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Abstract
We consider (< λ)-support iterations of a version of (< λ)-strategically complete λ+-c.c.
definable forcing notions along partial orders. We show that such iterations can be corrected
to yield an analog of a result by Judah and Shelah for finite support iterations of Suslin ccc
forcing, namely that if (Pα, Qβ

∼
: α ≤ δ, β < δ) is a FS iteration of Suslin ccc forcing and

U ⊆ δ is sufficiently closed, then letting PU be the iteration along U , we have PU � Pδ .

Keywords Suslin forcing · Definable forcing · Iterated forcing · Partial memory · Corrected
iterations

Mathematics Subject Classification 03E40 · 03E47 · 03E35

0 Introduction

Our motivation is the following result by Judah and Shelah:

Theorem A [3] Let (Pα, Qβ
∼

: α ≤ δ, β < δ) be a finite support iteration of Suslin ccc

forcing notions (assume for simplicity that the definitions are without parameters). For a
given U ⊆ δ, let PU be the induced iteration along U, then PU � Pδ .

Recent years have witnessed a proliferation of results in generalized descriptive set theory
and set theory of the λ-reals, and so an adequate analog of the above-mentioned result for the
higher setting is naturally desirable. Such an analog was crucial for proving the consistency
of cov(meagreλ) < dλ in [7]. It is not clear that the straightforward analogous statement
holds in the λ-context, however, it turns out that the desirable result can be obtained by
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passing to an appropriate “correction” of the original iteration. This was obtained in [9] for
the specific forcing that was relevant for the result in [7]. Our main goal in this paper is to
extend the result for a large class of definable (< λ)-support iterations of λ+-c.c. forcing.
Namely, our mail result will be a more concrete form of the following:

Theorem (Informal) There is an operation (a “correction”) P �→ P
cr on (< λ)-support

iterations of (< λ)-strategically complete reasonably definable λ+-c.c. forcing notions along
well-founded partial orders, such thatPcr adds the samegenerics asP, and ifU is an adequate
subset of the set of indices for the iteration, then P

cr
U � P

cr .
Note that even for λ = ℵ0 we shall obtain consequences not covered by [3], as our result

includes also iterations with partial memory. Our definability requirements are also much
more general than [3], as instead of analytic definitions we only require that the definitions
are reasonably absolute (e.g., in the case of λ = ℵ0 and under sufficiently strong large
cardinal assumptions, our result covers iterations of forcings defined in L(R)). The complete
formulation of our main result can be found in Conclusions 2.26, 3.12 and 3.13. In order to
get a further taste of the main result, we shall illustrate here a less general (but somewhat
more formal than before) consequence:

Theorem B (A) implies (B) where:

A. Let λ be a cardinal satisfying λ = λ<λ and let q consist of the following:
a. An ordinal α(∗).
b. ū = (uα : α < α(∗)) where uα ⊆ α.
c. ϕ̄ = (ϕα : α < α(∗)) where each ϕα is a definition of a forcing notion Q = Qϕα with

a generic ηα∼
, whose members are of the form p = (tr(p), B(. . . , ηβ(ε,p)

∼
, . . .)ε<ζ(p)),

where tr(p) is a function from some v ∈ [λ]<λ to H(λ), ζ(p) ≤ λ, B is a λ-Borel
function from (2λ)ζ(p) to H(λ)λ, β(ε, p) ∈ uα and �Q “ηα∼

= ∪{tr(p) : p ∈ G∼}′′,
d. If p ≤Qϕα

q then tr(p) ⊆ tr(q).
e. If {pi : i < j} ⊆ Qϕα , tr(pi ) = η for all i < j , and j ≤ lg(η), then {pi : i < j} has a

common upper bound that is λ-Borel computable from {pi : i < j}.
f. The forcing notions Qϕα are (< λ)-strategically complete and satisfy a strengthening

of λ+-cc called “(λ, D)-cc” (to be defined later).
g. For each Qϕα , the trunks and the generic satisfy a few additional reasonable

requirements (to be specified in Definition 1.4).
h. The definitions ϕα and their relevant properties (e.g. compatibility of conditions, the

trunk of a condition being a specific η, etc) are absolute between models of the form
V P1 and V P2 where P1 � P2 are (< λ)-strategically complete and λ+-cc.

B. There is (Pcr
q , η̄

∼
∗) = (P, η̄

∼
∗) where:

a. P is (< λ)-strategically complete and λ+-cc.
b. η̄

∼
∗ = (η∗

α∼
: α < α(∗)) is a sequence of P-names of λ-reals.

c. For each α < α(∗), let V α := V [. . . , η∗
β

∼
, . . .]β∈uα , then η∗

α∼
is “somewhat generic” for

Q
V α

ϕα
in the sense that if I is an antichain in Q

V α

ϕα
that is absolutely maximal, then η∗

α∼
satisfies some p ∈ I .

d. If U ⊆ α(∗) and α ∈ U → uα ⊆ U, then q � U is naturally defined and (Pcr
q�U , η̄∗

∼
� U )

are as above for q � U.
e. If U1,U2 ⊆ α(∗) are as in (d) and π : U1 → U2 is an isomorphism such that α ∈

uβ ↔ π(α) ∈ uπ(β) and such that ϕα = ϕπ(α) for all α ∈ U1, then there are Pl � P
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(l = 1, 2) such that η∗
α∼
is a Pl -name for every α ∈ Ul, Pl = P

cr
q�Ul

and π(η∗
α∼
) = η∗

π(α)
∼

for every α ∈ U1.

We expect our general result to be applicable in numerous contexts. As mentioned above,
a specific case was applied in [7] to obtain the consistency of a new inequality of cardinal
invariants for theλ-reals.We expect also applications to cardinal invariants of the continuum,
as indicated by the following immediate corollary:

Theorem C Let x1, . . . , xn be cardinal invariants of the continuum such that the consistency
of ℵ1 < x1 < · · · < xn < c can be forced over a model of CH using a FS iteration over
a well-founded partial order of definable forcing notions satisfying the assumptions of our
main theorem, then it is also consistent that s = ℵ1 < x1 < · · · < xn < c.

The above theorem follows from the proof from [3] of the fact that FS iterations of Suslin ccc
forcing notions over a model of CH preserve s = ω1. The proof relies on the aforementioned
result about subiterations of Suslin ccc forcing, and so it follows for FS iterations over a
well-founded partial order of suitable forcing notions by using the corresponding corrected
iteration and the main result of this paper.

We shall start by defining our building blocks, namely forcing templates and iteration tem-
plates. These will allow for a much larger variety of examples than what appears in [9] (in
particular, an iteration may involve forcing notions with different definitions). One of the
differences between the current work and [9] is that our forcing notions might be definable
using parameters that don’t belong to V , and so this will require the introduction of a new
type of memory (“weakmemory”) that will allow the computation of the relevant parameters.

We then continue by introducing the classM of iteration parameters, from which we shall
practically construct our iterations.We shall then consider the notion of an existentially closed
iteration parameter, and we shall isolate a property of iteration parameters that guarantee the
existence of an existentially closed erxtension. We shall then obtain our desired corrected
iteration from those existentially closed extensions by taking an appropriate closure under
Lλ+ .

Notationand conventionsD: Throughout the paper, ordinalswill be denoted by lowercase
Greek letters, with the exceptions of the letters κ, λ, μ (and sometimes θ and χ) that will be
used for cardinals, and ϕ,ψ (and sometimes θ and χ) which will be used to denote formulas.
For regular κ < λ we denote the set {δ < λ : c f (δ) = κ} by Sλ

κ . Forcing templates will be
denoted by p and iteration templates will be denoted by q. Forcing notions will be denoted
by P and Q, where typically P will be used for iterations and Q will be used for iterands.
We adhere to the Jerusalem tradition according to which “p ≤ q” means that the forcing
condition q is stronger than p. We shall work with the following modification of H(κ):

Definition E: (A) Given two sets X and x , trclX (x) = trcl(x, X) will be defined as the
minimal set u such that:

1. x ∈ u.
2. y ⊆ u for every y ∈ u \ X .

(B) For a cardinal κ and a set X we define H≤κ (X) as the collection of sets x such that
|trcl(x, X)| ≤ κ and ∅ /∈ trcl(x, X).

(C) X is called κ-flat if x /∈ H≤κ (X \ {x}) for every x ∈ X (we may use X as a set of atoms
as in Definition 1.1(B)).

(D) Given a cardinal λ, an ordinal ζ < λ+ and a set X , we define H≤λ,ζ (X) as follows:
H≤λ,0 := X , and for ζ > 0, letting H≤λ,<ζ (X) := ∪ξ<ζ H≤λ,ξ (X), we define H≤λ,ζ :=
[H≤λ,<ζ (X)]<λ. So H≤λ(X) = H≤λ,<λ+(X).
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Throughout the paper, we shall use the notion of λ-Borel functions. Our definitions will
be somewhat nonstandard. Below we provide two possible versions for what is meant by a
λ-Borel function:

Nonstandard Definition F: A. We say that B is a λ-Borel function if:
(Version 1) There are sets X and Y such that:

a. B is a definition of a partial function from H≤λ(X) to H≤λ(Y ).
b. IfP1�P2 are (relatives of) (< λ)-strategically complete forcing notions satisfying λ+-cc

(or (λ, D)-cc, which will be defined later in the paper), then BV P1 = BV P2 � V P1 .

(Version 2) There are two sets X and Y such that:

a. B = (Bx,ζ,y,ξ : x ∈ [X ]≤λ, y ∈ [Y ]≤λ, ζ, ξ < λ+) where each Bx,ζ,y,ξ is the λ-analog
of the ord-hc Borel operations from [Sh630] (to be defined in Clause (B) below).

b. (x1 ⊆ x2) ∧ (y1 ⊆ y2) ∧ (ζ1 ≤ ζ2) ∧ (ξ1 ≤ ξ2) → Bx1,ζ1,y1,ξ1 ⊆ Bx2,ζ2,y2,ξ2 .
c. Given z ∈ H≤λ(X), B(z) = Bx,ζ,y,ξ (z) whenever RHS is defined.

B (following [6]). We define the λ-analog of the family of ord-hc Borel operations as the
minimal family F of functions satisfying the following:

a. Each B ∈ F is a function with ≤ λ coordinates, where the possible inputs for each
coordinate are sets from H≤λ(X) where |X | ≤ λ, ordinals, truth values, sequences of
ordinals of length ≤ λ and sequences of truth values of length ≤ λ.

b. The range of each B ∈ F consists of elements from H≤λ(Y ) (for some Y satisfying
|Y | ≤ λ), ordinals and truth values.

c. F is closed under composition.
d. F contains the following atomic functions:

1. ¬x for a truth value x .
2. x1 ∨ x2 for truth values x1 and x2.
3. ∧i<αxi for α ≤ λ and truth values xi .
4. The constant values True and False.
5. For all α ≤ λ, xγ varying on truth values and for all yγ varying on sets from H≤λ(X)

(for γ < λ):

– If xγ but not xδ for δ < γ then yγ .
– If ¬xγ for every γ < α then yα .

6. Similarly for ordinals.
7. {yi : i < α, xi = T } where α ≤ λ and each yi varies on H≤λ(X)-sets or on ordinals, xn

on truth values.
8. The truth value of “x is an ordinal” where x varies on H≤λ(X)-sets.

Remark G The reason for the second version of the definition is that for the λ-analog of the
ord-hc Borel operations from [6] we would like to have functions from H≤λ(X) to H≤λ(Y )

where |X |, |Y | ≤ λ. But as it might be the case that |X |, |Y | > λ, the formulation in the
second version is required.

1 Preliminary definitions, assumptions and facts

Forcing templates
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In this section we shall define the templates from which individual forcing notions in the
iteration shall be constructed. As we don’t have a general preservation theorem for λ+-c.c. in
(< λ)-support iterations (see [8] and history there), we shall use the notion of (λ, D)-chain
condition for a filter D (to be defined later) for which we have a preservation result, and so
the templates will include an appropriate filter to witness this. Similarly to [6], the forcing
templates will consist of a modelBp and formulas that will define the forcing inside it. The
forcing will be defined using a parameter, which shall be a function whose domain is denoted
I 0p . The generic element will be a function whose domain is the set I 1p . Additional formulas
will provide winning strategies for strategic completeness and will provide a compatibility
relation on the forcing that will satisfy the (λ, D)-chain condition.

Hypothesis 0: Throughout this paper, we assume that:

a. λ is a cardinal satisying λ = λ<λ

b. D is a λ-complete filter on λ+ × λ+

satisfying the following:

1. {(α, β) : α < β < λ+} ∈ D.
2. If uα ∈ [Ord]<λ (α < λ+), g : ∪α<λ+uα → D and fα : uα → Ord has range ⊆ λ

(α < λ+), then the following set belongs to D: {(α, β) : α < β < λ+, ( fα, fβ) is a
�−system pair (see Definition 1.2 below), ξ ∈ uα ∩ uβ → (α, β) ∈ g(ξ)}.

3. (λ+ \ γ ) × (λ+ \ γ ) ∈ D for every γ < λ+.
The following will serve to define the forcing notions that we intend to iterate:

Definition 1.1 Given a cardinal κ > λ. We call p = (λp, κp,Up, Ip,B0
p, I

0
p , I 1p , ϕ̄, Dp,Bp,

Tp, Rp) a (λ, D)-forcing template if:

(A) λ = λp < κ = κp.
(B) I 0p ∪ I 1p ⊆ H≤λ(Up ∪ Ip) where U = Up and I = Ip are disjoint sets of atoms.

[Motivation: I 0p will serve as the domain of the “input” for the definition of the forcing,

i.e. the parameters used in the definition of the forcing. I 1p will serve as the “output”,
i.e. the domain of the generic.]

(C) Bp is the expansion of (H≤λ(Up ∪ Ip),∈) by adding the relations |B0
p| and PB0

p for

every P ∈ τ(B0
p) for a modelB0

p with universe I∪U. [This will be the structure inside
of which the definition of the forcing will be interpreted.]

(D) ϕ̄ = (ϕl(x̄l , ȳ) : l < 7) is a sequence of first order formulas fromL(τBp) and lg(x̄l) = kl
where k0 = 1, k1 = 2, k2 = 3, k3 = 3, k4 = 2, k5 = 2, k6 = 2. We allow the ϕi
to include a second order symbol F (over which we shall not quantify) that will be
interpreted as a function h : I 0p → λ. [These will be the formulas defining the forcing
and its relevant features.]

(E) Dp = D is a λ-complete filter as in Hypothesis 0 above.
(F) Tp is a set that contains all possible trunks for conditions in the forcing, each is a function

from some u ∈ [I 1p ]<λ to H(λ).
(G) Rp is a reflexive binary relation on Tp.
(H) If {tα : α < λ+} ⊆ Tp, then {(α, β) : α < β < λ+, tαRptβ} ∈ D.

Remark We may omit the index p whenever the identity of p is clear from the context.

Definition 1.2 Suppose that ul ∈ [Ord]<λ (l = 1, 2). A pair of functions fl : ul → Ord
(l = 1, 2) is called a �-system pair if otp(u1) = otp(u2), and for every α ∈ u1 ∩ u2,
otp(u1 ∩ α) = otp(u2 ∩ α) and f1(α) = f2(α).
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Claim/Example 1.3 Let D0
λ be the collection of subsets X ⊆ λ+ ×λ+ such that for some club

E ⊆ λ+ and regressive function g : Sλ+
λ → λ+, {(α, β) : α < β < λ+, α ∈ Sλ+

λ ∩ E, β ∈
Sλ+
λ ∩ E, g(α) = g(β)} ⊆ X, then D0

λ is as required in Definition 1.1(E).

Proof Clearly, ∅ /∈ D0
λ. Let (uα : α < λ+), ( fα : α < λ+) and g be as in Definition

1.1(E), then for every ξ ∈ ∪α<λ+uα there is a club Eξ ⊆ λ+ and a regressive function hξ :
Sλ+
λ → λ+ such that Xξ ⊆ g(ξ) where: Xξ := {(α, β) : α < β < λ+, α ∈ Sλ+

λ ∩ Eξ , β ∈
Sλ+
λ ∩ Eξ , hξ (α) = hξ (β)}. For every α < λ+ let Sα := ∪β<αuβ , E∗

α := ∩{Eξ : ξ ∈ Sα}
and let E∗ := �α<λ+ E∗

α , so E∗
α (α < λ+) and E∗ ⊆ λ+ are clubs. For every δ ∈ E∗ ∩ Sλ+

λ

define:

1. u∗
δ := uδ ∩ Sδ .

2. h∗
δ : u∗

δ → δ is defined by h∗
δ (ξ) := hξ (δ) (recaling that hξ (δ) is well-defined and is

< δ).
3. y∗

δ = {(otp(uδ ∩ ζ ), fδ(ζ )) : ζ ∈ u∗
δ }.

4. S2δ := {(h∗, y∗) : h∗ is a function with domain ∈ [Sδ]<λ and range ⊆ δ, y∗ ∈ [λ × (λ +
1)]<λ}.

Note that α < β → S2α ⊆ S2β and that |S2α| ≤ λ for every α. Note also that S2α = ∪β<αS2β
when c f (α) = λ.

Now define a regressive function g∗ on Sλ+
λ ∩ E∗ such that g∗(δ1) = g∗(δ2) iff h∗

δ1
= h∗

δ2

and y∗
δ1

= y∗
δ2
(this can be done as in the proof of the λ-completeness of D0

λ, see below). Let

X = {(δ1, δ2) : δ1 < δ2 ∈ Sλ+
λ ∩ E∗ ∧ g∗(δ1) = g∗(δ2)}, then X ∈ D0

λ as witnessed by
E∗ and g∗. Therefore it’s enough to prove that every (δ1, δ2) ∈ X , ( fδ1 , fδ2) is a �-system
pair and ξ ∈ uδ1 ∩ uδ2 implies (δ1, δ2) ∈ g(ξ). Indeed, as g∗(δ1) = g∗(δ2), it follows that
h∗

δ1
= h∗

δ2
and y∗

δ1
= y∗

δ2
, hence u∗

δ1
= Dom(h∗

δ1
) = Dom(h∗

δ2
) = u∗

δ2
. Note also that if

ζ ∈ Dom( fδ1)∩Dom( fδ2) = uδ1∩uδ2 , then as δ1 < δ2, it follows that ζ ∈ u∗
δ2

= Dom(h∗
δ1

).
Therefore Dom( fδ1) ∩ Dom( fδ2) = Dom(h∗

δ1
), and it follows that ( fδ1 , fδ2) is a �-system

pair. If ξ ∈ uδ1∩uδ2 = Dom( fδ1)∩Dom( fδ2) = Dom(h∗
δ1

) = Dom(h∗
δ2

), then as h∗
δ1

= h∗
δ2
,

it follows that hξ (δ1) = h∗
δ1

(ξ) = h∗
δ2

(ξ) = hξ (δ2). Therefore, (δ1, δ2) ∈ Xξ ⊆ g(ξ) and
we’re done.

In order to show that D0
λ is λ-complete, let ζ < λ and let {Xξ : ξ < ζ } ⊆ D0

λ, we shall
prove that ∩ξ<ζ Xξ ∈ D0

λ. For each ξ < ζ , there are Eξ and gξ as in the definition of D0
λ

witnessing that Xξ ∈ D0
λ. Fix a bijection f : (λ+)<λ → λ+ and let E = {δ < λ+ : δ

is a limit ordinal, and for every α < δ and η ∈ α<λ, f (η) < δ}, then E ⊆ λ+ is a club.
Let δ ∈ E ∩ Sλ+

λ , then f (η) < δ for every η ∈ δ<λ. Define a function g : Sλ+
λ → λ+ as

follows: if δ ∈ Sλ+
λ ∩ E , we let g(δ) = f ((gξ (δ) : ξ < ζ)). Otherwise, we let g(δ) = 0. g

is a well-defined regressive function. Let E ′ = E ∩ (∩ξ<ζ Eξ ), then E ′ ⊆ λ+ is a club. Let
X = {(α, β) : α < β < λ+, α, β ∈ E ′ ∩ Sλ+

λ , g(α) = g(β)}, then as X ∈ D0
λ, it suffices to

show that X ⊆ Xξ for every ξ < ζ . As E ′ ⊆ Eξ for every ξ < ζ , if α, β ∈ E ′ ∩ Sλ+
λ and

g(α) = g(β), then gξ (α) = gξ (β). This implies that X ⊆ Xξ , as required. This completes
the proof of the claim. ��
Definition 1.4 Given a (λ, D)−forcing template p and a funtion h : I 0p → H(λ), we say
that the pair (p, h) is active if:

(A) (Qp,h,≤p,h) is a forcing notion where Qp,h = {a ∈ H≤λ(U ∪ I) : Bp |� ϕ0(a, h)},
≤Qp,h= {(a, b) : Bp |� ϕ1(a, b, h)}.

(B) For every γ < λ and p ∈ Qp,h the formula ϕ2(−, γ, p, h) defines a winning strategy
for the player COM in the game Gγ (p, Qp,h) (see Definition 1.14 below).
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Remark The strategy may not provide a unique move and we shall allow the completeness
player to extend the condition given by the strategy.

(C) Each element of Qp,h is a function of size λ with domain ⊆ I 1p and range ⊆ H(λ) (so
this includes conditions that are sequences, trees, etc).

