
CONSISTENCY OF SQUARE BRACKET PARTITION RELATION

SAHARON SHELAH

Abstract. Characteristic earlier results were of the form CON(2ℵ0 → [λ]2n,2),

with 2ℵ0 an ex-large cardinal, in the best case the first weakly Mahlo cardinal.
Characteristic new results are CON

(
(2ℵ0 = ℵm) + ℵ` → [ℵk]2n,2

)
, where

k < ` < m. So we improve in three respects: the continuum may be small (e.g.
not a Mahlo weakly inaccessible), we use no large cardinal, and the cardinals

λ involved are < 2ℵ0 after the forcing.

§ 0. Introduction

In their seminal list of problems [EH71], Erdös and Hajnal posed the question
(15(a)): does 2ℵ0 6→ [ℵ2]23? Recently, Komjáth [Kom21] provided a comprehensive
update on this topic.

We continue here works which start with the problem above:[She88, §2], [She92],
[She89], [She95] [She96], [She00] and the work with Rabus [RS00].

The simplest case of our result is (recall 0.3 below):

Theorem 0.1. Assume GCH for transparency. Then for some ccc forcing notion
of cardinality ℵ6 in the universe VP, we have 2ℵ0 = ℵ6 and for any n ≥ 3, ℵ5 →
[ℵ1]2n,2.

Proof. Choose (µ, θ, ∂, λ) as (ℵ6,ℵ5,ℵ1,ℵ0) and apply Theorem 0.2 �0.1

The general case is:

Theorem 0.2. Assume λ = λ<λ < ∂ < θ < µ = µθ and 2∂
+`

= ∂+`+1 for
` = 0, 1, 2, 3 and ∂+4 < θ. Then for some λ+-cc, (< λ)-complete forcing notion
P (so the forcing does not collapse any cardinal and preserve cardinal arithmetic
outside [λ, µ)) of cardinality µ, in the universe VP we have, 2λ = µ and for every
σ < λ, θ → [∂]2σ,2.

Proof. All this paper is dedicated to provingthis theorem. Pedantically Hypothesis
1.1 holds (see Fact 1.12) so we can apply Concusion 1.11. �1.11

We may replace θ → [∂]2σ,2 by (∀∂1 < ∂)(∃θ1 < θ)[θ1 → [∂1]2σ,2] and change the
assumption on cardinal arithmetic accordingly.

Recall,

Definition 0.3. For possibly finite cardinals θ, ∂, σ and κ, let θ → [∂]κσ,κ mean:
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2 S. SHELAH

• if c is a function from [θ]2 := {u ⊆ θ : |u| = κ} into σ, then there exists
some subset U of θ of cardinality ∂ such that {c(u) : u ∈ [U ]2} has at most
κ-many members.

§ 0(A). Preliminaries.

Notation 0.4. cof(δ) is the class of ordinals of cofinality cf(δ).

Notation 0.5.
(1) P, Q and R are forcing notions.
(2) p, q, r called conditions are members of a forcing notion.
(3) q is as in Definition 1.3, some kind of (< λ)-support iterated forcing with

extra information.

Notation 0.6. We may write e.g. N [q, β, u] instead Nq,β,u to help with sub-scripts
(or super-script).

Definition 0.7. Let θ, ∂, κ and λ be infinite cardinals. We say that θ →sq (∂)λ,2κ
when θ > ∂ ≥ κ ≥ λ and:

� If (a) then (b), where:
(a) B is an expansion of (H<λ(µ),∈, <∗), where <∗ is a well-ordering of

H<λ(µ), µ+ > θ, and its vocabulary τB has cardinality ≤ λ.
(b) There is a tuple s = (U , N̄ , π̄) solving p = (θ, ∂, κ, λ,B), which means:

�p,s for u, v ∈ [θ]≤2,
•1 N̄ = 〈Nu : u ∈ [U ]≤2〉,
•2 U ⊆ θ is such that otp(U ) = ∂,
•3 Nu ≺ B, [Nu]<λ ⊆ Nu,
•4 ε[s] := min(Us),
•5 Nu ∩U = u,
•6 ‖Nu‖ = κ and κ+ 1 ⊆ Nu,
•7 Nu ∩Nv ≺ Nu∩v,
•8 π̄ = 〈πu,v : u, v ∈ [U ]≤2 and |u| = |v|〉 such that if |u| = |v|,

then πu,v is an isomorphism from Nv onto Nu mapping v
onto u,

•9 if u1 ⊆ u2 and v1 ⊆ v2 all from [U ]≤2 and |u2| = |v2|
π′′v2,u2

(u1) = v1 then πv1,u1
, πv2,u2

are compatible functions.

