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Abstract
We mainly investigate models of set theory with restricted choice, e.g., ZF + DC +
the family of countable subsets of λ is well ordered for every λ (really local version
for a given λ). We think that in this frame much of pcf theory, (and combinatorial
set theory in general) can be generalized. We prove here, in particular, that there is
a proper class of regular cardinals, every large enough successor of singular is not
measurable and we can prove cardinal inequalities. Solving some open problems, we
prove that if μ > κ = cf(μ) > ℵ0, then from a well ordering of P(P(κ)) ∪ κ>μ

we can define a well ordering of κμ.
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624 S. Shelah

§1 Representing κλ

[We define Fil�κ and prove a representation theorem for κλ. Essentially under
“reasonable choice" the set κλ is the union of few well ordered sets, i.e., “their number
depends on κ only". We end with a claim on �a.]
§2 No decreasing sequence of subalgebras

[As suggested in the title we weaken the axioms. We deal with κλ with λ+ not
measurable, existence of ladder C̄ witnessing cofinality and prove that many λ+ are
regular (2.13).]
§3 Concluding remarks

[We prove that if μ > κ = cf(μ) > ℵ0, then from a well-ordering of
P(P(κ))∪κ>μwe can define awell-ordering of κμ, see 3.1. If e.g.μ is a strong limit
singular of uncountable cofinality, using a well order of H (μ) we can define a well
ordering ofP(μ) hence ofH (μ+), see 3.2. Lastly, we give sufficient conditions (in
ZF+DC) for singularμ, thatμ+ is regular, see 3.3.Actually ifμ = μℵ0+22

κ
, κ = κℵ0

and X ⊆ μ codes P(P(κ)) and ωμ, then using X as a parameter we can define a
well-ordering of κμ, see 3.4.]

0 Introduction

0.1 Background, aims and results

The thesis of [9] was that pcf theory without full choice exists. Two theorems sup-
porting this thesis were proved. The first ( [9, 4.6,pg.117], we shall not mention ZF)
is:

Theorem 0.1 [DC] If H (μ) is well ordered, μ strong limit singular of uncountable
cofinality then μ+ is regular not measurable (and 2μ is an ℵ, i.e. P(μ) can be well
ordered and no λ ∈ (μ, 2μ] is measurable).

Note that before this Apter and Magidor [1] had proved the consistency of “H (μ)

well ordered,μ = �ω, (∀κ < μ)DCκ andμ+ is measurable" so 0.1 says that this con-
sistency result cannot be fully lifted to uncountable cofinalities answering a question
of them. Generally without full choice, a successor cardinal being not measurable is
a piece of worthwhile information.
A second theorem ( [9, §5]) is:

Theorem 0.2 Assume

(a) DC + ACκ + κ regular uncountable.
(b) 〈μi : i < κ〉 is increasing continuous with limit μ,μ > κ,H (μ) is well ordered,

μ strong limit, (we need just a somewhat weaker version, the so-called i < κ ⇒
TwDκ

(μi ) < μ).

Then, we cannot have two regular cardinals θ such that for some stationary S ⊆ κ ,
the sequence 〈 cf (μ+

i ) : i ∈ S〉 is constantly θ .
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A dream was to prove that there is a class of regular cardinals from a restricted
version of choice (see more in [9]).

Our original aim here is to improve those theorems. As for 0.1 we replace “H (μ)

well ordered" by “[μ]ℵ0 is well ordered" and then by weaker statements.
We know (assuming full choice) that if, e.g., ¬∃0# or there is no inner model

with a measurable cardinal then though 〈2κ : κ regular〉 is quite arbitrary, the size
of [λ]κ , λ > κ is strictly controlled and equi-consistency results (by Easton forcing
[2], and [8] and history there, and works of Gitik and history there respectively). It
seemed that the situation here is parallel in some sense; under the restricted choice we
assume, we cannot say much about the cardinality ofP(κ) but can say something on
the cardinality of [λ]κ for κ � λ.

In the proofs we fulfill a promise from [10, §5] about using J [ f , D] fromDefinition
0.13 instead of the nice filters used in [9] and, to some extent, in early versions of this
work which require going through inner models to prove their existence. This work is
continued in Larson-Shelah [5] and will be continued in [13]. On a different line with
weak choice (say DCℵ0 + ACμ,μ fixed): see [6, 11, 12]. The present work fits the
thesis of [8] which in particular says: it is better to look e.g. at 〈λℵ0 : λ a cardinal〉
then at 〈2λ : λ a cardinal〉. Here instead well orderingP(λ) we well order [λ]ℵ0 , this
is enough for much.

A simply stated conclusion is (see 3.6):

Conclusion 0.3 [DC] Assume [λ]ℵ0 is well ordered for every λ.
(1) If 22

κ
is well ordered then for every λ, [λ]κ is well ordered.

(2) For any set Y , there is a derived set Y∗ so called Fil4ℵ1
(Y ) of power nearP(P(Y ))

such that � Levy(ℵ0,Y ) “for every λ, Yλ is well ordered".

Thesis 0.4 (1) IfV | “ZF+ DC" and “every [λ]ℵ0 is well orderable" then V looks like
the result of starting with a model of ZFC and using ℵ1-complete forcing notions like
Easton forcing, Levy collapses, and more generally, iterating of κ-complete forcing
for κ > ℵ0.
(2) This approach is dual to investigating L[R] - here we assume ω-sequences are
understood (or weaker versions) and we try to understand V (over this), there over the
reals everything is understood.

Also though our originalmotivationwas to look at the consequences of the so-called
Ax4, this was shadowed here by the try to use weaker relatives; see more in [13].

Explanation 0.5 How do we analyze [μ]κ or equivalently κμ here? We use ℵ1-
complete filters on κ and a well-ordering of [α]ℵ0 for appropriate α or less. We will
consider f : κ → μ; now for everyℵ1-complete filter D on κ , the ordinal α = rkD( f )
gives us some information on f , but if A, κ\A ∈ D+ and f �A = 0A, then α = 0
but we have no information on f �(κ\A), then α = 0 but we have no information on
f �(κ\A). Trying to correct this we consider the ideal J [ f , D] = {A ⊆ κ : A = ∅
mod D or A ∈ D+ but rkD+A( f ) > α}, this is an ℵ1-complete ideal and so we
may consider the pair D̄ = (D1, D2) = (D, dual(J [ f , D])). Now α and the pair
D̄ gives more information on f ; they determine f modulo D2. This is not enough
so we use an algebra B on μ with no infinite decreasing sequence of sub-algebras
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626 S. Shelah

built using the assumption “[μ]ℵ0 is well ordered". So there is Z ∈ D2 such that
A = c�B(Rang( f �Z)) is ⊆-minimal.

Now the triple (D1, D2, Z) and the ordinal α almost determines f , we need one
more piece of information with domain κ : h(i) = otp(α ∩ Z), hence an ordinal
< hrtg(Rang( f )). So we need a bound on it which depends on the choice of B,
usually, it is hrtg([κ]ℵ0), natural by the construction of B.

So f �Z is uniquely determined by the ordinal rkD( f ) and the quadruple
(D1, D2, Z , h), which belongs to a set defined from κ , independently of μ.

Lastly, considering all such filters D (recalling we are assuming DC) we can
find countably many quadruples (Dn

1 , D
n
2 , Z

n, hn) which together are enough as⋃

n
Zn = κ .

We thank for the attention and comments the audience in the advanced seminar in Rut-
gers 10/2004 (particularly Arthur Apter) and advanced course in logic in the Hebrew
University 4,5/2005 and to Paul Larson and Shimoni Garti for many corrections as
well as Tanmay Inamdar.

0.2 Preliminaries

Convention 0.6 We assume just V | ZF if not said otherwise.

Notation 0.7 Let

(1) α, β, γ, δ, ε, ζ, ξ, i, j denote ordinals.
(2) κ, λ, μ, χ denote cardinals, infinite if not said otherwise.
(3) n,m, k, � denote natural numbers.
(4) D denotes a filter (on some set), I , J denote ideals on some set.

Definition 0.8 (1) hrtg(A) = Min{α: there is no function from A onto α}.
(2) wlor(A) = Min{α: there is no one-to-one function from α into A or α = 0∧ A =
∅}, so wlor(A) ≤ hrtg(A).

Remark 0.9 For many the meaning of “Hartogs number” is what is here called “wlor”
(except that usually one would not make an exception for the empty set).

Definition 0.10 (1) For D an ℵ1-complete filter on a set Y and f ∈ YOrd and α ∈
Ord ∪ {∞} we define when rkD( f ) = α, by induction on α:

� For α < ∞, rkD( f ) = α iff β < α ⇒ rkD( f ) �= β and for every g ∈ YOrd
satisfying g <D f there is β < α such that rkD(g) = β.

(2) We can replace D by the dual ideal. If f ∈ ZOrd and Z ∈ D then we let rkD( f ) =
rkD+Z ( f ∪ 0Y\Z ).

Galvin-Hajnal [3] use the rank for the club filter on ω1. This was continued in [7]
where varying D was extensively used.

Claim 0.11 [DC] In Definition 0.10, rkD( f ) is always an ordinal and if α ≤ rkD( f )
then for some g ∈ ∏

y∈Y
( f (y) + 1) we have α = rkD(g), (if α < rkD( f ) we can add
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g <D f ; if rkD( f ) < ∞ then DC is not necessary; if rkD( f ) = α this is trivial, as
we can choose g = f ).

Claim 0.12 (1) [DC] If D is anℵ1-complete filter on Y and f ∈ YOrd and Y = ∪{Yn :
n < ω} then rkD( f ) = Min{ rkD+Yn ( f ) : n < ω and Yn ∈ D+}, ( [7]).

(2) [DC + ACα∗] If D is a κ-complete filter on Y , κ a cardinal > ℵ0 and f ∈ YOrd
and Y = ∪{Yα : α < α∗}, α∗ < κ then rkD( f ) = Min{ rkD+Yα ( f ) : α < α∗
and Yα ∈ D+}.

Proof (1) By [7], in fact, ACℵ0 suffice.
(2) By [7], in fact, DC is not necessary.

Definition 0.13 For Y , D, f as in 0.10 let J [ f , D] =: {Z ⊆ Y : Y\Z ∈ D or
Y\Z ∈ D+ and rk( f )D+(Y\Z) > rkD( f )}.
Claim 0.14 [DC+AC<κ ] Assume D is a κ-complete filter on Y , κ > ℵ0.

(1) If f ∈ Y Ord then J [ f , D] is a κ-complete ideal on Y .
(2) If f1, f2 ∈ YOrd and J = J [ f1, D] = J [ f2, D] then rkD( f1) < rkD( f2) ⇒

f1 < f2 mod J and rkD( f1) = rkD( f2) ⇒ f1 = f2 mod J .

Proof Straightforward or see [10, §5] and the reference there to [9] (and [7]).

Definition 0.15 (1) Here Y ≤qu Z or |Y | ≤qu |Z | or |Y | ≤qu Z or Y ≤qu |Z | means
that Y = ∅ or there is a function from Z (equivalently from a subset of Z ) onto Y .
(2) reg(α) = Min{∂ : ∂ ≥ α is a regular cardinal}.
Definition 0.16 For a set Y , cardinal κ and ordinal γ we defineH<κ,γ (Y ) by induction
on γ : if γ = 0,H<κ,γ (Y ) = Y , if γ = β +1 thenH<κ,γ (Y ) = H<κ,β(Y )∪{u : u ⊆
H<κ,β(Y ) and |u| < κ} and if γ is a limit ordinal then H<κ,γ (Y ) = ∪{H<κ,β(Y ) :
β < γ }.
Observation 0.17 (1) If λ is the disjoint union of 〈Wz : z ∈ Z〉 and z ∈ Z ⇒ |Wz | < λ

and wlor(Z) ≤ λ then λ = sup{ otp(Wz) : z ∈ Z} hence cf(λ) < hrtg(Z).
(2) If λ = ∪{Wz : z ∈ Z} and wlor(P(Z)) ≤ λ then sup{ otp(Wz) : z ∈ Z} = λ.
(3) If λ = ∪{Wz : z ∈ Z} and |Z | < λ then λ = sup{ otp(Wz) : z ∈ Z}.
(4) If Z ⊆ Ord, W̄ = 〈Wα : α ∈ Z〉,Wα ⊆ Ord and λ ≥ ℵ0, |Z |, |Wα| for α ∈ Z

then ∪{Wα : α ∈ Z} has cardinality ≤ λ.