(D) ϕ4(−,−, h) defines a function tr such that Dom(tr) = Qp,h and for every p ∈ Qp,h ,
tr(p) ∈ Tp is a function with domain X for some X ∈ [I 1p ]<λ and range ⊆ H(λ), such
that the following conditions hold:

(1) p ≤ q → tr(p) ⊆ tr(q).
(2) The formula ϕ5(−,−, h) defines a binary compatibility relation com ⊆ Qp,h × Tp

(note that, in contrast with (6) below, this is a relation between conditions and trunks).
(3) If com(p, η) then:
a. There is q such that p ≤ q such that tr(q) = η.
b. If q ≤ p then com(q, η).
(4) ≤p,h is a partial ordering of Tp such that η1 ≤ η2 → η1 ⊆ η2.
(5) If p1, p2 ∈ Qp and tr(p1)Rptr(p2) then p1, p2 ∈ Qp,h have a common upper bound

q . This is defined by ϕ6(−,−, h).
(6) If η ∈ T p,h , j < |Dom(η)|, {pi : i < j} are conditions and ∧i< j tr(pi ) = η then:
a. There is q such that ∧i< j (pi ≤ q).
b. There is a λ-Borel function Cp,h, j such that q = Cp,h, j (. . . , pi , . . .)i< j (recalling

Clause (C) above) and q is a least upper bound for {pi : i < j}.
[This could be simplified by replacing “ j < |Dom(η)|” by “ j < λ”, but that would
exclude, e.g., random real forcing and the forcing Qθ̄ from [Sh1126] ]

c. tr(q) = tr(pi ) for all i < j .
(7) [Follows fromDefinition 1.1(H)] Qp,h satisfies the (λ, D)-chain condition: if pα ∈ Qp,h

(α < λ+) then {(α, β) : tr(pα)Rptr(pβ)} ∈ D. In Requirement 1.18 below we shall
actually strengthen this condition and require that it holds in an absoluteway as described
there.

(8) (Relevant for λ > ℵ0) For every δ < λ and a play (pi , qi : i < δ) of length < λ chosen
according to the winning strategy for the game in clause (B), there is a bound pδ given
by the strategy such that tr(pδ) = ∪i<δ tr(pi ).

(9) For every a ∈ I 1p and x ∈ H(λ), there is some pa,x ∈ Qp,h such that �Qp,h “pa,x ∈ G∼
iff ηp,h

∼
(a) = x” (where ηp,h

∼
is defined in the next clause).

(E) 1. �Qp,h “Dom(ηp
∼

) = I 1p” where ηp
∼

= ηp,h
∼

is the Qp,h-name of ∪{tr(q) : q ∈ GQp
∼

}.
2. For every b ∈ I 1p and p ∈ Qp,h then there is η ∈ Tp such that b ∈ Dom(η)∧com(p, η).

Moreover, in Clause (D)(6), if we are given in addition some a ∈ I 1p \ Dom(η), then
there is ν extending η such that a ∈ Dom(ν) and com(pi , ν) for every i < j (and so
there exists qi above pi such that tr(qi ) = ν for every i < j).

(F) ηp
∼
is generic forQp,h , i.e. there is a λ-Borel functionB defined in V such that� “p ∈ G∼

iff B(p, ηp
∼

) = true′′ for every p ∈ Qp,h .

(G) If p and q are incompatible and tr(p) ⊆ tr(q), then p �Qp,h “tr(q) � ηp
∼

′′. In this case

we shall say that p and tr(q) are incompatible.
(H) If j < λ, pi ∈ Qp,h (i < j) and q are as in 1.4(D)(6) and p is a condition such that

tr(q) ⊆ tr(p) and such that q and tr(p) are incompatible, then there is i < j such that
{pi , tr(p)} are incompatible.
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Remarks 1. If (p, h) is not active, then we let Qp,h be trivial.
2. The reader may wonder where the properties of forcing templates, their trunks, etc, are

used in the construction of the iterations that will follow. This will play a major role in
the proof of Claim 2.10.

3. Clauses (G)+(H) will be used later, for example, in Claim 4.1.

Belowwe shall give several examples of concrete forcing notions as the realizations of forcing
templates.

Example 1.4(A): Let λ be either an inaccessible cardinal or ℵ0 and assume that P, g and h
are functions with domain λ such that:

a. For every α < λ, P(α) is a partial order of cardinality < λ.
b. For every α < λ, g(α) is a regular cardinal from (α, λ) (relevant in the inaccessible

case).
c. For every α < λ, h(α) : P(α) → g(α) is a function such that P(α) |� a ≤ b →

h(α)(a) ≤ h(α)(b).
d. If λ > ℵ0 then for every α < λ, g(α) = c f (g(α)) > α and P(α) is (< g(α))-directed.

If λ = ℵ0 then P(α) has a maximal element.

Let Q = QP,g,h be the following forcing notion: 1. p ∈ Q iff:

a. p = (η, ρ, ν) = (ηp, ρp, νp).
b. ρ ∈ ∏

α∈[lg(η),λ) g(α).
c. ν ∈ ∏

α∈[lg(η),λ) P(α).
d. If α ∈ [lg(η), λ) then h(α)(ν(α)) ≤ ρ(α).
e. η ∈ ∏

α<lg(η) P(α)

f. If λ = ℵ0, then limi (g(i) − ρ(i)) = ∞.
g. We let tr(p) := η.

2. Given p, q ∈ Q, p ≤ q iff ηp ⊆ ηq , ρp(α) ≤ ρq(α) for every α ∈ [lg(ηq), λ),
P(α) |� νp(α) ≤ νq(α) for every α ∈ [lg(ηq), λ) and P(α) |� νp(α) ≤ ηq(α) for every
α ∈ [lg(ηp), lg(ηq)).

We shall now define a forcing template p that gives rise to the above forcing:

a. λp := λ, κp = λ+.
b. I 0p = I 1p = λ.

c. Bp andB0
p will be trivial, i.e. (H(λ+),∈).

d. Denote by h∗ the function h : I 0p → H(λ) in the definition of active forcing templates.
h∗ here will be given here by h∗(α) = (P(α), g(α), h(α)).

e. The formulas ϕk will then define QP,g,h as described above using the parameter h∗.
Denote the trunks in this case by trp,h∗(p).

f. Tp = {trp,h∗(p) : h∗, p as above}.
g. Rp = {(η1, η2) ∈ Tp × Tp : η1 = η2}.

[Note that while we allow the parameter h∗ to be a name, Tp and Rp are objects.]
h. Dp will be the filter D0

λ from Claim 1.3.
For a typical example of a triple (P, g, h), consider a sequence (θα, σα : α < λ) where

α < σα < θα < λ. For each α let P(α) = ([θα]<σα ,⊆). For every α < λ let g(α) = σα and
for every u ∈ P(α) let h(α)(u) = otp(u).

Remark 1.4(B): 1. On such forcing notions see [1, 3, 4] for λ = ℵ0 and [9] for inaccessible
λ. In [9] we have P(α) = {[ε, θα] : ε < θα} with the reverse ordering, g(α) = θα which
is regular > |α| and h(α)([ε, θα]) = ε.
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2. The above example gives a justification for the (somewhat arbitrary) use of the assumption
“ j < |Dom(η)|” (rather than “ j < λ”) in Definition 1.4(D)(6). Below is an additional
example where R is nontrivial:

Example 1.4(C): Our next example is random real forcing with a modification needed to
satisfy the requirement in Definition 1.4(D)(6). Let (ηn : n < ω) enumerate 2<ω without
repetition and let D p = D0ℵ0

.

A. p ∈ Q iff p = (tr(p), Bp) where:
a. Bp ⊆ 2ω is Borel.
b. μ(Bp) > 0.
c. ηp is the maximal element of 2<ω that is an initial segment of all members of Bp .
d. There is a natural n(p) > 1 such that 2lg(ηp)μ(Bp) ∈ [1 − 1

n(p)+1 , 1 − 1
n(p)+2 ] and

n(p) ≤ lg(ηp).
e. tr(p) is a constantly 1 function with domain {ηp} ∪ {ηp � l : l < n(p)}.
B. For p, q ∈ Q, Q |� p ≤ q iff:
a. Bq ⊆ Bp .
b. tr(p) ⊆ tr(q).
C. The generic will be the union of ηp for every p ∈ G.
D. Tp = {tr(p) : p ∈ Q}.
E. R p = {(η, η) : η ∈ Tp}.

[This gives an example where R p is not the usual function compatibility. Note that as random
real forcing is not σ -centered, we can’t strengthen Definition 1.4(D)(6) to “ j < λ”.]
Remark 1.4(D): The trunks will play a role in the definition of our iterations, where given
a condition p and s ∈ Dom(p), p(s) will be a name of a condition consisting of a
trunk tr(p(s)) and a condition computed from names of other conditions of the form
pι = B p(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wp(s),ι (this notation will be explained in due course) whose

union of trunks is tr(p(s)). All of this will eventually play a role in the analysis of projections
in Sect. 4.

Iteration templates
Similarly to forcing templates, iteration templates will contain the information from which
we shall construct our iterations. This information will include a well-founded partial order
along which we shall define the iteration. For every element in the partial order, we shall
assign a forcing template and two types of memory: a strong memory which will be used for
the construction of the forcing conditions, and a weak memory which will be used to define
the necessary parameter for defining the forcing at the current stage. The parameters will then
be computed in a λ-Borel way from the previous generics. An additional complication in our
memory apparatus (i.e. the vt ⊆ [u0t ]≤λ in Definition 2.2.A)will then require a corresponding
modification of our notion of strategic completeness in Definition 1.14.

Definition 1.5 A (λ, D)-iteration template q consists of the objects {Lq, (pt : t ∈
Lq), ((u0t , ū

1
t ) : t ∈ Lq), ((w

0
t , w̄

1
t ) : t ∈ Lq), Dq, ((Bt,b, (st (b, ζ ), at,b,ζ ) : ζ < ξ(t, b)) :

b ∈ I 0pt ) : t ∈ Lq))} such that:

(A) Dq = D, Lq is a well-founded partial order with elements from U.
(B) For every t ∈ Lq, pt = pq,t is a (λ, D) forcing template. Note that D is fixed filter that

doesn’t depend on t .
(C) For every t ∈ Lq, u0q,t = u0t ⊆ L<t = {s ∈ Lq : s <Lq t} and ū1q,t = ū1t = (u1t,s : s ∈

u0t ) where u
1
t,s ⊆ I 1s = I 1ps . We shall refer to u0q,t as strong memory.
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(D) For every t ∈ Lq, w0
t ⊆ u0t and w̄1

t = (w1
t,s : s ∈ w0

t ) where w1
t,s ⊆ u1t,s ⊆ I 1s . We

shall refer to w0
t as weak memory.

Remark In many interesting cases, w0
t = ∅ for all t (this will correspond to an iteration

where the definitions of the forcing notions are without parameters).

(E) For every t ∈ Lq and b ∈ I 0pt , Bt,b is a λ−Borel ξ(t, b)−place function (ξ(t, b) < λ+)

from λξ(t,b) to λ. For every ζ < ξ(t, b) we have st (b, ζ ) ∈ w0
t and at,b,ζ ∈ w1

t,st (b,η) (if

w0
t = ∅ then ξ(t, b) = 0).

[This will be used to compute h when applying Definition 1.4.]
(F) Dq is a λ-complete filter as in Hypothesis 0 such that Dpt = Dq for every t ∈ Lq.

Definition 1.6(A): Given an iteration template q and L ⊆ Lq, let cl(L) = clq(L) be the
minimal L ′ such that L ⊆ L ′ ⊆ Lq and t ∈ L ′ → w0

q,t ⊆ L ′.

Example 1.6(B): We shall briefly illustrate how to construct a concrete iteration within our
general framework continued below. Let λ be either ℵ0 or inaccessible with θ̄ = (θi : i < λ)

a sufficiently fast increasing sequence such that θi = c f (θi ) > i . Fix an ordinal α∗ and let
(U1,U2,U3) be a partition of α∗. For α < α∗, let ϕ̄α define:

a. Random real forcing (as in Example 1.4(C)) if α ∈ U0 and λ = ℵ0.
b. Random real forcing for inaccessible λ (see [Sh:1004]) if α ∈ U0 and λ is inaccessible.
c. The forcing from Example 1.4(A) if α ∈ U2 and λ = ℵ0.
d. The forcing Qθ̄ from [7] if α ∈ U2 and λ is inaccessible.
e. Hechler forcing (λ-Hechler forcing) if α ∈ U3 and λ = ℵ0 (λ is inaccessible).

The filter D will be D0
λ from Claim 1.3. If, for example, Qt∼

is Qθ̄ from [7], then we

might use a parameter θ̄ ∈ V , but we might also want to use a parameter of the form
θ̄ = B(. . . , ηζ

∼
(a), . . .) where each ζ belongs to the weak memory w0

t .

For every α < α∗, u0α will be a subset of α. Note that if αl ∈ U2 (l = 1, 2, 3), α1 ∈
u0α2 , α2 ∈ u0α3 and α1 /∈ u0α3 , then it will still be forced that “ηα1∼

<bd ηα3∼
”. In [7, 9] the case

α∗ = U2 was used.

Definition 1.7 1. Let P be a set of forcing templates, we shall denote byKP the collection
of iteration templates q with forcing templates from P (i.e. pq,t ∈ P for every t ∈ Lq).

2. For q1,q2 ∈ KP we write q1 ≤KP q2 if the following conditions hold:
a. Lq1 ⊆ Lq2 .
b. For every t ∈ Lq1 , pq1,t = pq2,t and u

0
q1 = u0q2 ∩ Lq1 .

c. (w0
q1,t , w̄

1
q1,t : t ∈ Lq1) = (w0

q2,t , w̄
1
q2,t : t ∈ Lq2) � Lq1 and similarly for the other

sequences appearing in Definition 1.4.

Definition 1.8 Let q be an iteration template and let L ⊆ Lq, we shall say that L is a closed
sub-partial order (or “L is closed with respect to weak memory”) if w0

t ⊆ L for every t ∈ L .

Definition 1.9 1. Given L ⊆ Lq, let cl(L) = clq(L) be the minimal set L ⊆ L ′ ⊆ Lq such
that w0

t ⊆ L ′ for every t ∈ L ′.

Convention 1.9(A): Throughout this paper, whenever q is an iteration template, L ⊆ Lq
and q � L is defined or used (see Definition 1.11), we shall assume that L is closed w.r.t.
weak memory.
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Definition 1.10 Let q be an iteration template, we shall define for every t ∈ Lq ∪ {∞} a
forcing notion Pt = Pq,t , a forcing notion PL = Pq,L for any initial segment L ⊆ Lq and
names Qt∼

= Qq,t
∼

, ηt∼
(by the remark after Definition 1.4, this is always well-defined) by

induction on dp(t) (see Definition 2.3):

(A) p ∈ Pt (PL) iff
(1) p is a function with domain ⊆ L<t (or ⊆ L in the case of PL ) of cardinality < λ.
(2) For every s ∈ Dom(p), p(s) = Bp(s)(. . . , ηtζ

∼
(aζ ), . . .)ζ<ξ (we may write p(s) =

(tr(p(s)),Bp(s)(. . . , ηtζ
∼

(aζ ), . . .)), so it will be interpreted as a condition in Qs∼
that

resulted from the respective computation by the λ-Borel function Bp(s)) for a λ-Borel
function Bp(s) into H≤λ(U∪ I) and an object tr(p(s)) such that tr(p(s)) is computable
from Bp(s) (i.e. the range of Bp(s) consists of conditions with trunk tr(p(s))), ξ =
ξp(s) ≤ λ, {tζ : ζ < ξ} ⊆ u0s and for every ζ , aζ ∈ u1tζ . Note that B p(s) here is not the
same function as Bt,b in Definition 1.5.

[Remarks: a. The reader might wonder why not drop the aζ and useBp(s)(. . . , ηtζ
∼

, . . .)ζ<ξ

instead. The reason is that Dom(ηtζ
∼

) = I 1tζ might be of cardinality > λ. Our choise allows

B p(s) to be a function with domain H(λ)ξ .

b. Note that if p ≤ q and s ∈ Dom(p), then the corresponding set of {tζ : ζ < ξ} might
increase. As a consequence, the number of input coordinates might increase between
B p(s) and Bq(s). ]

(3) For every s ∈ Dom(p), �Ps “p(s) ∈ Qs∼
′′.

(B) Pt |� p ≤ q iff Dom(p) ⊆ Dom(q) and for every s ∈ Dom(p), q � L<s �Ps

p(s) ≤Qs∼
q(s).

(C) 1. Let ht : I 0pt → λ be the name of a function defined by ht (b) =
Bt,b(. . . , ηst (b,ζ )

∼
(at,b,ζ ), . . .)ζ<ξ(t,b).

2. a. If (pt , ht ) is active in V Pt (see Definition 1.4), we shall define Qt∼
as the Pt -name of

Q

V [ηs∼ :s∈u0t ]
pt ,ht

.

b. If (pt , ht ) is not active in V Pt , we shall define Qt∼
as the trivial forcing.

(D) ηt∼
will be defined as the Pt ∗ Qt∼

name ηpt ,ht∼
.

Definition 1.11 Given an iteration template q and a sub partial order L ⊆ Lq we shall define
the iteration template q � L as follows (recall that we assume that L is closed under weak
memory):

(A) Lq�L = L .
(B) For every t ∈ L , pq�L,t = pq,t .
(C) For every t ∈ L , u0q�L,t = u0q,t ∩ L and ū1q�L,t = ū1q,t � u0q�L .
(D) For every t ∈ L , w0

q�L,t = w0
q,t and w̄1

q�L,t = w̄1
q,t .

(E) For every t ∈ L the other objects in the definition of q are not changed.

Observation 1.12 q � L is an iteration template (recall that L is assumed to be closed under
weak memory).
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Definition 1.13 Let λ be a regular cardinal, P a forcing notion and Y ⊆ P.

(A) Lλ+(Y ) will be defined as the closure of Y under the operations ¬, ∧i<α for α < λ+.
(B) For a generic set G ⊆ P and ψ ∈ Lλ+(Y ) the truth value of ψ[G] will be defined

naturally by induction on the depth of ψ (for example, for p ∈ P, p[G] = true iff
p ∈ G).

(C) The forcing Lλ+(Y , P) will be defined as follows:
(1) ψ ∈ Lλ+(Y , P) iff ψ ∈ Lλ+(Y ) and �P “ψ[G∼] = f alse′′.
(2) ψ1 ≤ ψ2 iff �P “ψ2[G∼] = true → ψ1[G∼] = true′′.

More definitions and assumptions
Strategic completeness

Definition 1.14 Let P be a forcing notion, α ∈ Ord and p ∈ P.

1. The twoplayer gameG0
α(p, P)will be defined as follows:Aplay in the game consists of

αmoves. In theβthmove player I chooses pβ ∈ P such that p ≤ pβ∧(∧γ<βqγ ≤ pβ),
player II responds with a condition qβ such that pβ ≤ qβ . Winning condition: Player
I wins the play iff for each β < α there is a legal move for him.

2. Let P be a forcing notion, tr = trP a function from P into {η : η is a function from
a set of cardinality < λ into H(λ)}, α ∈ Ord and p ∈ P. The game G1

α(p, P) will
be defined as follows: The games consists of α moves. In the εth move the objects
jε, q̄ε, ηε, νε are chosen such that:

a. jε < λ and ξ ≤ ε → jξ ≤ jε .
b. q̄ε = (qε

i : i < jε) is a sequence of members of P above p.
c. If ξ < ε and i < jξ then:

c(1). (qζ
i : ζ ∈ [ξ, ε]) is increasing.

c(2). tr(qε
i ) = ηε .

c(3). jε ≤ |Dom(ηε)|.
c(4). com(qε

i , νε) for every i < jε .
c(5). ηε ⊆ νε .
c(6). ζ < ε → νζ ⊆ ηε . In the εth move, first INC chooses jε , q̄ε and ηε , then COM chooses

νε . COM wins if he has a legal move at every stage during the play.
3. Let P be a forcing notion expanded by a function tr = trP as in (2). Let α ∈ Ord and

let F̄α = (Fα,ε : ε < α) be a winning strategy for I in the game G0
α(−, P) that will

naturally arise from the rest of the definition below. The game G2
α(P) will be defined

as follows: In the εth move, the objects jε , p̄ε , q̄ε , ηε and νε such that:
a. In a preliminary move, II chooses ξ ∈ (0, α) and q∗.
b. For ζ < ξ , we let jζ = 1, pζ

0 = qζ
0 = q∗ (so p̄ζ = q̄ζ = (q∗)) and ηζ = νζ = tr(q∗).

c. jε < λ and ξ < ε → jξ ≤ jε .
d. Given ε and i < jε :

d(1). q̄ε = (qε
i : i < jε) and p̄ε = (pε

i : i < jε) are sequences of members of P.
d(2). tr(qε

i ) = ηε .
d(3). jε ≤ |Dom(ηε)|.
d(4). com(qε

i , νε) for every i < jε .
d(5). ηε ⊆ νε and ζ < ε → νζ ⊆ ηε .

In the εth move for ε ≥ ξ∗, first COM chooses (pε
i : i < ∪{ jζ : ζ < ε}) such that

pε
i = Fα,ε((q

ζ
i : ζ < ε)). Next INC chooses jε = ∪{ jζ : ζ < ε}, q̄ε such that pε

i ≤ qε
i

for all i < jε and ηε as above. Finally, COM chooses νε as above. COM wins if at
each stage there is a legal move for him.
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4. Let P be a forcing notion and α ∈ Ord , P is called α-strategically i-complete (i =
0, 1, 2) if for each p ∈ P player I has a winning strategy for Gi

α(p, P).
5. For a regular λ, we say that P is (< λ)-strategically i-complete (i = 0, 1, 2) if it’s

α-strategically i-complete for every α < λ.
6. Convention: We may omit the i in i-completeness if i = 2.

For discussion of various strategic completeness properties see [5].
We shall freely use the following fact:

Fact 1.15 (< λ)-strategic completeness is preserved under (< λ)-support iterations.

Absoluteness
The following requirements will be assumed throughout the paper for all (λ, D)-forcing

templates p:

Requirement 1.16 A (λ, D) forcing template p is called (λ, D)-absolute when: If P1 and
P2 are (< λ)-strategically complete forcing notions satisfying (λ, D) − cc (that is, {pα :
α < λ+} ⊆ Pl → {(α, β) : pα and pβ are compatible} ∈ D) such that P1 � P2, Vl = V Pl

(l = 1, 2) and p, h ∈ V1, then we shall require that:

(A) “( p, h) is active” and “p ≤Qp,h q ′′ is absolute between V1 and V2.
(B) “p ∈ Q

′′
p,h is absolute between V1 and V2.

