G] we have a θp-branch
η, and for every ε < θp there exist ζ = ζε ∈ (ε, θp) and %ε ∈ Λζ \ {η � ζ}. So for
some unbounded A ⊆ θp, 〈%ε : ε ∈ A〉 are pairwise C-incomparable.

There exists pε ∈ G such that

V |=
[
pε  “%ε C η

˜
”
]
,

so for all ε 6= ζ ∈ A,

V |= “%ε and %ζ are incomparable in Q”,

hence
V |= “pε and pζ are incompatible in Q”,

Note that each pε belongs to QV ⊆ V, but p̄A = 〈pε : ε ∈ A〉 may not be in V
(just in V[G]). So p̄A contradicts our assumption that forcing with Q preserves “Q
satisfies the ccc and p ⊥ q” (i.e. p and q are incompatible).

2A) Similarly.

3) For ε < θm, let pε ∈ Pm force a value to η
˜
ε (call it νε). If Pm satisfies the

θm-Knaster condition, then there exists a set U ∈ [θm]θm such that 〈pε : ε ∈ U〉 are
pairwise compatible. Hence

ε < ζ ∈ U ⇒ νε C νζ

and ν ..=
⋃
ε∈U

νε is a branch of Tpm .

Replacing pε by pmin(U\ε) for all ε ∈ θm \U , without loss of generality νε = ν � ε
for every ε < κ. It suffices to prove that

(∀D ∈ Bpm)
[
D ∩ {νε : ε < κ} 6= ∅

]
.

For every D ∈ Bpm and each ε < κ, there exists qε ∈ Pm above pε forcing %ε C η
˜for some %ε ∈ D, and we let ζε ..= max{ε, g̀(%ε)}.
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Now there necessarily exist ε1, ε2 < κ such that ζε1 < ζε2 and qε1 , qε2 have a
common upper bound. Let r be such an upper bound. So

r  “%ε1 , νε2 are bothE η
˜

”,

hence %ε1 and νε2 are E-compatible. But as g̀(%ε1) ≤ ζε1 ≤ ε2, necessarily %ε1Eνε2 .
But %ε1 ∈ D ∈ Bpm , which is an open dense subset of Tp, hence νε2 ∈ D. Therefore
D ∩ {νε : ε < κ} 6= ∅.

As D was an arbitrary member of Bp, the set {νε : ε < κ} solves pm — a
contradiction. �2.22

The demand ‘p is well-founded or tree-like’8 may seem unreasonable, but

Claim 2.23. Assume p is a [weak/strong] twinship parameter.

(a) For η ∈ Tp, let

δ(η,p) ..= sup
{
α+ 1 : (∃ν̄ ∈ αTp)[ν̄ is increasing ∧ ν0 = η]

}
.

(b) Let I be a maximal antichain of Tp such that

(∀η ∈ I)(∀ν ≥T η)
[
δ(η,p) = δ(ν,p)

]
.

(c) For r ∈ I, let pr = (T ′r ,B′r, θ′r) be defined as follows.
•1 Tr is the set of <T -increasing sequences of length a successor ordinal.

•2 <Tr
..= C (‘is an initial segment of . . .’).

•3 Br ..= {D[r] : D ∈ B}, where

D[r]
..= {p̄ ∈ Tr : p̄ ∩D 6= ∅}.

•4 θr ..= θ.

Then for each r ∈ I:

(d) pr is a [weak/strong] twinship parameter.

(e) pr is well-founded, and even tree-like (except the the set of levels of Tpr is
δ(r,p), which is not necessarily a cardinal).

(f) |Bpr | ≤ |Bp|
(g) For any forcing extension VQ of V, p has a solution iff there exists r ∈ I

such that pr has a solution.

Note: If δ(−,p) is constant and 0 is the minimal element of Tp, then we can always
choose I ..= {0}.

Proof. Straightforward. �2.23

§ 2(C). How ‘nice’ are the classes Kx? (Note that 2.24–2.26 will not be used
later.)