§ 1. The forcing

Our aim here is to prove the consistency of the following configuration:

2 < σ < λ = λ<λ ≤ ∂ = ∂<λ ≤ µ = µθ = 2λ,

and having θ → [∂]2σ,2.

A continuation is in preparation [S+], aiming to further develop the directions
explored here, particularly for the case of superscript n > 2, as dealt within [She92].
We also show there that we can weaken the demands on the cardinals.

Hypothesis 1.1. The parameter p = (θ, ∂, ∂, λ,B) consists of the following:

(a) λ = λ<λ < ∂ < θ ≤ µ = µθ,

(b) θ →sq (∂)λ,2∂ (see Definition 0.7, a variant of [She89, 2.1]).
(c) σ will vary on the cardinal numbers from [2, λ) and the “nice” µ are such

that γ < µ⇒ |γ|θ < µ.
(d) • B is a model expanding (H<λ(µ),∈, <B, γ,P, c

˜
), where <B is well-

ordering of H<λ(µ),
• τ(B) is a vocabulary of cardinality ≤ λ.
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CONSISTENCY OF SQUARE BRACKET PARTITION RELATION 3

We intend to use (<λ)-support iterated forcing of quite a special kind but first,
we define the iterand.

Definition 1.2.
(1) Let A be the set of objects a consisting of (so γ = γa, Nu = Na,u):

(a) • γ ≤ µ and σ ∈ (2, λ),
• P is a forcing notion such that:

p ∈ P⇒ dom(p) ∈ [γ]<λ ∧ (∀α ∈ dom(p))[p(α) ∈ [ω ∪ γ]<λ],

• P is λ+-cc and (< λ)-complete,
• the order ≤P is: p ≤P q iff:

dom(p) ⊆ dom(q) ∧ (∀α ∈ dom(p))[p(α) ⊆ q(α)],

(b) • c
˜

is a P-name of a function from [θ]2 to σ (we may write c
˜

(α, β) instead
c
˜
{α, β} for α 6= β < θ).

(c) There is a triple (U , N̄ , π) solving p = (θ, ∂, ∂, λ,B) (see Definition 0.7�(b),
1.1) such that c

˜
∈ Nu for every u ∈ [U ]≤∂ .

(1A) In the context of Definition 1.2(1), a = (γ,B,P, c
˜
,U , N̄ , π̄) = (γa,Ba, ...),

so e.g. Na,u = Nu.
(2) We say that the pair (p, ῑ) is a solution of a ∈ A, denoted by (a, p, ῑ) ∈ A+,

when,

(a) ῑ = (ι1, ι2) ∈ σ × σ,
(b) p ∈ Pa ∩Na,{ε[a]},
(c) if p ≤ q ∈ Pa ∩Na,{ε[a]} and ζ1 < ζ2 are from U then there are q1, q2, r1, r2

such that for ` = 1, 2, we have:
•0 q ≤Pa q`,
•1 q` ∈ Pa ∩Na,{ε[a]} and q1 � (Na,∅ ∩ lg(q)) = q2 � (Na,∅ ∩ lg(q)),
•2 r` ∈ Pa ∩Na,{ζ1,ζ2},
•3 r` “c

˜
(ζ1, ζ2) = ι`”,

•4 r` � Na,{ζ1} is ≤Pa -below πa
{ζ1},{ε[a]}(q`),

•5 r` � Na,{ζ2} is ≤Pa -below πa
{ζ2},{ε[a]}(qζ3−`).

(3) If b = (a, p, ῑ) ∈ A+ then let Q
˜

b be the P-name of the following forcing
notion:

(∗) For G ⊆ P generic over V,
(a) the set of elements of Qb = Q

˜
b[G] is:{

u ∈ [U ]<λ : if ζ1 < ζ2 in U , then c
˜
{ζ1, ζ2}[G] ∈ {ι1, ι2}, moreover

for some q1, q2, r1, r2 as in Definition 1.2(1)(c)(•1)-(•5), we have r1 ∈ G or r2 ∈ G
}
,

(b) the order of Q
˜

b[G] is the inclusion,
(c) the generic is Vb =

⋃
G
˜

Q
˜

b
.