(C) “p and q are incompatible in Q
′′
p,h is absolute between V1 and V2.

(D) Similarly for the other formulas involved in the definition of p (see Definition 1.1).

Definition 1.17 Let p ∈ V1 be a forcing template and let B be a λ-Borel function. We say
that B is a λ-Borel function into p if for every V1 ⊆ V2 as above, the range of B is in Q

V2
p,h

and the trunk of the members in the range is fixed.

Remark The above definition is relevant in the context, e.g., of Definition 1.10(A)(2), where
(V1, V2) here stands for (V , V Ps ) there.

Requirement 1.18 (A) All λ-Borel functions will be assumed to be into a relevant forcing
template p. That is, whenever a λ-Borel function B will be used, there will be an
associated forcing template p such that (B, p) are as in Definition 1.18, and p will be
clear from the context.

(B) Dp is fixed and is in V .

2 Iteration parameters and the corrected iteration

Iteration parameters
We will be interested in iterations along a prescribed partial order M . However, we will also
have to consider iterations along a larger partial order that L that contains M . Therefore, we
shall define a binary relation E ′ on L such that L\M will consist of equivalence classes that
are only related viaM .We shall require that those equivalence classes will be preservedwhen
we extend the iteration, so extensions will be obtained by adding new equivalence classes.

Hypothesis 2.1 We shall assume in this section that:

(A) λ = λ<λ is a cardinal and D is a filter as in Hypothesis 0.
(B) λ ≤ λ1 ≤ λ2 are cardinals such that �3(λ1) ≤ λ2.
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(C) P is a set of (λ, D)-forcing templates that are (λ, D)-absolute such that if p ∈ P
and P1 � P2 are (< λ)-strategically complete (λ, D)-cc forcing notions, then V P1 |�
“(p, h) is active′′ implies that V P2 |� “(p, h) is active′′ (with (λ, D)-cc as defined in
Requirement 1.16).

(D) I and U are disjoint sets such that <U is a fixed well ordering of U and I ∪ U is λ+.
(E) |P| ≤ 2λ2 .

Definition 2.2.A: Let M = M[λ1, λ2] be the collection of triples m = (qm, Mm, E ′
m) such

that the following conditions hold (we may replace the indexm by qm or omit it completely
when the context is clear):

(A) qm ∈ KP.
(B) M = Mm ⊆ Lqm is a sub partial order.
(C) For every t ∈ M , w0

t ⊆ M .
(D) E ′ = E ′

m is a relation on L = Lqm satisfying the following properties:
1. E ′′ = E ′ � (L \ M) is an equivalence relation on L \ M .
2. For every non E ′′-equivalent s, t ∈ L\M , s <L t iff there is r ∈ M such that s <L

r <L t .
3. If sE ′t then s /∈ M or t /∈ M .
4. If t ∈ L \ M then {s ∈ L : sE ′t} = {s ∈ L : t E ′s}. We shall denote this set by t/E ′.
5. If s, t ∈ L \ M are E ′′-equivalent, then s/E ′ = t/E ′.
6. If t ∈ L \ M then u0t ⊆ t/E ′.
7. If t ∈ L \ M then |t/E ′| ≤ λ2.
8. ||M || ≤ λ1.
9. |w0

t | ≤ λ for every t .
(E) In addition to the objects mentioned in definition 1.5, qm includes a sequence v̄m =

(vm,t : t ∈ Lm) = (vt : t ∈ Lm) such that for every t ∈ Lm we have:
1. vt ⊆ [u0t ]≤λ, w0

t ∈ vt and for every u ∈ vt , u ∪ w0
t ∈ vt (recall that the u0t and w0

t are
part of the definition of qm mentioned in 1.5).

2. vt is closed under subsets.
3. If t ∈ Lm \ Mm then |vt | ≤ λ2. If t ∈ Mm and s ∈ L\M then |{u ∈ vt : u ∩ (s/E ′′

m) �=
∅}| ≤ λ2.

4. For every u ∈ vt , if u � Mm then there is s ∈ Lm\Mm such that u ⊆ s/E ′.

We shall now supply the final definition of the forcing (recalling definition 1.8).

Definition 2.2.B: For m ∈ M and the corresponding iteration template qm we shall define
Pt = Pm,t , Qt∼

and ηt∼
in the same way as in 1.10, except that we replace (A)(2) and (C) with

the following definition:
For every s ∈ Dom(p) there is ι(p(s)) < λ, a collection of sets Wp(s),ι ⊆ ξp(s) ≤ λ

(ι < ι(p(s))), a collection of λ-Borel functionsBp(s),ι (ι < ι(p(s))), λ-Borel functionsCp(s)

and Bp(s) and an object tr(p(s)) such that the following conditions hold:

(A) ξ = ξp(s) = ∪ι<ι(p(s))Wp(s),ι.
(B) Bp(s)(. . . , ηtζ

∼
(aζ ), . . .)ζ<ξ = Cp(s)(. . . ,Bp(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wp(s),ι , . . .)ι<ι(p(s))

such that tζ ∈ u0s and aζ ∈ u1tζ for every ζ ∈ Wp(s),ι (for C p(s) recall Definition
1.4(D)(6)(b)).
[Following Definition 1.4(6)(B), Cp(s) really has the form C ps ,hs ,ι(p(s)), but we
shall abuse the notation and denote it Cp(s). In addition, the definition implies that
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tr(Bp(s),ι(. . . , ηtζ
∼

(aζ ), . . .)ζ∈Wp(s),ι ) is constant for ι < ι(p(s)), say ηp(s), and so

ι(p(s)) ≤ |Dom(ηp(s))|].
(C) For every ι < ι(p(s)) there is u ∈ vs such that {tζ : ζ ∈ Wp(s),ι} ⊆ u.
(D) p(s) = Bp(s)(. . . , ηtζ

∼
(aζ ), . . .)ζ<ξ . We may write p(s) = (tr(p(s)),

Bp(s)(. . . , ηtζ
∼

(aζ ), . . .)ζ<ξ ).

(E) Recall that the parameter hs was defined in Definition 1.10(C). Qs∼
will be defined as

the Ps-name of the subforcing of Qps ,hs with elements of the form C(. . . , pi , . . .)i<i(∗)

such that each pi belongs to Q

V [ηr∼ :r∈u]
ps ,hs

for some u ∈ vm,s and the λ-Borel function
C = C(. . . , pi , . . .)i<i(∗) is intoQps ,hs . This can be seen as a refinement of the previous
Definition 1.10. The way that C is defined (as a function of conditions pi ) will play a
role in the analysis of projections in Section 4, where incompatibility with a condition
p(s) will be reduced to incompatibility with some Bp(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wp(s),ι .

(F) For each qs,ι = Bp(s),ι(. . . , ηtζ
∼

(aζ ), . . .)ζ∈Wp(s),ι there is an object tr(qs,ι) such that the

range of Bp(s),ι consists of conditions with trunk tr(qs,ι).
(G) tr(p(s)) = ∪ιtr(qs,ι) (so in particular, the tr(qs,ι)’s are compatible).
(H) �Ps “Cp(s)(. . . ,Bp(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wp(s),ι , . . .)ι<ι(p(s)) ∈ G∼

↔ (∀ι < ι(p(s)))Bp(s),ι(. . . , ηtζ
∼

(aζ ), . . .)ζ∈Wp(s),ι ∈ G∼ .

Remark 2.2(A): The reader might wonder about the difference between the above definition
and 1.10. In the main case, we will really be interested in iterating Qt for t ∈ Mm, where Mm
might be an ordinal. In order to obtain the parallel of [3], we would like to correct the iteration
in order to have enough saturation while maintaining the well-foundedness of the iteration’s
underlying partial order. For this we add the “pseudo coordinates” grouped in classes of the
form t/Em. For t ∈ Mm, we have in the definition the new sets vm,t giving us the following
difference between the iteration here and the one in Definition 1.10: In 1.10, Qt∼

is computed

via ( pt , ht ) in V [η
∼

� u0t ], while here it is the closure of the union of the forcings computed

via ( pt , ht ) in V [η
∼

� v] for every v ∈ vm,t .

Definition 2.3 Let L be a well founded partial order, we shall define the depth of an element
of L and the depth of L by induction as follows:

(A) dp(t) = dpL(t) = ∪{dpL (s) + 1 : s <L t}.
(B) dp(L) = ∪{dpL (t) + 1 : t ∈ L}.
Definition 2.4 Letm ∈ M and let L ⊆ Lm be a sub-partial order, we shall define n = m � L
as follows:

(A) qn = qm � L .
(B) Mn = Mm ∩ L .
(C) E ′

n = E ′
m ∩ L × L .

(D) For every t ∈ L we define vqn,t as {u ∩ L : u ∈ vqm,t }.
Remark If Mm ⊆ L then n ∈ M[λ1, λ2].
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Definition 2.5 Let n,m ∈ M, a function f : Lm → Ln is an isomorphism ofm and n if the
following conditions hold:

(A) f is an isomorphism of the partial orders Lm and Ln.
(B) For every t ∈ Lm, pqm,t = pqn, f (t).
(C) For every t ∈ Lm, f (u0m,t ) = u0n, f (t) and ū

1
m,t = ū1n, f (t).

(D) For every t ∈ Lm, f (w0
m,t ) = w0

n, f (t) and w̄1
m,t = w̄1

n, f (t).
(E) Mn = f (Mm).
(F) For every s, t ∈ Lm, sE ′

mt if and only if f (s)E ′
m f (t).

(G) For every t ∈ Lm, if ((Bm,t,b, (st (b, ζ ), at,b,ζ : ζ < ξ(t, b)) : b ∈ I 0pqm ,t
) : t ∈ Lqm ) is

as in 1.4(F) form, then ((Bm,t,b, ( f (st (b, ζ )), at,b,ζ : ζ < ξ(t, b)) : b ∈ I 0pqn , f (t)
) : t ∈

Lqm ) is as in 1.4(F) for n at f (t).
(H) For every t ∈ Lm, u ∈ vqm,t if and only if f (u) ∈ vqn,t .

Definition 2.6 We say that m,n ∈ M are equivalent if qm = qn.

Definition 2.7 (A) Let L be a partial order, we shall denote by L+ the partial order obtained
from L by adding a new element ∞ such that t < ∞ for every t ∈ L .

(B) Given m ∈ M we shall denote by Pm the limit of (Pt , Qt∼
: t ∈ Lm) with support < λ,

i.e. Pm,∞. We shall denote Pt by Pm,t and similarly for Qt∼
.

(C) p, q ∈ Pm are strongly compatible if tr(p(s))Rpqm ,s tr(q(s)) for every s ∈ Dom(p) ∩
Dom(q).

(D) Given an initial segment L ⊆ Lm, let Pm,L = Pm � {p ∈ Pm : Dom(p) ⊆ L}.
Claim 2.8 Letm ∈ M and s < t ∈ L+

m.

(A) If p ∈ Ps then p ∈ Pt and p � L<s = p.
(B) If p, q ∈ Ps then Ps |� p ≤ q iff Pt |� p ≤ q.
(C) If p ∈ Pt then p � L<s ∈ Ps and Ps |� “p � L<s ≤ p′′.
(D) If Pt |� p ≤ q then Ps |� p � L<s ≤ q � L<s .
(E) If p ∈ Pt , q ∈ Ps and p � L<s ≤ q ∈ Ps then p, q ≤ q ∪ (p � (L<t \ L<s)) ∈ Pt .
(F) If s < t ∈ L+

m then Ps � Pt .

Proof Should be clear. ��
Claim 2.8’: Suppose thatm ∈ M and L1 ⊆ L2 ⊆ Lm are initial segments.

(A) If p ∈ PL1 then p ∈ PL2 and p � L1 = p.
(B) If p, q ∈ PL1 then PL1 |� p ≤ q iff PL2 |� p ≤ q .
(C) If p ∈ PL2 then p � L1 ∈ PL1 .
(D) If p, q ∈ PL2 and PL2 |� p ≤ q then PL1 |� p � L1 ≤ q � L1.
(E) If p ∈ PL2 ,q ∈ PL1 andPL1 |� “p � L1 ≤ q ′′ thenPL2 |� “p, q ≤ q∪(p � (L2\L1))

′′.
(F) PL1 � PL2 .

Proof Should be clear. ��
Claim 2.9 If m ∈ M, p ∈ Pm and s ∈ Dom(p), then there is a λ-Borel name
of the form B(. . . , T V (ηsζ

∼
(aζ ) = jζ ), . . .)ζ<ξ(p,s) such that B(. . . , T V (ηsζ

∼
(aζ ) =

jζ ), . . .)ζ<ξ(p,s)[GQs∼
] = true iff p(s) ∈ GQs∼

(where T V (ηsζ
∼

(aζ ) = jζ ) stands for the

truth value of the statement “ηsζ
∼

(aζ ) = jζ”, so it’s either 0 or 1). That is, membership in

the generic set can be computed in a λ-Borel way that depends on the (partial) values of the
generics.
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Proof Follows from the definition of forcing templates and the assumptions of the previous
chapter using the λ+-c.c.. ��

As promised earlier, the properties of forcing templates will play an important role in the
proof of the following:

Claim 2.10 Letm ∈ M and let L ⊆ Lm be an initial segment.

(A) a. If s ∈ L then �PL ηs∼
∈ �

r∈I 1ps
Xr where Xr = {x ∈ H(λ) :�Qs∼

ηs∼
(r) �= x} ⊆ H(λ)

(we may take H(λ)I
1
ps instead of this product).

b. Moreover, if p ∈ Pm and a ∈ I 1s , then for some q ∈ Pm above p we have s ∈ Dom(q),
a ∈ Dom(tr(q(s))) and s ∈ Dom(p) → ι(p(s)) = ι(q(s)).

c. The set {p ∈ Pm : for every s ∈ Dom(p), |ι(p(s))| ≤ |tr(p(s))|} is dense in Pm.
d. Ifλ = ℵ0 and h ∈ ωω, then the set {p ∈ Pm : s ∈ Dom(p) → h(ι(p(s))) < |tr(p(s))|}

is dense in Pm.
(B) Pm |� (λ, D) − cc (hence Pm |� λ+ − c.c.).
(C) a. Pm,L is (< λ)-strategically 0-complete.
b. If p is a function with Dom(p) ∈ [L]<λ such that s ∈ Dom(p) → �Pm,L<s

“p(s) ∈
Qs∼

′′, then there is q ∈ Pm,L such that Dom(p) ⊆ Dom(q) and q � L<s �Pm,L<s

“p(s) ≤ q(s)′′ for every s ∈ Dom(p).
(D) Let t ∈ Lm, if �Pt “y∼

∈ Qt∼
′′ then there is a λ-Borel function B, ξ ≤ λ and a sequence

(rζ : ζ < ξ) of members of u0t such that �Pt “y∼
= B(. . . , ηrζ

∼
(aζ ), . . .)

′′
ζ<ξ for some

aζ ∈ u1rζ .
(E) �Pm V [ηt∼ : t ∈ Lm] = V [G∼].
(F) If �PL “η

∼
∈ V ζ” for some ζ < λ, then there is a λ-Borel function B, ξ ≤ λ and a

sequence (rζ : ζ < ξ) of members of u0t such that �PL “η
∼

= B(. . . , ηrζ
∼

(aζ ), . . .)
′′
ζ<ξ

for suitable aζ ∈ u1rζ .

Proof The proof is by induction on dp(L), simultaneously for all clauses (though naturally
this is not needed in all cases).

(A) (a) Let p ∈ PL and a ∈ I 1ps and let p1 = p � L<s , then p1 ∈ PL<s .
Case 1: s /∈ Dom(p). There is f ∈ Tps such that a ∈ Dom( f ), and by absoluteness

(and parts (D)(2) and (E)(1) of Definition 1.4, together with the remark below it), �PL<s

“V [η
∼

� u0s ] |� There is q ∈ Qps ,hs such that f = tr(q)′′ (so this holds whether ( ps, hs)

is active or not). By the induction hypothesis for clause (D), there are p1 ≤ p2 ∈ PL<s ,
a λ-Borel function B, ξ ≤ λ, a sequence (rζ : ζ < ξ) of members of u0s and {aζ : ζ <

ξ} ⊆ I 1s such that p2 �PL<s
“V [η

∼
� u0s ] |� f = tr(B(. . . , ηrζ

∼
(aζ ), . . .)ζ<ξ )

′′. Now

define a condition p3 ∈ PL as follows: Dom(p3) = Dom(p2) ∪ Dom(p) ∪ {s}, p3 �
Dom(p2) = p2, p3 � (Dom(p)\Dom(p2)) = p � (Dom(p)\Dom(p2)) and p3(s) =
( f ,B(. . . , ηrζ

∼
(aζ ), . . .)ζ<ξ ). Then p, p2 ≤ p3 by absoluteness, 2.8 and the definition of the

partial order.
Case 2: s ∈ Dom(p). p(s) has the form Cp(s)(. . . ,Bp(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wp(s),ι , . . .)

ι<ι(p(s)) as in definition 2.2(B). In V PL<s , V [. . . , ηtζ , . . .]ζ<ξp(s) (see definition 2.2(B) for
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ξp(s)) is a subuniverse, Q = Qps,hs∼
V [...,ηtζ ,...]ζ<ξp(s) is well-defined (recall Definitions 1.5(E)

and 1.10(C)) and p(s)[. . . , ηtζ , . . .]ζ<ξp(s) is a condition in Q with trunk tr(p(s)). Let G ⊆
PL<s be generic over V such that p1 ∈ G, so in V [G], Q ps ,hs∼

[G] is well-defined and

contains p(s). Therefore, by Definition 1.4(E)(2), there is q above p(s) with trunk η such
that a ∈ Dom(η) and tr(p(s)) ⊆ η. For every ι < ι(p(s)), by absoluteness we have
V [η

∼
[G] � {tζ : ζ ∈ Wp(s),ι}] |� “p1ι := B p(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wp(s),ι [G] and η are

compatible”. Therefore, for every ι < ι(p(s)) there is some p2ι above p1ι with trunk η. Now
let p2 ∈ PL<s be a condition above p1 forcing the above statements, and using p2 and the
p2ι we can get an extension of p as required.
(A) (b) By the proof of clause (a).
(A) (c) By the previous clause and by clause (C) (whose proof doesn’t depend on the current
clause).
(A) (d) By clause (b).

(B) First we shall introduce a new definition: Let L ⊆ Lm be an initial segment, ζ an
ordinal, γ < λ and let L[< ζ ] = {t ∈ L : dp(t) < ζ }.

Now suppose that {pα : α < λ+} ⊆ PL[<ζ ]. By clause (A)(c), wlog α < λ+ ∧ (s ∈
Dom(pα)) → |ι(p(s))| ≤ |tr(p(s))|, with strict inequality in case that λ = ℵ0. Fix an
enumeration (sε : ε < ε∗) of L[< ζ ]. For every α < λ+, let uα = {ε : sε ∈ Dom(pα)}. For
s ∈ Dom(pα), let hs,α = tr(pα(s)). By 1.4(D)(7), there is Xs ∈ D such that (α, β) ∈ Xs →
hs,αRpshs,β (unless {α : s ∈ Dom(pα)} is bounded by some γ < λ+, in which case we
choose Xs to be (λ+\γ ) × (λ+\γ )). For every α < λ+, |uα| = |Dom(pα)| < λ. For every
α < λ+, define fα : uα → λ by fα(ζ ) = otp(uα ∩ ζ ), and define g : ∪α<λ+uα → D by
g(ξ) = Xsξ . Let X ∈ D be the set described inHypothesis 0(b)(2) for (g, ( fα, uα : α < λ+)),
we shall prove that for (α, β) ∈ X , s ∈ Dom(pα) ∩ Dom(pβ) → tr(pα(s))Rps tr(pβ(s)).
Given s ∈ Dom(pα) ∩ Dom(pβ), s = sξ for some ξ ∈ uα ∩ uβ , so (α, β) ∈ g(ξ) = Xsξ .
It follows that tr(pα(s))Rps tr(pβ(s)). For such α and β, it will suffice to find a common
upper bound p. This will be done as follows: Let (sε : ε < ζ) list Dom(pα) ∩ Dom(pβ) in
increasing order. For ε ≤ ζ let Lε := {s : s <L sξ for some ξ < ε}. We shall now choose
(p∗

ε , q
∗
ε ) by induction on ε such that:

a. Pm,Lε |� “p∗
ε ≤ q∗

ε .
b. Pm,Lε |� “q∗

ξ ≤ p∗
ε for every ξ < ε′′.

c. Pm,Lε |� “pα � Lε, pβ � Lε are below p∗
ε ”.

d. If ξ < ε and s ∈ Dom(q∗
ξ )\ ∪ι<ξ Dom(q∗

ι ), then (p∗
ι (s), q

∗
ι (s) : ι ∈ [ξ + 1, ε]) is

an initial segment of a play in the game Gζ+1(q∗
ξ (s), Q ps ,hs ) according to a winning

strategy of play I .

There is a subtle issue that needs to be addressed: Recall that in Definition 1.4(D)(5) we
didn’t require tr(q) = tr(p1) ∪ tr(p2). However, this is not a problem. Arriving at ε,
let u0 = ∪{Dom(q∗

ξ ) : ξ < ε)}, so we can choose a function p1ε with domain u0 such

that, for every s ∈ u0, p1ε (s) is a Pm,L<s -name as required in clause (d). Note that by
the definition of the strategic completeness game, if G ⊆ Pm,L<s is generic over V and
V [G] |� “p1ε (s) ≤ r ′′, then in V [G], r can be chosen by player I according to the winning
strategy. Let L<ε := ∪ξ<εLξ , then by clause (C)(b) of the theorem, there is p2ε ∈ Pm,L<ε

such that if s ∈ Dom(p1ε ) then s ∈ Dom(p2ε ) and p2ε � L<s � “p1ε (s) ≤ p2ε (s)
′′. The choice

of p∗
ε is now split to cases:

1. ε = 0: Trivial.
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2. ε is limit: In this case, we choose p∗
ε = p2ε . In order to show that p2ε satisfies clause (b),

one can show by induction on ξ ≤ ε that q∗
ξ � L<ξ ≤ p2ε � L<ξ , using at each step the

choice of p1ε (s). Cases (c) and (d) then follow by the induction hypothesis and the choice
of p2ε (s).