Proof (1) Let Z1 = {z ∈ Z : Wz �= ∅}, so the mapping z �→ Min(Wz) exemplifies
that Z1 is well ordered hence by the definition of wlor(Z1) the power |Z1| is an
aleph < wlor(Z1) ≤ wlor(Z) and by assumption wlor(Z) ≤ λ. Now if the desirable
conclusion fails then γ ∗ = sup({otp(Wz) : z ∈ Z1} ∪ {|Z1|}) is an ordinal < λ,
so we can find a sequence 〈uγ : γ < γ ∗〉 such that otp(uγ ) ≤ γ ∗, uγ ⊆ λ and
λ = ∪{uγ : γ < γ ∗}, so γ ∗ < λ ≤ |γ ∗ × γ ∗|, easy contradiction.
(2) For x ⊆ Z let W ∗

x = {α < λ : (∀z ∈ Z)(α ∈ Wz ≡ z ∈ x)} hence λ is the disjoint
union of {W ∗

x : x ∈ P(Z)\{∅}}. So the result follows by part (1).
(3) So let <∗ be a well-ordering of Z and let W ′

z = {α ∈ Wz : if y <∗ z then α /∈ Wy},
so 〈W ′

z : z ∈ Z〉 is a well-defined sequence of pairwise disjoint sets with union equal
to ∪{Wz : z ∈ Z} = λ and otp(W ′

z) ≤ otp(Wz). Hence if |Wz| = λ for some z ∈ Z
the desirable conclusion is obvious, otherwise the result follows by part (1).
(4) Should be clear.
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628 S. Shelah

Definition 0.18 (1) We say that c� is a very weak closure operation on λ of character
(μ, κ) when :

(a) c� is a function from P(λ) toP(λ)

(b) u ∈ [λ]≤κ ⇒ |c�(u)| ≤ μ

(c) u ⊆ λ ⇒ u ∪ {0} ⊆ c�(u), the 0 for technical reasons.

1A) We say that c� is a weak closure1 operation on λ of character (μ, κ) when
(a),(b),(c) above and:

(d) u ⊆ v ⊆ λ ⇒ u ⊆ c�(u) ⊆ c�(v)

(e) c�(u) = ∪{c�(v) : v ⊆ u, |v| ≤ κ}.
So we may identify c� with c� � [λ]≤κ .

(1B) Let “... character (< μ, κ) or (μ,< κ), or (< μ,< κ)" have the obvious
meaning but if μ is an ordinal not a cardinal, then “< μ" means of order type < μ;
similarly for “< κ". Let “... character (μ, Y )" means “character (< μ+,< hrtg(Y ))"

(1C) We omit the weak when in addition:

( f ) c�(u) = c�(c�(u)) for u ⊆ λ.

(2) We say λ is f -inaccessible when δ ∈ λ ∩ Dom( f ) ⇒ f (δ) < λ.
(3) We say c� : P(λ) → P(λ) is well founded when for no sequence 〈Un : n < ω〉
of subsets of λ do we have c�(Un+1) ⊂ Un for n < ω.
(4) For c� a partial function from P(α) to P(α) (for simplicity assume α = ∪{u :
u ∈ Dom(c�)}) let c�1ε,<κ be the function fromP(α) toP(α) defined by induction
on the ordinal ε as follows:

(a) c�10,<κ(u) = u

(b) c�1ε+1,<κ(u) = {0} ∪ c�1ε,<κ(u) ∪ ⋃{c�(v) : v ⊆ c�1ε,<κ(u) and
v ∈ Dom(c�), |v| < κ}

(c) for limit ε let c�1ε,<κ(u) = ∪{c�1ζ,<κ(u) : ζ < ε}.
(4A) Instead “< κ" we may use “≤ κ".
(5) For any function F : [λ]ℵ0 → λ and countable u ⊆ λ we define c�2ε(u, F) by
induction on ε ≤ ω1

(a) c�20(u, F) = u ∪ {0}
(b) c�2ε+1(u, F) = c�2ε(u, F) ∪ {F(c�2ε(u, F))}
(c) c�2ε(u, F) = ∪{c�2ζ (u, F) : ζ < ε} when ε ≤ ω1 is a limit ordinal.

(6) For countable u and F as in part (5) let c�3F (u) = c�3(u, F) := c�2ω1
(u, F) and

for any u ⊆ λ let c�4F (u) := u ∪ ⋃{c�3F (v) : v ∈ [u]ℵ0}.
(7) For a cardinal ∂ we say that c� : P(λ) → P(λ) is ∂-well founded when for
no ⊆-decreasing sequence 〈Uε : ε < ∂〉 of subsets of λ do we have ε < ζ < ∂ ⇒
c�(Uζ ) � Uε.
(8) If F : [λ]≤κ → λ and u ⊆ λ then we let c�F (u) = c�1F (u) be the minimal subset
v of λ such that w ∈ [v]≤κ ⇒ F(w) ∈ v and u ⊆ v (exists).

1 so by actually only c��[λ]≤κ count.
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Observation 0.19 For F : [λ]ℵ0 → λ, the operation u �→ c�3F (u) is a very weak
closure operation of character (ℵ1,ℵ0).

Remark 0.20 So for any very weak closure operation, ℵ0-well founded is a stronger
property than well founded, but if u ⊆ λ ⇒ c�(c�(u)) = c�(u) which is reasonable,
they are equivalent.

Observation 0.21 [α]∂ is well ordered iff ∂α is well ordered when α ≥ ∂ .

Proof Use a pairing function on α for showing |∂α| ≤ [α]∂ , so ⇒ holds. If ∂α is well
ordered by <∗ map u ∈ [α]∂ to the <∗-first f ∈ ∂α satisfying Rang( f ) = u.

1 Representing ��

Here we give a simple case to illustrate what we do (see later on improvements in
the hypothesis and the conclusion). Specifically, if Y is uncountable and [λ]ℵ0 is well
ordered, then the set Yλ can be analyzed modulo countable union over few (i.e., their
number depends on Y but not on λ) well ordered sets.

Definition 1.1 (1)

(a) Filℵ1(Y ) = Fil1ℵ1
(Y ) = {D : D is an ℵ1-complete filter on Y }, so Y is

defined from D as ∪{X : X ∈ D}
(b) Fil2ℵ1

(Y ) = {(D1, D2) : D1 ⊆ D2 are ℵ1-complete filters on Y , (∅ /∈ D2, of

course)}; in this context Z ∈ D̄ means Z ∈ D2
(c) Fil3ℵ1

(Y , μ) = {(D1, D2, h) : (D1, D2) ∈ Fil2ℵ1
(Y ) and h : Y → α for

some α < μ}, if we omit μ we mean μ = hrtg(Y ) ∪ ω

(d) Fil4ℵ1
(Y , μ) = {(D1, D2, h, Z) : (D1, D2, h) ∈ Fil3ℵ1

(Y , μ), Z ∈ D2};
omitting μ means as above.

(2) For y ∈ Fil4ℵ1
(Y , μ) let Y = Y [y] = Y [y] and y = (Dy

1 , Dy
2 , hy, Zy) =

(D1[y], D2[y], h[y], Z [y]); similarly for the others and let Dy = D[y] be Dy
1 + Zy.

(3) We can replace ℵ1 by any κ > ℵ1 (the results can be generalized easily assuming
DC + AC<κ , used in §2).

Theorem 1.2 [DC] Assume [λ]ℵ0 is well ordered.
Then we can find a sequence 〈Fy : y ∈ Fil4ℵ1

(Y )〉 satisfying
(α) Fy ⊆ Z [y]λ
(β) Fy is a well ordered set by f1 <y f2 ⇔ rkD[y]( f1) < rkD[y]( f2) so f �→

rkD[y]( f ) is a one-to-one mapping from Fy into the ordinals
(γ ) if f ∈ Yλ then we can find a sequence 〈yn : n < ω〉 with yn ∈ Fil4ℵ1

(Y ) such that
n < ω ⇒ f � Zyn ∈ Fyn and ∪{Zyn : n < ω} = Y .

An immediate consequence of 1.2 is

Conclusion 1.3 (1) [DC + ωα is well-orderable for every ordinal α].
For any set Y and cardinal λ there is a sequence 〈Fx̄ : x̄ ∈ ω( Fil4ℵ1

(Y ))〉 such that
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(a) Yλ = ∪{Fx̄ : x̄ ∈ ω( Fil4ℵ1
(Y ))}

(b) Fx̄ is well orderable for each x̄ ∈ ω( Fil4ℵ1
(Y ))

(b)+ moreover, uniformly, i.e., there is a sequence 〈<x̄: x̄ ∈ ω( Fil4ℵ1
(Y )〉 such

that <x̄ is a well order of Fx̄

(c) there is a function F with domain P(Yλ)\{∅} such that: if S ⊆ Yλ is non-
empty then F(S) is a non-empty subset of S of power ≤qu

ω( Fil4ℵ1
(Y )))

recalling Definition 0.15. In fact, some ordinal α(∗) and ū we have:

(α) ū = 〈Uα : α < α(∗)〉 is a partition of Yλ

(β) if S ⊆ Yλ then F(S) = U f (S) ∩ S where f (S) = Min{α : Uα ∩ S �= ∅}
(γ ) if α < α(∗) then |Uα| < hrtg(ω( Fil4ℵ1

(Y ))).

(2) [DC] For any Y , λ above, if [α(∗)]ℵ0 is well ordered where α(∗) = ∪{ rkD( f )+1 :
f ∈ Yλ and D ∈ Fil1ℵ1

(Y )} then Yλ satisfies the conclusion of part (1).

Remark 1.4 So clause (c) of 1.3(1) is a weak form of choice.

Proof Proof of 1.3 (1) Let 〈Fy : y ∈ Fil4ℵ1
(Y )〉 be as in 1.2.

For each x̄ ∈ ω(Fil4ℵ1
(Y )) (so x̄ = 〈xn : n < ω〉) let

F ′̄
x = { f : f is a function from Y to λ such that

n < ω ⇒ f � Zxn ∈ Fxn and Y = ∪{Zxn : n < ω}}.

Now

(∗)1
Yλ = ∪{F ′̄

x : x̄ ∈ ω(Fil4ℵ1
(Y ))}.

[Why? By clause (γ ) of 1.2.]
Let α(∗) = ∪{rkD( f ) + 1 : f ∈ Yλ and D ∈ Fil1ℵ1

(Y )}. For x̄ ∈ ω(Fil4ℵ1
(Y )) we

define the function G x̄ : F ′̄
x → ωα(∗) by G x̄( f ) = 〈 rkD1[xn ]( f ) : n < ω〉.

Next

(∗)2 (α) Ḡ = 〈G x̄ : x̄ ∈ ω(Fil4ℵ1
(Y ))〉 exists

(β) G x̄ is a function fromF ′̄
x to

ωα(∗)

(γ ) G x̄ is one to one.

[Should be clear, e.g. for (∗)2(γ ) read the definition ofF ′
x′ and clause (β) of Theorem

1.2.]
Let <∗ be a well ordering of ωα(∗) and for x̄ ∈ ω(Fil4ℵ1

(Y )) let <x̄ be the following
two place relation on F ′̄

x:

(∗)3 f1 <x̄ f2 iff G x̄( f1) <∗ G x̄( f2).

Obviously

(∗)4 (α) 〈<x̄: x̄ ∈ ω(Fil4ℵ1
(Y ))〉 exists

(β) <x̄ is a well ordering of F ′̄
x.
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By (∗)1 + (∗)4 we have proved clauses (a),(b),(b)+ of the conclusion. Now clause
(c) follows: for non-empty S ⊆ Yλ, let f (S) be min{otp({g : g <ȳ f },<ȳ) : ȳ ∈
ω(Fil4ℵ1

(Y )) and f ∈ F ′̄
y ∩ S}. Also for any ordinal γ let U 1

γ := { f : for some

ȳ ∈ ω(Fil4ℵ1
(Y )) we have γ = otp({g : g <ȳ f },<ȳ)} and Uγ = U 1

γ \ ∪ ⋃{U 1
β :

β < γ }.
Lastly, we let F(S) = U f (S) ∩ S. Now check.

(2) Similarly.

Proof Proof of Theorem 1.2 First

�1 there are a cardinal μ and a sequence ū = 〈uα : α < μ〉 listing [λ]ℵ0 .

[Why? By the assumption.]
Second, we can deduce

�2 there are μ1 ≤ μ and a sequence ū = 〈uα : α < μ1〉 such that:

(a) uα ∈ [λ]ℵ0

(b) if u ∈ [λ]≤ℵ0 then for some finite w ⊆ μ1, u ⊆ ∪{uβ : β ∈ w}
(c) uα is not included in uα0 ∪ . . . ∪ uαn−1 when n < ω, α0, . . . , αn−1 < α.

[Why? Let ū0 be of the form 〈u0α : α < α∗〉 such that (a) + (b) holds and �g(ū0) is
minimal; it is well defined and �g(ū0) ≤ μ by �1. Let W = {α < �g(ū0) : u0α �

∪{u0β : β ∈ w} when w ⊆ α is finite}. Let μ1 = |W | and let f : μ1 → W be one-to-

one onto, let uα = u0f (α) so 〈uα : α < μ1〉 satisfies (a)+(b) andμ1 = |W | ≤ �g(ū0).

So by the choice of ū0 we have �g(ū0) = μ1. So we can choose f such that it is
increasing hence ū is as required.]

