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Abstract

We consider (< A)-support iterations of a version of (< A)-strategically complete A -c.c.
definable forcing notions along partial orders. We show that such iterations can be corrected
to yield an analog of a result by Judah and Shelah for finite support iterations of Suslin ccc
forcing, namely that if (P, Qg : @ < 8, 8 < §) is a FS iteration of Suslin ccc forcing and

U C § is sufficiently closed, then letting Py be the iteration along U, we have Py < Ps.

Keywords Suslin forcing - Definable forcing - Iterated forcing - Partial memory - Corrected
iterations

Mathematics Subject Classification 03E40 - 03E47 - 03E35

0 Introduction

Our motivation is the following result by Judah and Shelah:
Theorem A [3] Let (P, Qg : a < 8,8 < &) be a finite support iteration of Suslin ccc

forcing notions (assume for simplicity that the definitions are without parameters). For a
given U C 6, let Py be the induced iteration along U, then Py < Ps.

Recent years have witnessed a proliferation of results in generalized descriptive set theory
and set theory of the A-reals, and so an adequate analog of the above-mentioned result for the
higher setting is naturally desirable. Such an analog was crucial for proving the consistency
of cov(meagre)) < 0, in [7]. It is not clear that the straightforward analogous statement
holds in the A-context, however, it turns out that the desirable result can be obtained by
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passing to an appropriate “correction” of the original iteration. This was obtained in [9] for
the specific forcing that was relevant for the result in [7]. Our main goal in this paper is to
extend the result for a large class of definable (< \)-support iterations of A+ -c.c. forcing.
Namely, our mail result will be a more concrete form of the following:

Theorem (Informal) There is an operation (a “correction”) P +— P on (< A)-support
iterations of (< \)-strategically complete reasonably definable A -c.c. forcing notions along
well-founded partial orders, such that P°" adds the same generics as P, and if U is an adequate
subset of the set of indices for the iteration, then P{; < P".

Note that even for A = Ro we shall obtain consequences not covered by [3], as our result
includes also iterations with partial memory. Our definability requirements are also much
more general than [3], as instead of analytic definitions we only require that the definitions
are reasonably absolute (e.g., in the case of A = Vg and under sufficiently strong large
cardinal assumptions, our result covers iterations of forcings defined in L(R)). The complete
SJormulation of our main result can be found in Conclusions 2.26, 3.12 and 3.13. In order to
get a further taste of the main result, we shall illustrate here a less general (but somewhat
more formal than before) consequence:

Theorem B (A) implies (B) where:

A. Let ) be a cardinal satisfying A, = A<* and let q consist of the following:

a. An ordinal o ().

b. u = (uy : @ < a(x)) where uy C a.

C. ¢ = (¢q : a < a(x)) where each ¢y is a definition of a forcing notion Q = Qg with
a generic 1o, whose members are of the form p = (tr(p), B(..., 0g(e,p)s - - De<t(p))>

where tr(p) is a function from some v € [A]<* to H(A), ¢(p) < A, B is a A-Borel
function from (2)5P) to H(L)*, B(e, p) € ug and g “ng = U{tr(p) : p € GY,

d. If p <q,, q thentr(p) < tr(q).

e. If{pi:i < j} € Qq, tr(pi) =nforalli < j, and j <lg(n), then{p; :i < j} hasa
common upper bound that is A-Borel computable from {p; : i < j}.

f. The forcing notions Qg are (< \)-strategically complete and satisfy a strengthening
of At -cc called “(A, D)-cc” (to be defined later).

g. For each Qy,, the trunks and the generic satisfy a few additional reasonable
requirements (to be specified in Definition 1.4).

h. The definitions ¢, and their relevant properties (e.g. compatibility of conditions, the
trunk of a condition being a specific n, etc) are absolute between models of the form
VP and VP2 where Py < P are (< A)-strategically complete and )" -cc.

B. There is (P, n*) = (P, n*) where:

a. Pis (< A)-strategically complete and 1™ -cc.

b. 7% = (nk : @ < a(x)) is a sequence of P-names of r-reals.

c. Foreacha < a(x), let V¥ :=V|[..., '7:;’ .. 1Beuy, then 0} is “somewhat generic” for

@Z: in the sense that if I is an antichain in @Z; that is absolutely maximal, then n,

satisfies some p € I.
d. IfU Ca(x)anda € U — uy C U, thenq | U is naturally defined and (IP;?U, n* [ U)

are as above forq | U.
e. IfU1,Uy C a(x) areasin(d) and w : Uy — U, is an isomorphism such that o €
ug <> m(a) € ug(g) and such that o4 = @z () for all a € Uy, then there are Py < P
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(I = 1,2) such that n}, is a P;-name for every o € U, P} = IP’flrrUl and T (n}) = n;(a)

for every a € Uj.

We expect our general result to be applicable in numerous contexts. As mentioned above,
a specific case was applied in [7] to obtain the consistency of a new inequality of cardinal
invariants for the L-reals. We expect also applications to cardinal invariants of the continuum,
as indicated by the following immediate corollary:

Theorem C Letty, ..., t, be cardinal invariants of the continuum such that the consistency
of X1 <11 < -+ < 1p < ¢can be forced over a model of CH using a FS iteration over
a well-founded partial order of definable forcing notions satisfying the assumptions of our
main theorem, then it is also consistent thats =8| <11 <--- <&, <€

The above theorem follows from the proof from [3] of the fact that FS iterations of Suslin ccc
forcing notions over a model of C H preserve s = w1. The proof relies on the aforementioned
result about subiterations of Suslin ccc forcing, and so it follows for FS iterations over a
well-founded partial order of suitable forcing notions by using the corresponding corrected
iteration and the main result of this paper.

We shall start by defining our building blocks, namely forcing templates and iteration tem-
plates. These will allow for a much larger variety of examples than what appears in [9] (in
particular, an iteration may involve forcing notions with different definitions). One of the
differences between the current work and [9] is that our forcing notions might be definable
using parameters that don’t belong to V, and so this will require the introduction of a new
type of memory (“weak memory”) that will allow the computation of the relevant parameters.

We then continue by introducing the class M of iteration parameters, from which we shall
practically construct our iterations. We shall then consider the notion of an existentially closed
iteration parameter, and we shall isolate a property of iteration parameters that guarantee the
existence of an existentially closed erxtension. We shall then obtain our desired corrected
iteration from those existentially closed extensions by taking an appropriate closure under
Ly+.

Notation and conventions D: Throughout the paper, ordinals will be denoted by lowercase
Greek letters, with the exceptions of the letters «, A, i (and sometimes 6 and x) that will be
used for cardinals, and ¢, ¥ (and sometimes 6 and x) which will be used to denote formulas.
For regular k < A we denote the set {§ < A : ¢f(8) = «} by S,’}. Forcing templates will be
denoted by p and iteration templates will be denoted by q. Forcing notions will be denoted
by P and QQ, where typically P will be used for iterations and Q will be used for iterands.
We adhere to the Jerusalem tradition according to which “p < ¢” means that the forcing
condition ¢ is stronger than p. We shall work with the following modification of H (k):

Definition E: (A) Given two sets X and x, trclx (x) = trcl(x, X) will be defined as the
minimal set u such that:

1. x e u.
2. yCuforeveryy eu\ X.
(B) For a cardinal « and a set X we define H<,(X) as the collection of sets x such that
ltrel(x, X)| <k and @ ¢ trel(x, X).
(C) Xiscalled«-flatifx ¢ H<, (X \ {x}) forevery x € X (we may use X as a set of atoms
as in Definition 1.1(B)).
(D) Given a cardinal A, an ordinal ¢ < A" and a set X, we define H<) ¢ (X) as follows:
H< 0 := X,andfor¢ > 0,letting H<) < (X) 1= Ug; H<j ¢ (X), we define He), ; =
[Hes < ()] So Hep (X) = He 3 (X).
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Throughout the paper, we shall use the notion of A-Borel functions. Our definitions will
be somewhat nonstandard. Below we provide two possible versions for what is meant by a
A-Borel function:

Nonstandard Definition F: A. We say that B is a A-Borel function if:
(Version 1) There are sets X and Y such that:

a. B is a definition of a partial function from H<; (X) to H<; (Y).
b. If P; <P, are (relatives of) (< A)-strategically complete forcing notions satisfying A*-cc
(or (A, D)-cc, which will be defined later in the paper), then BV = BV7 I v

(Version 2) There are two sets X and Y such that:

a. B= (By;y:x €[XI*,y € [Y]IF*, ¢, & < AT) where each B, ¢y ¢ is the A-analog
of the ord-hc Borel operations from [Sh630] (to be defined in Clause (B) below).

b. (x1 Sx) A1 Sy AL =) AEL<8) = By oyt S Broys-
c. Given z € H<j(X), B(2) = By ¢,y,£(z) whenever RHS is defined.

B (following [6]). We define the A-analog of the family of ord-hc Borel operations as the
minimal family F of functions satisfying the following:

a. Each B € F is a function with < A coordinates, where the possible inputs for each
coordinate are sets from H<; (X) where |X| < A, ordinals, truth values, sequences of
ordinals of length < A and sequences of truth values of length < A.

b. The range of each B € F consists of elements from H<, (Y) (for some Y satisfying
|Y| < X), ordinals and truth values.

c. F is closed under composition.

d. F contains the following atomic functions:

—x for a truth value x.

x1 V xp for truth values x; and x5.

Ni<aX;i for @ < A and truth values x;.

The constant values True and False.

For all @ < A, x,, varying on truth values and for all y, varying on sets from H<; (X)
(fory < A):

Nk L =

— If x) butnot x5 for § < y then y,.
— If —x, for every y < a then y,.

6. Similarly for ordinals.

7. {yi i <a,x; =T} where o < A and each y; varies on H<; (X)-sets or on ordinals, x,
on truth values.

8. The truth value of “x is an ordinal” where x varies on H<; (X)-sets.

Remark G The reason for the second version of the definition is that for the A-analog of the
ord-hc Borel operations from [6] we would like to have functions from H<; (X) to H<;(Y)
where |X|, |Y| < X. But as it might be the case that |X|, |Y| > A, the formulation in the
second version is required.

1 Preliminary definitions, assumptions and facts

Forcing templates
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In this section we shall define the templates from which individual forcing notions in the
iteration shall be constructed. As we don’t have a general preservation theorem for A -c.c. in
(< X)-support iterations (see [8] and history there), we shall use the notion of (A, D)-chain
condition for a filter D (to be defined later) for which we have a preservation result, and so
the templates will include an appropriate filter to witness this. Similarly to [6], the forcing
templates will consist of a model 8}, and formulas that will define the forcing inside it. The
forcing will be defined using a parameter, which shall be a function whose domain is denoted
Ig. The generic element will be a function whose domain is the set Ill. Additional formulas
will provide winning strategies for strategic completeness and will provide a compatibility
relation on the forcing that will satisfy the (A, D)-chain condition.

Hypothesis 0: Throughout this paper, we assume that:

a. A is a cardinal satisying A = A<*
b. D is a A-complete filter on AT x AT

satisfying the following:

I {(@B):a <B <ArtheD.

2. fuy € [Ord]=* (@ < AT), g : Uys+utqg — D and f, : ug — Ord has range C A
(¢ < A™), then the following set belongs to D: {(er, B) : @ < B < AT, (fu, fp) is a
A—system pair (see Definition 1.2 below), § € uy Nug — (a, B) € g(§)}.

3. WP\ y) x W\ y) e Dforevery y < AT,

The following will serve to define the forcing notions that we intend to iterate:

Definition 1.1 Given a cardinal k > A. We call p = (Ap, kp, Up, I, %g, Il(>)’ Ig, ¢, Dy, By,
T,, Rp) a (A, D)-forcing template if:

(A) A=Ap <K =kp.

(B) I U I, € He; (Up UTp) where U = Up and I = I, are disjoint sets of atoms.
[Motivation: Ig will serve as the domain of the “input” for the definition of the forcing,
i.e. the parameters used in the definition of the forcing. Il} will serve as the “output”,
i.e. the domain of the generic.]

(C) Bp is the expansion of (H<;(Up UIy), €) by adding the relations I%gl and P‘Bg for
every P € r(%g) for a model %g with universe I U U. [This will be the structure inside
of which the definition of the forcing will be interpreted.]

D) ¢ = (i (x1,y) : 1 < T)isasequence of first order formulas from]L(r%p) andlg(x;) = k;
where ko = 1, ky = 2, ko = 3, k3 = 3, ks = 2, ks = 2, k¢ = 2. We allow the ¢;
to include a second order symbol F (over which we shall not quantify) that will be
interpreted as a function 4 : Ig — A. [These will be the formulas defining the forcing
and its relevant features. ]

(E) Dp = D is a A-complete filter as in Hypothesis 0 above.

(F) T, isasetthatcontains all possible trunks for conditions in the forcing, each is a function
from some u € [Il}]“ to H()\).

(G) Ry is areflexive binary relation on T).

(H) If{ty ta < AT} S Tp, then {(or, B) 1 < B < AT, 14 Rptg} € D.

Remark We may omit the index p whenever the identity of p is clear from the context.

Definition 1.2 Suppose that u; € [Ord]<* (I = 1,2). A pair of functions f; : u; — Ord
(I = 1,2) is called a A-system pair if otp(u1) = otp(uz), and for every @ € u; N us,
otp(u; Na) = otp(up Na) and fi(a) = fo(a).
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Claim/Example 1.3 Let Dg be the collection of subsets X € AT x AT such that for some club
E C AT and regressive function g : S)’\\Jr S A {(,B):a<B<rt,ae S/{‘+ NE,B e
S}”}+ NE,gla)=g(B)} C X, then Dg is as required in Definition 1.1(E).

Proof Clearly, ¥ ¢ D. Let (ug : @ < A7), (fy : @ < AT) and g be as in Definition
1.1(E), then for every § € U, _;+ug there is a club Ex C AT and a regressive function hg :
S}’}+ — AT such that X: C g(&) where: Xg :={(a,B):a < B < AMae Sfr NE: B e
Si“+ N E¢, he (o) = hg(B)}. For every a < At let S, = Up<altg, Ef :=N{Ez : £ € Sy}
and let E, := Ay EX, 50 EX (0 < A™) and E, C AT are clubs. For every § € E, N S)):+
define:

L. uf :=usNS;s.

2. h¥ : ui — & is defined by hj(§) := hg(8) (recaling that g (6) is well-defined and is
< 6).

3. 3% = {(otplus N 0), f3(0) : £ € uf}h

4. S(% := {(h4, ¥«) 1 hy is a function with domain € [Ss1<* and range C 8, yx € [A X (A +
DI},

Note thata < g — S2 C Sé and that |S2| < A for every a. Note also that S2 = U,«;<aS§

when cf (o) = A.

Now define a regressive function g, on S))L‘+ N E, such that g, (81) = g«(52) iff h;‘l = h’gz
and yg‘l = yl’{z (this can be done as in the proof of the A-completeness of DY, see below). Let
X ={(61,82) : 61 < 67 € S))\‘+ N Ex A g«(81) = g«(82)}, then X € Dg as witnessed by
E and g.. Therefore it’s enough to prove that every (61, 62) € X, (fs,, fs5,) is a A-system
pair and & € us, Nus, implies (81, 82) € g(&). Indeed, as g.(81) = g«(82), it follows that
hg‘] = hg‘z and yg‘l = y}‘z, hence uj{l = Dom(hg‘l) = Dom(h§2) = uj;z. Note also that if
¢ € Dom(fs,)NDom( fs,) = us, Nus,,thenas | < 8, itfollowsthat¢ € u§2 = Dom(h§l).
Therefore Dom( fs,) N Dom(fs,) = Dom (hj;l ), and it follows that (f5,, fs5,) is a A-system
pair. If € € us,Nus, = Dom(fs,)NDom(fs,) = Dom(h:‘;l) = Dom(h§2),then ashg“1 = h§2’
it follows that hg (1) = h:s"l &) = hg‘z (6) = hg(82). Therefore, (81,82) € Xg € g(§) and
we’re done.

In order to show that Dg is A-complete, let ¢ < A and let {X¢ : § < ¢} C DY, we shall
prove that Ng X¢ € D%. For each § < ¢, there are E¢ and g¢ as in the definition of Dg
witnessing that X; € D). Fix a bijection f : A")** - AT andlet E = {§ < A" : §
is a limit ordinal, and for every « < § and n € a=<*, f(n) < 8}, then E € AT is a club.
Lets € ENSM, then f(n) < & for every n € 5=*. Define a function g : S} — A% as
follows: if § € S/’\\Jr NE, welet g(8) = f((ge(d) : & < ¢)). Otherwise, we let g(8) = 0. g
is a well-defined regressive function. Let E’ = E N (Ng<¢ E¢), then E C A7 is a club. Let
X={@p:a<B<rt,a,ecEN Siﬁ, g(x) = g(B)}, thenas X € DY, it suffices to
show that X C X forevery & < {. As E/ C E¢ forevery & < ¢,ifa, 8 € E'N Sf and
g(a) = g(B), then gs (o) = g (B). This implies that X C X¢, as required. This completes
the proof of the claim. O

Definition 1.4 Given a (A, D)—forcing template p and a funtion 4 : Ig — H()\), we say
that the pair (p, k) is active if:
(A) (@p,r, <p,n) is a forcing notion where Qp , = {a € H;,(UUI) : By = @ola, h)},

<qp,= {(a,b) : Bp = ¢i(a, b, h)}.
(B) Forevery y < A and p € Qp, the formula ¢»(—, ¥, p, h) defines a winning strategy
for the player COM in the game G, (p, Qp 1) (see Definition 1.14 below).
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Remark The strategy may not provide a unique move and we shall allow the completeness
player to extend the condition given by the strategy.

(C) Each element of Qp j, is a function of size A with domain C Ig and range € H(}) (so
this includes conditions that are sequences, trees, etc).

(D) @4(—, —, h) defines a function ¢r such that Dom(tr) = Qp,; and for every p € Qp s,
tr(p) € Ty is a function with domain X for some X € [Il}]“ and range € H()), such
that the following conditions hold:

1) p=qg—1trip) Strg).