3. ε = ζ + 1: In this case p2ε ∈ PLζ . If sζ ∈ Dom(pα) ∩ Dom(pβ), then we know that
� “pα(sζ ), pβ(sζ ) have a common upper bound rζ

∼
′′. Let p3ε ∈ Pm,Lζ be a condition

above p2ε that forces a value for tr(rζ
∼

), and we can now choose a p∗
ε as required.

Finally, given p∗
ζ constructed above, the existence of a common upper bound for pα and pβ

follows.

(C) See, e.g., [5] for the preservation of (< λ)-strategic completeness under (< λ)-support
iterations, or just work as in the proof of clause (B) (but we rely neither on clause (A)
nor on clause (B)). Note that we use 1.4(D)(8). As for (C)(b), it follows from strategic
completeness for PL<s where s <L t .

(D) In order to avoid awkward notation, we shall write B(. . . , ηζ
∼

, . . .)ζ<ξ instead of

B(. . . , ηζ
∼

(aζ ), . . .)ζ<ξ for suitable aζ ∈ u1ζ .

The proof of the claim is by induction on dp(t). Given t ∈ Lm, we shall prove the following
claim by induction on ζ < λ+:

1. For every p ∈ Pt and ζ < λ+ such that p �Pt “y∼
∈ H≤λ(I∪U) ∧ rk(y

∼
) < ζ ′′ there is

a λ-Borel function Bp such that p �Pt “y∼
= Bp(. . . , ηrζ

∼
, . . .)′′ζ<ξ(p) with rζ ∈ u0t (for some

ξ(p) which is the length of the inputs for the function).
By a standard argument of definition by cases, this claim is equivalent to:
2. For every antichain I = {pi : i < i(∗) ≤ λ} such that pi �Pt “y

∼
∈ H≤λ(I ∪

U) ∧ rk(y
∼
) < ζ ′′ for every i , there is a λ-Borel function BI such that for every i < i(∗),

pi �′′
Pt

y
∼

= BI (. . . , ηrζ
∼

, . . .)′′ζ<ξ(p).

Clause I: ζ = 0.
There is nothing to prove in this case.
Clause II: ζ is a limit ordinal.
We shall prove the second version of the claim. For every i < i(∗), let {pi, j : j < j(i)}

be a maximal antichain above pi such that every pi, j forces a value ζi, j to rk(y
∼
). As p �

rk(y
∼
) < ζ , for every i, j we have ζi, j < ζ . Hence, by the induction, for every i, j there

is Bi, j (. . . , ηrζ,i, j
∼

, . . .)ζ<ξ(i, j) as required. For every i < i(∗) define a name Bi∼
such that

Bi∼
[G] = Bi, j (. . . , ηrζ,i, j

∼
, . . .)ζ<ξ(i, j)[G] iff pi, j ∈ G and pi, j ′ /∈ G for every j ′ < j . Finally

define a name B∼ such that B∼[G] = Bi∼
[G] iff pi ∈ G and for every j < i , p j /∈ G. Now

let i < i(∗), let G be a generic set such that pi ∈ G, then there is a unique j < j(i) such
that pi, j ∈ G. Therefore, B∼[G] = Bi∼

[G] = Bi, j (. . . , ηrζ,i, j
∼

, . . .)ζ<ξ(i, j)[G] = y
∼
[G], hence

pi �′′
Pt

y
∼

= B∼
′′.

Clause III: ζ = ε + 1.
We shall prove the first version of the claim. Let {pi : i < i(∗)} be a aximal antichain

above p such that for every i , pi �Pt “|y∼| = μ′′
i for some μi . Therefore for every i < i(∗)
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there is a sequence (yi,α
∼

: α < μi ) such that pi �′′
Pt

y
∼

= {yi,α
∼

: α < μi }′′. By the

assumption, pi �′′
Pt

rk(yi,α
∼

) < ε′′ for every i and α. By the induction hypothesis, for every

such i and α there is Bi,α(. . . , ηr(ζ,i,α), . . .)ζ<ξ(i,α) as required for yi,α
∼

and pi . Hence for

every i there is a name Bi∼
as required such that pi �Pt “y∼

= Bi∼
′′. Now define a name B∼ such

that B∼[G] = Bi∼
[G] iff pi ∈ G and as before we have p �Pt “y∼

= B∼
′′.

Remark For ζ = 1, let {pi : i < i(∗)} be a maximal antichain above p of elements that
force a value for y

∼
from I ∪ U. Let Y ⊆ I ∪ U be the set of all such values (so |Y | ≤ λ) and

denote by ai the value that pi forces to pi . For every generic G that conatians p, y
∼
[G] = ai

iff pi ∈ G. Therefore it’s enough to show that for every pi there is a name Bi∼
of the right

form such that Bi∼
[G] = true iff pi ∈ G. Therefore it’s enough to show that the truth value

of “p ∈ G ′′ can be computed by a λ−Borel function as above, so it’s enough to compute the
truth value p � Ps ∈ G ∩ Ps for every s < t , which follows from the induction hypothesis.

(E) By the assumption, for every p ∈ Pm and t ∈ Dom(p) there is a λ−Borel function
Bp,t and a sequence (sζ : ζ < ξ(p, t)) of members of u0t such that for every generic
G ⊆ Pm we have Bp,t (. . . , T V (ηsζ

∼
(aζ ) = jζ ), . . .)ζ<ξ(p,t)[G] = true if and only if

p(t) ∈ GQt∼
(for suitable aζ and jζ ). Therefore p ∈ G iff (∧t∈Dom(p)Bp,t (. . . , T V (ηsζ

∼
(aζ ) =

jζ ), . . .)ζ<ξ(p,i))[G] = true, hence we can compute G from (ηt∼
: t ∈ Lm).

(F) Similar to the proof of (D). ��
Properties of the Lλ+−closure

Definition 2.11 (A) Let p ∈ Pm, the full support of pwill be defined as follows: for every s ∈
Dom(p), if p(s) = (tr(p(s)),Bp(s)(. . . , ηt(s,ζ )(aζ ), . . .)ζ<ξ(s)), then the full support
of p will be defined as f supp(p) := ∪s∈Dom(p){t(s, ζ ) : ζ < ξ(s)} ∪ {s}.

(B) For L ⊆ Lm define Pm(L) := Pm � {p ∈ Pm : f supp(p) ⊆ L} with the order
inherited from Pm.

(C) Let L ⊆ Lm, for every s ∈ L , j < λ and a ∈ I 1ps let ps,a, j ∈ Pm be a condition that
represents ηs∼

(a) = j such that Dom(ps,a, j ) = s and let XL := {ps,a, j : s ∈ L, a ∈
I 1ps , j < λ}.
[Note that such ps,a, j exist by Definition 1.4(D)(9). It is not necessarily unique, but it
can be chosen in PL∗ if L∗ is a minimal closed subset of Lm that contains s.]

(D) For L ⊆ Lm define Pm[L] := Lλ+(XL , Pm) (see definition 1.13).

Remark For m ∈ M we may define the partial order ≤∗ on Pm by p ≤∗ q if and only if
q �Pm “p ∈ G∼

′′. As (Pm,≤∗) is equivalent to (Pm,≤), it’s (< λ)-strategically complete

and satisfies (λ, D) − cc and we may replace (Pm,≤) by (Pm,≤∗).

Claim 2.12 Letm ∈ M and L ⊆ Lm.

(A) Pm ⊆ Pm[Lm] is dense and Pm � Pm[Lm], therefore they’re equivalent.
(B) Pm[Lm] is (< λ) strategically complete and satisfies λ+ − cc.
(C) Pm(L) ⊆ Pm and Pm[L] � Pm[Lm].
(D) Pm[L] is (< λ)-strategically complete and satisfies λ+ − cc.
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(E) Let G ⊆ Pm be generic, for each t ∈ L let ηt := ηt∼
[G] and let G+

L := {ψ ∈ Pm[L] :
ψ[G] = true}, then G+

L is Pm[L]-generic over V and V [G+
L ] = V [ηt : t ∈ L].

(F) For L1 ⊆ L2 ⊆ Lm we have Pm(L1) ⊆ Pm(L2) (as partial orders) and Pm[L1] �

Pm[L2].
(G) Ifm,n ∈ M are equivalent (recall Definition 2.6), then Pm(L) = Pn(L) and Pm[L] =

Pn[L].
(H) Let I be a λ+

2 -directed partial order and let {Lt : t ∈ I } be a collection of subsets of
Lm such that s <I t → Ls ⊆ Lt . Let L := ∪t∈I Lt , then Pm[L] = ∪t∈IPm[Lt ].

Proof (A) By claim 2.9, there is a natural embedding of Pm in Pm[Lm]. For p ∈ Pm, denote
by p∗ its image under the embedding. Now let ψ ∈ Pm[Lm], there is p ∈ Pm such
that p �Pm ψ[G∼] = true, therefore for every generic G ⊆ Pm, if p∗[G] = true then

p ∈ G and ψ[G] = true, hence Pm[Lm] |� ψ ≤ p∗ and Pm is dense in Pm[Lm].
(B) By 2.10 (B+C), Pm has these properties, and by the clause (A), Pm[Lm] has these

properties too.
(C) The first part is by the definition of Pm(L). For the second part, first note that, by

definition, Pm[L] ⊆ Pm[Lm] as partial orders. Now note that if ψ, φ ∈ Pm[L] are
compatible in Pm[Lm], then ψ ∧ φ ∈ Pm[L] is a common upper bound, so φ and ψ

are compatible in Pm[L] iff they’re compatible in Pm[Lm]. Therefore if I ⊆ Pm[L] is a
maximal antichain, then I remains an antichain in Pm[Lm]. Furthermore, it’s a maximal
antichain in Pm[Lm]: Suppose towards contradiction that φ ∈ Pm[Lm] is incompatible
with all members of I . Letψ = ∧θ∈I¬θ . As I is an antichain in Pm[Lm]which satisfies
the λ+−c.c., we have that |I | ≤ λ. Asφ ∈ Pm[Lm], there is a genericG ⊆ Pm such that
φ[G] = true. As φ is incompatible with all elements of I , it follows that θ [G] = f alse
for all θ ∈ I . Therefore, ψ ∈ Pm[L]. But ψ is clearly incompatible with all members
of I , a contradiction. Therefore, Pm[L] � Pm[Lm].

(D) By (B) and (C).
(E) We shall first show that G+

Lm
is Pm[Lm]-generic. G+

Lm
is downward-closed, by the

definition of G+
Lm

and of the order of Pm[Lm]. Ifψ, φ ∈ G+
Lm

then (ψ ∧φ)[G] = true,

hence ψ ∧ φ ∈ G+
Lm

, so G+
Lm

is directed. Now let I = {ψi : i < i(∗)} ⊆ Pm[Lm] be
a maximal antichain and let J = {p ∈ Pm : (∃i < i(∗))(p � “ψi [G∼] = true′′)}. If J
is predense in Pm, then there is q ∈ J ∩ G. Let i < i(∗) such that q �Pm “ψi [G∼] =
true′′, then ψi [G] = true hence ψi ∈ G+

Lm
∩ I . Suppose towards contradiction that

J is not predense and let q ∈ Pm be incompatible with all members of J , so q �Pm

“ψi [G∼] = f alse′′ for every i < i(∗). i(∗) ≤ λ (as Pm |� λ+ − c.c.), hence ψ∗ :=
∧i < i(∗)(¬ψi ) ∈ Lλ(XLm ) and ψ∗ ∈ Lλ(XLm , Pm). Obviously, ψ∗ is incompatible
with the members of I , contradicting our maximality assumption. Therefore we proved
that G+

Lm
is Pm[Lm]-generic. Now let L ⊆ Lm, then G+

Lm
∩ Pm[L] is Pm[L]-generic

and G+
Lm

∩Pm[L] = G+
L . We shall now prove that V [G+

L ] = V [ηt : t ∈ L]. We need to

show thatG+
L can be computed from {ηt : t ∈ L}. Let ps,a, j ∈ XL , then ps,a, j ∈ G+

L iff
ps,a, j [G] = true iff ηs∼

[G](a) = j . Therefore we can compute G+
L ∩ XL and G+

L from

{ηs∼ [G] : s ∈ L}. As ηs∼
[G](a) = j iff ps,a, j ∈ G+

L , we can compute {ηs∼ [G] : s ∈ L} in
V [G+

L ], therefore V [G+
L ] = V [ηs∼ : s ∈ L].

(F) If f supp(p) ⊆ L1 then f supp(p) ⊆ L2, hence p ∈ Pm(L1) → p ∈ Pm(L2), and by
the definition of the order, Pm(L1) ⊆ Pm(L2) as partial orders. For the second claim,
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first note that Pm[L1] ⊆ Pm[L2] as partial orders. Now assume that I ⊆ Pm[L1] is
a maximal antichain. By (C), I is a maximal antichain in Pm[Lm], hence in Pm[L2].
Therefore Pm[L1] � Pm[L2].

(G) If m and n are equivalent, then qn = qm, hence Pm = Pn, Pn(L) = Pm(L) and
Pm[L] = Pn[L] for every L .

(H) For every t ∈ I , Lt ⊆ L , therefore Pm[Lt ] ⊆ Pm[L], so ∪t∈IPm[Lt ] ⊆ Pm[L]. In
the other direction, suppose that ψ ∈ Pm[L] is generated by the atoms {ps(i),a(i), j(i) :
s(i) ∈ L, a(i) ∈ I 1ps(i) , j(i), i < λ}. Recall that λ ≤ λ2 ≤ λ+

2 , hence there is i(∗) ∈ I
such that {s(i) : i < λ} ⊆ Li(∗), therefore ψ ∈ Pm[Li(∗)], so Pm[L] ⊆ ∪i∈IPm[Li ]. ��

Operations on members of M
We shall define a partial order ≤M=≤ on M as follows:

Definition 2.13 Letm,n ∈ M, we shall write m ≤ n if:

(A) Lm ⊆ Ln.
(B) Mm = Mn (yes, equal).
(C) qm ≤KP qn.
(D) u0qm,t = u0qn,t for every t ∈ Lm\Mm.
(E) t/E ′

n = t/E ′
m for every t ∈ Lm\Mm.

(F) If t ∈ Mm then vqm,t = {u ∩ Lm : u ∈ vqn,t }, if t ∈ Lm \ Mm then vqn,t = vqm,t .
(G) If t ∈ Mm then {u ∈ vm,t : u ⊆ Mm} = {u ∈ vn,t : u ⊆ Mm}.
(H) If t ∈ Mm and s ∈ Lm\Mm then {u ∈ vm,t : u ⊆ s/E ′

m} = {u ∈ vn,t : u ⊆ s/E ′
n}.

Definition 2.14 Let (mα : α < δ) be an increasing sequence of elements of M with respect
to ≤M, we shall define the union n = ∪α<δmα as follows:

(A) Mn = Mmα (α < δ).
(B) E ′

n = ∪α<δE ′
mα

.
(C) qn will be defined as follows:
1. Ln = ∪α<δLmα .
2. For every t ∈ Lqn , pqn,t = pqmα ,t (for α < δ such that t ∈ Lmα ).
3. For every t ∈ Ln, u0qn,t = ∪{u0qmα ,t : α < δ ∧ t ∈ Lmα } and ū1qn,t = ∪α<δ ū1qmα ,t .

4. For every t ∈ Ln, w0
qn,t = ∪{w0

qmα ,t : α < δ ∧ t ∈ Lmα } and w̄1
qn,t = ∪α<δw̄

1
qmα ,t .

5. ((Bt,b, (st (b, ζ ), at,b,ζ ) : ζ < ξ(t, b)) : b ∈ I 0pt ) : t ∈ Lqn )) will be defined naturally
as the union of the sequences corresponding to the sequence of themα’s.

6. vqn,t = ∪α<δvqmα ,t for every t ∈ Ln.

It’s easy to see that the union is a well defined member ofM.

Claim 2.15 Let (mα : α < δ) and n be as above, then n ∈ M and mα ≤ n for every α < δ.

Proof It’s straightforward to verify thatmα ≤ n for every α < δ. ��
Defintion and claim 2.16 (Amalgamation): Suppose that

(A) m0,m1,m2 ∈ M.
(B) m0 ≤ ml (l = 1, 2).
(C) Lm1 ∩ Lm2 = Lm0 .

We shall define the amalgamationm of m1 and m2 over m0 as follows:

1. E ′
m = E ′

m1
∪ E ′

m2
.
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2. Mm = Mm0 . qm will be defined as follows:
3. Lm is the minimal partial order containing Lm1 and Lm2 .
4. For every t ∈ Lm, pqm,t = pqml ,t

provided that t ∈ Lml .

5. u0qm,t = u0qm1 ,t ∪ u0qm2 ,t (where u
0
qml ,t

= ∅ if t /∈ Lml ).

6. w0
qm,t = w0

qm1 ,t ∪ w0
qm2 ,t (where w0

qml ,t
= ∅ if t /∈ Lml ).

7. ū1qm,t = ū1qm1 ,t ∪ ū1qm2 ,t , w̄
1
qm,t = w̄1

qm1 ,t ∪ w̄1
qm2 ,t , i.e. coordinatewise union (similarly

to 5+6, if t /∈ Lml , the corresponding sequence will be defined as the empty sequence).
8. For t ∈ Lm1 ∪ Lm2 , the λ-Borel functions from 1.5(E) will be defined in the same way

as in the case ofm1 andm2.
9. If t ∈ Lm0 then vqm,t = vqm1 ,t ∪ vqm2 ,t . If t ∈ Lml \ Lm0 (l = 1, 2) then vqm,t = vqml ,t

.

Claim 2.16 m is well defined,m ∈ M andm1,m2 ≤ m.

Proof Straightforward. ��
Remark The amalgamation of a set {mi : 1 ≤ i < i(∗)} overm0 can be defined naturally as
in 2.16.

Existentially closed iteration parameters
Given m ∈ M, we would like to construct extensions m ≤ n which are, in a sense,

existentially closed.

Definition and Observation 2.17 (A) Letm ∈ M, L ⊆ Lm, we shall define the relative
depth of L as follows: dp∗

m(L) := ∪{dpMm (t)+1 : t ∈ L∩Mm} (so this is dpMm (L∩Mm)).
(B)Forγ ∈ Ord weshall defineMec

γ as the set of elementsm ∈ M satisfying the following

property: Let m ≤ m1 ≤ m2, L
dp
ml ,γ := {t ∈ Lml : sup{dpMm (s) : s < t, s ∈ Mm} < γ }

(l = 1, 2), thenPm1(L
dp
m1,γ )�Pm2(L

dp
m2,γ ). Note that in this case we havePm1(L) = Pm2(L)

for every L ⊆ Ldp
m1,γ .

(C)Mec will be defined as the collection of elementsm ∈ M such thatm ∈ Mec
γ for every

γ ∈ Ord .

Observation m ∈ Mec if and only if Pn1 � Pn2 for every m ≤ n1 ≤ n2.

Proof Suppose that m ∈ Mec
γ for every γ and m ≤ m1 ≤ m2. Choose some γ ′ such that

γ ′ > dpMml
(s) for every s ∈ Mml (l = 1, 2) and let γ = γ ′ + 1. Obviously Lml = Ldp

ml ,γ

(l = 1, 2), so Pm1 = Pm1(L
dp
m1,γ ) � Pm2(L

dp
m2,γ ) = Pm2 . In the other direction, suppose that

Pm1 � Pm2 for every m ≤ m1 ≤ m2 and let γ ∈ Ord . As Ldp
ml ,γ is an initial segment of

Lml , it follows that Pml (L
dp
ml ,γ ) � Pml (l = 1, 2), and we have Pm1(L

dp
m1,γ ) � Pm1 � Pm2

and Pm2(L
dp
m2,γ ) � Pm2 . Note that Ldp

m1,γ ⊆ Ldp
m2,γ , so Pm1(L

dp
m1,γ ) ⊆ Pm2(L

dp
m2,γ ) and it

follows that every maximal antichain in Pm1(L
dp
m1,γ ) is a maximal antichain in Pm2(L

dp
m2,γ ),

so m ∈ Mec
γ . ��

Definition 2.18 Let χ be a cardinal, we shall denote byMχ (M≤χ ) the collection of members
m ∈ M such that |Lm| = χ (|Lm| ≤ χ).

Claim 2.19 Let 2λ2 ≤ χ andm ∈ M≤χ , then there is m ≤ n ∈ Mχ such that n ∈ Mec.

Proof Denote by C = Cm the collection of elements n ∈ M such that:

1. m � Mm ≤ n (recall Definition 2.4).
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2. Ln \ Mm = t/E ′′
n for some t .

Definition Let n1,n2 ∈ C , a function h : Ln1 → Ln2 is called a strong isomorphism of n1
onto n2 If:

1. h is an isomorphism of n1 onto n2.
2. h is the identity on Mm.

Definition Let R = Rm be the following equivalence relation on Cm: n1Rn2 iff there is a
strong isomorphism of n1 onto n2.

We shall now estimate the number of R-equivalence relations:

1. As |Ln| ≤ λ2 for everyn ∈ C , oncewe fixMn there are atmost 2λ2 possible isomorphism
types of (Ln,≤Ln ) over Mn.

2. Given such Ln, there are at most 2λ2 possible forcing templates from P.
3. For every n ∈ C there is t such that |Ln| = |Ln\Mm| + |Mm| = |t/E ′′

n | + |Mm| ≤ λ2
(recalling Definition 2.2.A), hence |P(Ln)| ≤ 2λ2 and for every t ∈ Ln there are at most
2λ2 possible values for u0qn,t and w0

qn,t .