�3 we can define n : [λ]≤ℵ0 → ω and partial functions F� : [λ]≤ℵ0 → μ1 for � < ω

(so 〈F� : � < ω〉 exists) as follows:
(a) u infinite⇒ F0(u) = Min{α: for somefinitew ⊆ α, u ⊆ uα∪⋃{uβ : β ∈ w}

mod finite}
(b) u finite ⇒ F0(u) undefined
(c) F�+1(u) := F0(u\(uF0(u) ∪ . . . ∪ uF�(u))) for � < ω when F�(u) is defined
(d) n(u) := Min{� : F�(u) undefined}.

Then

�4 (a) F�+1(u) < F�(u) < μ1 when they are well defined
(b) n(u) is a well defined natural number and u\ ∪ {uF�(u) : � < n(u)} is finite

and k < n(u) ⇒ (u\ ∪ {uF�(u) : � < k}) ∩ uFk (u) is infinite
(c) if u1, u2 ∈ [λ]ℵ0 , u1 ⊆ u2 and u2\u1 is finite then F�(u1) = F�(u2) for

� < n(u1) and n(u1) = n(u2)

�5 define F∗ : [λ]ℵ0 → λ by F∗(u) = Min(∪{uF�(u) : � < n(u)} ∪ {0}\u) if well
defined, zero otherwise
[Note: the reader may wonder: as you add {0} then Min(−) = 0 in all cases.
However, if 0 ∈ u then by “\u", zero does not belong to the set from which we
choose a minimal ordinal.]

�6 if u ∈ [λ]ℵ0 then (recalling 0.18(4), (5), (6)):
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(α) c�3(u, F∗) = c�3F∗(u) is F ′(u) := u ∪ ⋃{uF�(u) : � < n(u)} ∪ {0}
(β) c�3F∗(u) = c�2ε(u)(F) for some ε(u) < ω1

(γ ) there is F̄ = 〈F ′
ε : ε < ω1〉 such that: for every u ∈ [λ]ℵ0 , c�3F∗(u) = {F ′

ε(u) :
ε < ε(u)} and F ′

ε(u) = 0 if ε ∈ [ε(u), ω1)

(δ) in fact F ′
ε(u) is the ε-th member of c�3F∗(u) if ε < ε(u).

[Why? Define wε
u by induction on ε by w0

u = u, wε+1
u = wε

u ∪ {F∗(wε
u)} and for

limit ordinal ε we let wε
u = ∪{wζ

u : ζ < ε}. We can prove by induction on ε that
wε
u ⊆ F ′(u) which is countable. The partial function g with domain F ′(u)\u to Ord,

g(α) = Min{ε : α ∈ wε+1
u } is one to one onto an ordinal call it ε(∗), so w

ε(∗)
u ⊆

F ′(u) and if they are not equal that F∗(wε(∗)
u ) ∈ F ′(u)\wε(∗)

u hence w
ε(∗)
u � w

ε(∗)+1
u

contradicting the choice of ε(∗). So clause (α) holds. In fact, c�3(u, F∗) = w
ε(∗)
u and

clause (β) holds. CLauses (γ ), (δ) should be clear.]

�7 there is no sequence 〈Un : n < ω〉 such that:

(a) Un+1 ⊆ Un ⊂ λ

(b) Un is closed under F∗, i.e. u ∈ [Un]ℵ0 ⇒ F∗(u) ∈ Un

(c) Un+1 �= Un .

[Why? Assume toward contradiction that 〈Un : n < ω〉 satisfies clauses (a),(b),(c).
Let αn = Min(Un\Un+1) for n < ω hence the sequence ᾱ = 〈αn : n < ω〉 is
well defined with no repetitions and let βm,� := F�({αn : n ≥ m}) for m < ω

and � < nm := n({αn : n ∈ [m, ω)}). As ᾱ is with no repetition, nm > 0 and by
�4(c) clearly nm = n0 for m < ω and βm,� = β0,� for m < ω, � < n0. So letting
vm = ∪{uF�({αn :n∈[m,ω)}) : � < nm}, it does not depend on m so vm = v0, and by
the choice of F∗, as {αn : n ∈ [m, ω)} ⊆ Um and Um is closed under F∗ clearly
vm ⊆ Um . Together v0 = vm ⊆ Um so v0 ⊆ ∩{Um : m < ω}. Also, by the definition
of the F�’s, {αn : n < ω}\v0 is finite so for some k < ω, {αm : n ∈ [k, ω)} ⊆ v0 but
v0 ⊆ Uk+1 contradicting the choice of αk .]

Moreover, recalling Definition 0.18(6):

�′
7 there is no sequence 〈Un : n < ω〉 such that
(a) Un+1 ⊆ Un ⊆ λ

(b) Un\c�4F∗(Un+1) �= ∅.
[Why? As above but letting αn = Min(Un\c�3F∗(Un+1)).]

Nowwedefine for (D1, D2, h, Z) ∈ Fil4ℵ1
(Y ) andordinalα the following, recalling

Definition 0.18(6) for clauses (e),(f):

�8 F(D1,D2,h,Z),α =: { f : (a) f is a function from Z to λ

(b) rkD1+Z ( f ∪ 0(Y\Z)) = α

(c) D2 = {Y\X : X ⊆ Y satisfies X = ∅ mod D1
or X ∈ D+

1 and rkD1+X ( f ∪ 0(Y\Z)) > α

that is rkD1+X ( f ) > α}
(d) Z ∈ D2, really follows
(e) if Z ′ ⊆ Z ∧ Z ′ ∈ D2 then
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c�3F∗(Rang( f � Z ′)) = c�3F∗(Rang( f ))

( f ) y ∈ Z ⇒ f (y) = theh(y)-thmember of c�3F∗(Rang( f ))}.
So we have:

�9 F(D1,D2,h,Z),α has at most one member; call it f(D1,D2,h,Z),α (when defined;
pedantically we should write f(D1,D2,h,Z),c�,α)

�10 F(D1,D2,h,Z) =: ∪{F(D1,D2,h,Z),α : α an ordinal} is a well ordered set.

[Why? Define <(D1,D2,h,Z) by the α’s, i.e. f 1 < f 2 iff there are α1 < α2 such that
f � = f(D1,D2,h,2),α�

for � = 1, 2.]

�11 if f : Y → λ and Z ⊆ Y then the set Rang( f � Z) has cardinality < hrtg(Z).

[Why? By the definition of hrtg(−) this should be clear.]

�12 if f : Z → λ and Z ⊆ Y then c�4F∗(Rang( f )) ⊆ λ has cardinality < hrtg([Z ]ℵ0)

or is finite.

Why?Thiswill take some time. IfRang( f ) is countablemore holds by0.19.Otherwise,
by �6(β) recallng Definition 0.18(6) we have c�4F∗(Rang( f )) = Rang( f )∪ {F ′

ε(u) :
u ∈ [Rang( f )]ℵ0 and ε < ω1}.

Let α(∗) be minimal such that Rang( f ) ∩ α(∗) has order type ω1. Let h1, h2 :
ω1 → ω1 be such that h�(ε) < max{ε, 1} and for every ε1, ε2 < ω1 there is ζ ∈
[ε1 + ε2 + 1, ω1) such that h�(ζ ) = ε� for � = 1, 2. Define F : [Z ]ℵ0 → λ as
follows: if u ∈ [Rang( f )]ℵ0 , let ε�(u) = h�(otp(u ∩ α(∗)) for � = 1, 2 and F(u) =
F ′

ε2(u)({α ∈ u: if α < α(∗) then otp(u ∩ α) < ε1(u)}).
Now

•1 if u ∈ [Rang( f )]ℵ0 then F(u) is Fε(v) for some v ∈ [Z ]ℵ0 and ε < ω1.

[Why? As F(u) ∈ Rang(F ′
ε2(u)�[Rang( f )]ℵ0)]

•2 {F(u) : u ∈ [Rang( f )]ℵ0} ⊆ c�4F∗(Rang( f )).

[Why? By •1 recalling �6.]

•3 if u ∈ [Rang( f )]ℵ0 and ε < ω1 then F ′
ε(u) is F(u) for some v ∈ [Rang( f )]ℵ0 .

[Why? Let ε1 = otp(u ∩ α(∗)), ε2 = ε; now let ζ < ω1 be such that h�(ζ ) = ε� for
� = 1, 2. Let v = u ∪ {α : α ∈ Rang( f ) ∩ α(∗) and α ≥ sup(u ∩ α(∗)) + 1 and
otp(Rang( f ) ∩ α\(sup(u ∩ α(∗) + 1)) < (ζ − ε1))}.]

So F(u) = F ′
ε(u). By •2 + •3 we can conclude:

•4 in •2 we have equality.
Together c�4F∗(Rang( f )) = {F(u) : u ∈ [Rang( f )]ℵ0} ∪ Rang( f ) so it is the union

of two sets; by the definition of hrtg(−) the first is of cardinality < hrtg([Z ]ℵ0) and
the second is of cardinality < hrtg[Z ], so we are easily done proving �12

�13 if f : Y → λ then for some sequence 〈(yn, αn) : n < ω〉 we have yn ∈ Fil4ℵ1
(Y )

and αn ∈ Ord for n < ω and f = ∪{ fyn ,αn : n < ω}.
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[Why? Let

I 0
f = {Z ⊆ Y : for some y ∈ Fil4ℵ1

(Y ) satisfying Zy = Z
and ordinal α, fy,α is well defined and equal to f � Z}

I f = {Z ⊆ Y : Z is included in a countable union of members of I 0
f }.

So recalling we are assuming DC it is enough to show that Y ∈ I f .
Toward contradiction assume not. Let D1 = {Y\Z : Z ∈ I f }, clearly it belongs to

Filℵ1(Y ), noting that Y /∈ I f . So α(∗) := rkD1( f ) is well defined (by 0.11) recalling
that only DC = DCℵ0 is needed.

Let

D2 = {X ⊆ Y : X ∈ D1 or rkD1+(Y\X)( f ) > α(∗)}.

By 0.13 + 0.14 clearly D2 is an ℵ1-complete filter on Y extending D1.
Nowwe try to choose Zn ∈ D2 for n < ω such that Zn+1 ⊆ Zn and c�4F∗(Rang( f �

Zn+1)) does not include Rang( f � Zn).
For n = 0, Z0 = Y is O.K.
By�′

7 we cannot have such ω-sequence 〈Zn : n < ω〉; so by DC for some (unique)
n = n(∗), Zn is chosen but not Zn+1.

Let h : Zn → hrtg([Y ]ℵ0) ∪ ω1 be:

h(y) = otp( f (y) ∩ c�4F∗(Rang( f � Zn))).

Now h is well defined by �12. Easily

f � Zn ∈ F(D1+Zn ,D2,h,Zn),α(∗)

hence Zn ∈ I 0
f ⊆ I f , contradiction to Zn ∈ D2, D1 ⊆ D2.

So we are done proving �13.]
Now clause (β) of the conclusion holds by the definition of Fy, clause (α) holds

by �10 recalling �8,�9 and clause (γ ) holds by �12.

Remark 1.5 We can improve 1.2 in some way by weakening the demands on ū.
We may replace the assumption “[λ]ℵ0 is well ordered" by:

(∗) there is 〈uα : α < α∗〉, a sequence of members of [λ]ℵ0 such that (∀u ∈
[λ]ℵ0)(∃α)(u ∩ uα infinite).

[Why? We define Fε : [λ]ℵ0 → α∗ by induction on ε < ω1 by Fε(v) := Min{α <

α∗ : (v\ ∪ {uFζ (v) : ζ < ε}) ∩ uα infinite} if well defined and let F : [λ]ℵ0 → [λ]ℵ0

be defined by F(v) = ∪{Fε(v) : ε < ω1, Fε(v) well defined}.
Lastly, let F∗(u) = min(F(u)\u).]
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Observation 1.6 (1) The power of Fil4ℵ1
(Y , μ) is smaller or equal to the power of

the set (P(P(Y )))2 × P(Y ) × μ|Y |; if ℵ0 ≤ |Y | this is equal to the power of
P(P(Y )) × Yμ.
(2) The power of Fil4ℵ1

(Y ) is smaller or equal to the power of the set (P(P(Y )))2 ×
P(Y ) × ∪{Yα : α < hrtg([Y ]ℵ0)}.
(3) In part (2), if ℵ0 ≤ |Y | this is equal to |P(P(Y ))| × ∪{Yα : α < hrtg([Y ]ℵ0)};
also α < hrtg([Y ]ℵ0) ⇒ |P(P(Y )) × Yα| = |P(P(Y ))| and |Fil4ℵ1

(Y )| ≤qu
P(P(Y × Y )).

Remark 1.7 (1) As we are assuming DC, the case ℵ0 � |Y | means that Y is finite, so
degenerated. Now, if |Y | < ℵ0, then Fil1ℵ1

(Y ) = {{Z ⊆ Y : Z ⊇ X} : X ⊆ Y } hence
|Fil1ℵ1

(Y )| = |P(Y )| hence FIL4ℵ1
(Y , μ) has the same power as 3P(Y ) × ωμ this is

a dull case.