(2) The formula ¢s5(—, —, h) defines a binary compatibility relation com S Qp x Tp
(note that, in contrast with (6) below, this is a relation between conditions and trunks).

3) If com(p, n) then:

a. There is g such that p < g such that tr(q) = 7.
b. If ¢ < p then com(q, n).

(4) <p,n is a partial ordering of T}, such that n; < 72 — n1 € 0.

(5) If p1, p2 € Qp and tr(p1)Rptr(p2) then py, p € Qp , have a common upper bound
g. This is defined by ¢6(—, —, h).

©6) IfneTyppn, j<I|Dom(n)l, {p;i:i < j}are conditions and A; < jtr(p;) = n then:

a. There is g such that A (p; < q).

b. There is a A-Borel function Cy j, ; such that ¢ = Cpp,j(..., pi,...)i<; (recalling
Clause (C) above) and ¢ is a least upper bound for {p; : i < j}.
[This could be simplified by replacing “j < |Dom(n)|” by “j < A”, but that would
exclude, e.g., random real forcing and the forcing Q5 from [Sh1126] ]

c. tr(q) =tr(p;) foralli < j.

(7) [Follows from Definition 1.1(H)] Qp, ,, satisfies the (A, D)-chain condition: if py € Qp,»
(@ < A1) then {(«, B) : tr(po)Rptr(pp)} € D. In Requirement 1.18 below we shall
actually strengthen this condition and require that it holds in an absolute way as described
there.

(8) (Relevant for A > Rg) For every § < A and a play (p;, ¢; : i < §) of length < A chosen
according to the winning strategy for the game in clause (B), there is a bound p; given
by the strategy such that tr(ps) = U; <str(p;).

(9) Foreverya € Ill and x € H(}), there is some p, € Qp ; such that H—QM “Da.x € (j

iff np p(a) = x” (where np j is defined in the next clause).
(E) 1. H-QM “Dom(np) = I;” where np = np p is the Qp ,-name of U{tr(q) : g € Gg,}-

2. Forevery b € Ill and p € Qp,; thenthereis n € Tp suchthatbh € Dom(n) Acom(p, n).
Moreover, in Clause (D)(6), if we are given in addition some a € Il; \ Dom(n), then
there is v extending 1 such that a € Dom(v) and com(p;, v) for every i < j (and so
there exists g; above p; such that tr(g;) = v forevery i < j).

(F) npis generic for Q) 1, i.e. there is a A-Borel function B defined in V such that I- “p € g

iff B(p, np) = true” for every p € Qp j.
(G) If p and g are incompatible and #(p) C tr(q), then p Iq, , “tr(q) ¢ np”. In this case

we shall say that p and 77 (g) are incompatible.

H) If j <A, pi € Qpp (i < j)andgq are as in 1.4(D)(6) and p is a condition such that
tr(q) C tr(p) and such that g and ¢r(p) are incompatible, then there is i < j such that
{pi, tr(p)} are incompatible.
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Remarks 1. If (p, i) is not active, then we let Qp , be trivial.
2. The reader may wonder where the properties of forcing templates, their trunks, etc, are
used in the construction of the iterations that will follow. This will play a major role in
the proof of Claim 2.10.
3. Clauses (G)+(H) will be used later, for example, in Claim 4.1.

Below we shall give several examples of concrete forcing notions as the realizations of forcing
templates.

Example 1.4(A): Let X be either an inaccessible cardinal or 8¢ and assume that P, g and &
are functions with domain A such that:

a. Forevery o < A, P(w) is a partial order of cardinality < A.

b. For every o < A, g() is a regular cardinal from («, 1) (relevant in the inaccessible
case).

c. Forevery @ < A, h(e) : P(¢) — g(a) is a function such that P(¢) E=a < b —
h(a)(a) < h(@) (D).

d. If » > Rp then for every o < A, g(a) = cf(g(«)) > o and P («) is (< g(w))-directed.
If A = R then P(«) has a maximal element.

Let Q = Qp g, be the following forcing notion: 1. p € Q iff:

. p=0,p,v)=p, Pp, Vp).

- P € Haepigon.n §@)-

v € [lacrign. P@-

. Ifa € [lg(n), A) then h(a) (v()) < p(@).
- ne l_[a<lg(n) P((X)

f. If A = R, then lim; (g(i) — p(i)) = oco.
g. Welettr(p) :==n.

oo op

2. Given p,q € Q, p < q iff n, S ny, ppla) < py(a) for every a € [Ig(ny), 1),
P(a) = vp(a) < vg(a) for every o € [Ig(ny), A) and P(a) = vp(a) < ny4(a) for every
a € [lg(np),lg(ng)).
We shall now define a forcing template p that gives rise to the above forcing:
Ap ‘= A, kp = At.
=1 =
By and BY will be trivial, i.e. (H(AT), €).
. Denote by i* the function 4 : Il? — H(}) in the definition of active forcing templates.
h* here will be given here by 1*(«) = (P (@), g(a), h()).
e. The formulas ¢; will then define Qp ¢ as described above using the parameter i*.
Denote the trunks in this case by trp p (p).
f. Tp = {trpn=(p) : h™*, p as above}.
g Rp={(n1,m) € Ty x Tp:n1 =n2}.
[Note that while we allow the parameter 2* to be a name, T, and Ry, are objects.]
h. Dy will be the filter Dg from Claim 1.3.
For a typical example of a triple (P, g, h), consider a sequence (6, 0y : @ < A) where
o <0y <0y < A Foreach o let P(a) = ([0,]°%%, ©). Forevery o < A let g(a) = o4 and
for every u € P(w) let h(a)(u) = otp(u).

ao T

Remark 1.4(B): 1. On such forcing notions see [1, 3, 4] for A = 8¢ and [9] for inaccessible
A.In [9] we have P(x) = {[€, 6,] : € < 6y} with the reverse ordering, g(«) = 6, which
is regular > |o| and h(a)([€, 6,]) = €.
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2. The above example gives a justification for the (somewhat arbitrary) use of the assumption
“j < |Dom(n)|” (rather than “j < A”) in Definition 1.4(D)(6). Below is an additional
example where R is nontrivial:

Example 1.4(C): Our next example is random real forcing with a modification needed to
satisfy the requirement in Definition 1.4(D)(6). Let (n, : n < w) enumerate 2<% without
repetition and let D), = Dgo.

A. p e Qiff p = (tr(p), B,) where:

B, C 2% is Borel.

w(Bp) > 0.

np is the maximal element of 2<% that is an initial segment of all members of B,.
There is a natural n(p) > 1 such that Zlg(”l')u(Bp) e[l —
n(p) <lgnp).

tr(p) is a constantly 1 function with domain {n,} U {n, [ :] < n(p)}.
For p,q € Q,Q & p < ¢ iff:

B, € By.

tr(p) C tr(q).

The generic will be the union of 5, for every p € G.

T, ={tr(p): peQ}

Rp ={(n.m) :neTp}.

[This gives an example where R, is not the usual function compatibility. Note that as random
real forcing is not o -centered, we can’t strengthen Definition 1.4(D)(6) to “j < A”.]

o oe

1 1
a1 |~ el and

MO Qo To

Remark 1.4(D): The trunks will play a role in the definition of our iterations, where given
a condition p and s € Dom(p), p(s) will be a name of a condition consisting of a
trunk tr(p(s)) and a condition computed from names of other conditions of the form
P =By o0 (ag), - .)gewp(w (this notation will be explained in due course) whose

union of trunks is 7 (p(s)). All of this will eventually play a role in the analysis of projections
in Sect. 4.

Iteration templates

Similarly to forcing templates, iteration templates will contain the information from which
we shall construct our iterations. This information will include a well-founded partial order
along which we shall define the iteration. For every element in the partial order, we shall
assign a forcing template and two types of memory: a strong memory which will be used for
the construction of the forcing conditions, and a weak memory which will be used to define
the necessary parameter for defining the forcing at the current stage. The parameters will then
be computed in a A-Borel way from the previous generics. An additional complication in our
memory apparatus (i.e. the vy C [u?]f)\ in Definition 2.2.A) will then require a corresponding
modification of our notion of strategic completeness in Definition 1.14.

Definition 1.5 A (A, D)-iteration template q consists of the objects {Lq,(p; : ¢ €

Lq), ((ud,ia}) 1t € Lg), (W), w}) : t € Lq), D, (Byp, (5:(b, 0), arp) : & < E(t, D)) :
be Il?t) :t € Lqg))} such that:

(A) Dq = D, Lq is a well-founded partial order with elements from U.

(B) Foreveryt € Lq, pr = Pq,r is a (A, D) forcing template. Note that D is fixed filter that
doesn’t depend on .

(C) Foreveryt € Lg, ugy, = u? CLy={s€ely:s<g, t}and ﬁ}” = ﬁtl = (ull’s 1S5 €

L crl = Il}‘_. We shall refer to u?” as strong memory.

0
u;) where u; o S I
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(D) Forevery t € Lq, w? C u? and w! = (w/}; : s € w?) where w,lT c u,lY c Il we
shall refer to w? as weak memory.

Remark Tn many interesting cases, w? = { for all ¢ (this will correspond to an iteration
where the definitions of the forcing notions are without parameters).

(E) Foreveryt € Lqandb € Iot, B, is a A—Borel &(z, b)—place function (£(¢, b) < A™)
from A5(":?) to A. For every ¢ < &(t, b) we have s,(b, ¢) € w? and a; p ; € wtl,s,(b,n) (if
= {then &(¢, b) = 0).
[This will be used to compute # when applying Definition 1.4.]
(F) Dg is a A-complete filter as in Hypothesis O such that Dy, = Dgq forevery t € Lq.

Definition 1.6(A): Given an iteration template q and L C Lg, let c/(L) = clq(L) be the
minimal L' suchthat L S L' C Lqandr € L' — wg’t crL.

Example 1.6(B): We shall briefly illustrate how to construct a concrete iteration within our
general framework continued below. Let A be either R or inaccessible with 0=(0:i<2)
a sufficiently fast increasing sequence such that 8; = cf(6;) > i. Fix an ordinal o, and let
(U1, Uy, U3) be a partition of a,. For @ < oy, let ¢, define:

Random real forcing (as in Example 1.4(C)) if « € Up and A = Ry.

Random real forcing for inaccessible A (see [Sh:1004]) if « € Up and A is inaccessible.
The forcing from Example 1.4(A) if « € Up and A = Ry.

The forcing Qg from [7] if & € U and 1 is inaccessible.

Hechler forcing (A-Hechler forcing) if « € Uz and A = K¢ (A is inaccessible).

The filter D will be Dg from Claim 1.3. If, for example, Q; is Qz from [7], then we

o fo0 o

might use a parameter 6 € V, but we might also want to use a parameter of the form
6 =B(.., 1;; (a), ...) where each ¢ belongs to the weak memory w?.

For every o < Oy, u w111 be a subset of «. Note that if o € U (l =1,2,3), a1 €

ugz, oy € u and o) ¢ u then it will still be forced that “ny, <pa na3 ’.In [7, 9] the case

oy = Up was used.

Definition 1.7 1. Let P be a set of forcing templates, we shall denote by Kp the collection
of iteration templates q with forcing templates from P (i.e. pq,; € P for every t € Lgq).

2. For q1, q2 € Kp we write q; <k, q if the following conditions hold:

a. Lq, € Lg,.

b. For everyt € Lq,, Pqi.t = Pao.t and uo =ug, N Ly,

c. (wa ‘s q1 it e€lLlg) = (wqz ‘s qz it e Lg,) | Lq, and similarly for the other

sequences appearing in Definition 1.4.

Definition 1.8 Let q be an iteration template and let L € Lq, we shall say that L is a closed
sub-partial order (or “L is closed with respect to weak memory”) if w? C L forevery ¢ € L.

Definition 1.9 1. Given L C Lg, let c/(L) = clq(L) be the minimal set L C L C Lq such
that w? C L' foreveryt € L.

Convention 1.9(A): Throughout this paper, whenever q is an iteration template, L C Lq
and q [ L is defined or used (see Definition 1.11), we shall assume that L is closed w.r.t.
weak memory.
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Definition 1.10 Let q be an iteration template, we shall define for every t € Lq U {00} a
forcing notion P; = Py ;, a forcing notion P, = IPq ; for any initial segment L C Lq and
names Q; = Qg 1y (by the remark after Definition 1.4, this is always well-defined) by

induction on dp(t) (see Definition 2.3):
(A) p e Py (Pp)iff

(1) p is afunction with domain € L ., (or € L in the case of Py ) of cardinality < A.
(2) For every s € Dom(p), p(s) = Bp)(..., Ni (ag), .. Je<¢ (We may write p(s) =

(tr(p(s)), Bps) (.., i (ag), .. ), so it will be interpreted as a condition in Qg that

resulted from the respective computation by the A-Borel function B (s)) for a A-Borel
function B () into H<; (UUI) and an object tr (p(s)) such that 7 (p(s)) is computable
from B (i.e. the range of B () consists of conditions with trunk t7(p(s))), § =
Epi) S M {tr 1 <&} C u_? and for every ¢, a; € u}{. Note that B () here is not the
same function as B; ; in Definition 1.5.

[Remarks: a. The reader might wonder why not drop the a; and use B4 (. . ., Migs - Je<e
instead. The reason is that Dom(n,, ) = I,lg might be of cardinality > A. Our choise allows

B (s) to be a function with domain H (1)*.

b. Note thatif p < g and s € Dom(p), then the corresponding set of {#; : ¢ < &} might
increase. As a consequence, the number of input coordinates might increase between
Bp(s) and Bq(s). ]

(3) Forevery s € Dom(p), IFp, “p(s) € Q;”.
B) P; = p < g iff Dom(p) € Dom(q) and for every s € Dom(p), q | L. IFp,
p(s) =q, q(s).
©) 1. Let h; Ig[ — X be the name of a function defined by h,(b) =
B/ o(o o 0,0)(@r,b,2)s - - e <£(t,b)-
2. a. If (p¢, hy) is active in VP (see Definition 1.4), we shall define Q; as the P;-name of
V[ns:seu?]
szqht
b. If (ps, h;) is not active in VP we shall define Q as the trivial forcing.

(D) n; will be defined as the IP; % QQ; name nyp, 5, -

Definition 1.11 Given an iteration template q and a sub partial order L € Lq we shall define
the iteration template q | L as follows (recall that we assume that L is closed under weak
memory):

(A) Lqi = L.

(B) Foreveryt € L, pqiL,: = Pq,:-

(C) Foreveryt € L, "‘grL,t = ’48,t N L and ﬁé”‘,t = 12(11’, I ugrL.

(D) Foreveryt e L, wgrL,r = wg,, and II)‘I”LJ = II)(]”.

(E) For every t € L the other objects in the definition of q are not changed.

Observation 1.12 q [ L is an iteration template (recall that L is assumed to be closed under
weak memory).
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Definition 1.13 Let A be a regular cardinal, P a forcing notion and ¥ C P.

(A) L;+(Y) will be defined as the closure of ¥ under the operations —, A; . for @ < A™.

(B) For a generic set G € P and ¥ € L,;+(Y) the truth value of {[G] will be defined
naturally by induction on the depth of v (for example, for p € P, p[G] = true iff
p € G).

(C) The forcing L+ (Y, IP) will be defined as follows:

(1) ¥ e Ly (Y, P)iff ¢ € Ly (Y) and lp “¢[G] = false”.

(2) Y1 < Y iff lbp “Y2[Gl = true — Y1[G] = true”.

More definitions and assumptions
Strategic completeness

Definition 1.14 Let P be a forcing notion, « € Ord and p € P.

1. The two player game GO (p, P) will be defined as follows: A play in the game consists of
a moves. In the Sthmove player I chooses pg € Psuchthat p < pgA (A, <pq, < pg),
player II responds with a condition gg such that pg < gg. Winning condition: Player
I wins the play iff for each 8 < « there is a legal move for him.

2. Let P be a forcing notion, tr = trp a function from P into {n : 5 is a function from
a set of cardinality < XA into H(A)}, « € Ord and p € P. The game Gé (p,P) will
be defined as follows: The games consists of @ moves. In the eth move the objects
Jes ges Ne» Ve are chosen such that:

a. je<iandf <€ — jg < je.

b. ge = (g :i < je) is a sequence of members of [P above p.

c. Ifé <eandi < jg then:

c(1). (qf 1 ¢ € [€, €]) is increasing.

c(2). tr(g;) = ne.

€(3). je < |Dom(ne)l.

c@4). com(q;, ve) forevery i < je.

c(5). ne S ve.

c(6). ¢ <€ — v C ne.Inthe ethmove, first INC chooses je, g and ¢, then COM chooses
ve. COM wins if he has a legal move at every stage during the play.

3. Let IP be a forcing notion expanded by a function ¢t = trp as in (2). Let o« € Ord and
let F, = (Fy,e : € < a) be a winning strategy for I in the game Gg(—, P) that will
naturally arise from the rest of the definition below. The game Gﬁ () will be defined
as follows: In the eth move, the objects je, pe, ge, Ne and ve such that:

In a preliminary move, II chooses & € (0, @) and g.

For¢ <& welet jo =1, pj = qg = qs (50 pr = Gr = (qx)) and 0 = v = 17(qy).

Je <iand & <€ — jg < je.

Given e andi < j.:

d(1). ge = (g :i < je) and pe = (pf : i < je) are sequences of members of IP.

d(2). tr(g;) = ne.

d(3). je < |Dom(ne)|.

d(4). com(q;, ve) forevery i < je.

d(5). ne Cveand¢ <€ — vy S ne.
In the eth move for € > &,, first COM chooses (pf : i < U{j; : { < €}) such that
12 af((qf : ¢ < €)). NextINC chooses je = U{j; : { < €}, ge such that pf < gf
for all i < j. and 5 as above. Finally, COM chooses v¢ as above. COM wins if at
each stage there is a legal move for him.

al o
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4. Let IP be a forcing notion and o € Ord, P is called a-strategically i-complete (i =
0, 1, 2) if for each p € P player I has a winning strategy for G.,(p, P).