4. For every t , ū1qn,t is a function assigning for each s a member of P(I 1s ), so we have at

most (2|I|)|Ln| ≤ 2(|I|+λ2) possible functions. Similar argument applies to w̄1
qn,t as well.

Therefore there are at most 2λ2 R−equivalence classes. Let (nα : α < 2λ2) list all such
classes. For every α < 2λ2 we shall choose the sequence (niα : i < χ) such that each niα is
obtained from nα by the changing the names of the elements in Lnα \ Mm such that the new
sets are pairwise disjoint and also disjoint to Lm (for i < χ). For every i there is tα,i such
that tα,i/E ′′

niα
= Lniα

\Mm and tα,i/E ′′
niα

∩ tα, j/E ′′
n j

α

= ∅. Now let n be the amalgamation of

{m} ∪ {niα : i < χ, α < 2λ2} over m � Mm. Obviously, n ∈ Mχ .
Suppose now that n ≤ n1 ≤ n2. Let F be the collection of functions f such that for some

L1, L2 ⊆ Ln2 :

a. Dom( f ) = L1, Ran( f ) = L2.
b. Mm = Mn ⊆ L1 ∩ L2.
c. |Ll \ Mm| ≤ λ2 (l = 1, 2).
d. t/En2 ⊆ Ll for every t ∈ Ll\Mm.
e. f is the identity on Mm.
f. f is an isomorphism of n2 � L1 onto n2 � L2.

Claim 1: Let f ∈ F , L ′ ⊆ Ln1 , L
′′ ⊆ Ln2 such that |L ′| + |L ′′| ≤ λ2, then there is g ∈ F

such that f ⊆ g, L ′ ⊆ Dom(g) and L ′′ ⊆ Ran(g).

Proof WLOG L ′ ∩ Dom( f ) = ∅ = L ′′ ∩ Ran( f ) and |L ′| = |L ′′| = λ2. Let (ai : i < λ2)

and (b j : j < λ2) list L ′ and L ′′, respectively. For b ∈ Ln2 \ Mm, let Bb := (b/E ′
n2) ∪ Mm,

then m � Mm ≤ n2 � Bb, n2 � Bb ∈ C and n2 � Bb ≤ n2. We shall construct by induction
on i < λ2 an increasing continuous sequence of functions fi ∈ F such that g := ∪ fi will
give the desired function of the claim.

I. i = 0: f0 := f .
II. i is a limit ordinal: fi := ∪ j<i f j .
III. i = 2 j + 1: By the “WLOG” above, L ′′ ∩ Mm = ∅, hence b j ∈ Ln2\Mm. Therefore it

follows thatm � Mm ≤ n2 � Bbj , hence n2 � Bbj ∈ C . Let nα be the representative of the
R-equivalence class ofn2 � Bbj . ByF’s definition, |Dom( f2 j )| ≤ λ2. Sincen is the result
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of an amalgamation that includes niα (i < χ), each niα is R-equivalent to nα and λ2 < χ ,
it follows that for some i < χ , Lniα

\Mm ∩ Dom( f2 j ) = ∅. Since n2 � Bbj Rn
i
α , there is

a strong isomorphism h from n2 � Lniα
= niα onto n2 � Bbj . Therefore fi := f2 j ∪ h is

a well defined function, b j ∈ Ran( fi ) and f2 j ⊆ fi . We shall now show that fi ∈ F :
conditions a, b, c and e are obviously satisfied. If t ∈ Lniα

\Mm, then t/En = t/En2 (as
n ≤ n2) and t/En = t/Eniα

. Therefore t/En2 = t/Eniα
⊆ Lniα

⊆ Dom( fi ). Similarly, if
t ∈ b j/E ′′

n2 then t/En2 = b j/En2 ⊆ Ran( fi ), hence condition d is satisfied. It remains
to show that fi is an isomorphism of n2 � Dom( fi ) onto n2 � Ran( fi ). Note that
b j/E ′′

n2 ∩ Ran( f2 j ) = ∅ (as we may assumeWLOG that b j /∈ Ran( f2 j )), hence fi is an
order preserving bijection, as a union of two such functions (that are identified on Mm).
It’s easy to check that fi is as required.

IV. i = 2 j + 2 : Similar to the previous case, ensuring that a j ∈ Dom( f2 j+1). ��
As F is closed to increasing unions of length λ2, g := ∪i<λ2 fi ∈ F is as required, hence
we’re done proving claim 1.

Denote Lγ := {s ∈ Ln2 : dpn2(s) < γ } (so Ln2 = L |Ln2 |+ ).
Claim 1(+): Let f ∈ F , L ′ ⊆ Ln2 such that |L ′| ≤ λ2 and Ran( f ) ⊆ Ln1 , then there

exists g ∈ F such that f ⊆ g, L ′ ⊆ Dom(g) and Ran(g) ⊆ Ln1 .

Proof Repeat the proof of claim 1 (in particular, stage 2 j + 2). Note that at each stage we
add a set of the form Lniα

to the range. As Lniα
⊆ Ln ⊆ Ln1 and Ran( f ) ⊆ Ln1 , it follows

that Ran(g) ⊆ Ln1 . ��
Claim 2: Let g ∈ F , then g(Dom(g) ∩ Lγ ) = Ran(g) ∩ Lγ .

Proof By induction on γ . ��
Claim 3: Given g ∈ F and γ < |Ln2 |+, the map ĝ is an isomorphism of

Pn2(Dom(g) ∩ Lγ ) onto Pn2(Ran(g) ∩ Lγ ) where ĝ is defined as follows: Given
p ∈ Pn2(Dom(g) ∩ Lγ ), ĝ(p) = q has the domain g(Dom(p)), and for every
g(s) ∈ Dom(q), q(g(s)) = (tr(p(s)),Bp(s)(. . . , ηg(tζ )(aζ ), . . .)ζ<ξ ) where p(s) =
(tr(p(s)),Bp(s)(. . . , ηtζ (aζ ), . . .)ζ<ξ ).

Proof Given g ∈ F , by the previous claim g is a bijection from Dom(g)∩Lγ onto Ran(g)∩
Lγ . As g ∈ F , it’s order preserving and the information of qn2 � (Dom(g)∩Lγ ) is preserved.
Hence clearly ĝ is an isomorphism from Pn2(Dom(g) ∩ Lγ ) onto Pn2(Ran(g) ∩ Lγ ). ��
Claim 4: Pn2(Lγ ∩ Ln1) � Pn2(Lγ ).

Proof By induction on γ . Arriving at stage γ , note that Pn2(Lγ ∩ Ln1) ⊆ Pn2(Lγ ) (as partial
orders). Suppose that p1, p2 ∈ Pn2(Lγ ∩Ln1) are compatible inPn2(Lγ ), and letq ∈ Pn2(Lγ )

be a common uppper bound. Since | f supp(p1)|, | f supp(p2)| ≤ λ, there is L ′ such that
f supp(p1) ∪ f supp(p2) ⊆ L ′ ⊆ (Lγ ∪ Ln1), |L ′| ≤ λ2 and L ′ is En2 -closed. Therefore
p1, p2 ∈ Pn2(L

′). Similarly, there is L ′′ ⊆ Lγ such that |L ′′| ≤ λ2, f supp(q)∪L ′ ⊆ L ′′ and
L ′′ is En2 -closed, henceq ∈ Pn2(L

′′). Let f be the identity function on L1 = L2 = ∪{t/En2 :
t ∈ L ′\Mm}. Note that |Li | ≤ λ2 (i = 1, 2) and f ∈ F . Let L ′

1 := ∪{t/En2 : t ∈ L ′′\Mm},
then |L ′

1| ≤ λ2, hence by claim 1(+), there is g ∈ F such that f ⊆ g such that L ′
1 ⊆

Dom(g) and Ran(g) ⊆ Ln1 . As f supp(q) ∪ f supp(p1) ∪ f supp(p2) ⊆ Dom(g) ∩ Lγ ,
we have p1, p2, q ∈ Pn2(Dom(g) ∩ Lγ ), hence ĝ(p1), ĝ(p2), ĝ(q) ∈ Pn2(Ran(g) ∩ Lγ )

(in particular, ĝ(q), ĝ(p1), ĝ(p2) are well defined). By the choice of g, ĝ(p1) = p1 and
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ĝ(p2) = p2. By claim 3, Pn2(Ran(g) ∩ Lγ ) |� p1, p2 ≤ ĝ(q). As Ran(g) ⊆ Ln1 ,
ĝ(q) ∈ Pn2(Lγ ∩ Ln1), hence p1 and p2 are compatible in Pn2(Lγ ∩ Ln1). Therefore, if
I ⊆ Pn2(Lγ ∩ Ln1), then I remains an antichaim in Pn2(Lγ ).

Suppose now that I ⊆ Pn2(Lγ ∩ Ln1) is a maximal antichain, and suppose towards
contradiction that q ∈ Pn2(Lγ ) is incompatible with all members of I . We can show by
induction on γ that Pn1(Lγ ∩ Ln1) = Pn2(Lγ ∩ Ln1). Since Lγ ∩ Ln1 is an initial segment of
Ln1 , Pn1(Lγ ∩ Ln1) = Pn1�(Lγ ∩Ln1 ) �Pn1 , hence Pn2(Lγ ∩ Ln1) |� λ+ −c.c. and |I | ≤ λ ≤
λ2. Let (pi : i < λ2) enumerate I ’s members, then there is L ′ ⊆ Lγ ∩Ln1 such that |L ′| ≤ λ2
and ∪i<λ2 f supp(pi ) ⊆ L ′, hence I ⊆ Pn2(L

′). Define L ′′ and choose f and g as before.
Again, ĝ : Pn2(Lγ ∩Dom(g)) → Pn2(Lγ ∩ Ran(g)) is an isomorphism, I ∪{q} ⊆ Dom(ĝ)
and ĝ is thee identity on I . Hence ĝ(q) is incompatible inPn2(Lγ ∩Ran(g))with all members
of I . As before, ĝ(q) ∈ Pn2(Lγ ∩ Ln1), therefore, in order to get a contradiction, it’s enough
to show that ĝ(q) is incompatible in Pn2(Lγ ∩ Ln1) with all members of I . Suppose that
for some p ∈ I , r ∈ Pn2(Lγ ∩ Ln1) we have p, ĝ(q) ≤ r . Since g−1 ∈ F , as in previous
arguments, there is g−1 ⊆ h ∈ F such that ĥ(r), ĥ(ĝ(q)) are well-defined and ĥ(p) = p,
ĥ(ĝ(q)) = q . Hence p and q are compatible in Pn2(Lγ ∩ Ran(h)) and therefore in Pn2(Lγ ),
contradicting the assumption. This proves claim 4. ��

Claim 5: Pn1 � Pn2 .

Proof By the previous claim, for γ = |Ln2 |+ wegetPn2(Ln1) = Pn2(Lγ ∩Ln1)�Pn2(Lγ ) =
Pn2 . We can show by induction on δ that Pn1(Lδ ∩ Ln1) = Pn2(Lδ ∩ Ln1), hence for δ = γ

we get Pn1 � Pn2 . This proves claim 2.19. ��
The following observation will be useful throughout the rest of this paper:

Observation 2.20 Let n ∈ Mec and n ≤ n1 ≤ n2, then for every L ⊆ Ln1 , Pn1 [L] = Pn2 [L].
Proof n1 ≤ n2, hence for L ⊆ Ln1 , the set XL in definition 2.11(c) is the same for n1 and
n2. Let ψ ∈ Lλ(XL), since Pn1 �Pn2 , there is a generic set G ⊆ Pn2 such that ψ[G] = true
iff there is a generic set H ⊆ Pn1 such that ψ[H ] = true. Similarly, if an implication of the
form “ψ[G] = true → φ[G] = true′′ holds for every generic G ⊆ Pn2 , then it holds for
every generic H ⊆ Pn1 , and vice versa. Therefore, Pn1 [L] = Pn2 [L]. ��
Claim 2.21 Suppose that

(A) m1,m2 ∈ Mec.
(B) Ml = Mml (l = 1, 2).
(C) h : M1 → M2 is an isomorphism fromm1 � M1 onto m2 � M2.

then Pm1 [M1] is isomorphic to Pm2 [M2].
Proof WLOG M1 = M2 (denote this set by M), Lm1 ∩ Lm2 = M and h is the identity. Let
m0 := m1 � M = m2 � M , then m0 ≤ m1,m2 and Lm0 = Lm1 ∩ Lm2 , therefore, by 2.16,
there is m ∈ M such that m is the amalgamation of m1 and m2 over m0 and m1,m2 ≤ m.
By the definition of Mec, as ml ∈ Mec, ml ≤ m (l = 1, 2) and M ⊆ Lml (l = 1, 2), it
follows that Pm1 [M] = Pm[M] = Pm2 [M]. ��

The Corrected Iteration
We shall now describe how to correct an iterationPm in order to obtain the desired iteration

for the main result.
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Definition 2.22 Let m ∈ M, we shall define the corrected iteration P
cr
m as Pn[Lm] for m ≤

n ∈ Mec (we’ll show that P
cr
m is indeed well-defined). For L ⊆ Lm, define P

cr
m [L] := Pn[L]

for n as above.

Claim 2.23 (A) P
cr
m [L] is well-defined for everym ∈ M and L ⊆ Lm.

(B) P
cr
m [Mm] is well-defined for everym ∈ M and depends only onm � Mm.

(C) Ifm ≤ n then P
cr
m � P

cr
n .

(D) Ifm ≤ n and L ⊆ Lm, then P
cr
m [L] = P

cr
n [L].

Proof (A) By claim 2.19, there is m ≤ n ∈ Mec, so it’s enough to show that the definition
does not depend on the choice of n. Given n1,n2 ∈ Mec such that m ≤ nl , we have to
show that Pn1 [Lm] = Pn2 [Lm]. WLOG Ln1 ∩ Ln2 = Lm. Let n be the amalgamation of
n1,n2 overm. Sincen1 ∈ Mec,n1 ≤ n1 ≤ n and Lm ⊆ Ln1 , we getPn1 [Lm] = Pn[Lm].
Similarly,Pn2 [Lm] = Pn[Lm], therefore,Pn1 [Lm] = Pn2 [Lm]. The argument forP

cr
m [L]

is similar.
(B) Suppose that m1 � Mm1 is isomorphic to m2 � Mm2 and choose nl (l = 1, 2) such that

ml ≤ nl ∈ Mec. Now,m1 � Mm1 = n1 � Mm1 is isomorphic to n2 � Mm2 = m2 � Mm2 ,
hence by claim 2.21, Pn1 [Mm1 ] is isomorphic to Pn2 [Mm2 ]. Moreover, the proof of
2.21 shows that if m1 � Mm1 = m2 � Mm2 , then Pn1 [Mm1 ] = Pn2 [Mm2 ], therefore
P
cr
m1

[Mm1 ] = P
cr
m2

[Mm2 ].
(C) Choose n ≤ n∗ such that n∗ ∈ Mec, then P

cr
n = Pn∗ [Ln]. As m ≤ n∗, it follows that

P
cr
m = Pn∗ [Lm]. By 2.12(F), P

cr
m = Pn∗ [Lm] � Pn∗ [Ln] = P

cr
n .

(D) Choose (m ≤)n ≤ n∗ ∈ Mec, then by definition we get P
cr
m [L] = Pn∗ [L] = P

cr
n [L]. ��

The main result

Definition 2.24 Let q be a (λ, D)-iteration template such that |Lq| ≤ λ1 and |w0
t | ≤ λ for

every t ∈ Lq.
We call m = mq ∈ M the iteration parameter derived from q if:

a. qm = q.
b. Mm = Lq.
c. E ′

m = ∅.
d. For every t ∈ Lq, vt = [u0t ]≤λ.

Definition 2.25 Givenm ∈ M, we define the forcing notions (P′
t : t ∈ Lm ∪{∞}) = (P′

m,t :
t ∈ Lm ∪ {∞}) as follows: Fix m ≤ n ∈ Mec and let P

′
t := Pn[{s ∈ Lm : s < t}] (so

P
′
t = P

cr
m [{s ∈ Lm : s < t}] for t ∈ Lm and P

′∞ = P
cr
m ). Similarly, let P

′′
t := Pn[{s ∈ Lm :

s ≤ t}].
Main conclusion 2.26 Let q be a (λ, D)-iteration template. The sequence of forcing notions
(P′

t : t ∈ Lq ∪ {∞}) from 2.25 has the following properties:

(A) (P′
t : t ∈ Lq ∪ {∞}) is �-increasing, and s < t ∈ L+

q → P
′
s � P

′′
s � P

′
t .

(B) ηt∼
is a P

′′
t -name of a function from I 1pt to λ.

(C) (ηs∼
: s < t) is generic for P

′
t .

(D) P
′
t is (< λ)-strategically complete and satisfies (λ, D)-cc.

(E) If t ∈ Lq ∪{∞} and every set of≤ λ elements below t has a common upper bound s < t ,
then P

′
t = ∪s<tP

′
s .

(F) |P′∞| ≤ (�t∈Lq (|I 1t | + λ))λ.
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(G) IfU1,U2 ⊆ Lq andn � U1 is isomorphic ton � U2, thenP
cr
m [U1] = Pn[U1] is isomorphic

to P
cr
m [U2] = Pn[U2]. Moreover, if U ⊆ Lq is closed under weak memory (as is always

the case), then P
cr
m�U is isomorphic to P

cr
m [U ]. It follows that for every t ∈ Lq, P

cr
m�L<t

is isomorphic to P
cr
m [L<t ] = P

′
t .

(H) For each t ∈ Lq , let V t := V [. . . , ηs∼ , . . .]s∈u0q,t
, then ηt∼

is “somewhat generic” for Q
V t

t∼
in the following sense: If I is an antichain in Q

V t

t∼
that remains maximal in V Pn for every

n such that m ≤ n ∈ Mec, then ηt∼
satisfies some p ∈ I .

[This means that if I = {pε : ε < ε(∗)} where each pε has the form
(tr(pε), B pε (. . . , ηtζ

∼
(aζ ), . . .)ζ<ξ ), then �′′

Pcrm
There is some ε < ε(∗) such that ηt∼

extends

tr(pε) and belongs to B pε (. . . , ηtζ
∼

(aζ ), . . .)ζ<ξ ”.]
[The reason for the absoluteness requirement is that inRequirement 1.16we didn’t demand

the property of being a maximal antichain to be absolute (this would seriously restrict the
range of forcing notions covered).]
Proof (A) By 2.12(F).
(B) By the definition of ηα∼

.

(C) By the definition of Pn[{i : i < α}]. More generally, this is true by the definition of the
Lλ+ -closure, as (ηα∼

: α ∈ L) is generic for Pn[L] for every L ⊆ δ∗.
(D) By 2.12(D).
(E) By 2.12(F), ∪s<tP

′
s ⊆ P

′
t . In the other direction, suppose that ψ ∈ P

′
t = Pn[{s :

s < t}] and let {ps(i),a(i), j(i) : i < λ} ⊆ XL<t be the set that Lλ+ -generates ψ . By
our assumption, the set {s(i) : i < λ} has a common upper bound s′ < t . Hence
{ps(i),a(i), j(i) : i < λ} ⊆ XL<s′ , so ψ ∈ Pn[{s : s < s′}] = P

′
s′ and equality follows.

(F) As P
′∞ = Pn[Lq] = Lλ+(XLq , Pn) (recall definition 2.11), the claim follows by the

definition of XLq and the definition of the Lλ+ -closure.
(G) Choose n ≥ m such that n ∈ Mec and Mn = Lq, therefore, by claim 3.12 in the next

section (the proof of which does not rely on the current claim), Pn[U1] is isomorphic
to Pn[U2] where (n,n,U1,U2) here stands for (m1,m2, M1, M2) there. For the second
part of the claim, choose m � U ≤ n′ ∈ Mec, then n′ � U = m � U = n � U , and as
before, P

cr
m [U ] = Pn[U ] is isomorphic to Pn′ [U ] = P

cr
m�U .

(H) Follows from the definition and the absoluteness requirement. ��

3 Proving themain claim

Existence of an existentially closed extension of adequate cardinality for a given m ∈ M
Our goal will be to show that for every m ∈ M, if Lm = Mm and n = m � M where
M ⊆ Mm, then P

cr
n � P

cr
m . In particular, in Conclusion 3.13 we get that for every U ⊆ δ∗

closed under weak memory, P
cr
m�U � P

cr
m = Pδ∗ .

Remark Note that we don’t rely in this section on 2.26.

Definition 3.1 (A) m ∈ M is wide if for every t ∈ Lm \ Mm there are tα ∈ Lm \ Mm
(α < λ+) such that:

1. m � (tα/E ′
m) is isomorphic to m � (t/E ′

m) over Mm.
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2. tα/E ′′
m �= tβ/E ′′

m for every α < β < λ+.
(B) m ∈ M is very wide if m satisfies the above requirements with λ+ replaced by |Lm|.
(C) m ∈ M is full if for every m � Mm ≤ n such that E ′′

n consists of one equivalence class,
there is t ∈ Lm\Mm such that n is isomorphic to m � (t/E ′

m) over Mm.

Remark In the proof of theorem 2.19, we constructeed n ∈ Mec by amalgamating (niα :
i < χ, α < 2λ2). Therefore, for every t ∈ Ln\Mn there are i and α such that t belongs to
n � t/En = niα . As n includes (niα : i < χ), by choosing representatives ti ∈ Lniα

\ Mn

(i < χ) we get that n � (t/E ′
n) is isomorphic to n � (ti/E ′

n) for every i < χ . Since
ti/E ′

n �= t j/E ′
n for every i < j < χ and |Ln| = χ , it follows that n is very wide. By the

construction of n, it’s also easy to see that n is full.