Observation 2.24. 1) Each of the classes from 1.2 is an AEC (see 2.27) with the
JEP. (For Ktr(κ), recall that the unique member of P I0 is an individual constant, so
identified.)

2) This also applies for Kor
T ,ι and Korg

T ,ι (for ι = 0, 1, 2).

3) Similarly for amalgamation.

Proof. Straightforward. �2.24

8 See 2.2(2),(3).
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Definition 2.25. 1) Let Sor
T be the class of I ∈ Kor

T such that for any s ∈ I,

{F Io (s) : o ∈ Ωp, F
I
o (s) is well-defined}

is equal to the set of elements of I.

2) For S ⊆ Sor
T , let Kor

T [S] be the class of I ∈ Kor
T such that for every s ∈ I,

I �
{
F Io (s) : o ∈ Ωp, F

I
o (s) is well-defined

}
is isomorphic to some member of S.

3) Sorg
T and Korg

T [S] are defined similarly.

4) For any K, we can define KT , SKT , and KT [S].

Claim 2.26. Kor, Korg, Kor
T ,`, and Korg

T ,` are universal classes. That is, if M is a

τ(KS)-model and every finitely generated submodel belongs to KS, then M ∈ KS.

Proof. Obvious. �2.26

Quoting [She09, 1.2=La5]:

Definition 2.27. We say k is a AEC with LST number λ(k) = LSTk if:

Ax.0: The truth of ‘M ∈ K’ and ‘N ≤k M ’ depends on N and M only up to
isomorphism; i.e.

M ∈ K ∧M ∼= N ⇒ N ∈ K
and ‘if N ≤k M , f is an isomorphism from M onto the τ -model M ′, and f � N is
an isomorphism from N onto N ′, then N ′ ≤k M

′.’

Ax.I: if M ≤k N then M ⊆ N (i.e. M is a submodel of N).

Ax.II: M0 ≤k M1 ≤k M2 implies M0 ≤k M2 and M ≤k M for M ∈ K.

Ax.III: If λ is a regular cardinal, Mi is ≤k-increasing (i.e. i < j < λ implies
Mi ≤k Mj) and continuous (i.e. for δ < λ, Mδ =

⋃
i<δ

Mi) for i < λ then

M0 ≤k

⋃
i<λ

Mi.

Ax.IV: If λ is a regular cardinal and Mi (for i < λ) is ≤k-increasing continuous
and Mi ≤k N for i < λ then

⋃
i<λ

Mi ≤k N .

Ax.V: If N0 ⊆ N1 ≤k M and N0 ≤k M then N0 ≤k N1.

Ax.VI: If A ⊆ N ∈ K and |A| ≤ LSTk, then for some M ≤k N , we have A ⊆ |M |
and ‖M‖ ≤ LSTk (and LSTk is the minimal infinite cardinal satisfying this axiom
which is ≥ |τ |; the ≥ |τ | is for notational simplicity).
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§ 3. On Existence For independent T

Convention 3.1. p is a (weak) twinship parameter (that is, as in Definition 2.1).

Discussion 3.2. Recalling Definition 1.8, note that in 3.7 we cannot deduce that
M and N are (λ, ϕ)-far, as the partial isomorphisms F Jη,ι form a witness. Now clause
�1(c) in the assumptions of 3.5 is strong, but it is only talking about (J � τorg) � X,
so the partial isomorphism F Jη,ι disappears.

However, the possibility of being (λ, |Bp|, ϕ)-far (see Definition 1.10) is not ex-
cluded.

Definition 3.3. Assume λ > κ+ ℵ0 and κ ≥ 2 such that α < λ⇒ |α|<κ < λ.

1) We say a graph G is (λ, κ)-entangled when we have (A) ⇒ (B), where

(A) (a) ε < κ

(b) āα = 〈aα,ζ : ζ < ε〉 ∈ εG, and each āα is without repetition
(for α < λ).

(c) For all α 6= β < λ, the sets {aα,ζ : ζ < ε} and {aβ,ζ : ζ < ε} are
disjoint.

(B) For every X ⊆ ε× ε, there exist α < β < λ such that(
∀ζ, ξ < ε

)[
aα,ζ R

G aβ,ξ ⇔ (ζ, ξ) ∈ X
]
.