5. For a regular A, we say that P is (< X)-strategically i-complete (i = 0, 1, 2) if it’s
a-strategically i-complete for every o < A.

6. Convention: We may omit the i in i-completeness if i = 2.

For discussion of various strategic completeness properties see [5].
We shall freely use the following fact:

Fact 1.15 (< A)-strategic completeness is preserved under (< A)-support iterations.

Absoluteness
The following requirements will be assumed throughout the paper for all (1, D)-forcing
templates p:

Requirement 1.16 A (A, D) forcing template p is called (A, D)-absolute when: If P and
P are (< MA)-strategically complete forcing notions satisfying (A, D) — cc (that is, {py :
a <At} CP — {(o,B) : py and pp are compatible} € D) such that Py <P, V; = VP
(I =1,2)andp, h € V, then we shall require that:

(A) “(p.h) is active” and “p <q,, q" is absolute between Vi and V».

B) “pe ;)’y j, is absolute between Vy and V.

(C) “p and q are incompatible in Qgﬁ ;, is absolute between V| and V.

(D) Similarly for the other formulas involved in the definition of p (see Definition 1.1).

Definition 1.17 Let p € V| be a forcing template and let B be a A-Borel function. We say
that B is a A-Borel function into p if for every V| C V, as above, the range of B is in Ql‘fh
and the trunk of the members in the range is fixed. '

Remark The above definition is relevant in the context, e.g., of Definition 1.10(A)(2), where
(V1, V») here stands for (V, VFs) there.

Requirement 1.18 (A) All A-Borel functions will be assumed to be into a relevant forcing
template p. That is, whenever a A-Borel function B will be used, there will be an
associated forcing template p such that (B, p) are as in Definition 1.18, and p will be
clear from the context.

(B) Dy is fixed and is in V.

2 Iteration parameters and the corrected iteration

Iteration parameters

We will be interested in iterations along a prescribed partial order M. However, we will also
have to consider iterations along a larger partial order that L that contains M. Therefore, we
shall define a binary relation £’ on L such that L\ M will consist of equivalence classes that
are only related via M. We shall require that those equivalence classes will be preserved when
we extend the iteration, so extensions will be obtained by adding new equivalence classes.

Hypothesis 2.1 We shall assume in this section that:

(A) A = A=Y is a cardinal and D is a filter as in Hypothesis 0.
(B) A < A1 < Ay are cardinals such that J3(11) < Aa.
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(C) P is a set of (A, D)-forcing templates that are (), D)-absolute such that if p € P
and Py < Py are (< M)-strategically complete (., D)-cc forcing notions, then VP =
“(p, h) is active” implies that VF2 |= “(p, h) is active’ (with (., D)-cc as defined in
Requirement 1.16).

(D) Iand U are disjoint sets such that <y is a fixed well ordering of U and 1U U is A T.

(E) [P| <2™.

Definition 2.2.A: Let M = M[A;, A2] be the collection of triples m = (qm, Mm, E;,) such
that the following conditions hold (we may replace the index m by qn or omit it completely
when the context is clear):

(A) qm € Kp.
(B) M = My, C Ly, is a sub partial order.
(C) Foreveryt e M, w? CcM.
(D) E' = E},isarelation on L = Lg, satisfying the following properties:
1. E" = E’' | (L \ M) is an equivalence relation on L \ M.
2. For every non E”-equivalent s, € L\M, s <y t iff there is r € M such that s <,
r <gt.
. IfsE'tthens ¢ Mort ¢ M.
Ifre L\ Mthen{s € L:sE't} ={s € L :tE’s}. We shall denote this set by ¢/E’.
Ifs,t € L\ M are E”-equivalent, then s/E’ =t/E’.
Ift € L\ Mthenu® Ct/E'.
Ift € L\ M then |[t/E'| < A;.
M= A
|w?| < A for every 1.
(E) In addition to the objects mentioned in definition 1.5, q, includes a sequence vy =
(Vm,s it € Lm) = (v; : t € L) such that for every t € Ly, we have:
1. v, C [u?]f’\, w? € vy and for every u € vy, u U w? € v, (recall that the u? and w? are
part of the definition of q, mentioned in 1.5).
2. v, is closed under subsets.
3. Ift € Ly \ M then |v;| < Ap.Ifr € My ands € L\M then |{u € v; : u N (s/Ep) #
a2} < Ap.
4. Forevery u € v, ifu ;(_ My, then there is s € L\ My, such that u C s/E’.

© 0N W

We shall now supply the final definition of the forcing (recalling definition 1.8).

Definition 2.2.B: For m € M and the corresponding iteration template q we shall define
P; = Pm,s, Q; and 5, in the same way as in 1.10, except that we replace (A)(2) and (C) with
the following definition:

For every s € Dom(p) there is t(p(s)) < A, a collection of sets Wy(5),, C &p) < A

(t < t(p(s))),acollection of A-Borel functions B(5),, (¢t < t(p(s))), A-Borel functions C (s,
and B,(5) and an object ¢tr(p(s)) such that the following conditions hold:

(A) ";‘_ = Ep(s) = Ul<t(p(s))Wp(s),t-

(B) Bp(s)(~ <o Ny (ag), . . ~);‘<E = Cp(s)(~ cey Bp(s),L(~ <o Nig (a;), .. ’){EWP(X)J? .- ~)L<t(p(s))
such that 7; € u? and a; € u,‘( for every ¢ € W, (for C () recall Definition
1.4(D)(6)(b)).

[Following Definition 1.4(6)(B), Cps) really has the form Cp_p, .(p(s)), but we
shall abuse the notation and denote it C, ). In addition, the definition implies that
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trBpes) oM Ag)s - Jeew,.,) is constant for ¢ < ((p(s)), say np(s), and so

L(p(s)) = |Dom(npes))l].
(C) Forevery t < t(p(s)) there is u € vy such that {t; : & € W5} C u.

D) p(s) = Bpw(...nlag),..)e<e. We may write p(s) = (@r(p(s)),
By (oo i (@), - Do <e).
(E) Recall that the parameter iy was defined in Definition 1.10(C). Q, will be defined as

the Ps-name of the subforcing of Qp, 5, with elements of the form C(..., p;, .. )i<i(x
Vin,:reu]

such that each p; belongs to st Z:X for some u € vy and the A-Borel function

C=C(...,pi, .. Di<itisinto Qp_ . This can be seen as a refinement of the previous

Definition 1.10. The way that C is defined (as a function of conditions p;) will play a

role in the analysis of projections in Section 4, where incompatibility with a condition

p(s) will be reduced to incompatibility with some B () (. .., n, (az), - - ')€€Wp(:>,z'

(F) Foreachgs, = Bp),(..., N, (ag), .. -)§€Wp<.s),z there is an object ¢r(g;s,,) such that the

range of B (y),, consists of conditions with trunk 7 (g;,).
(G) tr(p(s)) = U,tr(gs,,) (so in particular, the tr(q;,,)’s are compatible).
(H) H_IP.\‘ “Cp(s) G.., Bp(s),t(~ <o Ny (a{), .- -){EW,,(S).N .- -)t<t(p(s)) € g

& (Ve < 1(PENB sl M @), - eew,,, € G

Remark 2.2(A): The reader might wonder about the difference between the above definition
and 1.10. In the main case, we will really be interested in iterating Q; fort € M,,, where M,,
might be an ordinal. In order to obtain the parallel of [3], we would like to correct the iteration
in order to have enough saturation while maintaining the well-foundedness of the iteration’s
underlying partial order. For this we add the “pseudo coordinates” grouped in classes of the
form t/E,,. Fort € M,,, we have in the definition the new sets vy, ; giving us the following
difference between the iteration here and the one in Definition 1.10: In 1.10, Q; is computed

via (p;, hy) in V[n | u?], while here it is the closure of the union of the forcings computed

via (p,, hy) in V[n | v] for every v € vy ;.

Definition 2.3 Let L be a well founded partial order, we shall define the depth of an element
of L and the depth of L by induction as follows:

(A) dp(t) =dpr(t) =U{dpr(s) +1:s < t}.
(B) dp(L) = U{dpr(t)+1:t € L}.

Definition 2.4 Letm € M andlet L C Ly, be a sub-partial order, we shall definen =m [ L
as follows:

(A) qn =qm [ L.

(B) Mp=MmNL.

(C) E,=E,NL x L.

(D) For every t € L we define vq,  as {u N L : u € vgy, ¢}

Remark If My, C L thenn € M[Aq, A3].
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Definition 2.5 Letn, m € M, a function f : Ly, — Ly is an isomorphism of m and n if the

following conditions hold:

(A) f is an isomorphism of the partial orders Ly, and Ly.

(B) Foreveryt € Lm, Pay.r = Pqn, £(1)-

(C) Foreveryt € Ly, f(u?n,t) = u?l,f(t) and ﬁlln’, =u

(D) Foreveryt € Ly, f(wlonyt) = wg,f(t) and w

(E) My = f(Mm)

(F) Foreverys,t € L, sE[,t if and only if f(s)E,, f (?).

(G) Foreveryt € Ly, if (Bm,;p, (5/(b,8),arpr:¢ <&, b):be Il‘,)qm_t) it € Lg,)is
as in 1.4(F) for m, then ((Bm,,p, (f(s:(b, ), arpc : ¢ <&(t,b)) : b € ng“.f([)) it e
Lg,,) is asin 1.4(F) for n at f(t).

(H) Foreveryt € L, u € vg,, if and only if f(u) € vq, ;.

1 —
m,t —

Definition 2.6 We say that m, n € M are equivalent if g = qp.

Definition 2.7 (A) Let L be a partial order, we shall denote by L™ the partial order obtained
from L by adding a new element oo such that t < oo forevery ¢ € L.
(B) Given m € M we shall denote by Py, the limit of (P;, Q; : ¢ € Ly,) with support < A,

i.e. Pm,oo. We shall denote P; by Py ; and similarly for Q.

(©) p,q € Pm are strongly compatible if 7 (p(s)) Rp,,, ,1r(q(s)) for every s € Dom(p) N
Dom(q).
(D) Given an initial segment L C Ly, let Py =Py [ {p € Pm : Dom(p) € L}.

Claim2.8 Letm € Mands <t € L.

(A) If pePsthenp e Prand p | Los = p.

(B) If p,q € Ps thenPs = p < q iff P = p <gq.

(C) If peP thenp | L.y € PyandPs =“p | Loy < p”.

(D) IfPy=p<qthenPs =p| Ly <q]| L.

(E) IfpeP,qePsandp | Loy <q €Psthenp,qg <qU(p | (L \ L)) €Pr.

(F) Ifs <t € Lf, then P < Py.

Proof Should be clear. O

Claim 2.8’: Suppose thatm € M and L; € Ly C Ly, are initial segments.
(A If pePp,thenpePr,andp | L1 = p.
B) If p,g ePr, thenP, Ep<qiff P, EFp=<gq.
©) Iftpe ]PLZ thenp [ L € ]PLI.
D) Ifp,gePr,andPr, =p<qgthenP,, =Ep|Li <q|Lj.
(E) Ifp € Ppy,q € P and Py, ="p [ L) < q"thenPp, = “p,q < qU(p | (L2\L1))".
(F) ]PLl < ]PLZ-
Proof Should be clear. O
Claim29 Ifm € M, p € Py and s € Dom(p), then there is a A-Borel name
of the form B(...,TV(ns (ag) = j¢)s--Dr<ps) such that B(...,TV(ns (ag) =

Jo)s - e<k(poy Gyl = true iff p(s) € Gq, (where TV (ns,(ag) = j;) stands for the
truth value of the statement “ns,(ag) = j¢”, so it’s either 0 or 1). That is, membership in
the generic set can be computed in a L-Borel way that depends on the (partial) values of the

generics.
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Proof Follows from the definition of forcing templates and the assumptions of the previous
chapter using the AT -c.c.. o

As promised earlier, the properties of forcing templates will play an important role in the
proof of the following:

Claim 2.10 Letrm € M and let L C Ly, be an initial segment.
(A) a If s € L thenlkp, ny, € I1 X, where X, = {x € H(A) Hq, ns(r) #x} S H())

~  rell
(we may take H (L) I instead of this product).
b. Moreover, if p € Py, and a € Isl, then for some q € Py, above p we have s € Dom(q),
a € Dom(tr(q(s))) and s € Dom(p) — t(p(s)) = t(q(s)).
c. The set {p € Py, : for every s € Dom(p), |t(p(s))| < |tr(p(s))|} is dense in Pp,.
d. If» =Rgandh € w?, thenthe set{p € Py, : s € Dom(p) — h(t(p(s))) < |tr(p(s)|}
is dense in Pp,.
(B) Pm = (A, D) — cc (hence Py = A1 —c.c.).
(C) a. Py, is (< A)-strategically 0-complete.
b. If p is a function with Dom(p) € [L1<* such that s € Dom(p) — IFp, ., “P(s) €
5", then there is ¢ € Py 1 such that Dom(p) € Dom(q) and q | Los IFp

m,L<g
“p(s) < q(s)” for every s € Dom(p).

(D) Lett € Ly, iflkp, “y € Q,” then there is a A-Borel function B, §¢ < A and a sequence
(re : ¢ < &) of members ofu? such that I-p, “y = B(..., Nre(ag), .. ')Z<E for some

ag € M}C'
(E) Ikp, VIns:t € Lm] = V[g]

(F) IflFp, “n € 1434 for some £ < X, then there is a A-Borel function B, & < X and a
sequence (ry : { < &) of members ofu? such that \Fp, “n = B(..., Nr, (ag), ... 2’<$

Sfor suitable a; € ui{.
Proof The proof is by induction on dp(L), simultaneously for all clauses (though naturally

this is not needed in all cases).

(A)(@)Let p e P anda € Ills andlet py = p [ Ly, then py e Py __.
Case 1: s ¢ Dom(p). There is f € Tp, such that a € Dom(f), and by absoluteness
(and parts (D)(2) and (E)(1) of Definition 1.4, together with the remark below it), IFp, _

“VIn I u%] = There is ¢ € Qp,.n, such that f = tr(g)” (so this holds whether (p,, hy)

is active or not). By the induction hypothesis for clause (D), there are p; < py € Pr_g,
a A-Borel function B, § < A, a sequence (r; : { < &) of members of u? and {a; : ¢ <
£} € 1) such that py kp,_ “VIn [ ul]l = f = trB(... 0. (ap)....);<e)". Now

define a condition p3 € Py as follows: Dom(p3) = Dom(pz) U Dom(p) U {s}, p3 |

Dom(pz2) = p2, p3 | (Dom(p)\Dom(p2)) = p [ (Dom(p)\Dom(pz)) and p3(s) =
(f,B(.., Nr, (ac), ... )e<e). Then p, p» < p3 by absoluteness, 2.8 and the definition of the

partial order.
Case 2: s € Dom(p). p(s) has the form C (..., B, (. .., U (ag), .. -)Ceme,n ...

<t(p(s)) as in definition 2.2(B). In VP V..., Nies - - .];<gm) (see definition 2.2(B) for
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&p(s)) is a subuniverse, Q = Qp, p, VI le<ep) js well-defined (recall Definitions 1.5(E)

and 1.10(C)) and p(s)[. .., Migs - .]§<5p® is a condition in QQ with trunk 77 (p(s)). Let G C
Py, be generic over V such that py € G, so in V[G], Qp, 5,[G] is well-defined and

contains p(s). Therefore, by Definition 1.4(E)(2), there is ¢ above p(s) with trunk 5 such
that a € Dom(n) and tr(p(s)) € n. For every ¢ < ((p(s)), by absoluteness we have
V['I[G] [ {IC : ; € W[](A‘),L}] '= “ptl = Bp(S),l(~ RN nt; (Cl;), .. -){EW[,(S),, [G] and n are

compatible”. Therefore, for every ¢ < t(p(s)) there is some p? above p! with trunk 5. Now
let po € P, _, be a condition above p; forcing the above statements, and using p, and the
p? we can get an extension of p as required.

(A) (b) By the proof of clause (a).

(A) (c) By the previous clause and by clause (C) (whose proof doesn’t depend on the current
clause).

(A) (d) By clause (b).

(B) First we shall introduce a new definition: Let L € Ly, be an initial segment, ¢ an
ordinal, y < X andlet L[< ¢]={t € L :dp(t) < ¢}.

Now suppose that {py : @ < At} € Pr<¢). By clause (A)(c), wlog & < AT A (s €
Dom(py)) — |t(p(s))| < |tr(p(s))|, with strict inequality in case that A = Ny. Fix an
enumeration (s¢ : € < €,) of L[< ¢]. Forevery a < AT, letuy = {€ : sc € Dom(py)}. For
s € Dom(py),leths o = tr(py(s)). By 1.4(D)(7), thereis X € D such that (o, B) € Xy —
hs o Rphs g (unless {@ : s € Dom(py)} is bounded by some y < AT, in which case we
choose X; to be (A\T\y) x (AT\y)). For every < A™, |ug| = |Dom(py)| < A. For every
a < AT, define fy : uy — Aby f4(¢) = otp(ug N ¢), and define g : Uy _y+uy — D by
g(§) = X, .Let X € D bethesetdescribed in Hypothesis 0(b)(2) for (g, (fo, ue 1 @ < A1),
we shall prove that for (o, 8) € X, s € Dom(py) N Dom(pg) — tr(pa(s))Rptr(pg(s)).
Given s € Dom(py) N Dom(pg), s = sg¢ for some & € ug Nug, so (o, B) € g(§) = KXse -
It follows that tr(py (s))Rptr(pp(s)). For such o and g, it will suffice to find a common
upper bound p. This will be done as follows: Let (s¢ : € < ¢) list Dom(py) N Dom(pg) in
increasing order. For € < ¢ let Le := {s : s <[ s¢ for some § < €}. We shall now choose
(p?, q}) by induction on € such that:

P, E“PZ < q;.

Pm,1. = “qf < p? forevery & < €.

Pu.r. = “Pa | Le, pp | Le are below pf”.