Definition 3.2 Let L ⊆ Lm and q ∈ Pm, we say that p is the projection of q to L and write
p = πL(q) if the following conditions hold:

a. Dom(p) = Dom(q) ∩ L .
b. If s ∈ Dom(p) then:
1. {Bp(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wp(s),ι : ι < ι(p(s))} = {Bq(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wq(s),ι :

ι < ι(q(s)) ∧ {tζ : ζ ∈ Wq(s),ι} ⊆ L}.
2. tr(p(s)) = ∪ιtr(Bq(s),ι(. . . , ηtζ

∼
(aζ ), . . .)ζ∈Wq(s),ι ) for ι < ι(q(s)) and {tζ : ζ ∈

Wq(s),ι} ⊆ L .

Observation 3.3 Letm ∈ M, L ⊆ Lm and q ∈ Pm.

a. The projection p = πL(q) exists and p ∈ Pm(L).
b. πL(q) ≤ q.

Definition 3.4 Letm ∈ M, denote by Fm the collection of functions f having the following
properties:

a. There are L1, L2 ⊆ Lm such that f is an isomorphism from m � L1 onto m � L2.
b. Mm ⊆ L1 ∩ L2.
c. For every t ∈ Lm \ Mm, if t ∈ Ll (l = 1, 2) then t/E ′

m ⊆ Ll .
d. |{t/E ′

m : t ∈ Ll \ Mm}| ≤ λ.
e. f is the identity on Mm.

Claim 3.5 A. Let m ∈ M be wide. For every f ∈ Fm and X ⊆ Lm, if |X | ≤ λ then there is
g ∈ Fm such that:

1. f ⊆ g.
2. Dom(g) = Ran(g).
3. X ⊆ Dom(g).

B. If g ∈ Fm satisfies Dom(g) = Ran(g), then g+ := g ∪ idLm\Dom(g) is an automorphim
ofm.

Proof A. By the proof of claim 1 in 2.19, f can be extended to a function f ′ ∈ Fm such that
X ⊆ Dom( f ′). It’s enough to show that for every f ′ ∈ Fm there is f ′ ⊆ g ∈ Fm such that
Dom(g) = Ran(g). The argument is simiar to claim 1 in 2.19. Obviously, Dom( f ′) and
Ran( f ′) are each a union of Mm with pairwise disjoint sets of the form t/E ′′

m, and for each
such t/E ′′

m exactly one of the following holds:

a. t/E ′′
m ⊆ Dom( f ′) ∩ Ran( f ′).
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b. t/E ′′
m ⊆ Dom( f ′) is disjoint to Ran( f ′).

c. t/E ′′
m ⊆ Ran( f ′) is disjoint to Dom( f ′).

As m is wide, for every t/E ′′
m as in (b) there are λ+ tα ∈ Lm \ Mm as in definition 3.1.

Therefore there is f ′ ⊆ f1 ∈ Fm such that Dom( f ′) ⊆ Ran( f1) and Ran( f ′) ⊆ Dom( f1).
Proceed by induction to get a sequence f ′ ⊆ f1 ⊆ . . . fn ⊆ . . . of functions in Fm such
that Dom( fn) ⊆ Ran( fn+1) and Ran( fn) ⊆ Dom( fn+1) for every n. Obviously, g :=
∪n<ω fn ∈ Fm is as required.

B. This is easy to check. ��
Remark By the last claim, given f ∈ Fm, we may extend it to g ∈ Fm such that Dom(g) =
Ran(g), and g may be extended to automorphism h := g+ of m. As in claim 3 of 2.19, h
induces an automorphism ĥ of Pm, and obviously f̂ := ĥ � Pm(Dom( f )) is an isomorphism
of Pm(Dom( f )) to Pm(Ran( f )).

Definition 3.6 Given m ∈ M, ζ < λ+, tl ∈ Lm \ Mm (l = 1, 2) and sequences s̄l of length
ζ of elements of tl/E ′′

m, we shall define by induction on γ when (t1, s̄1) and (t2, s̄2) are
γ -equivalent in m. We may write s̄l instead of (tl , s̄l), as the choice of tl doesn’t matter as
long as it’s E ′′

m-equivalent to the elements of s̄l (and s̄l �= ()).
A. γ = 0 : Let Ll = cl(Mm ∪ Ran(s̄l)) (recalling Definition 1.9 for l = 1, 2. (t1, s̄1) is

0−equivalent to (t2, s̄2) if there is a function h : L1 → L2 such that the following hold:

1. h is an isomorhism from m � L1 to m � L2.
2. h maps s̄1 onto s̄2.
3. h is the identity on Mm.
4. h induces an isomorphism from Pm(L1) to Pm(L2).

B. γ is a limit ordinal: s̄1 is γ -equivalent to s̄2 iff they’re β-equivalent for every β < γ .
C. γ = β + 1: s̄1 is γ -equivalent to s̄2 if for every ε < λ+, l ∈ {1, 2} and a sequence

s̄′
l of length ε of elements of tl/E ′′

m, there exists a sequence s̄
′
3−l of length ε of elements of

t3−l/E ′′
m such that s̄1̂s̄′

1 and s̄2̂s̄
′
2 are β-equivalent.

Definition 3.7 Let β be a limit ordinal, Fm,β is the collection of functions f such that there
is a sequence (t li , s̄

l
i : 1 ≤ l ≤ 2, i < i(∗)) satisfying the following conditions:

A. i(∗) < λ+.
B. For l = 1, 2, (t li : i < i(∗)) is a sequence of elements of Lm\Mm such that for every

i < j < i(∗), t li and t
l
j are not E

′′
m-equivalent.

C. s̄li is a sequence of length ζ(i) < λ+ of elements of t li /E
′′
m.

D. s̄1i and s̄2i are β-equivalent.
E. f is an isomorphism from m � L1 to m � L2 where Ll = ∪i<i(∗)Ran(s̄li ) ∪ Mm

(l = 1, 2).
F. For every i < i(∗), f maps s̄1i onto s̄2i .
G. f is the identity on Mm.

Claim 3.8 Letm ∈ M be wide and suppose that:

A. m1 ≤ m.
B. For every t ∈ Lm \ Lm1 , ζ < λ+ and a sequence s̄ of length ζ of elements of t/E ′′

m, there
is a sequence (ti , s̄i : i < λ+) such that:

1. ti ∈ Lm1 \ Mm1 .
2. If i < j < λ+ then ti/E ′

m �= t j/E ′
m1

.
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3. s̄i is a sequence of length ζ of elements of ti/E ′′
m1

.
4. (ti , s̄i ) is 1−equivalent to (t, s̄) in m.

Then Pm1 � Pm.

Proof We shall freely use the results from Section 4 (of course, it should be noted that none
of the relevant results in Section 4 relies on the current claim). Specifically, we shall use the
fact that a function f ∈ Fm,β induces an isomorphism f̂ from Pm(L1) to Pm(L2) for L1 and
L2 as in definition 3.7 (see Claim 4.3). Now, note that if f ∈ Fm,β for 0 < β and L ⊆ Lm
such that |L| ≤ λ, then by the definition of 1−equivalence, f can be extended to a function
g ∈ Fm,0 such that L ⊆ Dom(g). Hence ĝ is an isomorphism with domain Pm(L1 ∪ L)

such that f̂ ⊆ ĝ. ��
Claim 1: If 0 < β then f̂ preserves compatibility and incompatibility.

Proof Assume that p, q ∈ Dom( f̂ ) and r is a common upper bound in Pm. If r ∈ Dom( f̂ ),
then since f̂ is order preserving, then f̂ (p) and f̂ (q) have a common upper bound. If
r /∈ Dom( f̂ ), then use the definition of Fm,β to extend f̂ to a function ĝ such that ĝ(r) is
defined (and g ∈ Fm,0), and repeat the previous argument. The proof in the other direction
repeats the same arguments for f −1. ��
Claim 2: Suppose that i(∗) < λ+, pi ∈ Pm1 (i < i(∗)) and p ∈ Pm, then there is p∗ ∈ Pm1

such that:

1. Pm |� pi ≤ p iff Pm |� pi ≤ p∗.
2. For every i < i(∗), p and pi are incompatible in Pm iff p∗ and pi are incompatible in

Pm.

Proof Note that if p ∈ Pm then p ∈ Pm1 iff f supp(p) ⊆ Lm1 , therefore we need to
find p∗ ∈ Pm satisfying the requirements of the claim such that f supp(p∗) ⊆ Lm1 . Let
L1 ⊆ Lm1 be a set containing (∪i<i(∗) f supp(pi )) ∪ Mm and closed under weak memory,
such that |L1 \ Mm| ≤ λ (such L1 exists, recalling that i(∗) < λ+ and |w0

t | ≤ λ), then
{pi : i < i(∗)} ⊆ Pm(L1). For every pi that is compatible with p in Pm, let qi be a common
upper bound. As before, there is L2 ⊆ Lm containing L1 ∪ (∪ f supp(qi )) ∪ f supp(p) and
closed under weak memory such that |L2\Mm| ≤ λ and Pm(L2) contains p and all of the
qi . We shall prove that it’s enough to show that there is f ∈ Fm,1 such that L2 ⊆ Dom( f ),
Ran( f ) ⊆ Lm1 and f is the identity on L1. For such f define p∗ := f̂ (p). Now f̂ is the
identity on {pi : i < i(∗)} and f̂ (p) ∈ Pm1 . By a previous claim, f̂ preserves order and
incompatibility, hence p∗ is as required. It remains to find f as above.WLOG L2∩Lm1 ⊆ L1.
Let (t j : j < j(∗)) be a sequence of representatives of pairwise E ′′

m-inequivalent members
of Lm\Mm such that every t ∈ L2\L1 is E ′′

m-equivalent to some t j . For every such t j , let s̄ j
be the sequence of members of t j/E ′′

m in L2 \L1. By the assumption, for every pair (s̄ j , t j ) as
above there exist λ+ pairs ((s̄ j,i , t j,i ) : i < λ+)which are 1−equivalent as in the assumption
of the above claim. By induction on j < j(∗) < λ+ choose the pair (s̄ j,i( j), t j,i( j)) such that
t j,i( j)/E ′′

m1
are with no repetitions (this is possible as j(∗) < λ+). Now define f ∈ Fm,1 as

the function extending id � L1 witnessing the equivalence of the pairs we chose. Obviously,
f is as required. ��
Claim 3: Pm1 � Pm.

Remark We shall use Section 4 in the following proof.
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Proof We shall prove by induction on γ that Pm1(L
dp
m1,γ ) � Pm(Ldp

m,γ ). For γ large enough
we’ll get Pm1 � Pm. ��

First case: γ = 0.
Denote E = E ′′

m � Ldp
m,γ . E is an equivalence relation and E � Ldp

m1,γ = E ′′
m1

� Ldp
m1,γ .

Now the claim follows by the fact that Pm(Ldp
m,γ ) (and similarly Pm1(L

dp
m1,γ )) can be

represented as a product with < λ support of {Pm(t/E) : t ∈ Ldp
m,γ }.

Second case: γ = β + 1.
Denote Mβ := {t ∈ Mm : dp∗

m(t) = β}, then Mβ ’s members are pairwise incomparable.

Claim: Pm1(L
dp
m1,β

∪ Mβ) � Pm(Ldp
m,β ∪ Mβ).

Proof We shall prove the claim by a series of subclaims. ��
Subclaim: Given p, q ∈ Pm1(L

dp
m1,β

∪ Mβ), Pm1(L
dp
m1,β

∪ Mβ) |� p ≤ q if and only if

Pm(Ldp
m,β ∪ Mβ) |� p ≤ q .

Proof Note that Ldp
m1,β

∪Mβ and Ldp
m,β ∪Mβ are initial segments of Lm1 and Lm, respectively.

Note also that if n ∈ M and L1 ⊆ L2 ⊆ Ln, then Pn�L1 � Pn�L2 , and if L ⊆ Ln is an initial

segment thenPn(L) = Pn�L . Obviously, L
dp
m1,β

and Ldp
m,β are initial segments of Lm1 and Lm,

respectively. Now the claim follows by the definition of the forcing’s partial order (definition
1.8) and the induction hypothesis. ��
Subclaim:Given p1, p2 ∈ Pm1(L

dp
m1,β

∪Mβ), p1 and p2 are compatible in Pm1(L
dp
m1,β

∪Mβ

if and only if theey’re compatible in Pm(Ldp
m,β ∪ Mβ).

Proof By the previous subclaim, if p1 and p2 are compatible in Pm1(L
dp
m1,β

∪ Mβ) then

they’re compatible in Pm(Ldp
m,β ∪ Mβ). Let us now prove the other direction. Suppose that

p ∈ Pm(Ldp
m,β ∪ Mβ) is a common upper bound of p1 and p2 in Pm(Ldp

m,β ∪ Mβ). As in the
proof of claim 2 above, find f ∈ Fm,1 such that f supp(p) ∪ f supp(p1) ∪ f supp(p2) ⊆
Dom( f ), f � ( f supp(p1)∪ f supp(p2)∪Mβ) is the identity and Ran( f ) ⊆ Lm1 . Note that

if t ∈ Dom( f )∩Ldp
m,β then f (t) ∈ Ldp

m1,β
. Since f ((Dom( f )∩Ldp

m,β)∪Mβ) ⊆ Ldp
m1,β

∪Mβ , it

follows that f̂ (p) ∈ Pm1(L
dp
m1,β

∪Mβ), and as before, it’s a common upper bound as required.

Claim: Pm1(L
dp
m1,β

∪ Mβ) � Pm(Ldp
m,β ∪ Mβ).

Proof Let I ⊆ Pm1(L
dp
m1,β

∪Mβ) be a maximal antichain and suppose towards contradiction

that p ∈ Pm(Ldp
m,β ∪ Mβ) contradicts in Pm(Ldp

m,β ∪ Mβ) all elements of I . As before,
choose f ∈ Fm,1 which is the identity on Mβ and on f supp(q) for every q ∈ I , such that

Ran( f ) ⊆ Lm1 (hence f (Dom( f ) ∩ Ldp
m,β) ⊆ Ldp

m1,β
). Now f̂ (p) ∈ Pm1(L

dp
m1,β

∪ Mβ)

and f̂ is order preserving, hence f̂ (p) contradicts all members of I in Pm1(L
dp
m1,β

∪ Mβ),

contradicting our assumption. Therefore I is a maximal antichain in Pm(Ldp
m,β ∪ Mβ) and

Pm1(L
dp
m1,β

) � Pm(Ldp
m,β ∪ Mβ). ��

We shall now continue with the proof of the induction.
Denote L∗ = Ldp

m,γ \(Ldp
m,β ∪ Mβ) and denote by E the collection of pairs (s1, s2) such

that s1, s2 ∈ Ldp
m,γ \(Ldp

m,β ∪ Mβ) and s1/E ′′
m = s2/E ′′

m, so E is an equivalence relation. Note
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also that if s1 and s2 are not E-equivalent, then they’re incomparable. Now observe that the
following are true:

1. Suppose that s ∈ L∗, t ∈ Lm and t < s. If t /∈ Ldp
m,β , then there is r ∈ Mβ such that

r ≤ t . Therefore, either t ∈ Mβ or t ∈ L∗ and tEs, hence Lm,<s ⊆ Ldp
m,β ∪ Mβ ∪ (s/E).

2. Similarly, if s ∈ L∗ ∩ Lm1 , then Lm1,<s ⊆ Ldp
m1,β

∪ Mβ ∪ (s/E).

Let {Xε : ε < ε(∗)} be the collection of E-equivalence classes and let U1 = {ε : Xε ⊆
Ldp
m1,γ }, Z = Ldp

m,β ∪ {Xε : ε /∈ U1} ∪ Mβ , Y = Ldp
m,β ∪ {Xε:ε∈U1} ∪ Mβ .

It’s easy to see that:

1. Ldp
m1,γ = ∪{Xε : ε ∈ U1} ∪ Ldp

m1,β
∪ Mβ .

2. Z ∩ Ldp
m1,γ = Ldp

m1,β
∪ Mβ .

3. Z ∪ Ldp
m1,γ = Ldp

m,γ ∪ Mβ .

4. Z ∩ Y = Ldp
m,β ∪ Mβ .

5. Z ∪ Y = Ldp
m,γ .

By observation (1) (the first one), Y and Z are initial segments of Lm, and if s ∈ Z\Y and
t ∈ Y\Z , then t and s are incomparable. Note also that Pm(Y ∪ Z) = Pm(Ldp

m,γ ). Since Y is

an initial segment, Pm(Y )�Pm(Y ∪ Z). Let Y1 = Ldp
m1,γ ∪Mβ , Y2 = Ldp

m,β ∪Mβ , obviously

Y2 and Y1 ∪ Y2 are initial segments of Lm. Let Y0 = Y1 ∩ Y2, then Pm1(Y0) = Pm1(L
dp
m1,β

∪
Mβ) � Pm(Ldp

m,β ∪ Mβ) = Pm(Y2). Since Pm1(Y0) = Pm(Y0), we get Pm(Y0) � Pm(Y2).
Note also that Y1 \Y0 is disjoint to Mm, Y0 is an initial segment of Y1 and if t ∈ Y1\Mm then
(t/E ′′

m) ∩ Lm,<s ⊆ Y1.
Finally, the desired conclusion will be derived from the following two claims:
Claim 3 (1) Suppose that Y1, Y2, Y3 ⊆ Lm and Y0 = Y1 ∩ Y2, then Pm(Y1) � Pm(Y3) if

the following conditions hold:

1. Y2 ⊆ Y3 are initial segments of Lm.
2. Y1 ⊆ Y2 and Y0 is an initial segment of Y1.
3. Pm(Y0) � Pm(Y2).
4. Y1 \ Y0 ∩ Mm = ∅.
5. If t ∈ Y1\Mm then t/E ′′

m ∩ Lm,<t ⊆ Y1.

Claim 3 (2): Pm1(L1) = Pm2(L1) � Pm2 if the following conditions hold:

1. m1 ≤ m2.
2. L0 ⊆ L1 ⊆ Lm1 .
3. L0 is an initial segment of L1.
4. Pm1(L0) = Pm2(L0).
5. Pml (L0) � Pml for l = 1, 2.
6. if t ∈ L1\L0 then t /∈ Mm2 and Lm1,<t ∩ (t/Em1) = Lm2,<t ∩ (t/Em) ⊆ L1.

By Claim 3(2), with (m1,m, Y0, Y1) standing for (m1,m2, L0, L1) in the claim, we get
Pm1(Y1) = Pm(Y1) � Pm. By claim 3(1), it follows that Pm(Ldp

m1,γ ) = Pm(Y1) � Pm(Y1 ∪
Y2) = Pm(Y ) � Pm(Y ∪ Z) = Pm(Ldp

m,γ ). Together we get Pm1(L
dp
m1,γ ) = Pm1(Y1) =

Pm(Y1) � Pm(Ldp
m,γ ).

Proof of claim 3 (1): We shall prove by induction on γ that if (Y0, Y1, Y2, Y3) are as in
the claim’s assumptions and dp(Y1) ≤ γ then:
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1. Pm(Y1) � Pm(Y3).
2. If A) then B) where:
A) 1. p3 ∈ Pm(Y3).
2. p0 ∈ Pm(Y0).
3. If p0 ≤ q0 ∈ Pm(Y0) then p2 = p3 � Y2 and q0 are compatible.
4. p1 = p0 ∪ (p3 � (Y1 \ Y0)).
B) If p1 ≤ q1 ∈ Pm(Y1) then q1 and p3 are compatible in Pm(Y3).

Suppose we arrived at stage γ :
For part 2 of the induction claim:By assumption 5 and the definition of the conditions in the

iteration, f supp(p3 � (Y1 \Y0)) ⊆ Y1, hence p1 ∈ Pm(Y1). Suppose towards contradiction
that A) does not hold for some p1 ≤ q1 ∈ Pm(Y1), then there are s ∈ Dom(q1) ∩ Dom(p3)
and p+

3 ∈ Pm(Lm,<s) such that p3 � Lm,<s, q1 � Lm,<s ≤ p+
3 and p+

3 � Lm,<s � “q1(s)
and p3(s) are incompatible”. Since s ∈ Dom(q1) ⊆ Y1 and Y2 is an initial segment, then
necessarily s /∈ Y0 (otherwise we get a contradiction to assumption A)(3)). Pm |� p1 ≤ q1,
hence q1 � Lm,<s � p1(s) ≤ q1(s). As q1 � Lm,<s ≤ p+

3 , it follows that p
+
4 � Lm,<s �

p1(s) ≤ q1(s). Now s ∈ Y1\Y0, hence p1(s) = p3(s), hence p+
3 � Lm,<s � p3(s) ≤ q1(s),

contradicting the choice of p+
3 . This proves part 2.