2) We say I ∈ Korg
T ,0 (of cardinality ≥ λ) is (λ, κ)-entangled when we have

(A) ⇒ (B), where:

(A) As above, but adding:
(d) If ζ, ξ < ε, o ∈ Ωp, and α < β < λ, then

F Io (aα,ζ) = aα,ξ ⇔ F Io (aβ,ζ) = aβ,ξ.

(e) If α < β < λ and γ < δ < λ, then

(∀ζ, ξ < ε)[aα,ζ <I aβ,ξ ⇔ aγ,ζ <I aδ,ξ].

(B) For every X ⊆ ε× ε, there exist α < β < λ such that(
∀ζ, ξ < ε

)[
aα,ζ R

G aβ,ξ ⇔ (ζ, ξ) ∈ X
]
,

provided that
• If γ < λ, o` ∈ Ω, F Io`(aγ,ζ`) = aγ,ξ` for ` = 1, 2, and o1,o2 have a

common ≤Ω-upper bound, then

(ζ1, ζ2) ∈ X ⇔ (ξ1, ξ2) ∈ X.

3) If we omit κ and simply write ‘λ-entangled,’ we mean κ ..= ℵ0.

We will state the following for a cardinal κ, but as in [Sheb] κ ..= ℵ0 if not stated
otherwise.

Definition 3.4. Assume K is as in 1.1, τµ,κ is as in 0.17 (quoting from [Sheb]),
and Σ is a set of τµ,κ-terms σ(x̄), where x̄ = 〈xζ : ζ < ε〉 for some ε < κ. Further
assume that |Σ| ≤ µ. (If µ = µ<κ, this is automatic. If in addition Σ is the set of
all τµ,κ-terms, then we may omit Σ.)

Then for I, J ∈ K, we say that I is strictly (µ, κ)-Γ-Σ-unembeddable into J (we
may write ‘µ’ instead of (µ,ℵ0)) when we have ‘(A) ⇒ (B),’ where:

(A) (a) Mµ,κ(J) is a τµ,κ-structure as in 0.17.

(b) F : I →Mµ,κ(J)

(c) F (s) is of the form σs(t̄s), where
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•1 σs ∈ Σ (which is a set of τµ,κ-terms).

•2 g̀(t̄s) = ε(σs) = εs < κ

•3 t̄s = 〈ts,ε : ε < εs〉 ∈ εsJ .

•4 If K has a linear order and

κ > ℵ0 ⇒ J is well-ordered,

then t̄s is <J -increasing.

(d) Γ is a set of pairs
(
p1(x̄), p2(x̄)

)
such that for some ε < κ, I ′ ∈ K, and

t̄` ∈ ε(I ′) (for ` = 1, 2), we have

p` ⊆ tpqf(t̄`,∅, I ′).

(B) There exist ε < κ, s̄1, s̄2 ∈ εI, and (p1, p2) ∈ Γ such that:
(a) p1 ⊆ tpqf(s̄1,∅, I) and p2 ⊆ tpqf(s̄2,∅, I)

)
.

(b) σs1,ζ = σs2,ζ for all ζ < ε.

(c) The sequences (t̄s1,0ˆ . . . ˆt̄s1,ζˆ . . .)ζ<ε and (t̄s2,0ˆ . . . ˆt̄s2,ζˆ . . .)ζ<ε re-
alize the same quantifier-free types in J .

Claim 3.5. Suppose λ is regular, µ ∈ [ℵ0, λ), p is a strong twinship parameter,
θp > ℵ0, and |Tp|+ + |Bp| ≤ λ. Let Σ be as in 3.4.

Then we have ‘�1 ⇒ �2’, where:

�1 (a) J ∈ Korg
T ,2 (see Definition 2.9(3)) is of cardinality λ.

(b) Γorg
..=
{(
p1(x0, x1), p2(x0, x1)

)}
, where

p1(x0, x1) ..=
[
x0 < x1 ∧ x0Rx1

]
and

p2(x0, x1) ..=
[
x0 < x1 ∧ ¬(x0Rx1)

]
.