Proof 1.6 (1) Reading the definition of Fil4ℵ1
(Y , μ) clearly its power is≤ the power of

P(P(Y )) × P(P(Y )) × P(Y ) × μ|Y |. If ℵ0 ≤ |Y | then |P(P(Y )) × P(Y )| ≤
|P(P(Y )) × P(P(Y ))| = 2|P(Y )) × 2|P(Y )| ≤ 2|P(Y )|+|P(Y )| = 2|P(Y )| =
|P(P(Y ))| ≤ |P(P(Y ))×P(Y )×μ|Y || asP(Y )+P(Y ) = 2|Y |×2 = 2|Y |+1 =
2|Y |; so the second conclusion follows.
(2) Read the definitions.
(3) If α < hrtg([Y ]ℵ0) then let f be a function from [Y ]ℵ0 onto α and for β < α let
A f ,β = {u ∈ [Y ]ℵ0 : f (u) < β}. So β �→ A f ,β is a one-to-one function from α

onto {A f ,γ : γ < α} ⊆ P(P(Y )) so |Yα| ≤ P(P(Y )) and P(P(Y )) × |Yα| ≤
P(P(Y )) × P(P(Y )) ≤ 2|P(Y )|+|P)Y )| = 2|P(Y )|. Better, for f a function from
[Y ]ℵ0 onto α < P(Y ) let A f = {(y1, y2) : f (y1) < f (y2)} ⊆ Y × Y . Define
F : P(Y × Y ) → hrtg(Y ) by F(A) = α if A = A f and f , α are as above, and
F(A) = 0 otherwise.

So |P(P(Y )) ∪ ⋃{Yα : α < hrtg([Y ]ℵ0)}| ≤qu P(P(Y )) ×P(P(Y × Y ))) =
|P(P(Y × Y ))|. By the proof above we easily get |Fil4ℵ1

(Y )| ≤qu P(P(Y × Y )).

Claim 1.8 [DC] Assume

(a) a is a countable set of limit ordinals
(b) <∗ is a well ordering of �a
(c) θ ∈ a ⇒ cf (θ) ≥ κ where κ = hrtg(P(ω)) or just �a/[a]<ℵ0 is < κ-directed.

Then we can define ( J̄ , b̄, f̄) such that
(α)

(i) J̄ = 〈Ji : i ≤ i(∗)〉 where i(∗) < hrtg(P(ω))

(ii) Ji is an ideal on a (though not necessarily a proper ideal)
(iii) Ji is increasing continuous with i, J0 = {∅}, Ji(∗) = P(a)
(iv) b̄ = 〈bi : i < i(∗)〉, bi ⊆ a and Ji+1 = Ji + bi �= Ji ,
(v) so Ji is the ideal on a generated by {b j : j < i}
(β)

(i) f̄ = 〈 f̄ i : i < i(∗)〉
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(ii) f̄ i = 〈 f iα : α < αi 〉
(iii) f iα ∈ ∏

a is <Ji -increasing with α < αi

(iv) { f iα : α < αi } is cofinal in (
∏

a,<Ji+(a\bi ))

(γ )

(i) cf(
∏

a) ≤ ∑

i<i(∗)

αi

(ii) for every f ∈ �a for some n and finite set {(i�, γ�) : � < n} such that i� <

i(∗), γ� < αi� we have f < max�<n f i�γ�
, i.e., (∀θ ∈ a)(∃� < n)[ f (θ) < f i�γ�

(θ)].
Remark 1.9 Note that there is no harm in having more than one occurence of θ ∈ a.
See more in [13], e.g. on uncountable a.

Proof 1.8 Note that:

�1 clause (γ ) follows from (α) + (β).

[Why? Easily (γ )(i i) ⇒ (γ )(i). Now let g ∈ �a and let Ig = {b ⊆ a: we can find
n < ω and i� < i(∗) and β� < αi� for � < n such that θ ∈ b ⇒ (∃� < n)(g(θ) <

f i�β�
(θ))}.
Easily Ig is an ideal on a though not necessarily a proper ideal. Note that if a ∈ Ig

we are done. So assume a /∈ Ig . Note that Ig ⊆ Ji(∗) hence jg = min{i ≤ i(∗): some
c ∈ P(a)\Ig belongs to Ji } is well defined (as a ∈ P(a)\Ig ∧a ∈ Ji(∗)). As J0 = {∅}
and clearly as ∅ ∈ Ig , so c = a witness jg > 0. As 〈Ji : i ≤ i(∗)〉 is ⊆-increasing
continuous, necessarily jg is a successor ordinal say jg = ig + 1 and let i(g) = ig
and choose c ∈ J jg\Ig , clearly Ji(g) ⊆ Ig so c belongs to J jg\Jig . By clause (β)(iv)

there is α < αi(g) such that g < f iα mod (Ji(g) + (a\bi(g))).
Now let d = {θ ∈ a : g(θ) < f iα(θ)} so by the choice of α we have d = a

mod (Ji(g) + (a\b(g))), which means that bi(g) ⊆ d mod Ji(g) so as Ji(g)+1 =
Ji(g) + bi,g and c ∈ Ji(g)+1\Ji(g) clearly c ⊆ bi(g) mod Ji(g).

But by the definition of the ideal Ji(g) and of d necessarily d ∈ Ji(g) and recall
Ji(g) ⊆ Ji(g), contradicting the conclusion of the last sentence.]

Since (γ ) follows from (α) + (β), it suffices to prove these parts. By induction on
i < κ we try to choose ( J̄ i , b̄i , f̄ i ) where J̄ i = 〈J j : j ≤ i〉, b̄i = 〈bij : j < i〉, f̄ i =
〈 f̄ j : j < i〉 which satisfies the relevant parts of the conclusion and do it uniformly
from (a,<∗). Once we arrive at i such that Ji = P(a) we are done.

For i = 0 recalling J0 = {∅} there is no problem.
For i limit recalling that Ji = ∪{J j : j < i} there is no problem and note that if

j < i ⇒ a /∈ J j then a /∈ Ji .
So assume that ( J̄ i , bi , f̄ i ) is well defined and a /∈ Ji and we shall define for i + 1.
We try to choose ḡi,ε = 〈gi,εα : α < δi,ε〉 and bi,ε by induction on ε < ω1 and for

each ε we try to choose gi,εα ∈ �a by induction on α (in fact α < hrtg(�a) suffice,
we shall get stuck earlier) such that:
�2

i,ε

(a) if β < α then gi,εβ <Ji g
i,ε
α ,

(b) if ζ < ε then δi,ζ ≥ δi,ε and α < δi,ε implies gi,ζα ≤ gi,εα ,
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(c) if cf(α) = ℵ1 then gi,εα is defined by

θ ∈ a ⇒ gi,εα (θ) = Min{
⋃

β∈C
gi,εβ (θ) : C is a club of α},

(d) if α is a limit ordinal and cf(α) �= ℵ1, α �= 0 then gi,εα is the <∗-first g ∈ �a
satisfying clauses (a) + (b),

(e) if we have 〈gi,εβ : β < α〉, cf(α) > ℵ1, moreover cf(α) ≥ min{cf(θ) : θ ∈ a} and
there is no g as required in clause (d) then δi,ε = α,

(f) if α = 0 or α is a successor, then gi,εα is the <∗-first g ∈ �a such that:

•1 ζ < ε ∧ α < δi,ζ ⇒ gi,ζα ≤ g,

•2 β < α ⇒ gi,εβ < gi,εα mod Ji ,

•3 ε = ζ + 1 ⇒ (∀β < δi,ζ )[¬(g ≤Ji g
i,ζ
β )], follows if α > 0.

(g) Ji is the ideal onP(a) generated by {b j : j < i},
(h) bi,ε ∈ (Ji )+ so bi,ε ⊆ a,
(i) ḡi,ε is increasing and cofinal in (�(a),<Ji+(a\bi,ε)),
(j) bi,ε is such that under clauses (h)+(i) the set {otp(a∩θ) : θ ∈ bi,ε} is<∗-minimal

recalling the claim assumptions,
(k) if ζ < ε then bi,ζ ⊆ bi,ε mod Ji (follows by “if ζ < ε then gi,ε0 is a<Ji+bi,ζ -upper

bound of ḡi,ζ ".

Clearly in stage ε we first choose gi,εα by induction on α. As β < α ⇒ gi,εβ �= gi,εα we
are stuck in some δi,ε and then choose bi,ε.

We now give details on some points:

(∗)0 if α = 0 then we can choose g2,ε0 .

[Why? Trivial.]

(∗)1 Clause (c) is O.K., that is: if we arrive to (ε, α), cf(α) = ℵ1 then we can define
gi,εα .

[Why? We already have 〈gi,εα : α < δ〉 and 〈gi,ζα : α < δi,ζ , ζ < ε〉, and we define
gi,εδ as there. Now gi,εδ (θ) is well defined as the “Min" is taken on a non-empty set
of ordinals as we are assuming cf(δ) = ℵ1 and by DC, ℵ1 is regular. The value is
< θ because for some club C of δ, otp(C) = ω1, so gi,εδ (θ) ≤ ∪{gi,εβ (θ) : β ∈ C}
but this set is ⊆ θ while cf(θ) > ℵ1 by clause (c) of the assumption. By ACℵ0 we
can find a sequence 〈Cθ : θ ∈ a〉 such that: Cθ is a club of δ of order type ω1

satisfying gi,εδ (θ) = ∪{gi,εα (θ) : α ∈ Cθ } hence for every club C of δ included in Cθ

we have gi,εδ (θ) = ∪{gi,εα (θ) : α ∈ Cθ }. Now θ ∈ a ⇒ gi,εδ (θ) = ⋃

α∈C
gi,εα (θ) when

C := ∩{Cσ : σ ∈ a}, because C too is a club of δ recalling a is countable. So if α < δ

then for some β we have α < β ∈ C hence the set c := {θ ∈ a : gi,εα (θ) ≥ gi,εβ (θ)}
belongs to Ji and θ ∈ a\c ⇒ gi,εα (θ) < gi,εβ (θ) ≤ gi,εδ (θ), so indeed gi,εα <Ji g

i,ε
δ .

Lastly, why ζ < ε ⇒ gi,ζδ ≤ gi,εδ ? As we can find a club C of δ which is as above

for both gi,ζδ and gi,εδ and recall that clause (b) of�i,ε holds for every β ∈ C . Together

gi,εδ is as required.]
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(∗)2 cf(δi,ε) > ℵ1 and even cf(δi,ε) ≥ min{cf(θ) : θ ∈ a}.
[Why?We have to prove that arriving to α > 0, if cf(α) < min{cf(θ) : θ ∈ a} then we
can choose gi,εα as required. The cases cf(α) = ℵ1, α = 0 are covered by (∗)1, (∗)0
respectively, otherwise let u ⊆ α be unbounded of order type cf(α), and define a
function g from a to the ordinals by g(θ) = sup({gi,εβ (θ) : β ∈ u}∪{gi,ζα (θ) : ζ < ε}).
This is a subset of θ of cardinality< |a|+ cf(α)which is< θ = cf(θ) hence g ∈ �a,
easily is as required, i.e. satisfies clauses (a) + (b) and the <∗-first such g is gi,εα .]

Note that clause (e) of �i,ε follows.

(∗)3 if ζ < ε then δi,ε ≤ δi,ζ .

[Why? Otherwise gi,εδi,ζ
contradict clause (e) of �2

i,ζ .]

(∗)4 if gi,ε = 〈gi,εα : α < δi,ε〉 is well defined and cf(δi,ε) ≥ κ then bi,ε is well
defined.

[Why? Clearly, it suffices to prove that there is b as required on bi,ε (in clauses (b),(i)).
So toward contradiction assume that for every b ∈ J+

i , ḡi,ε is not <Ji+(a\b)-cofinal
in �a hence there is h ∈ �a such that α < δi,ε ⇒ h �Ji g

i,ε
α and let hb be the <∗-

minimal such h. Let h∗ be the function with domain a such that h(θ) = ∪{hb(θ)+1 :
b ∈ J+

i }.
As hrtg(J+

i ) ≤ hrtg(P(a)) < min{cf(θ) : θ ∈ a}, clearly h∗ ∈ �a. Now for
α < δi,ε let di,ε,α = {θ ∈ a : gi,εα (θ) ≤ h∗(θ)}. So 〈di,ε,α/Ji : α < δi,ε〉 is
≤-increasing in the Boolean Algebra P(a)/Ji , so for some βi,ε < δi,ε we have
α ∈ (βi,ε, δi,ε) ⇒ di,ε,α = di,ε,βi,ε mod Ji . This implies di,ε can serve as bi,ε.]

To finish consider the following two cases.

Case 1: We succeed to carry the induction, i.e. choose ḡi,ε for every ε < κ .
So 〈bi,ε : ε < κ〉 is a sequence of subsets of a, pairwise distinct (by �2

κ,0 clauses
(g) + (b)), but κ ≥ hrtg(P(ω)) and a is countable; contradiction.