For part 1 of the induction claim: Obviously, Pm(Y1) ⊆ Pm(Y3) and Pm(Y1) |� p ≤ q
iff Pm(Y3) |� p ≤ q . Suppose now that q1, q2 ∈ Pm(Y1) and p3 ∈ Pm(Y3) is a common
upper bound, we shall prove the existence of a common upper bound in Pm(Y1). Since Y2
is an initial segment, it follows that f supp(p3 � Y2) ⊆ Y2, hence p3 � Y2 ∈ Pm(Y2). Since
Pm(Y0) � Pm(Y2), it follows that there exists p0 ∈ Pm(Y0) such that if p0 ≤ q ∈ m(Y0),
then q and p3 � Y2 are compatible. Let p1 := p0 ∪ (p3 � Y1\Y0). As in the proof of part (2),
p1 ∈ Pm(Y1). If p1 ≤ p′

1 ∈ Pm(Y1), then by part (2) of the induction claim, p′
1 is compatible

with p3.We shall prove that p1 is a common upper bound of q1 and q2. As wemay replace p0
by p0 ≤ p′

0 ∈ Pm(Y0), wemay assumeWLOG that Dom(ql)∩Y0 ⊆ Dom(p0) ⊆ Dom(p1)
(l = 1, 2). Also Dom(ql)\Y0 ⊆ Dom(p3)\Y0. As Y2 is an initial segment, it follows from
our assumptions that Pm(Y0) � Pm(Y2) � Pm. Since p0 is compatible with p3 � Y0 in Pm,
they’re compatible in Pm(Y0), hence there is a common upper bound for p0, q1 � Y0 and
q2 � Y0. Therefore WLOG ql � Y0 ≤ p0 (l = 1, 2). Assume towards contradiction that
ql ≤ p1 doesn’t hold, then there is s ∈ Dom(ql) such that ql � Lm,<s ≤ p1 � Lm,<s but
p1 � Lm,<s � ql(s) ≤ p1(s). If s ∈ Y0, then as Y0 is an initial segment of Y1, it follows that
p0 � Lm,<s = p1 � Lm,<s and p0(s) = p1(s), contradicting the fact that ql ≤ p0. Therefore
s ∈ Y1\Y0. Let Y ′

0 = Y0, Y ′
1 = Y0∪(Y1∩Lm,<s), Y ′

2 = Y2 and Y ′
3 = Y3, then (Y ′

0, Y
′
1, Y

′
2, Y

′
3)

satisfy the assumptions of Claim 3 (1) and dpm(Y ′
1) = dpm(s) < γ . By the induction

hypothesis,Pm(Y ′
1)�Pm(Y ′

3).As s ∈ Y1\Y0 (andby the assumption, s /∈ Mm), it follows from
the assumption that (s/Em)∩Lm,<s ⊆ Y ′

1. Therefore by the definition of the conditions in the
iteration, f supp(p1 � {s}), f supp(ql � {s}) ⊆ Y ′

1. Therefore p1(s) and ql(s) are Pm(Y ′
1)-

names. Recall that p1 � Lm,<s � q1(s) ≤ p1(s), Lm,<s ⊆ Y3 = Y ′
3 are initial segments

and Pm(Y ′
1) � Pm(Y ′

3). Therefore Pm(Y ′
1 ∩ Lm,<s) � Pm(Y ′

3 ∩ Lm,<s) and f supp(p1 �
Lm,<s) ⊆ Y1 ∩ Lm,<s . Therefore p1 � (Y ′

1 ∩ Lm,<s) �Pm(Y ′
1∩Lm,<s )

ql(s) ≤ p1(s), hence

there exists p1 � (Y ′
1 ∩ Lm,<s) ≤ p+

1 ∈ Pm(Y ′
1 ∩ Lm,<s) such that p+

1 �Pm(Y ′
1∩Lm,<s )

¬ql(s) ≤ p1(s), hence p+
1 �Pm(Y ′

3∩Lm,<s )
¬ql(s) ≤ p1(s). By part (2) of the induction

hypothesis with γ1 = dpm(s) as γ and (p1 � (Y ′
1 ∩ Lm,<s), p

+
1 , p3 � Lm,<s) standing for

(p1, q1, p3) there, p
+
1 is compatible with p3 � Lm,<s in Pm(Lm,<s). Let p

+
3 be a common

upper bound. As ql ≤ p3, p
+
3 �Pm(Y ′

1∩Lm,<s )
ql(s) ≤ p3(s) = p1(s) (recalling that s /∈ Y0).

As p+
1 �Pm(Y ′

1∩Lm,<s )
¬ql(s) ≤ p1(s), we get p

+
3 �Pm(Y ′

1∩Lm,<s )
¬ql(s) ≤ p1(s). Together
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wegot a contradiction, hence p1 is the desired commonupper bound andPm(Y1) ⊆ic Pm(Y3).
In order to show that Pm(Y1) � Pm(Y3), note that for every p3 ∈ Pm(Y3) we can repeat the
argument in the beginning of the proof and get p0 ∈ Pm(Y0) and p1 ∈ Pm(Y1) that satisfy
the requirements in part (2) of the induction. Hence, part (2) holds for (p0, p1, p3) hence
Pm(Y1) � Pm(Y3).

Proof of claim 3 (2): For l = 1, 2 define the sequence L̄l = (Ll,i : i < 4) as follows:
Ll,0 = L0, Ll,1 = L1, Ll,3 = Lml and Ll,2 will be defined as the set of s ∈ Lml such
that s ≤ t for some t ∈ L0. It’s easy to see that (ml , L̄l) satisfies the assumptions of
Claim 3 (1), therefore Pml (L1) = Pml (Ll,1) � Pml (Ll,3) = Pml , so Pm2(L1) � Pm2 , as
required. We shall now prove the remaining part of the claim. Let (sα : α < α(∗)) be
an enumeration of the elements of L1 \ L0 such that if sα < sβ then α ≤ β. For every
α ≤ α(∗) define L0,α = L0 ∪ {sβ : β < α}. We shall prove by induction on α ≤ α(∗) that
Pm1(L0,α) = Pm2(L0,α). For α = α(∗) we’ll have Pm1(L1) = Pm2(L1) as required.

First case (α = 0): In this case L0 = L0,α and the claim follows from assumption (4).

Second case (α is a limit ordinal): Obviously Pm1(L0,α) = Pm2(L0,α) as sets. By the
definition of the partial order and the induction hypothesis, it follows that Pm1(L0,α) =
Pm2(L0,α) as partial orders.

Third case (α = β + 1): Obiously Pm1(L0,α) = Pm2(L0,α) as sets. Suppose that
Pm1(L0,α) |� p ≤ q . If sβ /∈ Dom(q), then p, q ∈ Pm1(L0,β) and the claim follows
from the induction hypothesis. If sβ ∈ Dom(p) ∩ Dom(q), then by the definition of the
iteration, Pm1(L0,β) |� p � L0,β ≤ q � L0,β and q � L0,β �Pm1 (L0,β ) p(sβ) ≤ q(sβ). Now
note that f supp(p � {sβ}), f supp(q � {sβ}) ⊆ L0,β , hence p(sβ) and q(sβ) are Pm2(L0,β)-
names. In addition, p � L0,β , q � L0,β ∈ Pm1(L0,β) = Pm2(L0,β), therefore by the induction
hypothesis Pm2(L0,β) |� p � L0,β≤q�L0,β and q � L0,β �Pm2 (L0,β ) p(sβ) ≤ q(sβ). There-
fore Pm2(L0,α) |� p ≤ q . The other direction is proved similarly. This concludes the proof
of the induction and claim 3 (2).

We shall now return to the original induction proof.

Third case: γ is a limit ordinal.
By claim 2, Pm(Lm1) � Pm. Apply that claim to (m1 � Ldp

m1,γ ,m � Ldp
m,γ ) instead of

(m1,m) and get Pm(Ldp
m1,γ ) � Pm(Ldp

m,γ ). Note that Pm1(L
dp
m1,γ ) = Pm(Ldp

m1,γ ) as sets, and

the definition of the order depends only on Pm1(L
dp
m1,β

) for β < γ , therefore by the induction

hypothesis Pm1(L
dp
m1,γ ) = Pm(Ldp

m1,γ ). Therefore Pm1(L
dp
m1,γ ) � Pm(Ldp

m,γ ). ��
Definition 3.9 Letm ∈ M≤λ2 and M ⊆ Mm such that, as always, w0

t ⊆ M for every t ∈ M .
Define n = m(M) ∈ M≤λ2 as follows:

1. qn = qm.
2. Mn = M .
3. E ′

n = {(s, t) : s �= t ∧ {s, t} � M}.
4. v̄n = v̄m.

It’s easy to check that n satisfies all of the requirements in Definition 2.2 and is equivalent
to m, therefore Pm = Pn.

Claim 3.10 Letm ∈ M≤λ2 and M ⊆ Mm such that, as always, w0
t ⊆ M for every t ∈ M.

A. If n := m(M) ≤ n1 then there exists m1 ∈ M such that m ≤ m1 and m1 is equivalent
to n1.
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B. Ifm ∈ Mec then m(M) = n ∈ Mec.

Proof A) Define m1 ∈ Mec as follows:

1. qm1 := qn1 .
2. Mm1 := Mm.
3. E ′

m1
:= E ′

m ∪ {(s, t) : sE ′
n1 t ∧ {s, t} ⊆ (Ln1 \ Ln) ∪ M}.

We shall show that m1 ∈ M. E ′
m1

is an equivalence relation on Lm1\Mm1 : Suppose that
s, t, r ∈ Lm1\Mm1 such that sE

′
m1

t ∧ t E ′
m1

r . If sE ′
mt ∧ t E ′

mr or sE
′
n1 t ∧ t E ′

n1r ∧{s, t, r} ⊆
(Ln1\Ln), then sE ′

m1
r , therefore we may assume WLOG that sE ′

mt ∧ t E ′
n1r ∧ {t, r} ⊆

Ln1\Ln, but this is impossible as sE ′
mt hence t ∈ Lm = Ln. Therefore E ′

m1
is a transi-

tive relation on Lm1 \ Mm1 and obviously it’s an equivalence relation. Suppose now that
s, t ∈ Lm1\Mm1 are not E

′
m1

-equivalent. If s, t ∈ Lm1\Ln then s, t are not E ′
n1 -equivalent,

therefore s <n1 t iff there exists r ∈ Mn1 such that s <n1 r <n1 t . Therefore s <m1 t iff there
exists r ∈ Mm1 such that s <m1 r <m1 t . Suppose that s, t ∈ Ln\Mm1 , then they’re not E

′
m-

equivalent, therefore smt iff there is r ∈ Mm such that s <m r <m t . Therefore sm1 t iff there
exists r ∈ Mm1 between them. Finally, suppose WLOG that s ∈ Lm1\Ln ∧ t ∈ Ln\Mm1

and s < t . If s and t are not En1 -equivalent, then as before, s <m1 t iff there is r ∈ Mm
between them. If sE ′

n1 t , then s ∈ t/E ′
n1 = t/E ′

n, hence s ∈ Ln, contradicting the choice of s.
This proves thatm1 satisfies the requirement in definition 2.2(A)(D)(2). It is easy to verify
that m1 satisfies the rest of the requirements in definition 2.2. For example, 2.2(A)(6) : Let
t ∈ Lm1\Mm1 , if t ∈ Ln = Lm then u0qm1 ,t = u0qn1 ,t = u0qn,t = u0qm,t ⊆ t/E ′

m ⊆ t/E ′
m1

.

Suppose that t ∈ Lm1 \ Lm, then u0qm1 ,t = u0qn1 ,t ⊆ t/E ′
n1 hence similarly u0qm1 ,t ⊆ t/E ′

m1
.

Suppose that t ∈ Lm1 , u ∈ vm1,t and u � Mm1 , then u ∈ vn1,t and u � Mn1 , hence there
is s ∈ Ln1\M such that u ⊆ s/E ′

n1 . There are now two possibilities:

1. t /∈ Mm1 . In this case, for every t ∈ Lm1 \ Mm1 , u ⊆ u0m1,t ⊆ t/E ′
m1

.
2. t ∈ Mm1 . Suppose that s /∈ Ln. If there is r ∈ u such that r ∈ Lm\Mn, then s ∈ r/E ′

n1 =
r/E ′

n, hence s ∈ Ln, which is a contradiction. Therefore u ∪ {s} ⊆ (Ln1 \ Ln) ∪ M
hence u ⊆ s/E ′

m1
. Suppose that s ∈ Ln, then u ⊆ s/E ′

n1 = s/E ′
n ⊆ Ln, therefore

u ∈ vn,t = vm,t , hence there is r ∈ Lm\Mm such that u ⊆ r/E ′
m. Therefore u ⊆ r/E ′

m1
.

The other requirements of definition 2.2 are easy to verify, therefore m1 ∈ M and
obviouslym ≤ m1 andm1 is equivalent to n1.

B) Suppose that n ≤ n1 ≤ n2 and let m ≤ m1,m2 be as in part A) for n1 and m2. We shall
prove thatm ≤ m1 ≤ m2. First note that qm1 = qn1 ≤ qn2 = qm2 and Mm2 = Mm = Mm1 .
Let t ∈ Lm1\Mm1 and suppose that s ∈ t/E ′

m1
. By the definition of m1, if t ∈ Lm then s ∈

t/E ′
m ⊆ t/E ′

m2
. If t ∈ Lm1\Lm then sE ′

n1 t , hence sE
′
n2 t and it follows that sE

′
m2

t . Therefore
t/E ′

m1
⊆ t/E ′

m2
. Suppose now that s ∈ t/E ′

m2
. If t ∈ Lm then s ∈ t/E ′

m2
= t/E ′

m ⊆ t/E ′
m1

.
If t ∈ Lm1\Lm then sE ′

n2 t , hence sE
′
n1 t and sE ′

m1
t . Therefore t/E ′

m2
⊆ t/E ′

m1
. Similarly,

it’s easy to verify the rest of the requirements for “m1 ≤ m′′
2 , thereforem ≤ m1 ≤ m2. Now

m ∈ Mec, therefore Pm1 � Pm2 . Since ml is equivalent to nl (l = 1, 2), we get Pn1 � Pn2 ,
hence n ∈ Mec as required. ��
Claim 3.11 Letm ∈ M≤λ2 , then there exists n ∈ Mec such that m ≤ n and |Ln| ≤ λ2.

Proof Use claim 2.19 to pick n ∈ Mχ for χ large enough, such that n ∈ Mec is very wide
and full and m ≤ n. We shall try to choose mα ∈ M by induction on α < λ+

2 such that the
following conditions hold:

1. m0 = m.
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2. (mβ : β < α)(̂n) is ≤M-increasing and continuous.
3. |Lmα | ≤ λ2.
4. If α = β + 1 then one of the following conditions holds:

(A) mβ is not wide andmα is wide.
(B) There is t1 ∈ Ln \ Mn and a sequence s̄1 of elements of t1/E ′′

n such that for every

t2 ∈ Lmβ \ Mm and a sequence s̄2 of elements of t2/E ′′
mβ

, (t2, s̄2) is not 1-equivalent to
(t1, s̄1) in n, but there is a 1-equivalent pair (t2, s̄2) in Lmα . ��
We shall later prove that since �2(λ1) ≤ λ2, there exists α < λ+

2 for which we won’t be able
to choose an appropriatemα . If δ is a limit ordinal, thenwe canwe can definemδ = ∪γ<δmγ ,
hence necessarily α has the form α = β + 1. We shall prove thatmβ is as required. First we
shall prove that the pair (mβ,n) satisfies the assumptions of Claim 3.8 where (mβ,n) here
stands for (m1,m) in 3.8. Obviously,mβ ≤ n. Suppose that t ∈ Ln\Lmβ and s̄ is a sequence
of < λ+ members of t/E ′′

n . Let mα ∈ M be wide such that mβ ≤ mα ≤ n, |Lmα | ≤ λ2 and
s̄, t are from Lmα . Asmα does not satisfy the induction’s requirements, necessarily there are
t2 ∈ Lmβ \Mm and a sequence s̄2 of elements of t2/E ′′

mβ
that are 1-equivalent to (t1, s̄1) in n.

Ifmβ is wide, then there exists sequence (rα : α < λ+) of elements of Lmβ \ Mm such that
rα/E ′′

mβ
�= rγ /E ′′

mβ
for every α < γ , and mβ � (rα/Emβ ) is isomorphic to mβ � (t2/Emβ )

for every α < λ+. For every α < λ+, denote that isomorphism by fα and denote by s̄′
α the

image of s̄2 under fα . Now obviously the sequence ((rα, s̄′
α) : α < λ+) is as required. Ifmβ

is not wide, then sincemα is wide, we get a contradiction to the fact the induction terminated
atmβ . Therefore (mβ,n) satisfies the assumptions of Claim 3.8.

Now suppose that mβ ≤ n1 ≤ n2. First assume that n2 ≤ n and |Ln2 | ≤ λ2. Suppose
that t ∈ Ln\Ln2 and s̄ is a sequence of length ζ < λ+ of elements of t/E ′′

n . Since (mβ,n)

satisfies the assumptions of Claim 3.8, there are ti ∈ Lmβ \Mmβ ⊆ Ln2\Mn2 and sequences
s̄i from ti/E ′′

mβ
= ti/E ′′

n2 (for i < λ+) as in the assumptions of Claim 3.8. By claim 3.8,
Pn2 � Pn. Similarly, Pn1 � Pn, therefore Pn1 � Pn2 .

Why can we assume WLOG that |Ln2 | ≤ λ2?
Let χ be a cardinal large enough such that mβ,n1,n2,n ∈ H(χ), and let N be an

elementary submodel of (H(χ),∈) such that:

1. mβ,n1,n2,n,m ∈ N .
2. [N ]≤λ ⊆ N .
3. ||N || ≤ λ2.
4. λ2 + 1 ⊆ N .

Let L ′ = Ln2 ∩ N , n′
2 = n2 � L ′ and n′

1 = n1 � (L ′ ∩ Ln1). Now we may work in N and
replace (n1,n2) by (n1,n′

2), as |Ln′
2
| ≤ λ2, we get the desired result.

Why can we assume WLOG that n2 ≤ n?
As n is very wide and full, for every t ∈ Ln2\Mn2 there exist |Ln| members ti ∈ Ln\Mn

such that n � (ti/En) is isomorphic to n2 � (t/En2) over Mn (and remember that |Ln2 | ≤
|Ln|). Therefore n2 is isomorphic to an n3 that satisfies n3 ≤ n, so WLOG n2 ≤ n.

It remains to show that there exists α < λ+
2 such that we can’t choose mα as required by

the induction. Suppose towards contradiction that for every α < λ+
2 there ismα as required,

then necessarily there exist λ+
2 ordinals α < λ+

2 such thatmα satisfies 4(B). Therefore, there
exist λ+

2 distinct 1-equivalence classes in n. We shall prove that the number of 1-equivalence
classes in n is at most �3(λ1), and since �3(λ1) ≤ λ2 < λ+

2 , we’ll get a contradiction.
Let m ∈ M. First note that the number of distinct 0-equivalence classes in m is at most

�2(λ1), as there exist at most �1(λ1) isomorphism types of m � L for L as in the definition
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of 0-equivalence, so by adding the number of possible orderings of Pm(L), we get the
desired bound. Now given s̄2, s̄2 as in the definition of 1-equivalence, denote by C1,C2 the
0-equivalence classes of sequences of the form s̄1 ˆ̄s′

1, s̄2 ˆ̄s′
2, respectively, for s̄

′
1, s̄

′
2 as in the

definition of 1-equivalence. s̄1 is 1-equivalent to s̄2 iff they’re 0-equivalent and C1 = C2.
Given s̄ as in the definition of 1-equivalence, ifC is the collection of 0-equivalence classes of
sequences of the form s̄ ˆ̄s′ as in the definition of 1-equivalence, then C is contained in the set
of 0-equivalence classes overm, which has at most �2(λ1) members. Therefore, there are at
most �3(λ1) different choices for C , hence there are at most �3(λ1) distinct 1-equivalence
classes overm. ��

Concluding the proof of the main claim

Conclusion 3.12 (A) Suppose that

0. ml ∈ Mec (l = 1, 2) and
1. Ml ⊆ Mml (l = 1, 2) (and as always we assume that Ml is closed under weak memory).
2. m1 � M1 is isomorphic to m2 � M2.
3. |Lm1 |, |Lm2 | ≤ λ2.

Then there exists an isomorphism from Pm1 [M1] onto Pm2 [M2].
(B) Suppose that m ∈ M≤λ2 , M ⊆ Mm = Lm and n = m � M, then P

cr
n � P

cr
m .

Proof (A) Define nl := ml(Ml) for l = 1, 2. By claim 3.10, n1,n2 ∈ Mec. n2 � Mn1 = m1 �
M1 is isomorphic to n2 � Mn2 = m2 � M2, hence by claim 2.20, Pn1 [Mn1 ] is isomorphic
to Pn2 [Mn2 ]. Therefore, Pm1 [M1] is isomorphic to Pm2 [M2].

(B) Letm1 ∈ Mec such thatm ≤ m1 and |Lm1 | ≤ λ2. Letn1 := m1(M), then by our previous
claims, n1 ∈ Mec. Obviously,n ≤ n1, thereforeP

cr
n = Pn1 [M] = Pm1 [M]�Pm1 [Lm] =

P
cr
m . ��

Conclusion 3.13 In Conclusion 2.25 we can add: Suppose that U1,U2 ⊆ δ∗ are closed under
weak memory, (αi : i < otp(U1)) and (β j : j < otp(U2)) are increasing enumerations
of U1 and U2, respectively, and h : U1 → U2 is an isomorphism of m � U1 onto m � U2,
then there exists a unique generic set G ′′ ⊆ P

cr
m [U2] such that ηαi = ηβi∼

[G ′′] for every
i < otp(U1).

Proof In the construction that appears in 2.24 we can takem ≤ n ∈ Mec such that |Ln| ≤ λ2.
By 2.25(G + H) and 3.12(B), it follows that there exists a generic set G ′′ ⊆ P

cr
m [U2] such

that ηαi = ηβi∼
[G ′′] for every i < otp(U1). ��

4 The properties of the projection and an addition to the proof of Claim
3.8

In this section we shall rely on the results of sections 0-2, with the exception of Conclusion
2.26. The results of this section will be used in the proof of Claim 3.8.

Claim 4.1 Let p ∈ Pm and denote Sp = {πL(p) :there exists t ∈ f supp(p) such that
L = t/Em}, then �Pm “p ∈ G∼ iff Sp ⊆ G∼

′′.