Definition 1.3.
(1) Let Q := Qp be the class of q which consist of (below, α ≤ lg(q) and

β < lg(q) and e.g. Pα = Pq,α):

(a) lg(q) is an ordinal ≤ µ,
(b) 〈Pα,Q

˜
β : α ≤ lg(q), β < lg(q)〉 is a (<λ)-support iteration,

(c) Pβ satisfies the λ+-cc,
(d) Q

˜
β is Q

˜
bβ , where:

•1 bβ := (aβ , p
∗
β , ῑ
∗
β) ∈ A+, and

•2 aβ := (γβ ,Bβ ,P•β , c˜β
,Uβ , N̄β , π̄β) ∈ A,

•3 P•β is equal to P′ξ(β) for some ξ(β) = ξq(β) ≤ β (on P′β , see below).
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4 S. SHELAH

(e) P′α is a dense subset of Pα, where,
• P′α := Pα � {p ∈ Pα : if β ∈ dom(p) then p(β) is a member of V (not

just a Pα-name) and if ζ1 < ζ2 are in p(β) ∩Uβ , then there are q1, q2,
r1, r2 as in Definition 1.2(2)(c)(•1)-(•5) with aβ ,bβ here standing for
a,b there and

2∨
`=1

(∀γ ∈ dom(r`))[γ ∈ dom(p) ∧ r`(γ) ⊆ p(γ)]}.

(f) γq := γ(q) := sup{γq,β : β < lg(q)}, so P′γ(q) ⊆ H<λ(γq); let Pq := Plg(q)

and P′q := P′lg(q).
(1A) We may write either Pq,α or Pα whenever q is clear and (ιq,β,1, ιq,β,2) is

ῑbβ ,
(2) Let ≤p be the following two-place relation on Qp:

q1 ≤p q2 iff q1 = q2 � lg(q1), see below.

(3) For q2 ∈ Qp and α∗ ≤ lg(q2), we define q1 := q2 � α∗ by:

(a) lg(q1) = α∗,
(b) (Pq1,α,P′q1,α) = (Pq2,α,P′q2,α) for α ≤ α∗,
(c) (Q

˜
q1,β ,bq1,β) = (Q

˜
q2,β ,bq2,β) for β < α∗.

(4) We say that two conditions p, q ∈ P′α are isomorphic, when:

(a) otp(dom(p)) = otp(dom(q)), and
(b) if β ∈ dom(p) ∩ dom(q) then:

•1 otp(p(β)) = otp(q(β)),
•2 if ε ∈ p(β) ∩ q(β) then otp(ε ∩ p(β)) = otp(ε ∩ q(β)),
•3 if ε ∈ p(β), ζ ∈ q(β) and otp(ε ∩ p(ε)) = otp(ζ ∩ q(β)) then

πβ,{ζ},{ε}(p � Nβ,{ε}) = p � Nβ,{ζ}.

Remark 1.4. If we prefer in clause (d) (•3) of Definition 1.3 (1) to have ξ(β) = β,
i.e., P•β = P′β , we need to add, e.g. “µ is regular and force with ({q ∈ Qp : lg(q) <

µ},C)”.

Claim 1.5.
(0) For q ∈ Qp, we have: P′q |=“p ≤ q” iff {p, q} ⊆ P′q, dom(p) ⊆ dom(q), and

β ∈ dom(p)⇒ p(β) ⊆ q(β).
(1) For q ∈ Qp, any increasing sequence of members of length < λ of P′q has

a lub, in fact, if δ < λ, p̄ = 〈pi : i < δ〉 ∈ δ(P′q) is increasing, then the following
p ∈ P′q is a lub of p̄; defined by: dom(p) =

⋃
{dom(pi) : i < δ}, and if β ∈ dom(p)

then

p(β) =
⋃
{pi(β) : i < δ and β ∈ dom(pi)} .

We denote this p by lim(p̄).
(2) For q ∈ Qp, we have:

• p ∈ P′q iff:

(a) p is a function with domain ∈ [lg(q)]<λ,
(b) if β ∈ dom(p) then p(β) belongs to [Uβ ]<λ.
(c) If β ∈ dom(p) and (ι1, ι2) = (ιq,β,1, ιq,β,2) then for every ζ1 < ζ2 from

p(β), (p � β) �Nq,β,{ζ1,ζ2} Pq,β
“c
˜
{ζ1, ζ2} ∈ {ι1, ι2}”. Moreover, there

are q1, q2, r1, r2 as in Definition 1.2(2)(c)(•1)-(•5) and

2∨
`=1

(∀γ ∈ dom(r`))[γ ∈ dom(p) ∩ β ∧ r`(γ) ⊆ p(γ)].