(c) X ∈ [J ]λ is well-ordered and maximal such that x 6= y ∈ X implies
y /∈ c`J({x}) (equivalently, ¬[x EJ y]).

(d) I ..= (J � τorg) � X ∈ Korg is λ-entangled.

(e) For ` = 1, 2, we define

X`
..=
{
F Io (a) : a ∈ X, o ∈ Ωfr

p , and g̀(o) = ` mod 2
}
.

(f) •1 If D ∈ Bp then |Y 0
D| ≥ λ, where Y 0

D
..= {s ∈ X : ΩJs = ΩD}

(recalling Definition 2.9).

•2 X is the disjoint union of 〈Y 0
D : D ∈ Bp〉.

(g) I` ..= I � X` for ` = 1, 2.

(h) RJ =
{(
F Jo (s), F Jo (t)

)
: o ∈ Ω, s 6= t ∈ X ∩ dom(F Io ), (s, t) ∈ RI

}
(i) For s1, s2 ∈ X, if o` ∈ ΩJs` for ` = 1, 2, then

s1 <J s2 ⇔ F Jo1
(s1) <J F

J
o2

(s2).

(j) If t, v ∈ X and o1,o2 ∈ ΩJt = ΩJv , then

F Jo1
(t) <J F

J
o2

(t)⇔ F Jo1
(v) <J F

J
o2

(v).

�2 I1 is strictly µ-Γorg-Σ-unembeddable into I2.

Proof. This is a special case of 3.6 proved below, where we choose Y ..= X and
Z ..= X2. (So I2 ..= I � X2 here is equal to I � Z there, and I1 ..= I � X1 here
contains I � Y from there, hence the conclusion of 3.6 implies �2 here.)

Now we have to verify that the conditions of 3.6 hold. This is straightforward,
noting that in clause (d) •2, the λ-indiscernibility property follows from J being
well-ordered, by 3.5�1(a) (recalling 0.22). �3.5
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What we really need is the following: it will be used in 3.7(2).

Claim 3.6. Like 3.5, but

�1 (a) J ∈ Korg
T ,2

(b) As there.

(c) X ⊆ J is maximal such that x 6= y ∈ X implies y /∈ c`J({x})
(equivalently, ¬[x EJ y]).9

(d) •1 Y ∈ [X]λ (So in clause (c) we have |X| ≥ λ.)

•2 I ..= (J � τorg) � X

•3 I � {<} has the λ-indiscernibility property. (See 0.21.)

•4 I ∈ Korg is λ-entangled.

(e) Z ..={
F Jo (a) : a ∈ X ∩ dom(F Jo ), o ∈ Ωfr

p , and a ∈ Y ⇒ g̀(o) = 1 mod 2
}

(f) •1 If D ∈ Bp then |Y 0
D| ≥ λ, where Y 0

D
..= {s ∈ Y : ΩJs = ΩD}

(recalling Definition 2.9).

•2 Y is the disjoint union of 〈Y 0
D : D ∈ Bp〉.

(h), (i), (j) As there.

�2 I � Y is strictly µ-Γor-Σ-unembeddable into I � Z.

Proof. First,

(∗)0 Let F and 〈σs(t̄s) : s ∈ Y 〉 (where t̄s ∈ ω>Z) be as in 3.4(A), with I � Y
and I � Z here standing in for I, J there.

It will suffice to find s̄1, s̄2 ∈ 2Y as in 3.4(B), recalling our choice of Γ.
Assume, for the sake of contradiction, that there are no such s̄1, s̄2.

(∗)1 For s ∈ Z, let (t̄′s, ōs) be such that
(a) t̄′s ∈ ω>X

(b) g̀(t̄′s) = g̀(ōs) = ns = n[s] ..= g̀(t̄s) and os,` ∈ Ωfr.

(c) ` < ns ⇒ ts,` = F Jos,`(t
′
s,`), noting

•1 ` < ns ⇒ t′s,` ∈ X ∧ ts,` ∈ Z
•2 ` < ns ∧ t′s,` ∈ Y ⇒ g̀(os,`) ≡ 1 mod 2.