Case 2: We are stuck in ε < κ .
For ε = 0 there is no problem to define gi,εα by induction on α till we are stuck,

say in α, necessarily α is of large enough cofinality ≥ κ by (∗)2, and so ḡi,ε is well
defined. We then prove bi,ε exists by (∗)4 again using <∗.

For ε limit we can also choose ḡε.
For ε = ζ +1, if a ∈ Jε then we are done; otherwise g

i,ε
0 as required can be chosen

by (∗)0, and then we can prove that ḡi,ε, bi,ε exists as above.

Remark 1.10 From 1.8 we can deduce bounds on hrtg(Y (ℵδ)) when δ < ℵ1 and more
like the one on ℵℵ0

ω (even better, the bound on pp(ℵω)).

2 No decreasing sequence of subalgebras

In this section we concentrate on weaker axioms. We consider Theorem 1.2 under
weaker assumptions than “[λ]ℵ0 is well orderable". We are also interested in replacing
ω by ∂ in “no decreasing ω-sequence of c�-closed sets", but the reader may consider
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∂ = ℵ0 only. Note that for the full version, Ax4α , i.e., [α]∂ is well orderable, the case
of ∂ = ℵ0 is implied by the ∂ > ℵ0 version and suffices for the results. But for other
versions, the axioms for different ∂’s seem incomparable.

Note that if we addmanyCohens (notwell ordering them) thenAx4λ fails below even
for ∂ = ℵ0, whereas the other axioms are not affected. But forcing by ℵ1-complete
forcing notions preserve Ax4.

Hypothesis 2.1 DC∂ and let ∂(∗) = ∂ + ℵ1. Actually we use only DC in 2.5(1) and
DC∂ in 2.5(3) and the later claims. We fix a regular cardinal ∂ .

Definition 2.2 Below, pedantically we should, e.g. write Ax�
∂ instead of Ax� and

assume α > μ > κ ≥ ∂ . If κ = ∂ we may omit it.

(1) Ax0α,μ,κ means that there is a weak closure operation on λ of character (μ, κ), see
Definition 0.18(1A), such that there is no ⊆-decreasing ∂-sequence 〈Uε : ε < ∂〉
of subsets of α with ε < ∂ ⇒ c�(Uε+1) � Uε. We may here and below replace
κ by < κ; similarly writing ≤ μ has the obvious meaning; let < |Y |+ means |Y |.

(2) LetAx1α,<μ,κ mean there is c�, aweak closure operationonλof character (< μ, κ),

so may think c� : [α]≤κ → [α]<μ such that there is no ⊆-decreasing sequence
〈Uε : ε < ∂〉 of members of [α]≤κ such that ε < ∂ ⇒ c�(Uε+1) � Uε.

(2A) Writing Y instead of κ means c� : [α]<hrtg(Y ) → [α]<μ. Let c�[ε] : P(α) →
P(α) be c�1

ε,<reg(κ+)
as defined in 0.18(4) recalling reg(γ ) = Min{χ : χ a regular

cardinal ≥ γ }.
(2B) In parts (1) and (2) omitting μmean μ = hrtg(P(κ) and omitting μ and κ mean
κ = ∂(∗)

(3) Ax2α means that there isA ⊆ [α]∂ which is well orderable and for every u ∈ [α]∂
for some v ∈ A , u ∩ v has power = ∂ .
(4) Ax3α means that cf([α]≤∂ ,⊆) is below some cardinal, i.e., some cofinalA ⊆ [α]∂
(under ⊆) is well orderable.
(5) Ax4α means that [α]≤∂ is well orderable.
(6) Above omitting α (or writing ∞) means “for every α", omitting μ we mean
“< hrtg(P(∂))".
(7) Lastly, let Ax� = Ax� for � = 1, 2, 3.

So easily (or we have shown in the proof of 1.2):

Claim 2.3 (1) Ax4α implies Ax3α , Ax
3
α implies Ax2α , Ax

2
α implies Ax1α and Ax1α implies

Ax0α . Similarly for Ax
�
α,<μ,κ .

(2) In Definition 2.2(2), the last demand only c� � [α]≤∂ is relevant, in fact, an
equivalent demand is that if 〈βε : ε < ∂〉 ∈ ∂α then for some ε, βε ∈ c�{βζ : ζ ∈
(ε, ∂)}.
(3) If Ax0α,<μ1,<θ and θ ≤ hrtg(Y ) and2 μ2 = sup{hrtg(μ1 × [β]θ ) : β < hrtg(Y )}
then Ax0α,<μ2,<hrtg(Y ).

Proof (1) Clearly Ax2α,<μ,κ ⇒ Ax1α,<μ,κ holds similarly to the proof of 1.5; the other
implications hold by inspection.

2 Can do somewhat better; we can replace [α]<μ1 by {v ⊆ α : otp(v) ⊆ μ1}
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(2) First assume that we have a ⊆-decreasing sequence 〈Uε : ε < ∂〉 such that
ε < ∂ ⇒ c�(Uε+1) � Uε. Let βε = min(Uε\c�(Uε+1)) for ε < ∂ so clearly
β̄ = 〈βε : ε < ∂〉 exists; so by monotonicity c�({βζ : ζ ∈ [ε + 1, ∂)} ⊆ c�(Uε+1)

hence βε /∈ c�({βζ : ζ ∈ [ε + 1, ∂)}.
Second, assume that β̄ = 〈βε : ε < ∂〉 ∈ ∂α satisfies βε /∈ c�({βζ : ζ ∈ [ε + 1, ∂)}

for ε < ∂ . Now letting U ′
ε = {βζ : ζ < ∂ satisfies ε ≤ ζ } for ε < ∂ clearly

〈U ′
ε : ε < ∂〉 exists, is ⊆-decreasing and ε < ∂ ⇒ βε /∈ c�(U ′

ε+1) ∧ βε ∈ U ′
ε . So we

have shown the equivalence.
(3) Let c�(−)witness Ax0α,<μ1,<θ . We define the function c�′ with domain [α]<hrtg(Y )

by c�′(u) = ∪{c�(v) : v ⊆ u has cardinality < θ}.
Now

(∗)0 c�′ is a function from [α]<hrtg(Y ) into [α]<μ2 .

For this, it is enough to note:

(∗)1 if u ∈ [α]<hrtg(Y ) then c�′(u) has cardinality < μ2 := sup{hrtg(μ1 × [β]θ : β <

hrtg(Y )}.
[Why? Let Cu = {(v, ε) : v ⊆ u has cardinality < θ and ε < otp(c�(v)) which
is < μ1}. Clearly |c�′(u)| < hrtg(Cu) and |Cu | = |μ1 × [otp(u)]<θ |, so (∗)1 holds.
Note that if α∗ < μ+

1 we can replace the demand v ∈ [u]<θ ⇒ |c�(v)| < μ1 by
v ∈ [u]<θ ⇒ otp(c�(v)) < α∗.]
(∗)2 If 〈uε : ε < ∂〉 is ⊆-decreasing where uε ⊆ α then uε ⊆ c�′(uε+1) for some

ε < ∂ .

[Why? If not we can choose a sequence 〈βε : ε < ∂〉 by letting ε < ∂ ⇒ βε =
min(uε\c�′(uε+1)). Let u′

ε = {βζ : ζ ∈ [ε, ∂)}. As 〈u′
ε : ε < ∂〉 is ⊆-decreasing

by the choice of c�(−) for some ε, βε ∈ c�{βζ : ζ ∈ (ε + 1, ∂)}, but this set is
⊆ c�′(uε+1) by the definition of c�′(−), so we are done.]

Claim 2.4 Assume c� witness Ax0α,<μ,κ so ∂ ≤ κ < μ and so c� : [α]≤κ → [α]<μ

and recall c�1ε,≤κ : P(α) → P(α) is from 2.2(2A), 0.18(4).
(1) c�11,≤κ is a weak closure operation, it has character (μκ, κ) whenever ∂ ≤ κ ≤ α

and μκ = hrtg(μ × P(κ)), see Definition 0.18.
(2) c�1reg(κ+),≤κ

is a closure operation and it has character (< μ′
κ , κ)when ∂ ≤ κ ≤ α

and μ′
κ = hrtg(H<∂+(μ × κ)).

Proof (1) By its definition c�11,≤κ is a weak closure operation.

Assume u ⊆ α, |u| ≤ κ; non-empty for simplicity. Clearly μ × [|u|]<∂ has the
same power as μ × [u]<∂ . Define3 the function G with domain μ × [u]<∂ as follows:
if α < μ and v ∈ [u]≤∂ then G((α, v)) is the α-th member of c�(v) if α < otp(c�(v))

and G((α, v)) = min(u) otherwise.
So G is a function from μ × [u]≤∂ onto c�11,≤κ(u). This proves that c�11,≤κ has

character (< μκ, κ) as μκ = hrtg(μ × P(κ)).
(2) If 〈uε : ε ≤ reg(κ+)〉 is an increasing continuous sequence of sets then [u∂+]≤∂ =
∪{[uε]≤∂ : ε < reg(κ+)} as reg(κ+) is regular (even of cofinality > ∂ suffice) by its
definition, note reg(∂+) = ∂+ when AC∂ holds when DC∂ holds.

3 clearly we can replace < μ by < γ for γ ∈ (μ, μ+)
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Second, let u ⊆ α, |u| ≤ κ and let uε = c�1ε,κ (u) for ε ≤ ∂+; it is enough to show
that |u∂+| < μ′

κ . The proof is similar to earlier one.

Definition/Claim 2.5 Let c� exemplify Ax0λ,<μ,Y and Y be an uncountable set such
that ∂(∗) ≤qu Y .
(1) LetFy,Fy,α be as in the proof of Theorem 1.2 for y ∈ Fil4∂(∗)(Y , μ) and ordinal

α (they depend on λ and c� but note that c� determines λ; so if we derive c� by Ax4λ
then they depend indirectly on the well ordering of [λ]∂ ) so we may write Fy,α =
Fy(α, c�), etc.

That is, fully

(∗)1 for y ∈ Fil4∂(∗)(Y , μ) and ordinal α letFy,α be the set of f such that:

(a) f is a function from Zy to λ,
(b) rkD[y]( f ) = α recalling that this means rkDy

1 +Zy( f ∪ 0Y\Zy) = α by Defini-
tion 0.10(2),

(c) Dy
2 = Dy

1 ∪ {Y\A : A ∈ J [ f , Dy
1 + Zy]}, see Definition 0.13,

(d) Zy ∈ Dy
2 ,

(e) if Z ∈ Dy
2 and Z ⊆ Zy then c�({ f (y) : y ∈ Z}) ⊇ { f (y) : y ∈ Zy},

( f ) hy is a function with domain Zy such that y ∈ Zd ⇒ hh(y) = otp( f (y) ∩
{c�({ f (z) : z ∈ Zy}).

(∗)2 Fy = ∪{Fy,α : α an ordinal}.
(2) Notice thatFy,α is a singleton or the empty set. Let�y = �y(c�) = �y(λ, c�) =
{α : Fy,α �= ∅} and fy,α is the function f ∈ Fy,α when α ∈ �y; it is well defined.
(3) If D ∈ Fil∂(∗)(Y ), rkD( f ) = α and f ∈ Yλ then α ∈ �D(λ, c�) and f � Zy =
fy,α for some y ∈ Fil4ℵ1

(Y ); moreover, (Dy
1 , Dy

2 ) = (D, dual(J (J [ f , D])) where
�D(λ, c�) := ∪{�y : y ∈ Fil4∂(∗)(Y ) and Dy

1 = D}.
(4) If D ∈ Fil∂(∗)(Y ), f ∈ Yλ, Z ∈ D+ and rkD+Z ( f ) ≥ α then for some g ∈∏

y∈Y
( f (y) + 1) ⊆ Y (λ + 1) we have rkD(g) = α hence α ∈ �D(λ, c�).

(5) So we should writeFy[c�], �y[λ, c�], fy,α[c�].
Proof As in the proof of 1.2 recalling “c� exemplifies Ax0λ,<μ,hrtg(Y )" holds, this
replaces the use of F∗ there; and see the proof of 2.11 below in part (3), for this we
need:
� if D ∈ Fil1∂ (Y ) and f ∈ κ∂ , then for some Z ∈ D we have:

• if Y ⊆ Z belongs to D then c�(Rang( f �Y ) = c�(Rang( f �Z)).

[Why � holds? By Definition 2.2(2) using the axiom DC∂ .]