Paper Sh:1258, version 2025-04-22 2. See https://shelah.logic.at/papers/1258/ for possible updates.



CONSISTENCY OF SQUARE BRACKET PARTITION RELATION 5

(3) If q ∈ Qp and α ≤ lg(q) then q � α ∈ Qp.
(4) ≤p is a partial order on Qp.
(5) If q̄ = 〈qj : j < δ〉 is ≤p-increasing then it has a ≤p-lub, lim(q̄).
(6) If β < lg(q), a = aq,β, u ∈ [Ua,β ]≤∂ and Nu = Na,u, then:

•1 if p ∈ P′q and γ ∈ dom(p) ∩Nu, then p(γ) ∈ Nu, and
•2 if p ∈ P′q then p � (β ∩Nu) ∈ Nu.

(7) If (A) then (B), where:

(A) (a) i∗ < λ,
(b) pi ∈ P′q for i < i∗,
(c) if i < j < i∗, then pi and qi are essentially compatible, i.e.:

• if β ∈ dom(pi) ∩ dom(pj) then pi(β) ⊆ pj(β) or pj(β) ⊆ pi(β).
(B) (a) {pi : i < i∗} have a common upper bound in P′q,

(b) moreover, p is the least common upper bound when:
• dom(p) =

⋃
{dom(pi) : i < i∗},

• if β ∈ dom(p), then

p(β) =
⋃
{pi(β) : i < i∗ satisfying β ∈ dom(pi)}.

Proof. Part (2) is crucial but easy to verify. Parts (0), (1), (3), and (4) are also
easy.

(5) For this, define q := lim(q̄) naturally, but we elaborate.

(∗) (a) lg(q) =
⋃
{lg(ai) : i < δ},

(b) if i < δ and α ≤ lg(qi), then (Pq,α,P′q,α) = (Pqi,α,P′q,α),
(c) if i < δ and β < lg(qi), then (Q

˜
q,β ,aq,β ,bq,β) = (Q

˜
qi,β ,aqi,β ,bqi,β),

(d) (Pq,lg(q),P′q,lg(q)) is (
⋃
{Pqi : i < ∂},

⋃
{P′qi : i < ∂}) when cf(δ) ≥ λ,

(e) if cf(δ) < λ, then (Pq,lg(q),P′q,lg(q)) are defined as inverse limit. Then,

• P′q := P′q,lg(q) is dense in Pq because by Definition 1.2(3), for

each β < lg(qj) with j < δ, Qb[β,qj ] is closed under increasing
unions of length < λ.

Recalling that in Definition 1.3(1)(c), we use β and not α, “Pq satisfies the λ+-
cc” is not required for proving 1.5 (5), only “if β < lg(q) then Pq,β satisfies the
λ+-cc”, which is clear.

(6) For •1, as γ ∈ Nu and q � ξq,β(γ) ∈ Nu necessarily, Uaγ ∈ Nu so recalling

that [Nu]<λ ⊆ Nu∩∂+1 ⊆ Nu∧|Uaγ | = ∂, we have that Uaγ ⊆ Nu, [Uaγ ]<λ ⊆ Nu
and p(γ) ∈ [Uaγ ]<λ, hence p(γ) ∈ Nu.

For •2, use •1 and “[Nu]<λ ⊆ Nu”.
(7) Follow by (6) and our definitions. �1.5

Still,

Crucial Claim 1.6. If q ∈ Qp then Pq satisfies λ+-cc.

Proof. It suffices to prove that P′q = P′q(lg(q)) satisfies the λ+-cc, so assume:

(∗)1 (a) Let p̄ = 〈pξ : ξ < λ+〉, where pξ ∈ P′q,

(b) it suffice to prove that for some ζ < ξ < λ+, pζ and pξ are compatible.

[Why? By the definitions.]

(∗)2 For some stationary set S ⊆ cof(λ) ∩ λ+, we have:
•1 〈dom(pξ) : ξ ∈ S〉 is a ∆-system with heart w∗ ∈ [lg(q)]<λ, and
•2 if β ∈ w∗ then 〈pξ(β) : ξ ∈ S〉 is a ∆-system.

[Why? By the Delta system lemma, the proof using Fodor’s lemma recalling
λ = λ<λ.]
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6 S. SHELAH

(∗)3 Without loss of generality, 〈pξ : ξ ∈ S〉 are pairwise isomorphic (see Defini-
tion 1.3(4)).

[Why? Easy.]

(∗)4 We fix ξ(1) 6= ξ(2) from S and we shall prove that pξ(1) and pξ(2) have a
common upper bound; this suffices for proving Crucial Claim 1.6.