.Ifé§ <eands € Dom(qg‘)\ U,<e Dom(q)), then (p;(s),q(s) : 1 € [§ + 1,¢€]) is
an initial segment of a play in the game G, (qgk (s), Qp, n,) according to a winning
strategy of play 1.

a0 os

There is a subtle issue that needs to be addressed: Recall that in Definition 1.4(D)(5) we
didn’t require tr(g) = tr(p1) U tr(p2). However, this is not a problem. Arriving at €,
let ug = U{Dom(qg‘) : £ < €)}, so we can choose a function pe1 with domain ug such

that, for every s € uo, pEl (s) is a Py, ;_,-name as required in clause (d). Note that by
the definition of the strategic completeness game, if G C Py, 1 _, is generic over V and
VIG] = “pl(s) < r”, thenin V[G], r can be chosen by player I according to the winning
strategy. Let L . := Ug.cLg, then by clause (C)(b) of the theorem, there is pf €Pur_.
such that if s € Dom(pl) thens € Dom(p?) and p? | L_ IF “pl(s) < p2(s)". The choice
of p¥ is now split to cases:

1. € = 0: Trivial.
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2. € is limit: In this case, we choose p = pZ2. In order to show that p? satisfies clause (b),
one can show by induction on £ < € that qg‘ [ Lg < p? I L ¢, using at each step the
choice of pg (s). Cases (c) and (d) then follow by the induction hypothesis and the choice
of pg (s).

3. € = ¢ + 1: In this case pf € Pp,. If s; € Dom(pe) N Dom(pg), then we know that
Ik “pa(se), pp(se) have a common upper bound r.”. Let pg’ € P, be a condition

above p? that forces a value for t7(r ), and we can now choose a p¥ as required.

Finally, given p’; constructed above, the existence of a common upper bound for p, and pg
follows.

(C) See, e.g., [5] for the preservation of (< A)-strategic completeness under (< A)-support
iterations, or just work as in the proof of clause (B) (but we rely neither on clause (A)
nor on clause (B)). Note that we use 1.4(D)(8). As for (C)(b), it follows from strategic
completeness for Py, _ where s <y, t.

(D) In order to avoid awkward notation, we shall write B(...,n¢,...);<¢ instead of

~

B(..., r]f(a;), .. )¢ <¢ for suitable a; € ué

The proof of the claim is by induction on dp(¢). Given t € Ly, we shall prove the following
claim by induction on ¢ < A™:
1. Forevery p € P, and ¢ < A" such that p IFp, “y € Hou TIUU) Ark(y) < ¢’ there is

a A-Borel function B, such that p IFp, “y =B, (..., 7, .. ')/5/<E(p) with 7, € u? (for some

&(p) which is the length of the inputs for the function).
By a standard argument of definition by cases, this claim is equivalent to:
2. For every antichain I = {p; : i < i(x) < A} such that p; IFp, “y € H; I U

U) Ark(y) < ¢” for every i, there is a A-Borel function B; such that for every i < i (%),
Di ”_]/P/)r Z = B[(. ey 7’):}, .. ')Z<$(P)'

Clause I: ¢ = 0.

There is nothing to prove in this case.

Clause II: ¢ is a limit ordinal.

We shall prove the second version of the claim. For every i < i(x), let {p; ; : j < j(i)}
be a maximal antichain above p; such that every p; ; forces a value ¢; ; to rk(y). As p I-

rk(y) < ¢, for every i, j we have ¢; ; < ¢. Hence, by the induction, for every i, j there

isB; (..., Mreijs - J¢<eG,j) as required. For every i < i(x) define a name B; such that

]i,'[G] =Bi (s e<ea plGlift pij € Gand p; jr ¢ G forevery j' < j.Finally
define a name 13 such that INE[G] = B;[G]iff p; € G and for every j < i, p; ¢ G. Now

leti < i(x), let G be a generic set such that p; € G, then there is a unique j < j(i) such
that p; ; € G. Therefore, ]NS[G] =B;[G] =B, ;(..., Mreijo -+ Je<ei, )Gl = y[G], hence

Di IF]/}Qr y=DB".
Clause III: ¢ = ¢ + 1.

We shall prove the first version of the claim. Let {p; : i < i(*)} be a aximal antichain
above p such that for every i, p; IFp, “|y| = p} for some p;. Therefore for every i < i(x)
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there is a sequence (y;o : @ < p;) such that p; H;r y = {yia : @ < p;}’. By the
assumption, p; H;r rk(yi o) < €” for every i and «. By the induction hypothesis, for every
such i and « there is B; o (..., 1r(¢,i,a), - - )¢ <£(i,a) @S required for y; o and p;. Hence for
every i there is a name B; as required such that p; IFp, “y = B;”. Now define a name B such

that B[G] = B;[G1iff p; € G and as before we have p IFp, “y = B”.

Remark For ¢ = 1,let {p; : i < i(*x)} be a maximal antichain above p of elements that
force a value for y from TU U. Let Y C 1 U U be the set of all such values (so |Y| < A) and

denote by qa; the value that p; forces to p;. For every generic G that conatians p, y[G] = a;
iff p; € G. Therefore it’s enough to show that for every p; there is a name B; of the right
form such that B;[G] = true iff p; € G. Therefore it’s enough to show that the truth value

of “p € G” can be computed by a A—Borel function as above, so it’s enough to compute the
truth value p [ Py € G NP for every s < ¢, which follows from the induction hypothesis.

(E) By the assumption, for every p € Py, and ¢t € Dom(p) there is a A—Borel function
B, and a sequence (s; : { < &(p,t)) of members of u? such that for every generic
G C Py we have B (..., TV(nS{ (ag) = jo)»--De<e(p,nlG] = true if and only if

p(t) € G, (forsuitable a; and j; ). Therefore p € G iff (Arepom(p)Bp,i (. ., TV(’Is; (ag) =
Jo) - Je<ep,i)) |Gl = true, hence we can compute G from (1, : t € Lpy).

(F) Similar to the proof of (D). O
Properties of the L, + —closure

Definition 2.11 (A) Let p € Py, the full support of p will be defined as follows: forevery s €
Dom(p), if p(s) = (tr(p(s)), Bp) (..., Ni(s,0)(@r), - . ) <(s))» then the full support
of p will be defined as fsupp(p) := Usepom(p){t(s,¢) : ¢ < &E(s)} U {s}.

(B) For L C Ly, define P(L) := Py | {p € P : fsupp(p) € L} with the order
inherited from Py,.

(C) Let L C Ly, foreverys € L, j < Aanda € Ills let ps q,j € Pm be a condition that
represents ny(a) = j such that Dom(p;s 4 j) = s and let X; := {psq,j:5 € L,a €

Il j <)
Ps’
[Note that such py 4 ; exist by Definition 1.4(D)(9). It is not necessarily unique, but it

can be chosen in P, if L, is a minimal closed subset of L, that contains s.]
(D) For L C Ly, define Py[L] := L+ (X1, Pm) (see definition 1.13).

Remark For m € M we may define the partial order <* on P, by p <* ¢ if and only if
q lFpy “p € G”. As (P, <*) is equivalent to (Ppy, <), it’s (< A)-strategically complete
and satisfies (A, D) — cc and we may replace (Pr, <) by (Pp, <*).

Claim2.12 Letm € Mand L C Ly,.

(A) Pm S PmlLm] is dense and Py, < Py[Lm], therefore they’re equivalent.
(B) P[Lm] is (< A) strategically complete and satisfies \™ — cc.

(C) Pn(L) € Py and Py[L] < Py[Lm]

(D) Pwm[L]is (< \)-strategically complete and satisfies A+ — cc.
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(E) Let G C Py, be generic, for each t € L let n; := n:[G] and let Gt = {y € Pn[L]:

Y [G] = true}, then GZ’ is Pm[L]-generic over V and V[Gz'] =VIn :t €Ll

(F) For Ly € Ly € Ly we have Ppy(L1) € Pn(L2) (as partial orders) and P[L1] <
Pm[L2].

(G) Ifm,n € M are equivalent (recall Definition 2.6), then Pp (L) = Py(L) and Py[L] =
PalL].

(H) Let I be a k;-directed partial order and let {L; : t € I} be a collection of subsets of
Lm suchthats <;t — Ly C Ly. Let L := U,y Ly, then Py[L] = Ui Pl L;].

Proof (A) By claim 2.9, there is a natural embedding of Py, in Py [ Ly ]. For p € Py, denote
by p* its image under the embedding. Now let ¢ € Pp[Lp], there is p € Py, such
that p IFp,, ¥[G] = true, therefore for every generic G C Py, if p*[G] = true then

p € G and Y[G] = true, hence Ppy[Lm] = ¥ < p* and Py, is dense in Py [L].

(B) By 2.10 (B+C), P, has these properties, and by the clause (A), Py[Lm] has these
properties too.

(C) The first part is by the definition of Py (L). For the second part, first note that, by
definition, P[L] € Pp[Lm] as partial orders. Now note that if i, ¢ € Pp[L] are
compatible in Py[Ly], then ¥ A ¢ € Py[L] is a common upper bound, so ¢ and ¢
are compatible in P, [ L] iff they’re compatible in Py, [ Ly, ]. Therefore if I € Pyy[L]isa
maximal antichain, then / remains an antichain in Py, [ L ]. Furthermore, it’s a maximal
antichain in Py [ Ly ]: Suppose towards contradiction that ¢ € Ppy[Lyy] is incompatible
with all members of 1. Let ¥ = Agey—0. As [ is an antichain in Py, [ Ly, ] which satisfies
the At —c.c.,wehavethat |I| < A. As ¢ € Py[Lm], thereis a generic G C Py, such that
¢lG] = true. As ¢ is incompatible with all elements of 7, it follows that 0[G] = false
for all & € I. Therefore, € Py[L]. But ¥ is clearly incompatible with all members
of I, a contradiction. Therefore, Py [L] < Py[Lm]-

(D) By (B) and (C).

(E) We shall first show that Gzrm is Pm[Lm]-generic. Gzrm is downward-closed, by the
definition of G;fm and of the order of Py [Lyy]. If ¥, ¢ € G;fm then (¥ A@)[G] = true,
hence ¥ A ¢ € G+m, SO sz is directed. Now let I = {y; : i < i(*)} C Pn[Lm] be
a maximal antichain andlet J = {p € Py, : (i < i(x)(p IF “YilGl = true’)}. If J

is predense in Pp,, then there is g € J N G. Leti < i(x) such that g IFp,, “¥;[G] =
true”, then v¥;[G] = true hence y; € GZ“ N I. Suppose towards contradiction that

J is not predense and let ¢ € Py, be incompatible with all members of J, so g IFp,,
“Ui[G] = false” forevery i < i(*).i(¥) < A (as Py = AT — c.c.), hence ¥, :=

AN <i(x)(—¥i) € Ly (X, and ¥, € Ly (X1, Pm). Obviously, ¥, is incompatible
with the members of 7, contradicting our maximality assumption. Therefore we proved
that Gzrm is P[Lm]-generic. Now let L C Ly, then Gzn N Pp[L] is Py[L]-generic
and sz NPml[L] = Gz. We shall now prove that V[GZ] = VI[n, : t € L]. We need to
show that Gz can be computed from {n, : t € L}.Let p 4, ; € X1, then ps 4 ; € GJLr iff
Ds,a,jlG] = trueiff ns[G](a) = j. Therefore we can compute GJLr N Xy, and Gz from
{ns[G]:s € L}. Asng[Gl(a) = jiff pyq,; € GZ, we can compute {n;[G] : s € L}in
V[Gi], therefore V[GZ] =Vins :s € L].

(F) If fsupp(p) S L1 then fsupp(p) S Lo, hence p € Pp(L1) — p € Pm(L2), and by
the definition of the order, P (L1) € P (L2) as partial orders. For the second claim,

@ Springer



Sh:1204

H. Horowitz, S. Shelah

first note that Ppy[L1] € Py[L2] as partial orders. Now assume that I € Pr[L] is
a maximal antichain. By (C), [ is a maximal antichain in Py[Lpy], hence in Py[L>].
Therefore Py [L1] << Pw[L2].

(G) If m and n are equivalent, then qn = qm, hence Py, = Py, Ph(L) = Py(L) and
Pm[L] = Py[L] for every L.

(H) Forevery t € I, L; € L, therefore Py[L;] C Ppl[L], s0 Uie/Pm[L;] € Py[L]. In
the other direction, suppose that € Py[L] is generated by the atoms {psi),a(i), ) :
s(iye L,a(i) € I s (),](1) i < A}.Recall that A < Ay < AT, hence there is i (x) € [
such that {s(i) : i < A} C Lj(x), therefore ¥ € Pm[L;(x)], 50 Pm[L] € U;ci/Pm[L;]. O

Operations on members of M
We shall define a partial order <py=< on M as follows:

Definition 2.13 Let m, n € M, we shall write m < n if:

(A) Lm C Ln.

(B) Mm = My (yes, equal).

© (Im <Kp qn

D) u ot = uq forevery t € L\ Mm.

(E) t/E’ = t/E’ for every t € Ly\Mp.

(F) If t € My then vg, s = {u N L 1 u € vy, },if t € Ly \ My then vy, ; = vg,, /-
(G) Ifte My then{u € vm;:u S Mm} ={u € vn; 1 u S Mn}.

(H) Ift € Myy and s € Ly \ My then {u € vm; :u Cs/Ep} ={u € vn; 1 u C s/E,}.

Definition 2.14 Let (m, : @ < §) be an increasing sequence of elements of M with respect
to <y, we shall define the union n = U, _sm,, as follows:

(A) My = My, (o <§).
(B) E;l = Ug<s El/na
(C) qn will be defined as follows:
1. Ly = Ua<sLm,-
. Foreveryt € Lg,, Pqy.t = Pqm,.r (for @ < é such thatz € Lm)

. Foreveryt € Ly, ugm, = U{ug mgt X< At €Ly, }andu al = Uy sil

Qmg -1 *

2

3 .t

4. Foreveryt € Ly, wgn’, = U{wqma’, a <dAt€Lpy,}and wq : Ua<3u‘)3]mw,.
5

By, (51D, 8), arpe) 1 ¢ <&, D) :be Ilg) :t € Lg,)) will be defined naturally
as the union of the sequences corresponding to the sequence of the my’s.
6. Vq,.r = Un<sVqy,,.r TOrevery t € Ly.

It’s easy to see that the union is a well defined member of M.
Claim 2.15 Let (m, : o < 8) and n be as above, then n € M and my, < n for every o < 8.
Proof 1t’s straightforward to verify that m, < n for every @ < 8. O

Defintion and claim 2.16 (Amalgamation): Suppose that

(A) mg,m;,m; € M.
B)my<m; (I =1,2).
(C) Lmy N Lm, = L,

We shall define the amalgamation m of m; and m, over mg as follows:

1. Ejy = Ejy, UE},
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Mm = Mm,. qm will be defined as follows:
Ly is the minimal partial order containing Ly, and Luy,.
Forevery 1 € Lm, Pqy.t = Pgm,.¢ Provided that 7 € L.

0 _,0 0 0
Ugm,t = Uyt U Uiy 1 (where Uiy 8 = Bift ¢ Lm,).

0 _ .0 0 0 -
wqm~t - w‘lmlqt U mezJ (where me],f =0ifr ¢ Lm,)~

N RN

b_‘(llm,z = L_t}]mlyt U L't}lmr,, zi)(llm’, = zb(llml,, U J)}lm > 1.e. coordinatewise union (similarly

to 5+6, if t ¢ Ly, the corresponding sequence will be defined as the empty sequence).

8. Fort € Ly, U Ly,, the A-Borel functions from 1.5(E) will be defined in the same way
as in the case of m; and my.

9. If 1 € L, then vqy,,r = Vgt U Vg, .r- 1 € Ly \ Lmy (0 = 1,2) then v, 1 = gy, .r-
Claim 2.16 m is well defined, m € M and m;, my < m.
Proof Straightforward. O

Remark The amalgamation of aset {m; : 1 <i < i(x)} over mg can be defined naturally as
in 2.16.

Existentially closed iteration parameters
Given m € M, we would like to construct extensions m < n which are, in a sense,
existentially closed.

Definition and Observation 2.17 (A) Letm € M, L C Ly,, we shall define the relative
depth of L as follows: dpji, (L) := U{dpm,, (1) +1 :t € LN M} (sothisisdpp,, (LN Mp)).
(B)Fory € Ord weshall define M7 as the set of elements m € M satisfying the following
property: Letm < m; < my, L[,l,f;yy i={t € Ly, : sup{dpm,,(s) 15 <t,5 € Mm} < y}
(I =1,2),then Py, (Lﬁ{’1 ) <Pm, (Lil,{’z,y). Note that in this case we have Py, (L) = P, (L)

forevery L C L;inp,,y.
(C) M, will be defined as the collection of elements m € M such thatm € Mff for every
y € Ord.

Observation m € M, if and only if Pp, < Py, for everym < nj < ny.

Proof Suppose that m € M;" for every y and m < m; < my. Choose some y’ such that
y' > dPMm, (s) forevery s € Mm, (I = 1,2) andlet y = y’ + 1. Obviously Ly, = Lﬁg,y
(=1,2),50 Py, =P, (Lﬁfm,) <Pm, (Lﬁ{’z,y) = P, . In the other direction, suppose that
Pm; < P, foreverym < m; < mj; and let y € Ord. As Lﬁﬁ,y is an initial segment of
Ly, it follows that P, (L& ) < Pm, (I = 1,2), and we have Pp, (Lt ) < P, < P,
and P, (Leh, ) < Pm,. Note that Lt C Le . 50 Prn, (Led ) € P, (L ,) and it

. L d . . L d
follows that every maximal antichain in Py, (Ln{'1 .y) is a maximal antichain in Py, (mez,)/)’
som € M;C. m}

Definition 2.18 Let y be a cardinal, we shall denote by M, (M<, ) the collection of members
m € M such that |Lyy| = x (|Lm| < x)-

Claim 2.19 Let 2*2 < x and m € M<,, then there ism < n € M, such thatn € M.