Claim 2.6 We have ξ2 is an ordinal and Ax0ξ2,<μ2,Y
holds when,(note that μ2 is not

much larger than μ1):

(a) Ax0ξ1,<μ1,Y
so ∂ < hrtg(Y ),

(b) c� witnesses clause (a),
(c) D ∈ Fil∂(∗)(Y ),
(d) ξ2 = {α : fy,α[c�] is well defined for some y ∈ Fil4∂(∗)(Y , μ1) which satisfies

Dy
1 = D and necessarily Rang( fy,α[c�]) ⊆ ξ1},
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(e) μ2 is defined as μ2,3 where:

(α) let μ2,0 = hrtg(Y ),

(β) μ2,1 = supβ<μ2,0
hrtg(β × Fil4∂(∗)(Y , μ1)),

(γ ) μ2,2 = supα<μ2,1
hrtg(μ1 × [α]≤∂ ),

(δ) μ2,3 = sup{hrtg(Yβ × Fil∂(∗)(Y )) : β < μ2,2}
(this is an overkill).

Proof ⊕1 ξ2 is an ordinal.
[Why? To prove that ξ2 is an ordinal we have to assume α < β ∈ ξ2 and prove α ∈ ξ2.
As β ∈ ξ2 clearly β ∈ �y[c�] for some y ∈ Fil4∂(∗)(Y , μ1) for which Dy

1 = D so

there is f ∈ Y (ξ1) such that f �Zy ∈ Fy,β . So rkD+Z [y]( f ) = β hence by 0.10 there
is g ∈ Yλ such that g ≤ f , i.e., (∀y ∈ Y )(g(y) ≤ f (y)) and rkD+Z [y](g) = α. By
2.5(4) there is z ∈ Fil4∂(∗)(Y , μ1) such that Dz

1 = D + Z [y] and g�Zz ∈ Fz,α so we
are done proving ξ2 is an ordinal.]

We define the function c�′ with domain [ξ2]<hrtg(Y ) as follows:

⊕2 c�′(u) = {0} ∪ {α: there is y ∈ Fil4∂(∗)(Y , μ1) such that fy,α[c�] is well defined4
and Rang( fy,α[c�]) ⊆ c�(v[u])}.

where

⊕3 v[u] := ∪{c�(v) : v ⊆ ξ1 is of cardinality ≤ ∂ and is ⊆ w(v)}.
where

⊕4 for v ⊆ ξ1 we let w(v) = ∪{Rang( fz,β [c�]) : z ∈ Fil4∂(∗)(Y , μ1) and β ∈ u and
fz,β [c�] is well defined}.

Note that

⊕5 c�′(u) = {0} ∪ { rkD( f ) : D ∈ Fil∂(∗)(Y ), Z ∈ D+ and f ∈ Y v(u)}.
Note that (by 2.5(1)):

�1 for each u ⊆ ξ1 and x ∈ Fil4∂(∗)(Y , μ1) the set {α < ξ2 : fx,α[c�] is a well defined
function into u} has cardinality < wlor(TDy

2
(u)), that is, 〈 fx,α[c�] : α ∈ �x ∩ ξ2〉

is a sequence of functions from Zx to u ⊆ ξ1, any two are equal only on a set = ∅
mod Dx

2 (with choice it has cardinality ≤ |Y ||u|)), call this bound μ′|u,x|.

Note

�2 if u1 ⊆ u2 ⊆ ξ2 then

(α) w(u1) ⊆ w(u2) and v(u1) ⊆ v(u2) ⊆ ξ1
(β) c�′(u1) ⊆ c�′(u2)
(γ ) u ⊆ v(u) and w[u] ⊆ v[u]
(δ) u1 ⊆ c�′(u1).

4 We could have used {t ∈ Y : fη,α[c�](t) ∈ c�(v(u))} �= ∅ mod Dy
2 ; also we could have added u to

c�′(u) but not necessarily by �2.
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[Why? E.g. for clause (δ); assume α ∈ u and let f be a unique function from Y
into {α}. Hence for some y ∈ Fil4∂(∗)(Y , μ1) we have fy,α is well defined. Now
Rang( fy,α) ⊆ w(u) by the choice ofw(u) in ⊕4 and so Rang( fy,α) ⊆ v(u) by clause
(γ ) of�2 hence Rang( fy,α) ⊆ c�(v, u) by the assumption on c�, see by 2.6(a),(b) and
2.2(2). So we have fy,β well defined and Rang( fy,α) ⊆ c�(v(u)) so by the definition
of c�′(u) in ⊕2 we have α ∈ c�′(u) so we are done.]

�3 if u ⊆ ξ2, |u| < hrtg(Y ) then w(u) = { fy,α(z) : α ∈ u, y ∈ Fil4∂(∗)(Y , μ1), fy,α

is well defined and z ∈ Zy} is a subset of ξ1 of cardinality < hrtg(|u| ×
Fil4∂(∗)(Y , μ1)) ≤ sup{hrtg(β) × Fil4∂(∗)(Y , μ1)) : β < hrtg(Y )} which was
named μ2,1 in 2.6(e)(β)

�4 if u ⊆ ξ1 and |u| < μ2,1 then ∪{c�(v) : v ∈ [u]≤∂} is a subset of μ1 of cardinality
< hrtg(μ1×[u]≤∂ ) ≤ supα<μ2,1

hrtg(μ1×[α]≤∂ )which we callμ2,2 in 2.6(e)(γ )

�5 if u ⊆ ξ2 and |u| < hrtg(Y ) then v(u) has cardinality < μ2,2.

[Why? By ⊕3 and �3 and �4.]

�6 if u ⊆ ξ2 and |u| < hrtg(Y ) then c�′(u) ⊆ ξ2 and has cardinality< μ2,3 is defined
in 2.6(e)(δ) which we call μ2.

[Why?Without loss of generality v(u) �= ∅. By⊕5 we have |c�′(u)| < hrtg(Y v(u))×
Fil∂(∗)(Y )) and by �5 the latter is ≤ sup{hrtg(Yβ × Fil∂(∗)(Y )) : β < μ2,2} = μ2,3
recalling clause (e)(δ) of the claim, so we are done.]

�7 c�′ is a very weak closure operation on λ and has character (< μ2, hrtg(Y )).

[Why? In Definition 0.18(1), clause (a) holds by the Definition of c�′, clause (b) holds
by �6 and as for clause (c), 0 ∈ c�′(u) by the definition of c�′ and u ⊆ c�′(u) by
clause (δ) of �2.]

Now it is enough to prove

�8 c�′ witnesses Ax0ξ2,<μ2,Y
.

Recalling �7, toward contradiction assume Ū = 〈Uε : ε < ∂〉 is ⊆-decreasing,
Uε ∈ [ξ1]<hrtg(Y ) and ε < ∂ ⇒ Uε � c�(Uε+1). We define γ̄ = 〈γε : ε < ∂〉 by

γε = Min(Uε\c�(Uε+1)).

As AC∂ follows from DC∂ , we can choose 〈yε : ε < ∂〉 such that fyε,γε [c�] is well
defined for ε < ∂ .

Let for ε < ∂

uε = {γζ : ζ ∈ [ε, ∂)}.

So

(∗)1 uε ∈ [ξ1]≤∂ ⊆ [ξ1]<hrtg(Y ).

[Why? By clause (a) of the assumption of 2.6.]

(∗)2 uε is ⊆-decreasing with ε.
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[Why? By the definition.]

(∗)3 γε ∈ uε\c�(uε+1) for ε < ∂ .

[Why? γε ∈ uε by the definition of uε.]
Now if ζ ∈ [ε, γ ) then fyζ ,γζ [c�] is well defined and γζ ∈ Uζ \c�(Uζ+1) (see the

choice of γε) but 〈Uξ : ξ < ∂〉 is ⊆-decreasing hence γζ ∈ Uζ , by the definition of
w[uε],Rang( fyζ ,γζ ) ∈ w(Uε), hence Rang( fyζ ,γζ ) ∈ v(Uε) ⊆ c�(v(Uε)). As this
holds for every ζ ∈ [ε, γ ) we can deduce uε = {γζ : ζ ∈ [ε, ∂)} ⊆ c�′(v(Uε)).

Lastly, γε /∈ v(Uε+1) by the choice of βε. So 〈uε : ε < ∂〉 contradict the assumption
on (ξ1, c�). From the above the conclusion should be clear.

Claim 2.7 Assume ℵ0 < κ = cf (λ) < λ hence κ is regular ≥ ∂ of course, and D is
the club filter on κ and λ̄ = 〈λi : i < κ〉 is increasing continuous with limit λ.

Then λ+ ≤ { rkDκ ( f ) : f ∈ ∏

i<κ+
λ+
i }.

Proof For each α < λ+ there is a one to one5 function g from α into |α| ≤ λ and we
let fg ∈ ∏

i<κ

λi be

f (i) = otp({β < α : g(β) < λi }.

Let

Fα = { f : f is a function with domain κ satisfying i < κ ⇒ f (i) < λ+
i

such that for some one to one function g from α into λ

for each i < κ we have f (i) = otp({β < α : g(β) < λi })}.
Now

(∗)1 (α) Fα �= ∅ for α < λ+,
(β) 〈Fα : α < λ+〉 exists as it is well defined.

[Why? For clause (α) let g : α → λ be one to one and so the f defined above belongs
toFα . For clause (β) see the definition of Fα (for α < λ+).]

(∗)2 (α) if f ∈ Fβ, α < β < λ+ then for some f ′ ∈ Fα we have f ′ <J bdκ
f ,

(β) 〈min{rkD( f ) : f ∈ Fα} : α < λ+〉 is strictly increasing hence min{rkD( f ) :
f ∈ Fα} ≥ α.

[Why? For clause (α), let g witness “ f ∈ Fβ" and define the function f ′ ∈ ∏

i<κ

λ+
i

by f ′(i) = otp{γ < α : g(γ ) < λi }. So g�α witness f ′ ∈ Fα , and letting i(∗) =
min{i : g(α) < λi } we have i ∈ [i(∗), κ) ⇒ f ′(i) < f (i) hence f ′ <J bdκ

f as
promised. For clause (β) it follows.]

So we have proved 2.7.

Conclusion 2.8 (1) Assume

5 but, of course, possibly there is no such sequence 〈 fα : α < λ+〉
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(a) Ax0λ,<μ,κ ,

(b) λ > cf(λ) = κ (not really needed in part (1)).

Then for some F∗ ⊆ κλ =: { f : f a partial function from κ to λ} we have
(α) every f ∈ κλ is a countable union of members of F∗,
(β) F∗ is the union of | Fil4∂(∗)(κ,< μ)| well ordered sets: {F ∗

y : y ∈ Fil4∂(∗)(κ, μ)},
(γ ) moreover there is a function giving for each y ∈ Fil4∂(∗)(κ) a well ordering ofF ∗

y .

(2) Assume in addition that hrtg( Fil4∂(∗)(κ,< μ)) < λ, cf(λ+) and hrtg(κμ) < λ

then for some y ∈ Fil4∂(∗)(κ) we have |F ∗
y | > λ.

(3) If in part (2) we may omit the assumption on cf(λ+) still λ+ = sup{otp(�y∩λ+) :
y ∈ Fil4∂(∗)(κ, μ)}.
Proof (1) By the proof of 1.2.
(2) Assume that this fails; so for every y ∈ Fil4∂(∗)(κ,< μ), the set Sy = �y ∩ λ+ has

order type < λ+. But we are assuming cf(λ+) ≥ hrtg(P(Fil4∂()∗(κ, μ))), so there is
γ < λ+ such that γ > otp(Sy) for every relevant y, without loss of generality γ > λ

and let g be a one-to-one function from γ onto λ.
We choose f ∈ κλ by

f (i) = Min(λ\{ fy,α(i) : y ∈ Fil4∂(∗)(κ, μ)

fy,α(i) is well defined, i.e.
i ∈ Z [y] and α ∈ �y and
g(otp(α ∩ �y)) < μi }).

Now f (i) is well defined as the minimum is taken over a non-empty set of ordinals,
this holds as we substruct from λ a set which has cardinality ≤ μi which is < λ. But
f contradicts part (1). Note that in fact f ∈ ∏

i
μ+
i .

(3) Same proof as in part (2).

Conclusion 2.9 Assume Ax0λ,<μ,κ so λ > μ.

Then the cardinal λ+ is not measurable (even in cases it is regular6) when

� (a) λ > cf(λ) = κ > ℵ0,

(b) λ > hrtg(( Fil4∂(∗)(κ, μ)).

Proof Naturally we fix a witness c� for Ax0λ,<μ,κ . LetFy, �y, fy,α,F λ
y,α be defined

as in 2.5 so by claims 2.5, 2.7 we have ∪{�y : y ∈ Fil4∂(∗)(κ)} ⊇ λ+; moreover,
α ∈ λ+ ∩ �y ⇒ fη,α ∈ κλ.

Let y ∈ Fil4∂(∗)(κ, μ) be such that |Fy| > λ, we can find such y by 2.8, as
without loss of generality we can assume λ+ is regular (or even measurable, toward
contradiction). Let Z = Z [y]. So �y is a set of ordinals of cardinality > λ. For
ζ < otp(�y) let αζ be the ζ -th member of �y, so fy,αζ is well defined. Toward
contradiction let D be a (non-principal) ultrafilter on λ+ which is λ+-complete. For

6 the regular holds many times by 2.13
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i ∈ Z let γi < λ be the unique ordinal γ such that {ζ < λ+ : fy,αζ (i) = γ } ∈ D. As
|Z | ≤ κ < λ+ and D is κ+-complete clearly {ζ : ∧

i∈Z
fy,αζ (i) = γi } ∈ D, so as D is

a non-principal ultrafilter, for some ζ1 < ζ2, fy,αζ1
= fy,αζ2

, contradiction. So there
is no such D.