Let β̄ = 〈βi : i ≤ i∗〉 list the closure of {α, α+1: α ∈ w∗}∪{0, lg(q)} in increasing
order so necessarily i∗ < λ and clearly it suffice:

(∗)5 To choose qi ∈ P′q,βi a common upper bound of {pξ(1) �βi, pξ(2) �βi} in-
creasing with i ≤ i∗ by induction on i ≤ i∗.
Let us carry the induction.
Case 1: i = 0. Clearly, this case is trivial.
Case 2: i is a limit ordinal.

In this case, let qi := lim〈qj : j < i〉, so by Claim 1.5(1), qi is well-defined
and is as required by the definition of the order.
Case 3: i = j + 1 and βj /∈ w∗.

In this case, dom(pξ(1)) ∩ dom(pξ(2)) ∩ βi ⊆ βj , hence the condition

qi := qj ∪
(
pξ(1) � [βj , βi] ∪ (pξ(2) � [βj , βi])

)
is as promised.
Case 4: i = j + 1 and βj ∈ w∗.

By the choice of β̄, clearly βi = βj + 1.
In this case, for ` ∈ {1, 2}, consider the sequence 〈αξ(`),ε : ε < ε∗〉 listing

the set pξ(`)(βj) in increasing order (the two sequences have the same length
because pξ(1), pξ(2) are isomorphic, see Definition 1.3(4) (•1)). Let S :=
{ε < ε∗ : αξ(1),ε 6= αξ(2),ε}, so by Definition 1.3 (4) •2 the sets {αξ(1),ε : ε ∈
S }, {αξ(2),ε : ε ∈ S } are disjoint and disjoint to {αξ(1),ε : ε ∈ ε∗ \S } =
{αξ(2),ε : ε ∈ ε∗ \S }.

Recalling 1.3(1)(d) and 0.7(b)(•8), we have:
(∗)6 aβj = aq,βj determine:

(a) π̄βj = 〈πu,v : u, v ∈ [Uβj ]
≤2 and |u| = |v|〉,

(b) N̄ = 〈Nu : u ∈ [Uβj ]
≤2〉,

(c) for ε(1), ε(2) ∈ S , let:
• v[ε(1), ε(2)] = {αξ(1),ε(1), αξ(1),ε(1)}, and
• u[ε(1), ε(2)] = {αξ(1),ε(1), αξ(2),ε(2)}.

(d) for ε ∈ S , let v[ε] = {αξ(1),ε}, u[ε] = {αξ(2),ε},
(e) ῑ = ῑ∗βj , see 1.3 (1) (d) (•1),

(f) γj = ξq(βj); see 1.3(1)(d) (•3).
We shall now define pε(1),ε(2) for ε(1), ε(2) ∈ S such that:

(∗)7 (a) pε(1),ε(2) ∈ Pγj ∩ Nu[ε(1),ε(2)],v[ε(1),ε(2)], hence dom(pε(1),ε(2)) ⊆
γj ∩Nu[ε(1),ε(2)],v[ε(1),ε(2)],

(b) pε(1),ε(2) � (γj ∩Nv[ε(1)]), pξ(1) � Nv[ε(1)] are essentially compati-
ble; see 1.5(7)(A)(c),

(c) pε(1),ε(2) � (γj ∩Nv[ε(2)]), pξ(2) � Nv[ε(2)] are essentially compati-
ble,

(d) pε(1),ε(2) satisfies 1.3(1)(e)(•) with (γj , ε(1), ε(2)) here standing
for (β, ζ1, ζ2) there,

(e) {qj � N∅} ∪ {pε(1),ε(2) � N∅ : ε(1), ε(2) ∈ S } are pairwise essen-
tially compatible,

(f) if ε(1) 6= ε(2) then pε(1),ε(2) � N{ε(`)} ≤ pξ(`) � N{ε(`)} for ` =
1, 2.

We have to show two things: �1 and �2. The first saying we can choose
them (the pε(1),ε(2)-s), the second that this is enough.
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CONSISTENCY OF SQUARE BRACKET PARTITION RELATION 7

�1 we can choose pε(1),ε(2) for ε(1), ε(2) ∈ S as required in (∗)7.
We consider two possible cases:

Case 4.1: ε(1) 6= ε(2).
Let pε(1),ε(2) = π(pξ(1) � N{ε(1),ε(2)}), where π = πu[ε(1),ε(2)],v[ε(1),ε(2)].