Proof Denote by C = Cpy, the collection of elements n € M such that:

1. m [ My < n (recall Definition 2.4).
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2. Ln \ Mm = t/E] for some 1.

Definition Letn;, ny € C, afunction & : L, — Ly, is called a strong isomorphism of n;
onto ny If:

1. h is an isomorphism of n; onto n;.
2. h is the identity on Mpy,.

Definition Let R = Ry, be the following equivalence relation on Cp,: nj Rny iff there is a
strong isomorphism of n; onto n;.

We shall now estimate the number of R-equivalence relations:

1. As|Ly| < M foreveryn € C,once we fix My, there are at most 272 possible isomorphism
types of (Ln, <pr,) over My.

2. Given such Ly, there are at most 2*2 possible forcing templates from P.

3. For every n € C there is # such that [Lp| = |Ln\Mm| + |[Mm| = |t/E;| + [Mm| < A2
(recalling Definition 2.2.A), hence |P(Ly)| < 2*2 and for every t € Ly there are at most
2*2 possible values for ug . and wo 1

4. For every t, uq is a function assigning for each s a member of P (1)), so we have at

most (2M!Eal < 2(T+22) possible functions. Similar argument applies to wq . as well.

Therefore there are at most 2*2 R—equivalence classes. Let (ny : o < 272) list all such
classes. For every @ < 2*2 we shall choose the sequence (n’, : i < x) such that each n, is
obtained from n,, by the changing the names of the elements in Ly, \ Mm such that the new
sets are pairwise disjoint and also disjoint to Ly, (for i < x). For every i there is #, ; such
that t“vi/Eg; = Ly \Mm and IO,,,-/E;I’(,-Y N ta’j/EI/l/j = (. Now let n be the amalgamation of

{m} U {nfx ti< x,a < 2"}overm | Mp. Obviously, n € M,,.
Suppose now thatn < n; < my. Let F be the collection of functions f such that for some
Ly, Ly C Ly,:

Dom(f) = L1, Ran(f) = L».

Mmn =My, LN L.

[Li\ Mm| <22 (I =1,2).

t/En, € L;foreveryt € Li)\Mpy.

f is the identity on Mp,.

f is an isomorphism of ny [ Lj ontony | Lj.

™o 80 o

Claim 1: Let f € 7, L' C Ly,, L"” C Ly, such that [L'| + [L”| < X;, then there is g € F
such that f € g, L’ € Dom(g) and L” C Ran(g).

Proof WLOG L' N Dom(f) =@ = L” N Ran(f) and |L'| = |L"| = »». Let (a; : i < A2)
and (b; : j < Ap) list L" and L", respectively. For b € Ly, \ M, let B, := (b/E,,) U M,
thenm [ My, < mny | Bp,ny | B, € C and ny | Bp < ny. We shall construct by induction

on i < Xy an increasing continuous sequence of functions f; € F such that g := U f; will
give the desired function of the claim.

Li=0: fy:=7Ff.
IL. iis alimit ordinal: f; :=U;; f;.
II. i =2j 4+ 1: By the “WLOG” above, L” N My, = ¥, hence b; € Ly, \ M. Therefore it
followsthatm | My, <mnp [ By j,hence n | Bbj € C.Letny be the representative of the
R-equivalence classofnp | By;.By F’sdefinition, | Dom( f2;)| < A.Sincenis the result
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of an amalgamation that includes nét (i < x),each nfx is R-equivalent ton, and Ay < ¥,
it follows that for some i < y, Ln,- \Mp N Dom(fzj) = (. Sincenp | B;, Rni there is
a strong isomorphism /4 from ny | Ln, =n,, ontony | Bb Therefore f; := f2; Uhis
a well defined function, b; € Ran( f,) and fz i € fi.- We shall now show that f; € F:
conditions a, b, ¢ and e are obviously satisfied. If 7 € Ln, \Mm, then t/Ey = t/Epy, (as
n<m)andt/E, = t/En, Therefore ¢t/ Ey, = t/En, C Ln, C Dom( f;). Similarly, if
teb; /E” thent/Ey, = bj/En, € Ran(f;), hence condition d is satisfied. It remains
to show that fi is an isomorphism of ny [ Dom(f;) onto m | Ran(f;). Note that
bj/Ey, N Ran(fzj) = ¥ (as we may assume WLOG that b; ¢ Ran(f2;)), hence f; is an
order preserving bijection, as a union of two such functions (that are identified on My,).
It’s easy to check that f; is as required.

IV. i =2j + 2 : Similar to the previous case, ensuring that a; € Dom(f2;+1). O

As F is closed to increasing unions of length A2, g := U;.;, fi € F is as required, hence
we’re done proving claim 1.

Denote L, :={s € Lp, : dpn,(s) <y} (s0 Ly, = L|L.,2|+)-

Claim 1(+): Let f € F, L’ C Ly, such that |[L'| < A, and Ran(f) C Ly,, then there
exists g € F suchthat f C g, L’ € Dom(g) and Ran(g) C Ly,.

Proof Repeat the proof of claim 1 (in particular, stage 2j + 2). Note that at each stage we
add a set of the form Ln& to the range. As Lné C Ln € Ly, and Ran(f) C Ly,, it follows
that Ran(g) C Ly,. ]

Claim 2: Let g € F, then g(Dom(g) N L,) = Ran(g) N L,,.
Proof By induction on y. O

Claim 3: Given g € F and y < |Lp,|%, the map ¢ is an isomorphism of
Py, (Dom(g) N L,) onto Pp,(Ran(g) N L,) where g is defined as follows: Given
p € Py(Dom(g) N Ly), g(p) = ¢ has the domain g(Dom(p)), and for every
g(s) € Dom(q), q(g(s)) = @r(p(s)),Bps)(-.. ng@) (@), .. )e<g) where p(s) =
(tr(p(s)), Bps) (.o m (ag), - - e <)

Proof Given g € F, by the previous claim g is a bijection from Dom(g) N L, onto Ran(g)N
L,.Asg € F,it’s order preserving and the information of qn, [ (Dom(g)NL,)1is preserved.
Hence clearly g is an isomorphism from Py, (Dom(g) N L) onto Py, (Ran(g) NL,). O

Claim 4: Py, (L), N Lp;) <Py, (Ly).

Proof By induction on y. Arriving at stage y, note that Py, (L, N Ly,) € Py, (L, ) (as partial
orders). Suppose that p, p> € Py, (L, NLy,) are compatibleinPy, (L, ),andletg € Py, (L)
be a common uppper bound. Since | fsupp(p1)|, | fsupp(p2)| < A, there is L’ such that
fsupp(p1) U fsupp(p2) € L' € (L, ULp,), |L'| < Ay and L' is Ey,-closed. Therefore
p1, p2 € Py, (L'). Similarly, thereis L” € L, suchthat|L"| < Ao, fsupp(q)UL’ € L” and
L" is En,-closed, hence g € Py, (L"). Let f be theidentity functionon L = Ly = U{t/Ej, :
t € L'\Mp}. Note that |[L;| <3 (i =1,2)and f € F.Let L| := U{t/Ey, : t € L"\Mp},
then |L|| < A2, hence by claim 1(+), there is ¢ € F such that f C g such that L| C
Dom(g) and Ran(g) € Ly,. As fsupp(q) U fsupp(p1) U fsupp(p2) € Dom(g) N L,,
we have p1, pa2, g € Pn,(Dom(g) N Ly), hence g(p1), §(p2), &(q) € Pn,(Ran(g) N Ly)
(in particular, g(g), £(p1), &(p2) are well defined). By the choice of g, g(p1) = p; and
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&(p2) = p2. By claim 3, Py, (Ran(g) N Ly) = p1,p2 < §(q). As Ran(g) € Ln,,
8(q) € Py, (Ly N Ly,), hence p; and p; are compatible in Py, (L, N Ly, ). Therefore, if
I € Py, (Ly N Ly,), then I remains an antichaim in Py, (L).

Suppose now that / € Py, (L, N Ly,) is a maximal antichain, and suppose towards
contradiction that g € Py, (L) is incompatible with all members of /. We can show by
induction on y that Py, (L, N Ly, ) = Py, (L) N Ly,). Since L,, N Ly, is an initial segment of
Ln,Pny(Ly N Lny) = Pny(L,nLa) <Pn; hence Pny(Ly N Ln,) = At —ccc.and |I| < A <
A2.Let(p; : i < Ay) enumerate I’s members, then thereis L’ C L, N Ly, such that IL'| < X
and Uj <y, fsupp(p;) € L', hence I C Pp,(L'). Define L” and choose f and g as before.
Again, g : Py, (L, N Dom(g)) — Py, (L, N Ran(g)) is an isomorphism, / U{g} € Dom(g)
and g is thee identity on /. Hence g(g) is incompatible in Py, (L,, N Ran(g)) with all members
of 1. As before, g(q) € Pn, (L, N Ly,), therefore, in order to get a contradiction, it’s enough
to show that g(g) is incompatible in Py, (L, N Ly,) with all members of /. Suppose that
for some p € I,r € Pn, (L, N Ly,) we have p, §(g) < r. Since g~ ! € F, as in previous
arguments, there is g~ ' C h € F such that ﬁ(r), fz(g(q)) are well-defined and fz(p) =p,
ﬁ(g (¢)) = q. Hence p and g are compatible in Py, (L, N Ran(h)) and therefore in Py, (L,,),
contradicting the assumption. This proves claim 4. O

Claim 5: Py, < Py,.

Proof By the previous claim, fory = |Lp,|" we getPp,(Ly,) = Py, (LyNLy) <Py, (L)) =
Py,. We can show by induction on 6 that Py, (Ls N Lp,) = P, (Ls N Ly,), hence for § = y
we get Py, < IPy,. This proves claim 2.19. m]

The following observation will be useful throughout the rest of this paper:
Observation 2.20 Letn € M, andn < ny < my, then forevery L C Ly, Py, [L] = Py,[L].

Proof n; < ny, hence for L C Ly, the set X in definition 2.11(c) is the same for n; and
m. Let Y € Ly (X1), since Py, <Py, , there is a generic set G C Py, such that [G] = true
iff there is a generic set H C [Py, such that ¢/[H] = true. Similarly, if an implication of the
form “y[G] = true — ¢[G] = true” holds for every generic G C Py,, then it holds for
every generic H C [Py, and vice versa. Therefore, Py, [L] = Py, [L]. O

Claim 2.21 Suppose that

(A) m,my € M.
B) M =Mn, I=1,2).
(C) h: My — M; is an isomorphism frommy | M| onto my | M.

then Py, [M1] is isomorphic to Py, [M>].

Proof WLOG M| = M, (denote this set by M), L, N Lm, = M and h is the identity. Let
mo:=m; [ M =my [ M,thenmy <mj,my and Ly, = Lm; N Lm,, therefore, by 2.16,
there is m € M such that m is the amalgamation of m; and m; over mp and m;, my < m.
By the definition of Mec, asm; € Mee, my <m (! = 1,2)and M C Ly, (I = 1,2), it
follows that Py [M] = Pm[M] = P, [M]. O

The Corrected Iteration

‘We shall now describe how to correct an iteration [Py, in order to obtain the desired iteration
for the main result.
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Definition 2.22 Let m € M, we shall define the corrected iteration IP§; as Pp[Lpy] for m <
n € M, (we’ll show that Pg is indeed well-defined). For L C Ly, define P [L] := Pyp[L]
for n as above.

Claim 2.23 (A) Pg (L] is well-defined for everym € Mand L C L.

B) P [Mm] is well-defined for every m € M and depends only on m | Mp.
(©) Ifm <nthen Py, <Py .

(D) Ifm <nand L C Ly, then Pg[L] =Py [L].

Proof (A) By claim 2.19, there is m < n € M,, so it’s enough to show that the definition
does not depend on the choice of n. Given nj, n € M, such that m < n;, we have to
show that Py, [Lm] = Py [Lim]. WLOG Ly, N Ly, = L. Let n be the amalgamation of
nj, mpoverm. Sincen; € Me,ny <njp <nandLy C Ly, wegetPy [Lin] = Po[Lm].
Similarly, Py, [Lm] = Pn[Lm], therefore, Py, [Lm] = Pn,[Lm]. The argument for P [L]
is similar.

(B) Suppose that m; [ My, is isomorphic to my [ Mp, and choose n; (I = 1, 2) such that
m; <n; € M. Now,my | My, =Ny | My, isisomorphicton; [ My, =my [ Mpy,,
hence by claim 2.21, Py, [My,,] is isomorphic to Py,[Mm,]. Moreover, the proof of
2.21 shows that if m; [ My, = my [ Mpy,, then Py [Mmy,] = Pn,[Mm,], therefore
PS (M, ] = P, [Mim, .

(C) Choose n < n, such that n, € M, then Py = Py [Ln]. As m < n,, it follows that
Pg =P, [Lm]. By 2.12(F), Pl = Pp [Lim] < Pn,[Ln] = P§ .

(D) Choose (m <)n < n, € M., then by definition we get P [L] =Py, [L] =P¢[L]. O

The main result

Definition 2.24 Let q be a (A, D)-iteration template such that [Lq| < A; and |w?| < A for
every t € Lq.
We call m = mg € M the iteration parameter derived from q if:

a. gqm = q.

b. Mm = Lq.

c. Ej,=4.

d. Foreveryt € Lq, v; = [ul]=".

Definition 2.25 Given m € M, we define the forcing notions (P} : # € Ly U{o0}) = (P}, , :
t € Ly U {o0}) as follows: Fixm < n € M. and let P} := Py[{s € Lm : s < t}] (so
P, =P[{s € Lm:s <t}]fort € Ly and P, = PY). Similarly, let P} := Pp[{s € Ly :
s <t}].

Main conclusion 2.26 Let q be a (A, D)-iteration template. The sequence of forcing notions
(P, : t € Lq U {00}) from 2.25 has the following properties:
(A) (P, :t € LqU{oo)}) is <-increasing, ands <t € Lf]r - P, <P} <P,
(B) n; is a P/ -name of a function from Ilir to M.
(C) (ns : s < 1) is generic for P,.

(D) P} is (< A)-strategically complete and satisfies (A, D)-cc.

(B) Ift € LqU{oo} and every set of < A elements below t has a common upper bound s < t,
then P, = Us P,

(F) IPL] < (Brery (11 + M),
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(G) IfUy, Uz € Lgandn | Uy isisomorphicton | Uy, then Py [U1] = Py[U1]is isomorphic
to P [Uz] = Py[Uz]. Moreover, if U C Lg is closed under weak memory (as is always
the case), then ]P)f;w is isomorphic to Py, [U]. It follows that for every t € Lg, P;:[L<,
is isomorphic to P [L ] = P,.

(H) Foreacht € Ly, let V! :=V[... 1, ...]

.« . V!
seul, then My 1s somewhat generic” for Q,

in the following sense: If I is an antichain in Qtv " that remains maximal in VEn for every

n such thatm <n € M, then n; satisfies some p € I.

[This means that if I = {p. : € < €(x)} where each p. has the form
(tr(pe), Bp (..., ny(ag), ... )c<¢), then |-, There is some € < €(x) such that n, extends

tr(pe) and belongs to B, (..., n; (ag), .. )r<s”]

[The reason for the absoluteness requirement is that in Requirement 1.16 we didn’t demand
the property of being a maximal antichain to be absolute (this would seriously restrict the
range of forcing notions covered).]

Proof (A) By 2.12(F).
(B) By the definition of 7.

(C) By the definition of Py[{i : i < «}]. More generally, this is true by the definition of the
Ly+-closure, as (ny : « € L) is generic for Py[L] for every L C §,.

(D) By 2.12(D).

(E) By 2.12(F), UsIP; C ;. In the other direction, suppose that v € P, = Pp[{s :
s < t}] and let {ps(y,a(),ji) : i < A} € Xp_, be the set that L, +-generates . By
our assumption, the set {s(i) : i < A} has a common upper bound s’ < t. Hence
{Psyaty.jiy 11 <A} S Xp_,,50 ¢ € Py[{s : s < s'}] =P/, and equality follows.

(F) As P, = Py[Lq]l = L+ (X Ly> Pn) (recall definition 2.11), the claim follows by the
definition of X, and the definition of the L;+-closure.

(G) Choose n > m such that n € M, and M, = Lg, therefore, by claim 3.12 in the next
section (the proof of which does not rely on the current claim), Py[U/] is isomorphic
to Py[U3] where (n, n, Uy, U») here stands for (m;, my, M, M3) there. For the second
part of the claim, choose m [ U <n’ € M., thenn’ [ U =m | U =n | U, and as
before, P [U] = Py[U] is isomorphic to Py [U] = ]P’f;w.

(H) Follows from the definition and the absoluteness requirement. m}

3 Proving the main claim

Existence of an existentially closed extension of adequate cardinality for a givenm € M
Our goal will be to show that for every m € M, if Ly, = My and n = m | M where
M C Mp, then Py < Pgr. In particular, in Conclusion 3.13 we get that for every U C é,
closed under weak memory, P, < Py = Ps, .

Remark Note that we don’t rely in this section on 2.26.

Definition 3.1 (A) m € M is wide if for every t € Ly \ Mp there are t, € Ly \ M
(a < A1) such that:
1. m [ (t,/Ey},) is isomorphic tom | (t/E},,) over M.
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2. 1o/E} #tg/Ef foreverya < B < AT,
(B) m € M is very wide if m satisfies the above requirements with AT replaced by |Ly|.
(C) m € M is full if for every m | My, < n such that E}/ consists of one equivalence class,
there is # € L\ M such that n is isomorphic to m [ (¢/E},) over Mp.

Remark Tn the proof of theorem 2.19, we constructeed n € M,, by amalgamating (n/, :
i < x,a < 2*2). Therefore, for every t € Ly\My, there are i and « such that ¢ belongs to
n|t/Ey, = nfx. As n includes (nfx 1 i < x), by choosing representatives t; € Lné \ My
(i < x) we get that n [ (¢/E}) is isomorphic to n [ (#;/E}) for every i < . Since
ti/Ey # tj/E} forevery i < j < x and |Ln| = y, it follows that n is very wide. By the
construction of n, it’s also easy to see that n is full.