Remark 2.10 Similarly if D is κ+-complete and weakly λ+-saturated and Ax0
λ+,<μ,κ

see [13].

Claim 2.11 If Ax0λ,<μ,κ , then we can find C̄ such that:

(a) C̄ = 〈Cδ : δ ∈ S〉,
(b) S = {δ < λ : δ is a limit ordinal of cofinality ≥ ∂(∗)},
(c) Cδ is an unbounded subset of δ, even a club,
(d) if δ ∈ S, cf(δ) ≤ κ then |Cδ| < μ,
(e) if δ ∈ S, cf(δ) > κ then |Cδ| < hrtg(μ × [ cf(δ)]κ).

Remark 2.12 (1) Recall that if we have Ax4λ (see 2.2(5)) then trivially there is 〈Cδ :
δ < λ, cf(δ) ≤ ∂〉,Cδ a club of δ of order type cf(δ) as if <∗ well order [λ]≤∂ we let
Cδ := be the <∗-minimal C which is a closed unbounded subset of δ of order type
cf(δ).
(2) Ax0λ,<ξ,κ suffices if κ < ξ < λ.

Proof The “even a club" is not serious as we can replace Cδ by its closure in δ.
Let c� witness Ax0λ,<μ,κ . For each δ ∈ S with cf(δ) ∈ [∂(∗), κ] we let

Cδ = ∩{δ ∩ c�(C) : C a club of δ of order type cf(δ)}.

Now C̄ ′ = 〈Cδ : δ ∈ S and cf(δ) ∈ [∂(∗), κ]〉 is well defined and exist. Clearly Cδ is
a subset of δ.

For any club C of δ of order type cf(δ) ∈ [∂(∗), κ] clearly δ ∩ c�(C) ⊆ c�(C)

which has cardinality < μ.
The main point is to show that Cδ is unbounded in δ, otherwise we can choose

by induction on ε < ∂ , a club Cδ,ε of δ of order type cf(δ), decreasing with ε such
that Cδ,ε � c�(Cδ,ε+1), we use DC∂ . But this contradicts the choice of c� recalling
Definition 2.2(1).

If δ < λ and cf(δ) > κ we let

C∗
δ = ∩{∪{δ ∩ c�(u) : u ⊆ C has cardinality ≤ κ} :

C is a club of δ of order type cf(δ)}.

A problem is a bound of |C∗
δ |. Clearly for C a club of δ of order type cf(δ) the order-

type of the set ∪{δ ∩ c�(v) : v ⊆ C has cardinality ≤ κ} is < hrtg(μ × [cf(δ)]κ). As
for “C∗

δ is a club" it is proved as above.

The following lemma gives the existence of a class of regular successor cardinals.

Lemma 2.13 (1) Assume
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(a) δ is a limit ordinal < λ∗ with cf(δ) = ∂,

(b) λ∗
i is a cardinal for i < δ increasing with i ,

(c) λ∗ = �{λ∗
i : i < δ},

(d) λ∗
i+1 ≥ hrtg(μ × κ(λ∗

i )) for i < δ and (α) ∨ (β) hold where:

(α) Ax4λ,
(β) λ∗

i+1 ≥ hrtg( Fil4∂(∗)(λ
∗
i , μ)) and hrtg([λ∗

i ]≤κ) ≤ λ∗
i+1.

(e) Ax0λ,<μ,κ and μ < λ∗
0,

( f ) λ = λ+∗ .

Then λ is a regular cardinal.
(2) Assume Ax4λ, λ = λ+∗ , λ∗ singular and χ < λ∗ ⇒ hrtg(∂χ) ≤ λ∗ then λ is
regular.

Remark 2.14 This says that the successor of many strong limit singulars is regular.

Question 2.15 (1) Is hrtg(P(P(λ∗
i ))) ≥ hrtg(Fil4∂(∗)(λ

∗
i ))?

(2) Is |c�( f � B)| ≤ hrtg([B]<ℵ0) for the natural c� and f , B as in the proof of 2.13?

Proof 2.13 (1) We can replace δ by cf(δ) so without loss of generality δ is a regular
cardinal so δ = ∂ .

So

(∗)1 (a) fix c� : [λ]≤κ → P(λ) a witness to Ax0λ,<μ,κ ,

(b) let 〈Cξ [c�] : ξ < λ, cf(ξ) ≥ ∂〉 be as in the proof of 2.11, so ξ < λ ∧ ∂ ≤
cf(ξ) < λ ⇒ |Cξ [c�]| < λ.

[Why the last inequality? If δ < λ, then there is i such that λ∗
i > μ + cf(δ) hence

otp(Cδ) < hrtg(μ × [cf(δ)]κ) ≤ hrtg([λ∗
i ]κ) < λ∗

i+1.]
First, we shall use just λ > λ∗ ∧ (∀δ < λ)( cf(δ) < λ∗), a weakening of the

assumption that λ = λ+∗ .
Now

�1 for every i < δ and A ⊆ λ of cardinality ≤ λ∗
i , we can find B ⊆ λ of cardinality

≤ λ∗ satisfying (∀α ∈ A)[α is limit ∧ cf(α) ≤ λ∗
i ⇒ α = sup(α ∩ B)].

The proof of this will take some time. By 2.11 (and 0.17) the only problem is for
Y := {α : α ∈ A, α > sup(A ∩ α), α a limit ordinal of cofinality < ∂ + ℵ1}; so
|Y | ≤ λ∗

i . Note: if we assume Ax4λ this would be immediate.
We define D as the family of sets A ⊆ Y such that:

�1
A for some set C ⊆ λ of ≤ ∂ ordinals, the set BC =: ∪{Rang( fx,ζ ) : x ∈

Fil4∂(∗)(λ
∗
i , μ) and ζ ∈ C or for some ξ ∈ C , we have λ∗

i ≥ cf(ξ) > ∂ and
ζ ∈ Cξ [c�]} satisfies α ∈ Y\A ⇒ α = sup(α ∩ BC ).

Clearly

�2 (a) Y ∈ D,

(b) D is upward closed,
(c) D is closed under intersection of ≤ ∂ hence of < ∂(∗) sets.
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[Why? For clause (a) use C = ∅, for clause (b), note that if C witness a set A ⊆ Y
belongs to D then it is a witness for any A′ ⊆ Y such that A ⊆ A′. Lastly, for clause
(c) if Aε ∈ D for ε < ε(∗) < ∂+, as we have AC∂ , there is a sequence 〈Cε : ε < ε(∗)〉
such that Cε witnesses Aε ∈ D for ε < ε(∗) < ∂+, then C := ∪{Cε : ε < ε(∗)}
witnesses A := ∩{Aε : ε < ε(∗)} ∈ D and, again by AC∂ , we have |C | ≤ ∂ .]

�3 if ∅ ∈ D then we are done.

[Why? For a = ∅ ∈ D let C ⊆ λ be as promised in �1 and then BC is as required; its
cardinality ≤ λ∗

i+1 by 2.11.]
So assume ∅ /∈ D, so D is an ∂+-complete filter on Y . As 1 ≤ |Y | ≤ λ∗

i , let g be a
one to one function from |Y | ≤ λ∗

i onto Y and let

�4 (a) D1 := {B ⊆ λ∗
i : {g(α) : α ∈ B ∩ |Y |} ∈ D},

(b) ζ := rkD1(g),

(c) D2 := {B ⊆ λ∗
i : B ∈ D1 or B /∈ D1 and rkD1+(λ∗

i \B)(g) > ζ } ∪ D1.

So D2 is an ∂+-complete filter on λ∗
i extending D1.

Let B∗ ∈ D2 be such that (∀B ′)[B ′ ∈ D2 ∧ B ′ ⊆ B∗ ⇒ c�(Rang(g � B ′)) ⊇
(Rang(g � B∗)]. Let U = ∩{c�(Rang(g � B ′) : B ′ ∈ D2}, so Rang(g � B∗) ⊆ U ,
even equal.

Let h be the functionwith domain B∗ defined byα ∈ B∗ ⇒ h(α) = otp(g(α)∩U ).
So x := (D1, D2, B∗, h) ∈ Fil4∂(∗)(λ

∗
i , μ) and for some ζ we have g � B∗ =

fx,ζ [c�].
It suffices to consider the following two subcases.

Subcase 1a: cf(ζ ) > ∂ .
So recalling (∗)1(b), Cζ [c�] is well defined and let C := {ζ } hence BC =

∪{Rang( fx,ε[c�] : ε ∈ Cζ [c�]} so C exemplifies that the set X := {α ∈ Y : α >

sup(α ∩ BC )} belongs to D hence X∗ = {α < |Y | : g(α) ∈ X} belongs to D1.
Now define g′, a function from λ∗

i to Ord by g
′(α) = sup(g(α)∩ BC )+1 if α ∈ X∗

and g′(α) = 0 otherwise. Clearly g′ < g mod D1 hence rkD1(g
′) < ζ , hence there is

g′′, g′ <D1 g′′ <D1 g such that ξ := rkD1(g
′′) ∈ Cζ [c�].

Now for some y ∈ Fil4∂(∗)(λ
∗
i ) we have Dy = D2 and g′′ = fy,ξ mod Dy

2 .

So B =: {ε < |Y | : g′′(ε) = fy,ξ (ε)} ∈ Dy
2 hence B ∈ D+

2 . So B∩ B∗ ∩ X∗ ∈ D+
2

but if ε ∈ B ∩ B∗ ∩ A∗ then fy,ξ (ε) ∈ BC and fy,ξ (ε) ∈ sup((BC ∩ g(ε)), g(ε)).
This gives contradiction.

Subcase 1b: cf(ζ ) ≤ ∂ .
We choose a C ⊆ ζ of order type ≤ ∂ unbounded in ζ and proceed as in subcase

1a.
As we have covered both subcases, we have proved �1.

Recall we are assuming δ = ∂; now:

�2 for every A ⊆ λ of cardinality ≤ λ∗ there is B ⊆ λ of cardinality ≤ λ∗ such that:

⊕ A ⊆ B, [α + 1 ∈ A ⇒ α ∈ B] and [α ∈ A ∧ ℵ0 ≤ cf(α) < λ∗ ⇒ α =
sup(B ∩ α)].

[Why? Choose a ⊆-increasing sequence 〈A j : j < δ〉 such that A = ∪{Ai : i < δ}
and j < δ ⇒ |A j | ≤ λ∗

j , possible as |A| ≤ λ∗. For each j < δ there exists Bj such
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that the conclusion of �1 holds with (A j , Bj , λ
∗
j ) here standing for (A, B, λi ) there,

so |Bj | ≤ λ∗. So as ACδ holds (as δ ≤ ∂) there is a sequence 〈B̄ j : j < δ〉, each B̄ j

as above.
Lastly, let B = ∪{Bj : j < δ}, it is as required.]

�3 for every A ⊆ λ of cardinality ≤ λ∗ we can find B ⊆ λ of cardinality ≤ λ∗ such
that A ⊆ B, [α + 1 ∈ B ⇒ α ∈ B] and [α ∈ B is a limit ordinal ∧ cf(α) < λ∗ ⇒
α = sup(B ∩ α)].

[Why? We choose Bi by induction on i < ω ≤ ∂ such that |Bi | ≤ λ∗ by B0 =
A, B2i+1 = {α : α ∈ B2i or α + 1 ∈ B2i+1} and B2i+2 is chosen as B was chosen in
�2 for i with B2i+1, B2i+2 here in the role of A, B there. There is such 〈Bi : i < ω〉
as DC = DCℵ0 holds. So easily B = ∪{Bi : i < ω} is as required.]

Now return to our main case λ = λ+∗
�4 λ+∗ is regular.

[Why? Otherwise cf(λ+∗ ) < λ+∗ hence cf(λ+∗ ) ≤ λ∗, but λ∗ is singular so cf(λ+∗ ) < λ∗
hence there is a set A of cardinality cf(λ+∗ ) < λ∗ such that A ⊆ λ+∗ = sup(A). Now
choose B as in�3. So |B| ≤ λ∗, B is an unbounded subset of λ+∗ , α+1 ∈ B ⇒ α ∈ B
and if α ∈ B is a limit ordinal then cf(α) ≤ |α| ≤ λ∗, but cf(α) is regular so
cf(α) < λ∗ hence α = sup(B ∩ α). But this trivially implies that B = λ+∗ , but
|B| ≤ λ∗, contradiction.]
(2) Similar, just easier.

Remark 2.16 Of course, if we assume Ax4λ then the proof of 2.13 is much simpler: if
<∗ is a well ordering of [λ]≤∂ for δ < λ of cofinality ≤ ∂ let Cδ = the <∗-first closed
unbounded subset of δ of order type cf(δ), see 3.3.