Case 4.2: ε(1) = ε(2).
In this case, we deal with all those pairs together; so we pick some

sequence 〈pε,ε : ε ∈ S 〉 by choosing pε,ε by induction on ε ∈ S . Now,
pε,ε ∈ P′β ∩Nu[ε(1),ε(2)] is such that:

(∗) (a) pε,ε is ≤P′q,β -above pξ(1) �Nv[ε] and above the restriction pξ(2) �
Nu[ε],

(b) 〈pζ,ζ � N∅ : ζ ∈ (ε+ 1) ∩S 〉 is ≤Pβ[j] -increasing, and

(c) there are q1, q2, r1, r2 as in Definition 1.3(2)(c) (•1)-(•5) with
bq,β standing here for (a, p, ῑ) there such that:

2∨
`=1

(∀γ ∈ dom(r`)) [γ ∈ dom(pε,ε) ∧ r`(γ) ⊆ pε,ε(γ)] .

We can choose pε,ε by the properties of bβj .
Having defined all the pε(1),ε(2)-s we can proceed.

�2 The following set of members of Pβi has a common upper bound q∗:
• pξ(1), pξ(2), and
• pε(1),ε(2) for ε(1), ε(2) ∈ S .

[Why? Recall Claim 1.5(2) and 1.2(1)(c)(•1) by 1.5(7), clause (A) there holds,
in particular sub-clause (A)(c). The main point is that:

(∗) 〈N{αε(1),αε(2)}∩γj\(N{αξ(1),ε(1)}∪N{αξ(2),ε(1)}) : ε(1), ε(2) ∈ S 〉 is a sequence
of pairwise disjoint sets.

Why? As “Nu ∩Nv ⊆ Nu∩v for u, v ∈ [Uβj ]
<∂ by 0.7(•7)].]

So q∗ from �2 is a common upper bound of pξ(1), pξ(2), as promised. �1.6

Remark 1.7. No need so far, but we may add in (∗)4 of the proof of Crucial Claim 1.6
the following item:

(d) if β ∈ w∗ and 〈αζ,β,i : i < ιζ,β〉 list in increasing order the members of pζ(β)
for ζ ∈ S, then:
• 〈ιζ,β : ζ ∈ S〉 is constant called iβ ,
• for i < iβ , the sequence 〈αζ,β,i : ζ ∈ S〉 is constant or increasing,
• if i, j < iβ the sequence of truth values

〈Truth value(αζ,β,i < αξ,β,j) : ζ < ξ are from S〉

is constant, and
• if i, j < iβ , ζ 6= ξ are from S and αζ,β,i = αξ,β,j then i = j.

Claim 1.8. If (A) then (B), where:

(A) (a) q ∈ Gp,
(b) σ < λ,
(c) c

˜
is a Pq-name of a function from [θ]2 into σ.

(B) There is some b ∈ A+ such that Pb = P′q and c
˜
b = c

˜
.

Proof. Recalling Hypothesis 1.1(b), on the one hand it is clear how to choose a ∈ A
such that Pa = P′q and c

˜
a = c

˜
. On the other hand, the choice of pb and ῑb is similar

to the proof of [She88, 2.1], but we elaborate.
First, we can find a such that:

(∗)1a (a) a ∈ A,
(b) Pa = Pq,
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(c) γ = lg(q),
(d) c

˜
a = c

˜
.

[Why? Because we have chosen Pa as in (∗)1a(b), it is λ+-cc by Claim 1.6;
also γ, c

˜
a are as is required in Definition 1.2. Next, it is easy to choose Ba as

required and lastly we can choose (Ua, N̄) as is required because θ → (∂)λ,2∂ holds
by Hypothesis 1.1 clause (b). We are left with choosing some appropriate (p, ῑ) and
then b = (a, p, ῑ).]

Let

Y := {(q1, q2) : q1, q2 ∈ Pa ∩Na,{ε[a]} and q1 � (Na,∅ ∩ lg(q)) = q2 � (Na,∅ ∩ lg(q))},
and let ≤Y be the following two place relation on Y :

(∗)2 (p1, p2) ≤Y (q1, q2) iff:
(a) (p1, p2) ∈ Y and (q1, q2) ∈ Y ,
(b) p1 ≤Pq q1 and p2 ≤Pq q2.

Clearly,

(∗)3 (Y,≤Y ) is a (< λ)-complete partial order.

[Why? Recalling 1.5(1).]