(d) Let es ..=
{

(`, k) : `, k < ns, t
′
s,` = t′s,k

}
.

(e) 〈os,` : ` < ns〉 ⊆ Ωp satisfies

o <Ω os,` ⇒ s /∈ dom(F Jo ).

[Why? For clause (e), recall the definition of Korg
p,2 . (This is guaranteed when p is

well-founded, recalling 2.10 and 2.9(3)(B).)]

(∗)2 Choose χ large enough, and choose N ≺
(
H(χ),∈

)
of cardinality < λ such

that:
(a) J, I, F, µ,p, X, Y, Z,Φ, and 〈σs(t̄s) : s ∈ Y 〉 all belong to N .

(b) ‖N‖ < λ

(c) N ∩ λ ∈ λ (so B, τ(Φ), Ω, and Φ are all ⊆ N).

Next,

(∗)3 If s ∈ Y \N then there are sets vs,1, vs,2, vs,3, and Us (the first three being
finite) such that:
(a) vs,1 ⊆ (N ∩ Z) ∪ {∞} and vs,2 ⊆ ns.

9 I.e. we do not demand that X is well-ordered.
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(b) s ∈ Us ∈ [Y ]λ and Us ∩N = ∅.

(c) The sequence
〈
(σr, g̀(t̄r), er, ōr) : r ∈ Us

〉
is constant.

(d) (∀` ∈ vs,2)(∀r ∈ Us)[t′r,` /∈ N ∧ tr,` /∈ N ] and(
∀` ∈ ns \ vs,2

)(
∀r ∈ Us

)[
tr,` = ts,` ∈ vs,1 ∧ t′r,` = t′s,`

]
.

(e) 〈tr,` : ` < ns, r ∈ Us, ts,` /∈ N〉 and 〈t′r,` : ` < ns, r ∈ Us, ts,` /∈ N〉
are without repetition (except for t′r,` = t′r,k when (`, k) ∈ es).

(f) t′s,` ∈ vs,1 for every ` ∈ ns \ vs,2.

(g) vs,3 ..= {` ∈ vs,2 : t′s,` = s, ` < ns} ⊆ vs,2
[Why? Easy.10]

(∗)4 Recall that we defined

Y 0
D

..= {s ∈ Y : ΩJs = ΩD}

(so by assumption �1(g) we know Y 0
D ∈ [Y ]≥λ).

(∗)5 For each D ∈ B, we can choose σD, eD, vD,ι (for ι = 2, 3),
〈t∗D,` : ` ∈ ns \ vs,2〉, and 〈oD,` : ` ∈ vD,1〉 such that |Y 1

D| ≥ λ, where

Y 1
D

..= {s ∈ Y 0
D : σD = σs, vD,ι = vs,ι for ι = 2, 3, and t∗D,` = t′s,` for ` ∈ ns \ vs,2}.

[Why does this exist? As |Y 0
D| = λ > ‖N‖ ≥ |τJ | + |Tp| is regular, there exists

s ∈ Y 0
D ∩ Y \N , and we can use the same argument as for (∗)3.]

(∗)6 If D1, D2 ∈ B, then there exist ` = `D1,D2
∈ vD1,3 and k = kD1,D2

∈ vD2,3

such that oD1,` and oD2,k have a common ≤Ω-upper bound.

Why? First:

(∗)6.1 We can choose s1,ε ∈ Y 1
D1

and s2,ε ∈ Y 1
D2

for ε < λ such that

ε < ζ < λ⇒ s1,ε 6= s1,ζ ∧ s2,ε 6= s2,ζ .

Second, by �1(d) •3, without loss of generality

(∗)6.2 (a)
〈
〈s1,ε, s2,ε〉ˆ t̄′s1,ε̂ t̄′s2,ε : ε < λ

〉
is a qf-indiscernible sequence for the

linear order <J .