Claim 2.17 Assume

(a) 〈λi : i < κ〉 is an increasing continuous sequence of cardinals > κ

(b) λ = λκ = �{λi : i < κ}
(c) κ = cf(κ) > ∂

(d) Ax0λ,<μ,κ

(e) hrtg( Fil4∂(∗)(κ, μ)) < λ and κ, μ < λ0

( f ) S := {i < κ : λ+
i is a regular cardinal} is a stationary subset of κ

(g) let D := Dκ + S where Dκ is the club filter on κ

(h) γ (∗) = rkD(〈λ+
i : i < κ〉).

Then γ (∗) has cofinality > λ, so (λ, γ (∗)] ∩ Reg �= ∅.
Proof 2.17 Recall 2.5 which we shall use. Toward contradiction assume that
cf(γ (∗)) ≤ λκ , but λκ is singular hence for some i(∗) < κ , cf(γ (∗)) ≤ λi(∗). Let c�
witness Ax0λ,<μ,κ .

Let B be an unbounded subset of γ (∗) of order type cf(γ (∗)) ≤ λi(∗). By renaming
without loss of generality i(∗) = 0.

For α < γ (∗) let
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Uα = ∪{Rang( fy,α) : fy,α[c�] is well defined ∈ �{λ+
i : i ∈ Zy}

and y ∈ Fil4∂(∗)(κ) and Dy
1 = D}.

Clearly Uα is well defined by 2.5; moreover, 〈Uα : α < γ (∗)〉 exists and |Uα| ≤
hrtg(κ × Fil4∂(∗)(κ, μ)) = hrtg(Fil4∂(∗)(κ, μ)), even < recalling 0.17(4). Let U =
∪{Uα : α ∈ B} so |U | ≤ hrtg(Fil4∂(∗)(κ, μ)) + |B|.

We define f ∈ ∏

i<κ

λ+
i by

(α) f (i) is: sup(U ∩ λ+
i ) + 1 if cf(λ+

i ) > |U | and zero otherwise.

So

(β) f ∈ ∏

i<κ

λ+
i .

Clearly

(γ ) {i < κ : f (i) = 0} = ∅ mod D.

Let α(∗) = rkD( f ), it is < rkD(〈λ+
i : i < κ〉) = γ (∗), so by clause (γ ) there

is β(∗) ∈ B such that α(∗) < β(∗) < γ (∗) hence for some g ∈ ∏

i<κ

λ+
i we have

rkD(g) = β(∗) and f < g mod D, so for some y ∈ Fil4∂(∗)(κ)we have Dy
1 = Dκ + S

and g ∈ Fy,β(∗), hence f (i) < g(i) < fy,β(∗)(i) ∈ U ∩ λ+
i for every i ∈ Zy ∩ S.

So we get an easy contradiction to the choice of g.

Claim 2.18 Assume c� witness Ax0α,<μ,κ and hrtg(Y ) ∈ [κ, μ). The ordinals γ�, � =
0, 1, 2 are nearly equal see, i.e. � below holds where:
�
(a) γ0 = hrtg(Yα), a cardinal
(b) γ1 = ∪{rkD(γ ) : γ = rkD(α) for some D ∈ Fil∂(∗)(Y )}
(c) γ2 = sup{ otp(�y[c�]) + 1 : y ∈ Fil4∂(∗)(Y )}
� (α) γ2 ≤ γ1 ≤ γ0

(β) γ0 is the union of Fil4∂(∗)(Y ) sets each of order type < γ2

(γ ) γ0 is the disjoint union of < hrtg(P(Fil4∂(∗)(Y ))) sets each of order type < γ2

(δ) if γ0 > hrtg(P( Fil4∂(∗)(Y ))) and γ0 ≥ |γ2|+ then |γ0| ≤ |γ2|++ and

cf(|γ2|+) < hrtg(P( Fil4∂(∗)(Y ))).

Proof 2.18 Straightforward, see 0.17.

3 Concluding remarks

In May 2010, David Aspero asked whether it is true that I have results along the
following lines (or that it follows from such a result):
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If GCH holds and λ is a singular cardinal of uncountable cofinality, then there is a
well-order of H (λ+) definable in (H (λ+),∈) using a parameter.

The answer is yes by [9, 4.6,pg.117] but we elaborate this below somewhat more
generally. Much earlier Gitik [4] had proved (using suitable large cardinals) the con-
sistency of “ZF + every infinite cardinal has cofinality ℵ0, i.e. ℵ0 is the only regular
cardinal". This naturally raises the question what suffices to have a class of regulars.
Gitik told me that in Luming 2008 Woodin has conjectured:

� let V be a model of ZF +DC, suppose that κ is a singular strong limit cardinal of
cofinality ω1 and |H (κ)| = κ . Is then P(κ) well orderable?

Now [9] gives some information. The results here (3.1) confirm �.

Claim 3.1 [DC] Assume that μ is a singular cardinal of cofinality κ > ℵ0 (no GCH
needed), the parameter X ⊆ μ codes in particular the tree T = κ>μ and the set
P(P(κ)), in particular, from X a well-ordering of [μ]<κ ∪ P(P(κ)) is definable.
Then (with this parameter) we can define a well-ordering of the set of κ-branches of
the tree (κ>λ, �).

Proof 3.1 Proof of 3.1:
Let 〈cdi : i < κ〉 satisfies

�1 cdi is a one-to-one function from iμ into μ, (definable from X uniformly (in i))
�2 let <κ be a well-ordering of Fil4κ(κ) definable from X .

For η ∈ κμ let fη : κ → μ be defined by fη(i) = cdi (η�i), so f̄ = 〈 fη : η ∈ κμ〉 is
well defined.

Let F̄ = 〈Fy : y ∈ Fil4κ(κ)〉 be as in Theorem 1.2 with μ, κ here standing for
λ,Y there; there is such F̄ definable from X as X codes also a well-ordering of [μ]ℵ0 ,
see §1.

So for every η ∈ κμ there is y ∈ Fil4κ(κ) such that f �Zy ∈ Fy and Dy
1 con-

tains all co-bounded subsets of κ so let y(η) be the <κ -first such y. Now we define
a well ordering <∗ of κμ: for η, ν ∈ κμ let η <∗ ν iff rkD1[y(η)]( fη�Zy(η)) <

rkD1(y(ν))( fν�Zy(ν)) or equality holds and y(η) < y(ν).
This is O.K. because

(∗) if η �= ν ∈ κμ then fη(i) �= fν(i) for every large enough i < κ (i.e. i ≥ min{ j :
η( j) �= ν( j)}.

Conclusion 3.2 [DC] Assume μ is a singular cardinal of uncountable cofinality κ and
H (μ) is well orderable of cardinality μ and X ⊆ μ codesH (μ) and a well ordering
of H (μ). Then we can (with this X as parameter) define a well-ordering of P(μ);
hence of H (μ+).

Proof 3.2 Proof of 3.2:
Let 〈μi : i < κ〉 be an increasing sequence of cardinals < μ with limit μ; wlog

X code this sequence. Clearly 2μi < μ (as |μi 2| ≤ |H (μ)| = μ, and 2μi = μ is
impossible).

Let 〈cd∗
i : i < κ〉 satisfies
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�2 cd∗
i is a one-to-one function from P(μi ) into μ, (definable uniformly from X ).

So cd∗ : P(μ) → κμ defined by (cd∗(A))(i) = cd∗
i (A ∩ μi ) for A ⊆ μ, i < κ , is a

one-to-one function fromP(μ) into κμ. Now use 3.1.

We return to 2.13(2)

Claim 3.3 [DC] (1) The cardinal λ+ is regular when:

� (a) Ax4
λ+ , i.e. [λ+]ℵ0 is well orderable,

(b) |α|ℵ0 < λ for α < λ,
(c) λ is singular.

(2) Also there is ē = 〈eδ : δ < λ+〉, eδ ⊆ δ = sup(eδ), |eδ| ≤ cf(δ)ℵ0 .

Remark 3.4 Compare with 2.13; we use here more choice, but cover more cardinals.

Proof 3.3 Let <∗ be a well ordering of the set [λ+]ℵ0 .
As earlier let F : ω(λ+) → λ+ be such that there is no ⊂-decreasing sequence

〈c�F (un) : n < ω〉 with un ⊆ λ+. Let � = {δ ≤ λ+ : δ a limit ordinal, cf(δ) < λ},
so otp(�) ∈ {λ+, λ+ + 1}.

We define ē = 〈eδ : δ ∈ �〉 as follows.
Case 1: cf(δ) = ℵ0, eδ is the <∗-minimal member of {u ⊆ δ : δ = sup(u) and
otp(u) = ω}.
Case 2: cf(δ) > ℵ0.

Let eδ = ∩{c�F (C) : C a club of δ}.
So

(∗)1 eδ is an unbounded subset of δ of order type < λ.

[Why? If cf(δ) = ℵ0 then eδ has order type ω which is < λ by clause (b) of the
assumption.

If cf(δ) > ℵ0 then for some club C of δ, eδ = c�F (C) has otp(eδ) ≤ |c�F (C)| ≤
(cf(δ)ℵ0 < λ. The last inequality holds as cf(δ) ≤ λ as δ < λ+, cf(δ) �= λ as λ is
singular by clause (c) of the assumption, and lastly ((cf(δ)ℵ0) < λ by clause (b) of the
assumption.]

This is enough for part (2). Now we shall define a one-to-one function fα from α

into λ by induction on α ∈ � as follows: let prλ : λ × λ → λ be a pairing function
so one to one (can add “onto λ"); if we succeed then fλ+ cannot be well defined so
λ+ /∈ � hence cf(λ+) ≥ λ, but λ is singular so cf(λ+) = λ+, i.e. λ+ is not singular
so we shall be done proving part (1).

The inductive definition is:

� (a) ifα ≤ λ then fα is the identity
(b) if α = β + 1 ∈ [λ, λ+) then for i < α we let fα(i) be

• 1 + fβ(i) if i < β

• 0 if i = β

(c) if α ∈ � so α is a limit ordinal, eα ⊆ α = sup(eα), eα of cardinality< λ and
we let fα bedefinedby: for i < αwe let fα(i) = prλ( fmin(eα\(i+1))(i), otp(eα∩
i)).
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We later add:

Claim 3.5 [ZFC] Assume μ > κ = cf(μ) > ℵ0 and μ = μℵ0 + 22
κ
.

(1) From some X ⊆ μ we can define a well ordering of some set G ⊆ κμ such that
κμ = {sup{ fn : n < ω} : fn ∈ G for n < ω}.
(2) If moreover 22

θ ≤ μ where θ = κℵ0 then from some X ⊆ μ we can define a well
ordering of κμ.

Proof 3.5 (1) Let X ⊆ μ codeP(P(κ)) and ωμ which is as in 3.1. Unlike the proof
of 3.1 we do not use the cdi (i < κ) and we use the family of ℵ1-complete filters on
κ , the rest should be clear.
(2) As θ = θℵ0 there is a one-to-one onto function cd : ωθ → θ onto θ , and for i < ω

let cdi : θ → θ be such that:

(∗)1 if cd(η) = ζ , then cd0(ζ ) = �g(η) and cd1+i (ζ ) = η(i) for i < �g(η).

Let D be {A ⊆ θ : for some u ∈ [θ ]≤ℵ0 we have A ⊇ {ε < θ : u ⊆ {cdi (ε) : i < ω}},
so

(∗)2 D is an ℵ1-complete filter on θ .

[Why? Should be clear.]

(∗)3 for f ∈ θμ let g, g f be the unique function g with doman θ such that:

• if ε < κ and i < cd0(ε), then cd1+i (ε) < θ ⇒ cd1+i (g(ε)) = f (cd1+i (ε)) and
cd0(g(ε)) = cd0(ε) and f (ε) = 0 otherwise

[Why g f exists? Just think.]

(∗)4 if f ∈ θμ, α = rkD(g f ) and y = yg f as in the proof of 3.1 for g f , then :

(a) from g f �Zy we can define f (using some Y ⊆ κ as a parameter)

(b) Rang( f ) ⊆ {cd1+i (g f (ε)) : ε ∈ Zy and i < cd0(g f (ε))}.
[Why? Clause (a) follows clause (b). Clause (b) holds as for every ξ < κ , the set
{ε < θ : ξ ∈ {cd1+i (ε) : i < cd0(ε)}} ∈ D.]

We continue as in the proof of 3.1.

Conclusion 3.6 [DC] Assume [λ]ℵ0 is well ordered for every λ.
(1) If 22

κ
is well ordered then for every λ, [λ]κ is well ordered.

(2) For any set Y , there is a derived set Y∗ so called Fil4ℵ1
(Y ) of power nearP(P(Y ))

such that � Levy(ℵ0,Y ) “for every λ, Yλ is well ordered".

Proof 3.6 (1) By 3.1.
(2) Follows easily.
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