Definition 3.2 Let L C Ly, and g € Py, we say that p is the projection of ¢ to L and write
p = mr(g) if the following conditions hold:

a. Dom(p) = Dom(q) N L.
b. If s € Dom(p) then:
1. {Bp(s),t(- <o Nig (ag), .. ~)§6Wp(5>4 < up@))} = {Bq(S)J(' <o Mg (@), .. '){EWCI(S)J :

t<u@)) A{tg ¢ € Wy} S L}
2. tr(p(s)) = Ulzr(Bq(s)yL(...,n,{(a;),...)gewq(m) for t < u(g(s)) and {t; : ¢ €

Wq(s),t} - L.

Observation3.3 Lerm € M, L C Ly, and g € Pp,.

a. The projection p = nr(q) exists and p € Py(L).
b. 71(q) < q.

Definition 3.4 Let m € M, denote by Fy, the collection of functions f having the following
properties:

. There are Ly, L, € Ly, such that f is an isomorphism fromm [ L; ontom [ L.
. My C LN L.

. Foreveryt € Ly \ M, ift € L; (I =1,2) thent/E}, C L;.

. Ht/EL it € Li\ Mm}| < A.

. f is the identity on Mp,.

o 0 o

Claim3.5 A. Let m € M be wide. For every f € Fm and X C Ly, if | X| < A then there is
g € Fm such that:

1. fCg
2. Dom(g) = Ran(g).
3. X € Dom(g).

B. If g € F satisfies Dom(g) = Ran(g), then g+ := g U idp,\Dom(g) i an automorphim
of m.

Proof A.By the proof of claim 1 in 2.19, f can be extended to a function f’ € Fyy, such that
X C Dom(f’). It’s enough to show that for every f’ € Fy, thereis f' C g € Fyy such that
Dom(g) = Ran(g). The argument is simiar to claim 1 in 2.19. Obviously, Dom(f’) and
Ran(f’) are each a union of My, with pairwise disjoint sets of the form ¢/E},, and for each
such 1/ E]; exactly one of the following holds:

a. t/E}, € Dom(f") N Ran(f").
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b. t/E}, € Dom(f’) is disjoint to Ran(f").
c. t/Ey € Ran(f’) is disjoint to Dom(f").

As m is wide, for every ¢t/E}, as in (b) there are At 1y € Ly \ My, as in definition 3.1.
Therefore there is f' C fi € Fm suchthat Dom(f’) € Ran(f1) and Ran(f') C Dom(f1).
Proceed by induction to get a sequence ' € f; C ... f, C ... of functions in Fp, such
that Dom(f,) € Ran(f,+1) and Ran(f,) € Dom(f,+1) for every n. Obviously, g :=
Un<w fn € Fm is as required.

B. This is easy to check. O

Remark By the last claim, given f € Fy, we may extend it to g € Fm such that Dom(g) =
Ran(g), and g may be extended to automorphism 4 := g of m. As in claim 3 of 2.19, &
induces an automorphism h of P, and obviously f =h [ Pm(Dom(f)) is an isomorphism
of Pp(Dom(f)) to Pm(Ran(f)).

Definition 3.6 Givenm € M, ¢ < A", # € Ly \ M (I = 1, 2) and sequences §; of length
¢ of elements of #;/E},, we shall define by induction on y when (#1, 51) and (2, 52) are
y-equivalent in m. We may write §; instead of (7, §;), as the choice of #; doesn’t matter as
long as it’s E}-equivalent to the elements of §; (and 57 # ().

A.y =0:Let L; = cl(Mm U Ran(sy)) (recalling Definition 1.9 for I = 1, 2. (¢, §1) is
O—equivalent to (f, 52) if there is a function 4 : L1 — L such that the following hold:

1. his an isomorhism fromm [ L tom | L.

2. h maps §1 onto 53.

3. h is the identity on Mp,.

4. h induces an isomorphism from P (L1) to Py (L2).

B. y is a limit ordinal: 57 is y-equivalent to 5 iff they’re S-equivalent for every § < y.

C.y = B + 1: 5 is y-equivalent to 3, if for every € < A", € {1, 2} and a sequence
5; of length € of elements of ;/Eyj, there exists a sequence 55_; of length € of elements of
131/ Ey, such that 515} and 5,5} are S-equivalent.

Definition 3.7 Let 8 be a limit ordinal, 7y, g is the collection of functions f such that there
is a sequence (til, Eil 11 <1 <2,i <i(x)) satisfying the following conditions:

A, i(x) < AT
B. Forl = 1,2, (tl.l 1 i < i(x)) is a sequence of elements of Ly, \ My such that for every
i< j<i(x), tl.l and tﬁ. are not El -equivalent.

. 5 is a sequence of length ¢ (i) < A of elements of til/E;;l.

C

D. E? and 512 are 8-equivalent.

E. f is an isomorphism from m | L; to m | L, where L; = U,-<,<(*)Ran(§f) U Mmpn
(l=12).

F. Foreveryi < i(x), f maps Eil onto Ef

G. f is the identity on M.

Claim 3.8 Let m € M be wide and suppose that:

A . m <m

B. Foreveryt € Lim\ Lm,, { < AT and a sequence 5 of length ¢ of elements of t | E\,, there
is a sequence (t;,5; : i < A7) such that:
1. t; € Lm; \ Mm,.
2. Ifi < j <At thent;/Ep #1t;/Ep, .
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3. §; is a sequence of length ¢ of elements oft,-/EI/l/.ll
4. (t;,5) is 1—equivalent to (t, 5) in m.

Then Py, < P

Proof We shall freely use the results from Section 4 (of course, it should be noted that none
of the relevant results in Section 4 relies on the current claim). Specifically, we shall use the
fact that a function f € Fiy g induces an isomorphism f from Py, (L) to Pm(L») for L and
L, as in definition 3.7 (see Claim 4.3). Now, note that if f € Fyy g forO < Band L C Ly
such that |L| < A, then by the definition of 1—equivalence, f can be extended to a function
g € Fm,o such that L € Dom(g). Hence g is an isomorphism with domain Py (L; U L)
such that f C 2. O

Claim 1: If 0 < B then f preserves compatibility and incompatibility.

Proof Assume that p, g € Dom(f) and r is a common upper bound in Pp,. If r € Dom(f)

then since f is order preserving, then f (p) and f (g) have a common upper bound. If
r ¢ Dom( f ), then use the definition of Fiy, g to extend f to a function g such that g(r) is
defined (and g € Fm,0), and repeat the previous argument. The proof in the other direction
repeats the same arguments for £~ O

Claim 2: Suppose thati (*) < A1, p; € Py, (i < i(x)) and p € Py, then there is p* € Ppy,
such that:

l. Pm = pi < piff Pm = pi < p*.
2. For every i < i(x), p and p; are incompatible in Py, iff p* and p; are incompatible in
Pm.

Proof Note that if p € Py then p € Pp, iff fsupp(p) € Lm,, therefore we need to
find p* € P, satisfying the requirements of the claim such that fsupp(p*) € Lpy,. Let
Ly € Ly, be a set containing (U; <;(x) fsupp(pi)) U M and closed under weak memory,
such that |L; \ Mp| < A (such L exists, recalling that i (*) < AT and |w,| < A), then
{pi i <i(x)} S Py(L1).Forevery p; that is compatible with p in P, let g; be a common
upper bound. As before, there is L, C L, containing L1 U (U fsupp(q;)) U fsupp(p) and
closed under weak memory such that |Lo\Mp| < X and Py (L7) contains p and all of the
qi. We shall prove that it’s enough to show that there is f € 1 such that Ly C Dom(f)

Ran(f) € Lm, and f is the identity on Lj. For such f define p* := f(p) Now f is the
identity on {p; : i < z(*)} and f(p) € Pm,. By a previous cla1m f preserves order and
incompatibility, hence p* is as required. It remains to find f as above. WLOG LoNLm, € L.

Let (z; : j < j(x)) be a sequence of representatives of pairwise E,,-inequivalent members
of Lm\Mm such thatevery t € L\ L is E},-equivalent to some ¢;. For every such ¢;, let §;
be the sequence of members of t;/ Ey;, in Ly \ L1. By the assumption, for every pair (5;, 1;) as
above there exist A" pairs ((5 Jistji) i< A1) which are 1—equivalent as in the assumption
of the above claim. By induction on j < j(x) < AT choose the pair (55,i(j)» tj,i(j)) such that
t.,-,,-(j)/E;;“ are with no repetitions (this is possible as j(*) < A1). Now define f € Fn,; as
the function extending id | L witnessing the equivalence of the pairs we chose. Obviously,
f is as required. O

Claim 3: Py, < Pp.

Remark We shall use Section 4 in the following proof.
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Proof We shall prove by induction on y that Py, (Lml y) < IP’m(Lﬂffy). For y large enough
we'll get Py, < Py O

First case: y = 0.
Denote E = E|;, | L

Now the claim follows by the fact that Pm(L y) (and s1m11arly ]P’ml(Lm1 J,)) can be

dp dp dp

. E is an equlvalence relation and E [ Ly, , = Ep, [ Lm,.p-

represented as a product with < A support of {P(¢/E) : t € Lm,y}.
Second case: y = 8 + 1.
Denote Mg := {t € Mm : dp},(t) = B}, then Mg’s members are pairwise incomparable.

Claim: P, (Ly! ;U Mp) < Pm(Ly 5 U Mp).

my,f

Proof We shall prove the claim by a series of subclaims. O

Subclaim: Given p, g € Py, (Lm pY Mpg), P, (L
Pum(Li s UMg) = p < q.

mlﬂUMﬂH:pfqifandonlyif

Proof Notethat L dp pY Mg and L m,pY Mg are initial segments of Ly, and Ly, respectively.
Note also that 1fn e MandL; C L, C Ln, then Py;7, <Pnir,,andif L C Ly is an initial

segment then P, (L) = Py, . Obviously, L 1 ) and Ldp m, g Are initial segments of Ly, and Ly,
respectively. Now the clalm follows by the definition of the forcing’s partial order (definition
1.8) and the induction hypothesis. O

Subclaim: Given p1, p2 € Py, (L‘;ffl’/3 UMpg), p1 and p> are compatible in Py, (Ldmpl,ﬂ UMg
if and only if theey’re compatible in ]P’m(Lif_ g Y Mp).

Proof By the previous subclaim, if p; and p; are compatible in Py, (L g Y Mpg) then
they’re compatible in Py, (L, dp mp Y Mg). Let us now prove the other direction. Suppose that

pE Pm(Ldpﬂ U Mg) is a common upper bound of p; and p; in Py (L pﬁ U Mpg). As in the
proof of claim 2 above, find f € F 1 such that fsupp(p) U fsupp(p1) U fsupp(p2) <

Dom(f), f I (fsupp(p1)U fsupp(pr)UMpg) is the identity and Ran(f) C L, . Note that
ifr € Dom(f)NLy s then £(1) € Lyl ;. Since f((Dom(f)NLyl 5)UMg) € Ly ;UMp. it
follows that f (p) € P, (Lml ﬂUMﬂ),and as before, it’s a common upper bound as required.

Claim: P, (L ;U Mp) < Pr(Lil 5 U Mp).

mj, B

Proof Letl C Pml (Ldp U M) be a maximal antichain and suppose towards contradiction

that p € Pm(L m.p U Mﬁ) contradicts in Py (L, dp m, 8 U Mp) all elements of 1. As before,
choose f € Fm,1 which is the identity on M,g and on fsupp(q) for every g € I such that

Ran(f) € L, (hence f(Dom(f)N L p) < Lm] p)- Now f(p) € Pm, (L g Y Mp)
and f is order preserving, hence f(p) contradlcts all members of I in Py, (Lml’ P U Mg),
contradicting our assumption Therefore I is a maximal antichain in Py, (Lif P U Mpg) and
Pm, (L ﬂ) < IF’m(L m.p Y Mpg). ]
We shall now continue with the proof of the induction.

Denote L, = L,d,fy\(Ldp mp U Mp) and denote by € the collection of pairs (s1, 52) such
that sy, sp € Lﬁfy\(Lifﬁ U Mg) and s1/EY = s2/ER,, so € is an equivalence relation. Note
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also that if s and s, are not £-equivalent, then they’re incomparable. Now observe that the
following are true:

1. Suppose thats € Ly, t € Lyandt < s. If ¢t ¢ Lm p- then there is r € Mg such that
r < t. Therefore, eithert € Mg ort € L, and t&s, hence Ly <5 S Lnfﬁ UMgU(s/E).
2. Similarly, if s € Ly N L, , then L, <5 L7 my.p UM U (s/E).

Let {Xc : € < €e(x)} be the collection of £-equivalence classes and let U; = {€ : X C
d d
L yh Z =Ly gU{Xe:€ g Uy UMg, Y = Ly/ 5 U {Xeecr,} U Mp.
It’s easy to see that:

1. LﬁﬁyZU{xezeeul}ULﬁ’

1.8
ZmLm1 y = Lol .U Mp.
ZULY =L, U M.

Zny = LifﬁUMﬁ.

ZUy =1L,

U Mg.

AR SR

By observation (1) (the first one), ¥ and Z are initial segments of Ly, and if s € Z\Y and
t € Y\Z, then t and s are incomparable. Note also that P, (Y U Z) = Py, (Lfl,fy). Since Y is
an initial segment, Py (V) <Pp(Y U Z). Let Y| = Lﬁ{’] yUMg, Yr = Ldpﬁ UMg, obviously
Y, and Y7 U Y; are initial segments of L. Let Yo = Y1 N Y>, then Py, (Y0) = P, (Lml ﬁ
Mg) < Pm(me,ﬂ U Mg) = Pn(Y2). Since Py, (Yo) = P (Yo), we get Py, (Y0) < P (12).
Note also that Y; \ Yy is disjoint to My, Yo is an initial segment of Y1 and if r € Y|\ My, then
(I/Ellx/l) N Lm,<.v c Yl'

Finally, the desired conclusion will be derived from the following two claims:

Claim 3 (1) Suppose that Yy, Y», Y3 C Ly, and Yo = Y| N 1>, then Py (Y1) < Py (Y3) if
the following conditions hold:

Y> C Y3 are initial segments of Ly,.

Y1 € Y, and Yy is an initial segment of Y.
Pm (Y0) < P (Y2).

Yi\YoN My =0.

Ift € Y\\Mm then t/E], N\ Ly, <t C Y.

Nk L=

Claim 3 (2): Py, (L1) = Pm, (L1) < Py, if the following conditions hold:

m; <mj.

Lo S L CLm,.

Lo is an initial segment of L.

Pm, (Lo) = Pm, (Lo).

Pm, (Lo) <P, forl =1,2.

ift € Li\Lothent ¢ Mm, and Ly, <; N (t/Em;) = Lmy,<: N (t/Em) € L.

A

By Claim 3(2), with (mj, m, Yy, Y1) standing for (m;, my, Lo, L1) in the claim, we get
Pm, (Y1) = Pm (Y1) < Pp. By claim 3(1) it follows that IE”m(Lml y) =Pm(Y) <Pp(Y1 U
Y2) = Pn¥) < Pn(Y UZ) = Py (Lm y)- Together we get IF’m](Lm] y) = Pm (Y1) =

m(Yl) < Pm(Lm,y)~
Proof of claim 3 (1): We shall prove by induction on y that if (Yy, Y1, Y2, ¥3) are as in
the claim’s assumptions and dp(Y1) < y then:
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L. Pm(Y1) < Pm(Y¥3).

2. If A) then B) where:
A) 1. p3 € P(Y3).

2. po € Pm(Yp).

3. If po < qo € Pm(Yp) then pp = p3 [ Y> and go are compatible.
4. pr=poU(ps | Y1\ Yo)).

B) If p; < q1 € Pm(Y1) then g1 and p3 are compatible in P, (Y3).

Suppose we arrived at stage y:

For part 2 of the induction claim: By assumption 5 and the definition of the conditions in the
iteration, fsupp(p3 | (Y1 \Yo)) € Y1, hence p; € P (Y7). Suppose towards contradiction
that A) does not hold for some p; < g1 € P (Y1), then there are s € Dom(q1) N Dom(p3)
and p;_ € Pm(Lm,<s) such that p3 | L <5, q1 | Lm,<s < P;_ and P;_ ' Lm,<s IF “q1(s)
and p3(s) are incompatible”. Since s € Dom(q;) € Y; and Y> is an initial segment, then
necessarily s ¢ Yo (otherwise we get a contradiction to assumption A)(3)). Pm = p1 < g1,
hence g1 [ Lm,<s = p1(s) < q1(s). As g1 | Lm,<s < p3, it follows that p; | Lm, s IF
p1(s) < qi1(s). Now s € Y1\Yo, hence pi(s) = p3(s), hence p;r [ Lm,<s IF p3(s) < qi(s),
contradicting the choice of [)3+ . This proves part 2.