(∗)4 For (p1, p2) ∈ Y , let
(a) solv(p1, p2) be the set of pairs (ι0, ι1) such that for any ζ1 < ζ2 from

U , there are r1, r2 such that for ` = 1, 2 clauses •2-•5 of Defini-
tion 1.2(2)(e) holds.

(b) solv+(p1, p2) :=
⋂
{solv(q1, q2) : (p1, p2) ≤Y (q1, q2) ∈ Y }.

(∗)5 (a) if (p1, p2) ≤Y (q1, q2) then:

solv(p1, p2) ⊇ solv(q1, q2) ⊇ solv+(q1, q2) ⊇ solv+(p1, p2),

(b) if (p1, p2) ∈ Y then solv(p1, p2) 6= ∅.
[Why? The first inclusion in Clause (a) holds because ≤Pq is transitive. The

other inclusions are clear, and Clause (b) is easy too.]

(∗)6 If (p1, p2) ∈ Y then for some (q1, q2) and ῑ, we have:
(a) (p1, p2) ≤Y (q1, q2) ∈ Y ,
(b) if (q1, q2) ≤Y (q′1, q

′
2) then ῑ ∈ solv(q′1, q

′
2), moreover, solv(q1, q2) =

solv(q′2, q
′
2) = solv+(q′1, q

′
2) = solv+(q1, q2).

[Why? Recalling σ < λ, hence |σ × σ| < λ and (Y,≤Y ) is λ-complete by (∗)3.]

(∗)7 For p ∈ Pa ∩ Na,{ε[a]}, let solv(p) be the set of ι ∈ σ × σ such that if
q ∈ Pa ∩Na,{ε[a]} is ≤Pa-above then there is (q1, q2) ∈ Y :
•1 q ≤Pq q1, q ≤Pq q2 and
•2 (q1, q2) ∈ Y ,
•3 ῑ ∈ solv+(q1, q2),
•4 solv(q1, q2) = solv+(q1, q2).

(∗)8 (a) if p ∈ Pa ∩Na,{ε[a]} then solv(p) 6= ∅,
(b) if p ≤Pa q are from Pa ∩Na,{ε[a]} then solv(p) ⊇ solv(q),
(c) if p ∈ Pa ∩ Na,{ε[a]} then for some q and ῑ, for every q′, we have

q ≤ Pq ∧ q′ ∈ Pa ∩Na,{ε[a]} ⇒ ῑ ∈ solv(q′).

[Why? Clause (a) follows by (∗)6, Clause (b) by the definitions, and Clause (c)
holds as Pa and even Pa ∩Na,{ε[a]} is λ-complete and |σ × σ| < λ.]

Now, (∗)8(c) finish the proof of 1.8. �1.8

Claim 1.9. If (A) then (B), where:

(A) (a) q ∈ Qp and q0 <p q,
(b) γ(q) < µ, so lg(q) < µ,
(c) b ∈ Ap and Pb = Pq0

.
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(B) There exists some q1 such that:
(a) q ≤p q1,
(b) lg(q1) = lg(q) + 1,
(c) blg(q)[q1] = b.

Proof. Easy. �1.9

Lastly, before arriving at the main conclusion, we have to prove the following.

Claim 1.10.
(1) Assume q ∈ Qp, α < lg(q) and b = bq,α = (aα, pα, ῑα) = (a, p, ῑ), then:

• Pq,α+1
“VQ

˜
b
∈ [Uaα ]∂ and for every α 6= β ∈ VQ

˜
b

, caα{α, β} ∈ {ι1, ι2}”.

(2) If b = (a, p, ῑ) ∈ A+, cf(∂) > λ, and in VPa , Qb satisfies the λ+-cc, then for
some p ∈ Qb∩Pa∩Na,{ε[a]} we have p Q

˜
b

“VQ
˜

b
∈ [Ua]∂ and for every α 6= β ∈ VQ

˜
b

,

ca{α, β} ∈ {ι1, ι2}”.

Proof. (1) The second phrase in both conclusion holds by the definitions of Q
˜

b.

By the proof of “Pq satisfies the λ+-cc”, we can show for ε < ∂, the density of
the set

Iε := {p ∈ P′q : α ∈ dom(p) and there is β ∈ p(α) such that ε < otp(Uaα ∩ β)}.