(b) All the individual sequences in clause (a) realize the same quantifier-
free type in I.
(That is, the type tpqf(〈s1,ε, s2,ε〉ˆ t̄′s1,ε̂ t̄′s2,ε ,∅, I) does not depend on

ε.)

Third,

(∗)6.3

〈
〈s1,ε, s2,ε〉ˆ t̄s1,ε̂ t̄s2,ε : ε < λ

〉
is a qf-indiscernible sequence for <J as well.

[Why? By (∗)6.2 and �1(i), (j).]

That is,

(∗)6.4 •1 For ε < ζ < λ, let W0
ε,ζ

..=
{

(`, k) ∈ nD1 × nD2 : t′s1,ε,` R
J t′s2,ζ ,k

}
.

•2 W∗ ..=
{

(`, k) ∈ nD1
× nD2

: oD1,` = oD2,k

}
(∗)6.5 If ε1 < ζ1 < λ and ε2 < ζ2 < λ are such that W0

ε1,ζ1
=W0

ε2,ζ2
, then

•1 The sequences 〈s1,ε1 , s2,ε1〉ˆt̄s1,ε1ˆ t̄s2,ζ1 and 〈s1,ε2 , s2,ε2〉ˆt̄s1,ε2ˆ t̄s2,ζ2 re-

alize the same quantifier-free type in J � {<}.

10 Earlier, we had also demanded that

(h) For every ` ∈ vs,2 there exists t∗` ∈ vs,1 such that if r ∈ Us then t∗` is the <J -minimal
member of {s ∈ X ∩N : s ≥J t′r,`}. (If there are no members of X ∩N above t′r,`, we

say t∗`
..=∞. This is why we allowed ∞ ∈ vs,1 in clause (a).)
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•2 The sequences t̄s1,ε1ˆ t̄s2,ζ1 and t̄s1,ε2ˆ t̄s2,ζ2 realize the same quantifier-
free type in J .

•3 If

[s1,ε1 R
J s1,ζ1 ]⇔ ¬[s2,ε1 R

J s2,ζ1 ]

then we get the desired contradiction.

[Why? For •1, first recall (∗)6.2(a) for the order on 〈s1,ε, s2,ε〉ˆ〈t̄′s1,ε̂ t̄′s2,ε : ε < λ〉.
For •2, recall (∗)6.2(b) and our assumption W0

ε1,ζ1
=W0

ε2,ζ2
for the graph relation.

Lastly, •3 follows from our choices.]

(∗)6.6 (∀ε < ζ < λ)
[
W0
ε,ζ ⊆ W∗

]
[Why? Holds by assumption �1(g).]

(∗)6.7 If W∗ and vD1,3 × vD2,3 are disjoint, then we get a contradiction.

[Why? Because I ∈ Korg is λ-entangled, and get a contradiction by (∗)6.5+(∗)6.5.]

So for some o ∈ Ω and ` < nD1
, k < nD2

, for all ε < ζ < λ, we have Fo(s1,ε) =
ts1,ε,` and Fo(s2,ζ) = ts2,ζ ,k.

Now J ∈ Korg
T ,2 ⊆ K

org
T ,1 (see 2.6(2),(3)). Therefore, recalling (∗)1(e), we conclude

that oD1,` and oD2,k have a common ≤Ω-upper bound.
This proves (∗)6.

Now we recall Hypothesis 2.1(B)(d):

� θp > ℵ0, and the intersection of countably many members of B will always
contain some other member of B.

Hence

(∗)7 There exists n such that

Bn ..= {D ∈ B : nD = n}
is ≤p-cofinal in (B,≤p).

(∗)8 Let mD
..=
(
〈 g̀(oD,`) : ` < n〉, vD,2, vD,3

)
.

(∗)9 Let E be an ultrafilter on B which includes Bn, such that for every D ∈ B
we have

{D′ ∈ B : D′ ⊆ D} ∈ E.
[Why does such an E exist? Because (Bp,⊇) is directed and Bn is cofinal.]