For part 1 of the induction claim: Obviously, Py (Y1) € Pp(Y3) and P (Y1) E p < ¢
iff P (Y3) = p < gq. Suppose now that g1, g2 € P (Y1) and p3 € Py (Y¥3) is a common
upper bound, we shall prove the existence of a common upper bound in P, (Yy). Since >
is an initial segment, it follows that fsupp(ps | Y2) C Y», hence p3 | Y2 € Py (Y2). Since
Pm(Yo) < Pm(Y2), it follows that there exists pg € Pp(Yp) such that if pg < g € m(Yp),
then ¢ and p3 [ Y» are compatible. Let p1 := po U (p3 | Y1\Y0). As in the proof of part (2),
p1 € Pn(Y)).If p1 < p’1 € Pm (Y1), then by part (2) of the induction claim, p’1 is compatible
with p3. We shall prove that p; is a common upper bound of g; and g>. As we may replace pg
by po < p(’) € P (Yp), we may assume WLOG that Dom(q;) NYy € Dom(pg) S Dom(p1)
(I =1,2). Also Dom(q;)\Yo € Dom(p3)\Yp. As Y is an initial segment, it follows from
our assumptions that P, (Yo) < P (Y2) < P Since pg is compatible with p3 | Yp in Py,
they’re compatible in P, (Yp), hence there is a common upper bound for pg, g1 | Yo and
g2 | Yo. Therefore WLOG ¢q; | Yo < po (I = 1,2). Assume towards contradiction that
q1 < pi1 doesn’t hold, then there is s € Dom(q;) such that ¢; [ Lm,<s < p1 [ Lm,<s but
P1 | Lm,<s ¥ qi(s) < p1(s). If s € Yo, then as Yy is an initial segment of Y7, it follows that
P0 | Lm,<s = P1 | Lm,<s and po(s) = p1(s), contradicting the fact that g; < pg. Therefore
s € Y1\Yp. Let Yé = Yo, Yll =YoU(Y1NLm,<s), Yz/ = Y, and Y?: = Y3,then (Y(;, Yll, Yz/, Yé)
satisfy the assumptions of Claim 3 (1) and dpm(Yl’) = dpm(s) < y. By the induction
hypothesis, IP’m(Yl’)<IP’m(Y3’).Ass € Y1\Yo (and by the assumption, s ¢ Mp,), it follows from
the assumption that (s /Em)NLm,<s € Y 1’ . Therefore by the definition of the conditions in the
iteration, fsupp(p1 | {s}), fsupp(q; I {s}) € Y|. Therefore p;(s) and g;(s) are Pp (Y)-
names. Recall that p; [ Lm,<s ¥ q1(s) < p1(s), Lm,<s C Y3 = Y3’ are initial segments
and Py (Y{) < P (Y3). Therefore Py (Y] N Ly, <5) < Pm(Y§ N L <) and fsupp(pr |
Lm,<s) € Y1 N Ly, <. Therefore py | (Y{ N Lm, <) %Pm(Y{ﬂLm.q) qi1(s) < pi(s), hence
there exists p1 | (Y{ N Lm,<s) < p{ € Pm(Y] N Lm <) such that p" IFp, vin, )
—qi(s) < pi(s), hence pfr Il—]pm(yémm“) —qi(s) < pi(s). By part (2) of the induction
hypothesis with | = dpm(s) as y and (p; [ (Yl/ N Lm,<s), pfr, p3 | Lm, <s) standing for
(p1, 41, p3) there, pfr is compatible with p3 | Ly, <5 in Py (Lm,<s). Let pgr be a common
upper bound. As g; < p3, p; Il-pm(yl/mmyq) qi(s) < p3(s) = pi(s) (recalling that s ¢ Yp).

As pf B (V{0 L, ) 7491(8) = P1(s), we get Py Py (YL, ) 741(5) = p1(s). Together
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we got a contradiction, hence p is the desired common upper bound and P, (Y1) ;¢ P (Y3).
In order to show that P, (Y1) < P (Y3), note that for every p3 € Py (¥3) we can repeat the
argument in the beginning of the proof and get pg € Py (Yo) and p; € Py (Y1) that satisfy
the requirements in part (2) of the induction. Hence, part (2) holds for (pg, p1, p3) hence
Pm (Y1) < Pm(Y3).

Proof of claim 3 (2): For /[ = 1, 2 define the sequence L = (Ly; @i < 4) as follows:
Lio = Lo, Li1 = Ly, L;3 = Lm, and L; will be defined as the set of s € Ly, such
that s < t for some t € L. It’s easy to see that (my, L) satisfies the assumptions of
Claim 3 (1), therefore Py, (L1) = Pm;(L,1) < Pm;(L;3) = P, 50 Pm,(L1) < Pp,, as
required. We shall now prove the remaining part of the claim. Let (s4 : @ < «(x)) be
an enumeration of the elements of L \ Lo such that if s, < sg then @ < B. For every
a < a(x) define Loy = Lo U {sg : B < a}. We shall prove by induction on o < « () that
Pm, (Lo,¢) = Pm,(Lo,a). For = a(x) we’ll have Py, (L1) = Pm, (L) as required.

First case (¢« = 0): In this case Lo = Lo o and the claim follows from assumption (4).

Second case (« is a limit ordinal): Obviously P, (Lo,¢) = Pm,(Lo,«) as sets. By the
definition of the partial order and the induction hypothesis, it follows that Py, (Lo,o) =
Pm, (Lo,o) as partial orders.

Third case (¢ = B + 1): Obiously Py, (Lo,«) = Pm,(Lo,e) as sets. Suppose that
Pm,(Low) = p < q.If s5 ¢ Dom(q), then p,q € Py, (Lo,g) and the claim follows
from the induction hypothesis. If sg € Dom(p) N Dom(q), then by the definition of the
iteration, P, (Log) = p [ Lo,g <q | Logandg | Log H_Pml(LO.ﬂ) p(sp) < q(sp). Now
note that fsupp(p [ {sg}), fsupp(q I {sg}) € Lo,g, hence p(sp) and g (sg) are Pm, (Lo, p)-
names. Inaddition, p [ Lo,g,q | Lo,g € Pm, (Lo,g) = Pm, (Lo, ), therefore by the induction
hypothesis Py, (Lo,g) = p | Lo,g<q ILos and g I Lo,g H_sz(LO./j) p(sg) < q(sg). There-
fore Py, (Lo,o) = p < q. The other direction is proved similarly. This concludes the proof
of the induction and claim 3 (2).

We shall now return to the original induction proof.

Third case: y is a limit ordinal.

By claim 2, Py (Lm;) < Pm. Apply that claim to (m; | Lﬁ,plyy, m | Lﬁﬁy) instead of
(my, m) and get P (L&, ) < Pm(L& ). Note that Pr, (Lt ) = Pr(L% ) as sets, and
the definition of the order depends only on Py, (L‘Ifﬂp1 ) for B < y, therefore by the induction
hypothesis P, (Ler, ) = Pm(Leb ). Therefore Pr, (Lt ) < Pm(LaL.). D

Definition 3.9 Letm € M<;, and M C My, such that, as always, wt0 C M foreveryt € M.
Define n = m(M) € Mq;, as follows:

I. qn = qm-
2. My =M.
3. Eh={(s,0):s £t N{s, 1} L M}.
4. Up = Um.

It’s easy to check that n satisfies all of the requirements in Definition 2.2 and is equivalent
to m, therefore Py, = Py.

Claim3.10 Lerm € M<;, and M € My, such that, as always, w? C M foreveryt € M.

A. Ifn := m(M) < nyp then there exists m| € M such that m < m; and m is equivalent
fony.
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B. Ifm € M, then m(M) =n € M,,.
Proof A) Define m; € M, as follows:

1. qm :=Qny-
2. Mp, := Mn.
3. Epy = EQU{(s, 1) i sEq t Afs, 1} C (L, \ Ln) U M}.

We shall show that m; € M. Ey, is an equivalence relation on Lm, \Mm,: Suppose that
s,t,r € Ly, \Mm, such that sEl/nl tA tEl’mr. IfsE[t NtE}r or sEl’ll tA tE;,] ra{s,t,r} C
(Ln,\Ln), then sE;nlr, therefore we may assume WLOG that sE[,t A tE,’llr At r} C
Ln,\Ln, but this is impossible as sEj;t hence t € Ly = Ly. Therefore E,’nl is a transi-
tive relation on Ly, \ Mm, and obviously it’s an equivalence relation. Suppose now that
§,t € Ly, \Mp, are not El’m—equivalent. If s, € L, \Lnp then s,  are not El’ll -equivalent,
therefore s <y, tiff there existsr € My, suchthats <p, r <y, t. Therefore s <p, tiff there
exists r € M, suchthats <m, ¥ <m, . Suppose thats, 7 € L\ Mm,, then they’re not E},,-
equivalent, therefore syt iff there is r € My, such thats <m r <m . Therefore sy, ¢ iff there
exists 7 € Mmp, between them. Finally, suppose WLOG that s € Ly, \Ln At € Ly\Mm,
and s < t. If s and ¢ are not Ey, -equivalent, then as before, s <, ¢ iff there is r € My,
between them. If sEy, #,thens € t/Ey, = t/Ey, hences € Ly, contradicting the choice of 5.
This proves that m; satisfies the requirement in definition 2.2(A)(D)(2). It is easy to verify
that m satisfies the rest of the requirements in definition 2.2. For example, 2.2(A)(6) : Let
t € Lm\Mm,.ift € Ln = Lm thenug, , =uq , = ug,, =g, S1/Ey S 1/Ep,.
?lnl,t C t/Ey, hence similarly ”gml,t Ct/Ep,-

Suppose that 1 € Ly, # € vm, ; and u € Mm,, thenu € vp, , and u ¢ Mpy,, hence there
iss € Ly, \M such that u C s/El’.ll . There are now two possibilities:

Suppose that ¢ € Ly, \ Lm, then ugml,, =u

1. t ¢ My, In this case, for every t € Ly, \ Mm,, u C ugﬂl’, - t/E,’m.

2. t € Mm,.Suppose thats ¢ Ly.If thereisr € u suchthatr € Ly\My,thens e r/E;] =
r/E}, hence s € Ly, which is a contradiction. Therefore u U {s} € (L, \ Ln) UM
hence u C s/EI/m. Suppose that s € Ly, then u C s/E;11 = s/E, C Ly, therefore
U € Un; = Um,, hence there isr € Ly \Mm suchthatu C r/E,,. Therefore u C r/EI/m.
The other requirements of definition 2.2 are easy to verify, therefore m; € M and

obviously m < m; and m; is equivalent to n;.

B) Suppose that n < n; < njy and let m < my, m, be as in part A) for n; and m;. We shall
prove thatm < my < my. First note that qm; = qn; < qn, = qm, and My, = My = M, .
Lett € Ly, \Mm, and suppose that s € t/E,’n] . By the definition of my, if t € Ly, then s €
t/Ep Ct/Ep, It € Lm \LmthensEy t,hencesEy t anditfollows thats Ey, r. Therefore
t/Em, S t/Ep,. Supposenow thats € t/Ey, Ift € Lmthens € t/Eyp, =1t/Ey Ct/Ep, .
If t € Ly, \Lm then sEi’lzt, hence sE;]t and sEl/nl t. Therefore t/E]’nz - t/El’m. Similarly,
it’s easy to verify the rest of the requirements for “m; < m’z’ , therefore m < m; < mjy. Now
m € M., therefore Py, < Pn,. Since my is equivalent ton; (I = 1, 2), we get Py, < Py,,
hence n € M, as required. O

Claim 3.11 Let m € Mx,,, then there exists n € M, such that m < n and |Ly| < A5.

Proof Use claim 2.19 to pick n € M, for x large enough, such that n € M, is very wide
and full and m < n. We shall try to choose my, € M by induction on o < A; such that the
following conditions hold:

1. my =m.
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2. mg: B < a)fn) is <p-increasing and continuous.
3. |Lm,| < X2.
4. If o = B + 1 then one of the following conditions holds:
(A) myg is not wide and m,, is wide.
(B) Thereist; € Lp \ My and a sequence 5; of elements of 71/ E}, such that for every

) € Lmg \ Mm and a sequence 5, of elements of 1,/EL, 5 (t2, 52) is not 1-equivalent to

(t1, 51) in n, but there is a 1-equivalent pair (¢, 52) in L, . O

We shall later prove that since 3, (A1) < A2, there exists o < ){ for which we won’t be able
to choose an appropriate my,. If § is a limit ordinal, then we can we can definems = U, .sm,,,
hence necessarily o has the form o = B + 1. We shall prove that mg is as required. First we
shall prove that the pair (mg, n) satisfies the assumptions of Claim 3.8 where (mg, n) here
stands for (m;, m) in 3.8. Obviously, mg < n. Suppose that# € Ln\Lm, and s is a sequence
of < AT members oft/E;l’. Let my, € M be wide such thatmg <my <n, [Ly,| < A2 and
§, t are from Ly, . As m, does not satisfy the induction’s requirements, necessarily there are
1) € Lmy\Mm and a sequence 53 of elements of 1,/ E}, 5 that are 1-equivalent to (¢1, §1) in n.

If mg is wide, then there exists sequence (ry : @ < A1) of elements of Lmy \ Mm such that
ra/Eglﬁ # r},/E;,’lﬁ for every @ < y, and mg [ (r4/Em,) is isomorphic to mg [ (12/Em,)
for every & < AT. For every @ < A, denote that isomorphism by f, and denote by 5, the
image of 5, under f,. Now obviously the sequence ((ry, 5,) : @ < A7) is as required. If mg
is not wide, then since m,, is wide, we get a contradiction to the fact the induction terminated
at mg. Therefore (mg, n) satisfies the assumptions of Claim 3.8.

Now suppose that mg < n; < ny. First assume that np < n and |Ly,| < A2. Suppose
that 7 € Ly\Ln, and 5 is a sequence of length ¢ < A7 of elements of 7/EJ. Since (mg, n)
satisfies the assumptions of Claim 3.8, there are #; € Lmg\Mmy; € Ln,\Mp, and sequences
5; from 4; /E}, = t,-/E;l’2 (for i < A™) as in the assumptions of Claim 3.8. By claim 3.8,
Ppn, < Py. Similarly, Py, < Py, therefore Py, < Pp,.

Why can we assume WLOG that |Ly,| < 12?

Let x be a cardinal large enough such that mg,n;,m,n € H(x), and let N be an
elementary submodel of (H (x), €) such that:

mg,n;,np,n,meN.
. [NI* © N.
MINT = 22
.M +1CN.

W=

Let L' = Lp, NN,ny =mny [ L'andn] =ny [ (L' N Ly,). Now we may work in N and
replace (ny, ny) by (nj, n’z), as |Ln£| < A, we get the desired result.

Why can we assume WLOG that n, < n?

As n is very wide and full, for every ¢ € Ly, \ My, there exist |L,| members #; € Ly\Mn
such that n | (t;/Ey) is isomorphic to ny [ (¢/En,) over My (and remember that |Ly,| <
|Lnl). Therefore nj is isomorphic to an n3 that satisfies n3 < n, so WLOG n, < n.

It remains to show that there exists ¢ < ){ such that we can’t choose m,, as required by
the induction. Suppose towards contradiction that for every o < ){ there is m,, as required,
then necessarily there exist )\; ordinals @ < )\;r such that m,, satisfies 4(B). Therefore, there
exist ){ distinct 1-equivalence classes in n. We shall prove that the number of 1-equivalence
classes in n is at most 33 (A1), and since J3(A1) < Ax < AT, we’ll get a contradiction.

Let m € M. First note that the number of distinct O-equivalence classes in m is at most
(M), as there exist at most J; (A1) isomorphism types of m | L for L as in the definition
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of 0-equivalence, so by adding the number of possible orderings of Py (L), we get the
desired bound. Now given s, 5> as in the definition of 1-equivalence, denote by C1, C, the
0-equivalence classes of sequences of the form §1§{ , Ezfﬁ, respectively, for §{, 5 as in the
definition of 1-equivalence. 51 is 1-equivalent to s, iff they’re 0-equivalent and C; = Cs.
Given s as in the definition of 1-equivalence, if C is the collection of 0-equivalence classes of
sequences of the form 55 as in the definition of 1-equivalence, then C is contained in the set
of 0-equivalence classes over m, which has at most 3, (A1) members. Therefore, there are at
most J3(A) different choices for C, hence there are at most J3 (A1) distinct 1-equivalence
classes over m. O

Concluding the proof of the main claim

Conclusion 3.12 (A) Suppose that

0.m eM, (=1,2)and

1. M; € My, (I =1, 2) (and as always we assume that M; is closed under weak memory).
2. my [ M is isomorphic to my | M>.

3. |Lm1 |v |Lm2| <.

Then there exists an isomorphism from P, [M1] onto Pm,[M>].
(B) Suppose thatm € M<;,, M € Mm = Lyyandn=m | M, then Py < Pg.

Proof (A) Definen; := m;(M;) forl = 1,2.Byclaim3.10,n;,my € Mge.np [ My, =my |
M is isomorphic tony [ My, = my [ M>, hence by claim 2.20, Py, [My, ] is isomorphic
to Py, [Mn, ]. Therefore, Py, [M1] is isomorphic to P, [M>].

(B) Letm; € M,.suchthatm < mj and|Ly, | < A2.Letn; := m; (M), then by our previous
claims,n; € M,,. Obviously, n < ny, therefore Py" = Py, [M] = Py, [M]1<Pm,[Lm] =
e O

Conclusion 3.13 In Conclusion 2.25 we can add: Suppose that U, Uy C 8, are closed under
weak memory, (a; : 1 < otp(Uy)) and (B; : j < otp(U)) are increasing enumerations
of Uy and Uy, respectively, and h : Uy — Uy is an isomorphism of m | Uy onto m | Uy,
then there exists a unique generic set G” C P [Us] such that no, = ng,[G"] for every

i <otp(Uy).

Proof In the construction that appears in 2.24 we can take m < n € M, suchthat |Ly| < A;.
By 2.25(G + H) and 3.12(B), it follows that there exists a generic set G” C 5 [U>] such
that 1o, = 1g,[G”"] for every i < otp(Uy). O

4 The properties of the projection and an addition to the proof of Claim
3.8

In this section we shall rely on the results of sections 0-2, with the exception of Conclusion
2.26. The results of this section will be used in the proof of Claim 3.8.

Claim4.1 Let p € Py, and denote S, = {m(p) :there exists t € fsupp(p) such that
L =t/En}, thenlrp, “p € G iff S, € G”.