(2) Easily, for every β ∈ Ua we can choose p0β = {β}, qβ = {(β, p0β)}. Clearly,

qβ ∈ Pα ∗ Q
˜

b for β ∈ Ua. So by the λ+-cc for some β ∈ Ua, qβ “{ε ∈ Ua : qε ∈
Q
˜

b} ∈ [Ua]∂ well assuming cf(θ) > λ. �1.10

Conclusion 1.11. There exists a forcing notion P satisfying the following condi-
tions:

(a) P is λ+-cc of cardinality µ.
(b) P is (<λ)-complete; hence, it collapses no cardinals, changes no cofinalities,

and preserves cardinal arithmetic outside the interval [λ, µ).
(c) P“2λ = µ”.
(d) P“θ → [∂]2σ,2” for every σ ∈ (2, λ).

Proof. Choose a ≤p-increasing continuous sequence 〈qα : α < µ〉 ∈ µ(Qp) such that
lg(qα) = α, Pqα has cardinality ≤ (|α|+ λ)<λ and,

• if α < µ and Pqα
“c
˜

: [θ]2 → σ”, then for some β ∈ [α, µ), c
˜
qβ+1,β

= c
˜

.

The existence of bβ [qβ+1] with c
˜

[bβ [qβ+1]] = c
˜

as required hold by Claim 1.8
and Claim 1.9.

Clearly
⋃
{Pqβ : β < µ} is a forcing notion as is required. �1.11

Conclusion 1.11 is meaningful because:

Fact 1.12. Assume that λ = λ<λ < ∂ < θ < µ = µθ, α < µ⇒ |α|λ < µ, θ > i4(∂)
and ∂ = ∂<λ. Then the demands in Hypothesis 1.1 hold.

Remark 1.13. To justify the assumption, notice that:

(A) Omitting ∂ = ∂<λ does not help.

(B) θ →sq (∂)λ,≤2∂ implies θ → (∂)22∂ , hence θ > 22
∂

.

With stronger lower bound on θ, see [She89] and anyhow just θ < ∂+ω and GCH
in [∂, ∂+ω] would suffice for me.

The main point is proving θ →sq (∂)≤λ,2∂ . For this, see [She89], θ = im(∂) for
some small m suffice, we intend to return for better bound, see [S+].
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Proof. The point is to prove θ → (∂)λ,2∂ . Let B be as in 0.7(a).
For u ⊆ B, let N∗u be the minimal N ≺ B such that u ⊆ N , ∂ + 1 ⊆ N and

[N ]<λ ⊆ N , which exists as <B
∗ is a well-ordering.

We define c : [θ]3 → 2∂ such that from c(u) we can compute the isomorphism
type of (Nu, α)α∈u. By Erdös-Rado theorem, i4(∂)+ → ((2θ)+)32∂ there is U1 ⊆ θ

of order type (2∂)+ such that c � [U ]3 is constant and otp(U1) = (2∂)+.
Clearly, if α < β < γ are from U1, then x ∈ N∗{α,β} ∩N

∗
{α,γ} implies β < γ(1) ∈

U ⇒ x ∈ N{α,β} ∩N{α,γ(1)}, and

α < β(1) < γ(1) ∧ {β(1), γ(1)} ⊆ U ⇒ x ∈ N∗{α,β(1)} ∩N
∗
{α,γ(1)}.

So,

• X0 := {x : for some β, γ from U1, α < β < γ and x ∈ N∗{α,β} ∩ N
∗
{α,γ}}

have cardinality ∂ and it includes N∗{α}.

Similarly, X1, X2 has cardinality ∂, where:

• X1 := {x : for some β, γ ∈ U , we have β < α < γ and x ∈ N∗{α,β}∩N
∗
{α,γ}},

and
• X2 := {x : for some β, γ ∈ U , we have β < γ < α and x ∈ N∗{α,β}∩N

∗
{α,γ}}.

Let X :=
⋃2
`=0X`. For α ∈ U1, let N{α} := N∗X , so N∗X has cardinality ∂.

Now,

(∗)1 The sets 〈N∗{α,β} \ (N{α} ∪ N{β}) : α < β are from U1〉 is a sequence of

pairwise disjoint sets.

(∗)2 If γ ∈ U1 then Λγ := {{α, β} : α < β are from U1 and (N∗{α,β} \ (N{α} ∪
N{β})) ∩N{γ} 6= ∅} has cardinality ≤ ∂.

So for some U2 ⊆ U1 of cardinality (2∂)+, we have:

(∗)3 (a) 〈N{γ} : γ ∈ U2〉 is a ∆-system with heart called N∅,
(b) The N{γ} for γ ∈ U2 are pairwise isomorphic over N∅.

Lastly choose N{α,β} for α 6= β ∈ U2 as N∗{α,β}. Replacing U2 by U ⊆ U2 of

order type ∂, we are done. �1.12
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