(∗)10 (a) For each D ∈ Bn there exist `D, kD < n such that

XD ..= {D′ ∈ Bn : `D = `D,D′ , kD = kD,D′} ∈ E.
(b) There exist `∗, k∗ < n such that

B• ..= {D ∈ Bn : `D = `∗, kD = k∗} ∈ E.
[Why? Obvious: there are only finitely many possibilities (clause (a) gives < n and
clause (b) gives < n2), and E is an ultrafilter. We may add more, but this is not
necessary.]

(∗)11

(
∀ED1 ∈ B•

)(
∀ED2 ∈ B•

)[
g̀(oD1,`∗) ≤ g̀(oD2,k∗)

]
[Why? By clause (C)(b) of Definition 2.2(1), for any D1 ∈ B• there is D′2 ∈ Bp
such that

{η : η appears in oD1,`∗} ∩D′2 = ∅.
(That is, η ∈ rang(η̄D1,`∗) where oD1,`∗ = (η̄, ῑ) = (η̄D1,`∗ , ῑD1,`∗).)

Now any D2 ⊆ D′2 from B• will work.]

(∗)12 If k < ω and Di ∈ B• for i < k, then {oDi,`∗ : i < k} has a common
≤Ω-upper bound.
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[Why? Recalling (∗)10(a)+(∗)11, choose any D∗ ∈
⋂
i<k

XDi such that g̀(oD∗,k∗) ≥

g̀(oDi,`∗) for all i < k. Then oD∗,k∗ is a common upper bound.]

(∗)13 For D ∈ B•, let ηD ∈ T denote the 0th η-term in oD,`∗ .
(a) G ..= {ηD : D ∈ B•} is directed under ≤T .

(b) G ∩D 6= ∅ for all D ∈ B•.
[Why? Clause (a) holds by our choices. Clause (b) holds because for every D ∈ Bp
there exists D′ ∈ B• such that D′ ⊆ D.]

So G contradicts clause 2.2(1A)(d) in the definition of ‘strong twinship parameter,’
and we are done. �3.6

Conclusion 3.7. Assume P is a forcing notion adding no new ω-sequence of ordi-
nals, but does add some infinite sequence (so necessarily of length ≥ ω1).

Assume T ⊆ T1 are complete first-order theories, and T is independent as wit-
nessed by ϕ = ϕ(x̄[k], ȳ[k]) ∈ L(τT ).

1) Then there are models M,N such that:

(a) M and N are models of T1 of cardinality λ ..= (2‖P‖+|T1|)+ (or some larger
regular cardinal λ′ ≥ λ).

(b) P “M � τT ∼= N � τT ”, and even P “M ∼= N”.

(c) M � τT and N � τT are not isomorphic.

(d) Moreover, M is (λ, 2‖P‖, ϕ)-far from N (see 1.10(1)).

2) We may strengthen clause (d) to

(d)+ M and N are (λ, 2‖P‖, ϕ)-far from each other.

Remark 3.8. The following are natural extensions of Claim 3.7. (Their proofs will
be delayed to [S+a].)

3) In parts (1) and (2) of 3.7, we may add

(e) M and N are L∞,λ-equivalent.

4) If λ = cf(λ) > 2‖P‖ + |T1| and ξ < λ, then we can find models M,N of T1 such
that

(a) ‖M‖ = ‖N‖ = |ξ>λ|
(b), (c) As in 3.7(1).

(d) M and N are cofinally (λ, ξ)-equivalent (see Definition 0.19).

(e) M and N are (λ, 2‖P‖, ϕ)-far from each other.

5) It is enough to demand that λ is regular, > |P|, and ≥ the number of maximal
antichains in P.

Proof. 1) First, choose a strong twinship parameter p by Claim 2.19 (so θp ≤ ‖P‖
and |Bp| ≤ 2‖P‖).

(∗)1 We may require
(a) θp ..= min{θ : P “there is a new η ∈ θ2”}
(b) |Bp| =

∣∣{|Y | : Y is a maximal antichain of P}
∣∣.

Second,

(∗)2 (a) Choose λ regular such that λ > |τ(T1)|+ |Tp|, λ ≥ |Bp|.
(b) c : [λ]2 → ω is as in [She90b, Th. 1.1]. That is, it satisfies the property

called Pr0(λ,ℵ0) there (later called Pr0(λ, λ,ℵ0,ℵ0)).
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[Why does such a c exist? By [She90b].]