Proof If fsupp(p) S Mm, then for every t € fsupp(p), 7/, (p) = p, hence S, = {p}
and there is nothing to prove. Therefore assume that fsupp(p) Q M. By the properties of
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the projection, for every ¢t € fsupp(p), 71/E,(p) < p, therefore IFp,, “p € G — §, C
G”. In the other direction, suppose that g IFp,, “S, € G”, it’s enough to show that ¢ is

compatible with p. Assume towards contradiction that p and ¢ are incompatible. WLOG
Dom(p) € Dom(q). By the assumption, ¢ IFp,, “//g, (p) € (N}” for every t € fsupp(p)
and we may assume that tr(p(s)) C tr(g(s)) for every s € Dom(p). Since p contradicts ¢,
there are s € Dom(p) N Dom(q) and g | Lm,<s < g1 € Pm(Lm,<s) such that g1 IF “p(s)
contradicts g (s)”. By the definition of forcing templates, g; I+ “tr(g(s)) contradicts p(s)”.
Therefore, by the definition of forcing templates and by the definition of the iteration, there
is t < ¢(p(s)) such that gy I “tr(g(s)) contradicts B ), (..., N (ag), .. ')/;/ewp(s),,' By the

definition of the iteration (Definition 2.2), there is u € vy such that {t; : ¢ € W)} € u. By
the same definition, there is t € fsupp(p) such that {t; : { € Wp(y),.} € t/Em. Therefore
q1 -t/ Em (p) ¢ G ortr(q(s)) € ns”. Now define g2 = g1 U (¢ | (Lm\Lm,<s))- ¢ < g2,

hence ¢2 I+ “m;/E,, (p) € g”. On the other hand, ¢(s) = g2(s), hence g3 I tr(g(s)) < n;.

q1 < g2, therefore, every generic set G that contains ¢, contains g; and also tr(g(s))
ns[G] and 7, /g, (p) € G, contradicting our observation about g;. Therefore, p and g are

compatible. O

Claim 4.2 Let m € M be wide and suppose that

i(x) < A

ti € Lym\Mm for everyi < i(x).

1; is not EJ -equivalent to t; for every i < j < i(%).

Xi =ti/En.

Vi € Pr[Mml.

Vi € PplXi]fori < i(x).

IfPm[Mm] E ¥ < ¢, then ¢ is compatible with ; in Py[Lm] for everyi < i(x).

NNk LD =

then there exists a common upper bound for {; : i < i(%)} U {1} in Py[Lm].

Proof 1In this proof we shall use the notion of x-projection that appears in the next section,
as well as the results established independently there (it should be emphasized that this
is not the same notion as the previously mentioned projection). Let p € Py, such that
p Fp, “w*[g] = true”. Since m is wide, there is an automorphism f of m (over Mp,)
that maps the members of fsupp(p) \ M to a set that is disjoint to U; ;) X; (recall that
| fsupp(p)| < AT). Therefore, we may assume WLOG that fsupp(p)NX; € My, forevery
i < i(x). By induction oni < i(x) we’ll choose conditions p; such that:

Di € P
(pj : j <) isincreasing.
Po=D.

Ifi = j + 1then p; IFp, “¥;[G] = true”.

Sfsupp(p;) is disjoint to U{X ; \ My, 11 < j <i(%)}.

pi is chosen by the winning strategy st that is guaranteed by the (< A)-strategic
completeness of Pp,.

A

If we succeed to construct the above sequence, then for every i < i (), pi) IFp, “¥ilG] =

true”. In addition, pj) IFp, “Y«[G] = true” (recalling that p < pj()), therefore,
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Pito FPm “YulGl = true A (Ni<ign¥ilG] = true)”. Therefore, Y A (Ai<in Vi) €
Pm[Lm] is the desired common upper bound.
We shall now carry the induction:

First stage (i = 0): Choose po = p (note that (5) holds by the assumption on fsupp(p)).

Second stage (i is a limit ordinal): Let p; be an upper bound to (p; : j < i) that is
chosen according to st. Since m is wide, as before we can find an automorphism f of m such
that f(fsupp(p;)\Mp) is disjoint to U{X j;\My, : i < j < i(x)} and f is the identity on
Uj<i fsupp(p;) (this is possible by (5) in the induction hypothesis). Let p; := f(plf). By
the definition of f , pi satisfies requirements 1-5, and as st is preserved by f , pi satsifies (6)
as well.

Third stage (i = j+1):Let¢; € Py[Mm]be the x-projection of p; to Py [ M ]. We shall
first prove that v, < ¢;. If it’s not true, then there exists ¢; < 6 € Pyp[Ly] contradicting
Vs Let r € Py such that r Ikp,, “0[G] = true”, then r IFp, “Y4[G] = false”. Since
r Ikp, “0[G] = true", it follows that ¢; < 6 < r, hence by the definition of ¢;, r is
compatible with p;. By the density of Py, in Pyy[L],  and p; have a common upper bound
P € Pn. po < pj < p,hence p IFp, “¥[G] = true”, which is a contradiction. Therefore,
Yy < ¢;, hence ¢; is compatible with ;. By the density of Py, they have a common upper
bound q} € P As before, since m is wide, we may assume WLOG that fsupp (q})\Mm is
disjoint to fsupp(p;j)\Mm and U{X ;s : j+1 < j' < i(x)}. By claim 4.4 (with (p;, q}, o)
here standing for (p, g, ¥) there), p; and q} are compatible in P,. Let p; be acommon upper
bound chosen by the strategy. By our choice, ¥; < p;, hence p; IFp,, “¥;[G] = true”. As

before, use thee fact that m is wide to assume WLOG that fsupp(p;)\Mm N X j» = @ for
every i < j' < i(x). As in the previous case, we conclude that p; is as required. O

Claim 4.3 Suppose that m € M is wide. Let f € F, g (see definition 3.7) and denote its
domain and range by L1 and Ly, respectively, then f induces an isomorphism from Py (L1)
onto Py (Ly).

Proof Obvivously, f is bijective. Now let p1,q1 € Pm(L1) and let py = f(p1).q2 =
f(q1) € Pn(L2). We shall prove that Py, = p1 < g1 iff Py = p2 < ¢2. Let (z‘i1 Tl < i(x))
be a sequence such that:

1. tl.1 € fsupp(q1)\Mn for every i.
2. til and t} are not EJj -equivalent for every i < j < i(%).
3. Every t € fsuppp(q1)\Mm is E,,-equivalent to some tl.l.
O

For every i < i(x), define tl.2 = f(til) and let f; = (til i < i(x) (I = 1,2). Assume
WLOG that fsupp(p1) < U{til/E;;l 10 < j(x)} U My for some j(x) < i(x). For every
i <i(x),letqr; = T B (g1) and let WT,,- € Pm[Mm] be the x-projection of gy ; to Py [Mp]
(in the sense of section 5). Let Y/f = Ai<ix ¥y ;. By the properties of the (x-)projection,
Vi < qui < qi forevery i <i(), therefore g; IFp,, “wl*[g] = true” and Y € Py[Lm].
For every i < i(x) define 1//1‘"? = wi"’i ANqli € IP’m[tl.] /Em]. When the above conditions
hold, we say that v and &f = (1//1“,1., 1//1*77, g1 @i < i(x)) analyze qp (or (g1, f1)). Now
similarly choose ¢} and (ﬁf = (¢>’f,i, @75, pri o1 < j(x)) thatanalyze (p1, (tl.1 1< j(%)).
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The function f naturAally induces a fAunction on IP’m[LA 11, which we stlall also denotg by f .
Now define: Y5 = (W), ¥, = FWi ). v3t = FWPD. 65 = F@D. 63 = F @] ).
¢35 = f(O1), p2i = [(P1.i)s g2, = f(qu,)

It’s easy to see that (Y, &3‘) analyze g and (¢5, (Z)i") analyze p;.
Claim Let A; (I = 1,2) be the claim P, = p; < ¢; and let B; (I = 1, 2) be the claim
“IF’m[tiZ/Em] = ¢ ApLi <Y Aquiforeveryi < i(x)”,thenfor/ e {1, 2}, A;is equivalent
to B;.

Proof Suppose that B; doesn’t hold for some i, then there exists 6 € Pm[tl.l /Em] such that
IP’m[tl.l/Em] E ¥/ Aq.i < 6 and 0 is incompatible with ¢ A p;; in ]P)m[zil/Em], hence
ONGApri ¢ Pm[tl.l/Em]. For every j define 1#;. as follows: If j = i define 1//} = 0.
Otherwise, define W} = Y/ Aqj. Now let ¢' € Py[My] be the s-projection of 6 to
Pm[Mm], soif ¢’ < ¢ € Py[Mp] then ¢ is compatible with 6. Note also that y* < ¢': If it
wasn’t true, then for some ¢’ < x € Pp[Mmp], x contradicts ¥/ By the choice of ¢, x is
compatible with 6 in Pp[Ly,]. Let x’ be a common upper bound, then wl* <0 < x/, hence
x is compatible with ¥, which is a contradiction. Therefore, ¥* < ¢'.

Forevery j # i, if ¢’ < ¢ € Pyy[Mp], then v < Y < ¢’ < ¢, hence ¢ is compatible
with g; ;. Since /] < ¢, ¢ is also compatible with ¥/ Agq; ;. By claim 4.2, there is a common
upper bound ‘11+ for ¢’ and all of the W}- By the density of Py,, we may assume that ql+ € Pp.
Asqj < ql+ for every j, it follows from from Claim 4.1 that ¢; < qf. Since 6 < qﬁ and 0
contradicts qbl* Api,i,necessarilly qﬁ' IFp,, “(qbl* /\pl,i)[g] = false”. By the properties of the

projection, p;; < p;, and as we saw before, ¢;" < p;, hence p; Ibp, (@] A p1.i)[G] = true.

Now if G C Py, is generic such that ‘11+ € G,then ¢; € G and p; ¢ G, therefore “p; < ¢q;”
doesn’t hold.

In the other direction, suppose that B; is true. Suppose towards contradiction that A; doesn’t
hold. By the assumption, there is ¢; < q[+ € Py contradicting p;. For ¢/ and &l* that analyze
qi we have Pn[Lm] = ¥ A qri < qi < q;" forevery i. By B, Pm[Lm] = & A pri < q;
for every i. By Claim 4.1, p; < qlJr , contradicting the choice of qlJr .

Therefore, A; (I = 1, 2) is equivalent to B; (I = 1, 2). Obviously, B; is equivalent to B>,
therefore, A1 is equivalent to A,. O

Claim4.4 Let p,q € Py, then p and q are compatible in Py, if there exists  such that the
following conditions hold (we shall denote this collection of statements by (1, 4 y ):

1. ¥ € Pu[Mmnl]

2. fsupp(p) N fsupp(q) < Mm, and for every t € fsupp(q)\Mm and s €
Fsupp(p)\Mm, 5/ Egy # 1/ Epy.

3. If ¥ < ¢ € P[Mn), then ¢ is compatible with p in Py[Lp].

4. g and  are compatible in Py L]

Proof We choose (py, g.n, ¥,) by induction on n < w such that the following conditions
hold:

If n is even then (J, 4, vy, holds.

If n is odd then U, p, v, holds.

(po> qo, ¥o) = (p,q, ¥).

Iftn =2m+1ands € Dom(prn) N My then s € Dom(qam+1) and tr(pam,(s)) S
tr (gsm+1(5)).

5. Ifn=2m+2ands € Dom(qam+1) N Mm thens € Dom(p2,+2) and tr(gam+1(s)) S
tr(pam+2(s)).

Rl ol
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6. If m < n then p,, < p, and g, < gy,.
[}

For n = 0 there is no probem. Suppose that n = 2m + 1 and (p2,,, g2m, ¥2:m) has been
chosen. Let uy,, = Dom(pay,) N My and for every s € uoy, let vy = tr(pa2,(s)) and denote
by ps.v, € P the condition NaeDom(vy) Ps,a,vs(a)- Obviously, Py[Lm] = DPsyvy = DP2m-
Let s € uy, and suppose towards contradiction that ps ,, < ¥, doesn’t hold, then v,
is compatible with —p; . . Let ¢ be a common upper bound in Py[Mp]. By the induction
hypothesis and Ol ,,, 45, y2» @ 18 compatible with p . Therefore, p;,, is compatible with
—Ps v, > contradicting the fact that Pm[Lm] = ps,u, < pom. Therefore, ps . < ¥op.

By the induction hypothesis and condition (4) of L1, 45,4, » there is a common upper
bound g5, for g2, and V3, and by the density of Py,, we may suppose that g}, € Pp.
For every s € uam, since ps,u, < Yam, it follows that v C tr(g},,) and s € Dom(q),,).
Let ¥, € Pm[Mm] be the x-projection of g, t0 Pu[Muy]. Soif ¥}, < ¢ € Pu[Mml,
then ¢ and qé . are compatible in Py[Ly]. Note also that 2, < wém: Otherwise, there
is Iﬁém < ¢ € Py[Mmn] contradicting v ,,. Let x € Py[Lm] be a common upper bound
for qém and ¢, so Y¥u,, < x, therefore ¢ is compatible with y»,,, which is a contradiction.
Therefore, Y2, < ¥ ,,, S0 Ps v, < V2 < ¥}, forevery s € uoy.

Since m is wide, we may assume WLOG that fsupp(q5,,) 0 fsupp(pam) S My and
similarly for the second part of condition (2). By the induction hypothesis and (., 45, ¥2m s
since Y, < V3, there is a common upper bound p), € Py for py,, and v5, . Since
fsupp(gh,) N fsuppp(pam) S Mm and mis wide, WLOG fsupp(ph,)N fsupp(g,,,) S
My, and similarly with the second part of condition (2). Now define p, = pj,, gu =
QQm’ Yn = Wém Obviously an,pn,ll/n holds, p2m < pam+1 and @am < qam41-Ilf' s €
Dom(pam) N M, then s € Dom(q;,,) = Dom(qy,) and tr(p2u(s)) = vy C tr(g3,,(s)) =
tr(qn(s)). This completes the induction step for odd stages. If n = 2m + 2, the proof is the
same, alternating the roles of the p’s and the ¢’s. Now choose p, and g, as the upper bounds
of (py : n < w) and (g, : n < w), repsectively, such that:

1. Dom(py) = Up<pDom(py).
2. Dom(gy) = Up<wDom(qy).
3. If s € Dom(py) then tr(p«(s)) = Up<ktr(pi(s)).
4. If s € Dom(qy) then tr(g+(s)) = Up<ktr(qk(s)).

Claim: py, g+« € Py, satisfy the following conditions:

1. Dom(ps) N Dom(qy) S Mp.
2. Dom(py) N My = Dom(q,) N Mp,.
3. Ifs € Dom(p)NMp then tr(p,(s)) = tr(g«(s)) (so ps and g, are strongly compatible).

Proof 1. Since (p, : n < w) and (g, : nw) are increasing, then so are (Dom(py) : n <
w) and (Dom(q,) : n < w). Since fsupp(pn) N fsupp(qn) S Mnp, it follows that
Dom(ps) N Dom(qx) € M.

2. Ift € Dom(py) S Mp, thent € Dom(p,) for some even n. By the inductive construc-
tion, t € Dom(qn+1) S Dom(qy), therefore Dom(py) N My S Dom(q«) N My, and
the other direction is proved similarly.

3. Suppose thats € Dom(ps) N M, then by the previous claim, s € Dom(p,) N\ Dom(qs).
Let n < w such that s € Dom(p,) N Dom(qy), then tr(ps(s)) = U,<ktr(pr(s))
and 1r(g«(s)) = U,<ktr(qk(s)). By conditions 4 + 5 of the induction, it follows that
tr(p«(s)) = tr(qs«(s)).

By the above claim, p, and g, are compatible in Pp,. As p = pg < px and g = qo < ¢,

it follows that p and g are compatible in Py, as well. O
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5 The existence of %-projections for P, [L]

Remark 1. The results of this section are used in the proofs of 4.2—4.4.

2. Note again that the notion of projection to be introduced in the next definition is not
the same as the one previously used (hence the distinction between “x-projection” and
“projection”).

Definition 5.1 Let ¢ € Py[Lm]. ¥ € Py[L] will be called the *-projection of ¢ to Pp[L]
if the following conditions hold:

1. fPn[L] = ¢ <0, then 6 and ¢ are compatible in Py[Ly].
2. If ¥* € Pp[L] satisfies (1), then P [L] = v < ¥*.

Claim5.2 Let L C Ly,. For every ¢ € Py[L] there exists v € Py[L] which is the *-
projection of ¢.

Proof Given V1, Y, € Pp[L], obviously they’re compatible in Pp,[ L] iff they’re compatible
in Pu[Lm]. Let A be the set of ¥ € Py[L] that contradict ¢ and let A be the set of
Y € Pp[L] such that ¥ contradicts all members of A. Let ¢ € Pp[L]. If ¥ is compatible
with some 1 € Ay, let ¥, be a common upper bound, so ¥, € Aj. If ¢ contradicts all
members of Ap, then ¥ € Aj, so Aj U Aj is dense in Py [L]. Note that if ; € A1 and
Yy € Aj, then | contradicts vrp. Let {t; : i < i(*)} be a maximal antichain of elements
of Ay. By AT — c.c., i(%) < AT. Define ¥ = =(Ai<i—V¥i) € Pm[L]. We shall prove
that v, is a x-projection as desired. Suppose that ¢, < 6 € Py[L] and suppose towards
contradiction that 6 is incompatible with ¢, then 6 € Aj. Let G C Py, be a generic set such
that 0[G] = true, then for some i, ¥;[G] = true, hence 1; and 6 are compatible. Now recall
that ¢; € Ay and 6 € Ay, so we got a contradiction. Therefore 1, satisfies the requirement
in (1).

Suppose now that x € Pp[L] satisfies part (1) in Definition 5.1. Suppose towards contra-
diction that ¥, < x does not hold, then for some y < xs, xsx contradicts V.. Since Aj U A;
is dense in Py [L], there is @ € A U A3 such that x,. < 6. Since x < 6, necessarily 6 € A».
Therefore, for some i < i(x), 6 is compatible with ;, hence this 1; is compatible with
Xx«- Recall that ¢, < i, hence x, and ¥, are compatible, contradicting the choice of .
Therefore, V¥, < x. O

Observation 5.3 If 1, V¥ € Pn[L] are x-projections of ¢ € Pm[Lm], then Pu[L] = ¥1 <
Yo NP2 S Y. o

Observation 5.4 If yy € Py[L] is the *-projection of ¢ € Pym[Lm], then ¢ < ¢. O
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