Proof If f supp(p) ⊆ Mm, then for every t ∈ f supp(p), πt/Em(p) = p, hence Sp = {p}
and there is nothing to prove. Therefore assume that f supp(p) � Mm. By the properties of
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the projection, for every t ∈ f supp(p), πt/Em (p) ≤ p, therefore �Pm “p ∈ G∼ → Sp ⊆
G∼

′′. In the other direction, suppose that q �Pm “Sp ⊆ G∼
′′, it’s enough to show that q is

compatible with p. Assume towards contradiction that p and q are incompatible. WLOG
Dom(p) ⊆ Dom(q). By the assumption, q �Pm “πt/Em(p) ∈ G∼

′′ for every t ∈ f supp(p)

and we may assume that tr(p(s)) ⊆ tr(q(s)) for every s ∈ Dom(p). Since p contradicts q ,
there are s ∈ Dom(p) ∩ Dom(q) and q � Lm,<s ≤ q1 ∈ Pm(Lm,<s) such that q1 � “p(s)
contradicts q(s)′′. By the definition of forcing templates, q1 � “tr(q(s)) contradicts p(s)′′.
Therefore, by the definition of forcing templates and by the definition of the iteration, there
is ι < ι(p(s)) such that q1 � “tr(q(s)) contradicts Bp(s),ι(. . . , ηtζ

∼
(aζ ), . . .)

′′
ζ∈Wp(s),ι

. By the

definition of the iteration (Definition 2.2), there is u ∈ vs such that {tζ : ζ ∈ Wp(s),ι} ⊆ u. By
the same definition, there is t ∈ f supp(p) such that {tζ : ζ ∈ Wp(s),ι} ⊆ t/Em. Therefore
q1 � “πt/Em(p) /∈ G∼ or tr(q(s)) � ηs∼

′′. Now define q2 = q1 ∪ (q � (Lm\Lm,<s)). q ≤ q2,

hence q2 � “πt/Em(p) ∈ G∼
′′. On the other hand, q(s) = q2(s), hence q2 � tr(q(s)) ⊆ ηs∼

.

q1 ≤ q2, therefore, every generic set G that contains q2 contains q1 and also tr(q(s)) ⊆
ηs∼

[G] and πt/Em(p) ∈ G, contradicting our observation about q1. Therefore, p and q are

compatible. ��
Claim 4.2 Letm ∈ M be wide and suppose that

1. i(∗) < λ.
2. ti ∈ Lm\Mm for every i < i(∗).
3. ti is not E ′′

m-equivalent to t j for every i < j < i(∗).
4. Xi = ti/Em.
5. ψ∗ ∈ Pm[Mm].
6. ψi ∈ Pm[Xi ] for i < i(∗).
7. If Pm[Mm] |� ψ∗ ≤ φ, then φ is compatible with ψi in Pm[Lm] for every i < i(∗).

then there exists a common upper bound for {ψi : i < i(∗)} ∪ {ψ∗} in Pm[Lm].
Proof In this proof we shall use the notion of ∗-projection that appears in the next section,
as well as the results established independently there (it should be emphasized that this
is not the same notion as the previously mentioned projection). Let p ∈ Pm such that
p �Pm “ψ∗[G∼] = true′′. Since m is wide, there is an automorphism f of m (over Mm)

that maps the members of f supp(p) \ Mm to a set that is disjoint to ∪i<i(∗)Xi (recall that
| f supp(p)| < λ+). Therefore, wemay assumeWLOG that f supp(p)∩Xi ⊆ Mm for every
i < i(∗). By induction on i ≤ i(∗) we’ll choose conditions pi such that:

1. pi ∈ Pm.
2. (p j : j ≤ i) is increasing.
3. p0 = p.
4. If i = j + 1 then pi �Pm “ψ j [G∼] = true′′.
5. f supp(pi ) is disjoint to ∪{X j \ Mm : i ≤ j < i(∗)}.
6. pi is chosen by the winning strategy st that is guaranteed by the (< λ)-strategic

completeness of Pm.

If we succeed to construct the above sequence, then for every i < i(∗), pi(∗) �Pm “ψi [G∼] =
true′′. In addition, pi(∗) �Pm “ψ∗[G∼] = true′′ (recalling that p ≤ pi(∗)), therefore,
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pi(∗) �Pm “ψ∗[G∼] = true ∧ (∧i<i(∗)ψi [G∼] = true)′′. Therefore, ψ∗ ∧ (∧i<i(∗)ψi ) ∈
Pm[Lm] is the desired common upper bound.

We shall now carry the induction:

First stage (i = 0): Choose p0 = p (note that (5) holds by the assumption on f supp(p)).

Second stage (i is a limit ordinal): Let p′
i be an upper bound to (p j : j < i) that is

chosen according to st. Sincem is wide, as before we can find an automorphism f ofm such
that f ( f supp(p′

i )\Mm) is disjoint to ∪{X j\Mm : i ≤ j < i(∗)} and f is the identity on

∪ j<i f supp(p j ) (this is possible by (5) in the induction hypothesis). Let pi := f̂ (p′
i ). By

the definition of f̂ , pi satisfies requirements 1-5, and as st is preserved by f̂ , pi satsifies (6)
as well.

Third stage (i = j+1): Letφ j ∈ Pm[Mm] be the ∗-projection of p j toPm[Mm].We shall
first prove that ψ∗ ≤ φ j . If it’s not true, then there exists φ j ≤ θ ∈ Pm[Lm] contradicting
ψ∗. Let r ∈ Pm such that r �Pm “θ [G∼] = true′′, then r �Pm “ψ∗[G∼] = f alse′′. Since
r �Pm “θ [G∼] = true", it follows that φ j ≤ θ ≤ r , hence by the definition of φ j , r is

compatible with p j . By the density of Pm in Pm[Lm], r and p j have a common upper bound
p ∈ Pm. p0 ≤ p j ≤ p, hence p �Pm “ψ∗[G∼] = true′′, which is a contradiction. Therefore,
ψ∗ ≤ φ j , hence φ j is compatible with ψ j . By the density of Pm, they have a common upper
bound q1j ∈ Pm. As before, sincem is wide, we may assumeWLOG that f supp(q1j )\Mm is

disjoint to f supp(p j )\Mm and ∪{X j ′ : j +1 ≤ j ′ < i(∗)}. By claim 4.4 (with (p j , q1j , φ j )

here standing for (p, q, ψ) there), p j and q1j are compatible inPm. Let pi be a common upper
bound chosen by the strategy. By our choice, ψ j ≤ pi , hence pi �Pm “ψ j [G∼] = true′′. As
before, use thee fact that m is wide to assume WLOG that f supp(pi )\Mm ∩ X j ′ = ∅ for
every i ≤ j ′ < i(∗). As in the previous case, we conclude that pi is as required. ��
Claim 4.3 Suppose that m ∈ M is wide. Let f ∈ Fm,β (see definition 3.7) and denote its
domain and range by L1 and L2, respectively, then f induces an isomorphism from Pm(L1)

onto Pm(L2).

Proof Obvivously, f̂ is bijective. Now let p1, q1 ∈ Pm(L1) and let p2 = f̂ (p1), q2 =
f̂ (q1) ∈ Pm(L2). We shall prove that Pm |� p1 ≤ q1 iff Pm |� p2 ≤ q2. Let (t1i : i < i(∗))

be a sequence such that:

1. t1i ∈ f supp(q1)\Mm for every i .
2. t1i and t1j are not E

′′
m-equivalent for every i < j < i(∗).

3. Every t ∈ f suppp(q1)\Mm is E ′′
m-equivalent to some t1i .

��
For every i < i(∗), define t2i = f (t1i ) and let t̄l = (t li : i < i(∗)) (l = 1, 2). Assume
WLOG that f supp(p1) ⊆ ∪{t1i /E ′′

m : i < j(∗)} ∪ Mm for some j(∗) ≤ i(∗). For every
i < i(∗), let q1,i = πt1i /Em

(q1) and letψ∗
1,i ∈ Pm[Mm] be the ∗-projection of q1,i toPm[Mm]

(in the sense of section 5). Let ψ∗
1 = ∧i<i(∗)ψ

∗
1,i . By the properties of the (∗-)projection,

ψ∗
1,i ≤ q1,i ≤ q1 for every i < i(∗), therefore q1 �Pm “ψ∗

1 [G∼] = true′′ and ψ∗
1 ∈ Pm[Lm].

For every i < i(∗) define ψ∗∗
1,i = ψ∗

1,i ∧ q1,i ∈ Pm[t1i /Em]. When the above conditions

hold, we say that ψ∗
1 and ψ̄∗

1 = (ψ∗
1,i , ψ

∗∗
1,i , q1,i : i < i(∗)) analyze q1 (or (q1, t̄1)). Now

similarly choose φ∗
1 and φ̄∗

1 = (φ∗
1,i , φ

∗∗
1,i , p1,i : i < j(∗)) that analyze (p1, (t1i : i < j(∗))).
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The function f naturally induces a function on Pm[L1], which we shall also denote by f̂ .
Now define: ψ∗

2 = f̂ (ψ∗
1 ), ψ∗

2,i = f̂ (ψ∗
1,i ), ψ

∗∗
2,i = f̂ (ψ∗∗

1,i ), φ
∗
2 = f̂ (φ∗

1 ), φ
∗
2,i = f̂ (φ∗

1,i ),

φ∗∗
2,i = f̂ (φ∗∗

1,i ), p2,i = f̂ (p1,i ), q2,i = f̂ (q1,i ).

It’s easy to see that (ψ2, ψ̄
∗
2 ) analyze q2 and (φ∗

2 , φ̄
∗
2 ) analyze p2.

Claim Let Al (l = 1, 2) be the claim Pm |� pl ≤ ql and let Bl (l = 1, 2) be the claim
“Pm[t li /Em] |� φ∗

l ∧ pl,i ≤ ψ∗
l ∧ql,i for every i < i(∗)”, then for l ∈ {1, 2}, Al is equivalent

to Bl .

Proof Suppose that Bl doesn’t hold for some i , then there exists θ ∈ Pm[t li /Em] such that
Pm[t li /Em] |� ψ∗

l ∧ ql,i ≤ θ and θ is incompatible with φ∗
l ∧ pl,i in Pm[t li /Em], hence

θ ∧ φ∗
l ∧ pl,i /∈ Pm[t li /Em]. For every j define ψ ′

j as follows: If j = i define ψ ′
j := θ .

Otherwise, define ψ ′
j = ψ∗

l ∧ ql, j . Now let φ′ ∈ Pm[Mm] be the ∗-projection of θ to
Pm[Mm], so if φ′ ≤ φ ∈ Pm[Mm] then φ is compatible with θ . Note also that ψ∗

l ≤ φ′: If it
wasn’t true, then for some φ′ ≤ χ ∈ Pm[Mm], χ contradicts ψ∗

l . By the choice of φ′, χ is
compatible with θ in Pm[Lm]. Let χ ′ be a common upper bound, then ψ∗

l ≤ θ ≤ χ ′, hence
χ is compatible with ψ∗

l , which is a contradiction. Therefore, ψ∗
l ≤ φ′.

For every j �= i , if φ′ ≤ φ ∈ Pm[Mm], then ψ∗
l, j ≤ ψ∗

l ≤ φ′ ≤ φ, hence φ is compatible
with ql, j . Sinceψ∗

l ≤ φ, φ is also compatible withψ∗
l ∧ql, j . By claim 4.2, there is a common

upper bound q+
l for φ′ and all of theψ ′

j . By the density of Pm, we may assume that q+
l ∈ Pm.

As ql, j ≤ q+
l for every j , it follows from from Claim 4.1 that ql ≤ q+

l . Since θ ≤ q+
l and θ

contradictsφ∗
l ∧ pl,i , necessarilly q

+
l �Pm “(φ∗

l ∧ pl,i )[G∼] = f alse′′. By the properties of the
projection, pl,i ≤ pl , and as we saw before, φ∗

l ≤ pl , hence pl �Pm (φ∗
l ∧ pl,i )[G∼] = true.

Now if G ⊆ Pm is generic such that q+
l ∈ G, then ql ∈ G and pl /∈ G, therefore “pl ≤ ql”

doesn’t hold.
In the other direction, suppose that Bl is true. Suppose towards contradiction that Al doesn’t

hold. By the assumption, there is ql ≤ q+
l ∈ Pm contradicting pl . Forψ∗

l and ψ̄∗
l that analyze

ql we have Pm[Lm] |� ψ∗
l ∧ ql,i ≤ ql ≤ q+

l for every i . By Bl , Pm[Lm] |� φ∗
l ∧ pl,i ≤ q+

l
for every i . By Claim 4.1, pl ≤ q+

l , contradicting the choice of q+
l .

Therefore, Al (l = 1, 2) is equivalent to Bl (l = 1, 2). Obviously, B1 is equivalent to B2,
therefore, A1 is equivalent to A2. ��
Claim 4.4 Let p, q ∈ Pm, then p and q are compatible in Pm if there exists ψ such that the
following conditions hold (we shall denote this collection of statements by �p,q,ψ ):

1. ψ ∈ Pm[Mm].
2. f supp(p) ∩ f supp(q) ⊆ Mm, and for every t ∈ f supp(q)\Mm and s ∈

f supp(p)\Mm, s/E ′′
m �= t/E ′′

m.
3. If ψ ≤ φ ∈ Pm[Mm], then φ is compatible with p in Pm[Lm].
4. q and ψ are compatible in Pm[Lm].
Proof We choose (pn, q,n, ψn) by induction on n < ω such that the following conditions
hold:

1. If n is even then �pn ,qn ,ψn holds.
2. If n is odd then �qn ,pn ,ψn holds.
3. (p0, q0, ψ0) = (p, q, ψ).
4. If n = 2m + 1 and s ∈ Dom(p2m) ∩ Mm then s ∈ Dom(q2m+1) and tr(p2m(s)) ⊆

tr(qsm+1(s)).
5. If n = 2m+2 and s ∈ Dom(q2m+1)∩ Mm then s ∈ Dom(p2m+2) and tr(q2m+1(s)) ⊆

tr(p2m+2(s)).
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6. If m < n then pm ≤ pn and qm ≤ qn .

��
For n = 0 there is no probem. Suppose that n = 2m + 1 and (p2m, q2m, ψ2m) has been
chosen. Let u2m = Dom(p2m)∩Mm and for every s ∈ u2m , let νs = tr(p2m(s)) and denote
by ps,νs ∈ Pm the condition ∧a∈Dom(νs ) ps,a,νs (a). Obviously, Pm[Lm] |� ps,νs ≤ p2m .
Let s ∈ u2m and suppose towards contradiction that ps,νs ≤ ψ2m doesn’t hold, then ψ2m

is compatible with ¬ps,νs . Let φ be a common upper bound in Pm[Mm]. By the induction
hypothesis and �p2m ,q2m ,ψ2m , φ is compatible with p2m . Therefore, p2m is compatible with
¬ps,νs , contradicting the fact that Pm[Lm] |� ps,νs ≤ p2m . Therefore, ps,νs ≤ ψ2m .

By the induction hypothesis and condition (4) of �p2m ,q2m ,ψ2m , there is a common upper
bound q ′

2m for q2m and ψ2m , and by the density of Pm, we may suppose that q ′
2m ∈ Pm.

For every s ∈ u2m , since ps,νs ≤ ψ2m , it follows that νs ⊆ tr(q ′
2m) and s ∈ Dom(q ′

2m).
Let ψ ′

2m ∈ Pm[Mm] be the ∗-projection of q ′
2m to Pm[Mm]. So if ψ ′

2m ≤ φ ∈ Pm[Mm],
then φ and q ′

2m are compatible in Pm[Lm]. Note also that ψ2m ≤ ψ ′
2m : Otherwise, there

is ψ ′
2m ≤ φ ∈ Pm[Mm] contradicting ψ2m . Let χ ∈ Pm[Lm] be a common upper bound

for q ′
2m and φ, so ψ2m ≤ χ , therefore φ is compatible with ψ2m , which is a contradiction.

Therefore, ψ2m ≤ ψ ′
2m , so ps,νs ≤ ψ2m ≤ ψ ′

2m for every s ∈ u2m .
Since m is wide, we may assume WLOG that f supp(q ′

2m) ∩ f supp(p2m) ⊆ Mm and
similarly for the second part of condition (2). By the induction hypothesis and �p2m ,q2m ,ψ2m ,
since ψ2m ≤ ψ ′

2m , there is a common upper bound p′
2m ∈ Pm for p2m and ψ ′

2m . Since
f supp(q ′

2m)∩ f suppp(p2m) ⊆ Mm andm is wide, WLOG f supp(p′
2m)∩ f supp(q ′

2m) ⊆
Mm and similarly with the second part of condition (2). Now define pn = p′

2m , qn =
q ′
2m , ψn = ψ ′

2m . Obviously �qn ,pn ,ψn holds, p2m ≤ p2m+1 and q2m ≤ q2m+1. If s ∈
Dom(p2m) ∩ Mm, then s ∈ Dom(q ′

2m) = Dom(qn) and tr(p2m(s)) = νs ⊆ tr(q ′
2m(s)) =

tr(qn(s)). This completes the induction step for odd stages. If n = 2m + 2, the proof is the
same, alternating the roles of the p’s and the q’s. Now choose p∗ and q∗ as the upper bounds
of (pn : n < ω) and (qn : n < ω), repsectively, such that:

1. Dom(p∗) = ∪n<ωDom(pn).
2. Dom(q∗) = ∪n<ωDom(qn).
3. If s ∈ Dom(pn) then tr(p∗(s)) = ∪n≤k tr(pk(s)).
4. If s ∈ Dom(qn) then tr(q∗(s)) = ∪n≤k tr(qk(s)).

Claim: p∗, q∗ ∈ Pm satisfy the following conditions:

1. Dom(p∗) ∩ Dom(q∗) ⊆ Mm.
2. Dom(p∗) ∩ Mm = Dom(q∗) ∩ Mm.
3. If s ∈ Dom(p)∩Mm then tr(p∗(s)) = tr(q∗(s)) (so p∗ and q∗ are strongly compatible).

Proof 1. Since (pn : n < ω) and (qn : nω) are increasing, then so are (Dom(pn) : n <

ω) and (Dom(qn) : n < ω). Since f supp(pn) ∩ f supp(qn) ⊆ Mm, it follows that
Dom(p∗) ∩ Dom(q∗) ⊆ Mm.

2. If t ∈ Dom(p∗) ⊆ Mm, then t ∈ Dom(pn) for some even n. By the inductive construc-
tion, t ∈ Dom(qn+1) ⊆ Dom(q∗), therefore Dom(p∗) ∩ Mm ⊆ Dom(q∗) ∩ Mm, and
the other direction is proved similarly.

3. Suppose that s ∈ Dom(p∗)∩Mm, then by the previous claim, s ∈ Dom(p∗)∩Dom(q∗).
Let n < ω such that s ∈ Dom(pn) ∩ Dom(qn), then tr(p∗(s)) = ∪n≤k tr(pk(s))
and tr(q∗(s)) = ∪n≤k tr(qk(s)). By conditions 4 + 5 of the induction, it follows that
tr(p∗(s)) = tr(q∗(s)).
By the above claim, p∗ and q∗ are compatible in Pm. As p = p0 ≤ p∗ and q = q0 ≤ q∗,

it follows that p and q are compatible in Pm as well. ��
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5 The existence of ∗-projections for Pm[L]
Remark 1. The results of this section are used in the proofs of 4.2−4.4.
2. Note again that the notion of projection to be introduced in the next definition is not

the same as the one previously used (hence the distinction between “∗-projection” and
“projection”).

Definition 5.1 Let φ ∈ Pm[Lm]. ψ ∈ Pm[L] will be called the ∗-projection of φ to Pm[L]
if the following conditions hold:

1. If Pm[L] |� ψ ≤ θ , then θ and φ are compatible in Pm[Lm].
2. If ψ∗ ∈ Pm[L] satisfies (1), then Pm[L] |� ψ ≤ ψ∗.

Claim 5.2 Let L ⊆ Lm. For every φ ∈ Pm[L] there exists ψ ∈ Pm[L] which is the ∗-
projection of φ.

Proof Given ψ1, ψ2 ∈ Pm[L], obviously they’re compatible in Pm[L] iff they’re compatible
in Pm[Lm]. Let �1 be the set of ψ ∈ Pm[L] that contradict φ and let �2 be the set of
ψ ∈ Pm[L] such that ψ contradicts all members of �1. Let ψ ∈ Pm[L]. If ψ is compatible
with some ψ1 ∈ �1, let ψ2 be a common upper bound, so ψ2 ∈ �1. If ψ contradicts all
members of �1, then ψ ∈ �2, so �1 ∪ �2 is dense in Pm[L]. Note that if ψ1 ∈ �1 and
ψ2 ∈ �2, then ψ1 contradicts ψ2. Let {ψi : i < i(∗)} be a maximal antichain of elements
of �2. By λ+ − c.c., i(∗) < λ+. Define ψ∗ = ¬(∧i<i(∗)¬ψi ) ∈ Pm[L]. We shall prove
that ψ∗ is a ∗-projection as desired. Suppose that ψ∗ ≤ θ ∈ Pm[L] and suppose towards
contradiction that θ is incompatible with φ, then θ ∈ �1. Let G ⊆ Pm be a generic set such
that θ [G] = true, then for some i ,ψi [G] = true, henceψi and θ are compatible. Now recall
that ψi ∈ �2 and θ ∈ �1, so we got a contradiction. Therefore ψ∗ satisfies the requirement
in (1).

Suppose now that χ ∈ Pm[L] satisfies part (1) in Definition 5.1. Suppose towards contra-
diction that ψ∗ ≤ χ does not hold, then for some χ ≤ χ∗, χ∗ contradicts ψ∗. Since �1 ∪ �2

is dense in Pm[L], there is θ ∈ �1 ∪ �2 such that χ∗ ≤ θ . Since χ ≤ θ , necessarily θ ∈ �2.
Therefore, for some i < i(∗), θ is compatible with ψi , hence this ψi is compatible with
χ∗. Recall that ψ∗ ≤ ψi , hence χ∗ and ψ∗ are compatible, contradicting the choice of χ∗.
Therefore, ψ∗ ≤ χ . ��
Observation 5.3 If ψ1, ψ2 ∈ Pm[L] are ∗-projections of φ ∈ Pm[Lm], then Pm[L] |� ψ1 ≤
ψ2 ∧ ψ2 ≤ ψ1. ��
Observation 5.4 If ψ ∈ Pm[L] is the ∗-projection of φ ∈ Pm[Lm], then ψ ≤ φ. ��
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