Now choose11 J ∈ Korg
T ,2 as in 3.5�1 such that:

(∗)3 (a) X ⊆ J , (X,<J) = (λ,<), and the pair (X, J) satisfies clauses (h),(i),(j)
of 3.5�1.

(b) For s, t ∈ X, we have (s, t) ∈ RJ ⇔ s, t ∈ J ∧ s 6= t ∧ c({s, t}) = 1.

[Why? For each D ∈ Bp we can find ID ∈ Korg of cardinality |D| (which is infinite,
but ≤ ℵ0 + |Tp| < λ) such that s ∈ ID ⇒ ΩIDs = ΩD by 2.8. Let sD = s[D] be
some member of ID.

Let 〈Dα : α < λ〉 ∈ λBp be such that (∀D ∈ Bp)(∃λα < λ)[Dα = D]. We define
J ∈ Korg

T ,2 as follows.

(∗) (a) |J | ..= λ× ID. (That is, {(α, s) : α < λ, s ∈ ID}.)
(b) (α1, s1) <J (α2, s2) iff

•1 (α1, s1), (α2, s2) ∈ J
•2 α1 < α2 ∨

[
α1 = α2 ∧ s1 <IDα s2

]
.

(c) F Jη,1(α1, s1) = (α2, s2) iff α1 = α2 ∧D = Dα1
∧ F IDη,1(s1) = s2.

(d) X ..=
{

(α, sDα) : α < λ
}

(e) We choose

RJ ..=
{

(F Jo (α1, s1), F Jo (α2, s2)) : α1 6= α2 < λ, c({α1, α2}) = 1, o ∈ ΩDα1
∩ΩDα2

}
.

Now check. Note that (J,<J) is not (λ,<), but we get this by renaming.]

Choose ϕ = ϕ(x̄n, ȳn) ∈ LτT witnessing the independence property for T (see
Definition 1.4(2)). Choose Φ ∈ ΥKorg

[
T1, |T1|

]
such that

I ∈ Korg ⇒
(
∀s, t ∈ I

)[
GEM(I,Φ) |= “ϕ[ās, āt] ⇔ s RI t”

]
.

[Why can we do this? By 1.5.]
Now we finish by 3.5. That is, recall that for ` = 1, 2 we defined

X`
..= {F Jo (s) : s ∈ X ∩ dom(F Jo ), o ∈ Ωfr

p , g̀(o) ≡ ` mod 2}

Let M+
` be the submodel of GEM(J � τorg,Φ) generated by {as : s ∈ X`}, where

〈as : s ∈ J〉 is the skeleton.
Now (M,N) =

(
M+

1 � τT1
,M+

2 � τT1

)
are as required. Moreover, M1 and M2

are strictly p-isomorphic (see 2.4).

2) We intend to use 3.6 instead of 3.5 for ` = 1, 2. For proving clause (d)+, we need
a Y1 and Y2, hence of Z1, Z2.

So let Y1, Y2 ∈ [X]λ be a partition of X and let

Z` ..= {F Jo (s) : s ∈ X ∩ dom(F Jo ), and s ∈ Y` ⇒ g̀(o) ≡ ` mod 2}.
Also choose ηs ∈ DJ

s for all s ∈ X. Lastly, let

X`
..= {F Jo (s) : s ∈ X ∩ dom(F Jo ), g̀(o) ≡ ` mod 2}.

We continue as in the proof of part (1). �3.7

Claim 3.9. Like 3.7, when T is stable, with OTOP or DOP, and T1 = T .

Proof. Similar to the proof of 3.7.
The point is that those properties imply the existence of Φ as in the proof of 3.7,

except that the relevant ϕ is not first-order (see [BLS93, 1.1], building on [She90a,
Ch.X, §2; Ch.XIII, §2].) �3.9

11 See 2.7.
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Problem 3.10. Can we eliminate “θp > ℵ0” in §3?
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