Sh:835

Archive for Mathematical Logic (2024) 63:623-654 . o

https://doi.org/10.1007/500153-023-00900-7 Mathematical Logic
Check for
updates

Pcf without choice Sh835

Saharon Shelah'2

Received: 23 November 2023 / Accepted: 19 December 2023 / Published online: 22 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

We mainly investigate models of set theory with restricted choice, e.g., ZF + DC +
the family of countable subsets of X is well ordered for every A (really local version
for a given 1). We think that in this frame much of pcf theory, (and combinatorial
set theory in general) can be generalized. We prove here, in particular, that there is
a proper class of regular cardinals, every large enough successor of singular is not
measurable and we can prove cardinal inequalities. Solving some open problems, we
prove that if u > « = cf(n) > Vg, then from a well ordering of 2 (X (k)) U >
we can define a well ordering of “ 1.
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§1 Representing “A

[We define Filﬁ and prove a representation theorem for “A. Essentially under
“reasonable choice" the set “ A is the union of few well ordered sets, i.e., “their number
depends on « only". We end with a claim on ITa.]

§2 No decreasing sequence of subalgebras

[As suggested in the title we weaken the axioms. We deal with “A with A* not
measurable, existence of ladder C witnessing cofinality and prove that many A™ are
regular (2.13).]

§3 Concluding remarks

[We prove that if © > x = cf(u) > Rg, then from a well-ordering of
P (P (k))U” u we can define a well-ordering of “ 11, see 3.1. If e.g. p is a strong limit
singular of uncountable cofinality, using a well order of J# () we can define a well
ordering of Z (1) hence of 2# (™), see 3.2. Lastly, we give sufficient conditions (in
ZF+DC) for singular y, that ut isregular, see 3.3. Actually if u = R0 +22°, k = N0
and X C u codes Z(Z(k)) and “u, then using X as a parameter we can define a
well-ordering of “ i, see 3.4.]

0 Introduction

0.1 Background, aims and results

The thesis of [9] was that pcf theory without full choice exists. Two theorems sup-
porting this thesis were proved. The first ( [9, 4.6,pg.117], we shall not mention ZF)
is:

Theorem 0.1 [DC] If 7 (w) is well ordered, ju strong limit singular of uncountable
cofinality then ™ is regular not measurable (and 2" is an R, i.e. (i) can be well
ordered and no A € (u, 2"*] is measurable).

Note that before this Apter and Magidor [1] had proved the consistency of “.57” (1)
well ordered, i = 3, (Vk < u)DC, and ™ is measurable” so 0.1 says that this con-
sistency result cannot be fully lifted to uncountable cofinalities answering a question
of them. Generally without full choice, a successor cardinal being not measurable is
a piece of worthwhile information.

A second theorem ( [9, §5]) is:

Theorem 0.2 Assume

(a) DC + ACy + k regular uncountable.

(b) {(u; : i < k) is increasing continuous with limit i, u > «, 7€ () is well ordered,
w strong limit, (we need just a somewhat weaker version, the so-called i < k =
Twg, (i) < @)

Then, we cannot have two regular cardinals 0 such that for some stationary S C «k,
the sequence cf(u;r) 11 € 8) is constantly 6.
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A dream was to prove that there is a class of regular cardinals from a restricted
version of choice (see more in [9]).

Our original aim here is to improve those theorems. As for 0.1 we replace “.7(u)
well ordered" by “[£]™0 is well ordered" and then by weaker statements.

We know (assuming full choice) that if, e.g., —30" or there is no inner model
with a measurable cardinal then though (2“ : « regular) is quite arbitrary, the size
of [A]“, A > « is strictly controlled and equi-consistency results (by Easton forcing
[2], and [8] and history there, and works of Gitik and history there respectively). It
seemed that the situation here is parallel in some sense; under the restricted choice we
assume, we cannot say much about the cardinality of &7 (x) but can say something on
the cardinality of [1]* for k < A.

In the proofs we fulfill a promise from [10, §5] about using J[ f, D] from Definition
0.13 instead of the nice filters used in [9] and, to some extent, in early versions of this
work which require going through inner models to prove their existence. This work is
continued in Larson-Shelah [5] and will be continued in [13]. On a different line with
weak choice (say DCy, + AC,,, u fixed): see [6, 11, 12]. The present work fits the
thesis of [8] which in particular says: it is better to look e.g. at (A" : A a cardinal)
then at (2* : A a cardinal). Here instead well ordering (1) we well order [A]™°, this
is enough for much.

A simply stated conclusion is (see 3.6):

Conclusion 0.3 [DC] Assume [A]N0 is well ordered for every M.
(1) If 2% is well ordered then for every A, [A]* is well ordered.
(2) For any set Y, there is a derived set Y. so called Fil;‘a1 (Y) of power near ((Y))

such that I& peyyxy,v) “for every A, Y\ is well ordered".

Thesis 0.4 (1)IfV |= “ZF+ DC" and “every [A] is well orderable" then V looks like
the result of starting with a model of ZFC and using 81-complete forcing notions like
Easton forcing, Levy collapses, and more generally, iterating of x-complete forcing
for k > Ry.
(2) This approach is dual to investigating L[R] - here we assume w-sequences are
understood (or weaker versions) and we try to understand V (over this), there over the
reals everything is understood.

Also though our original motivation was to look at the consequences of the so-called
Ax4, this was shadowed here by the try to use weaker relatives; see more in [13].

Explanation 0.5 How do we analyze [n]“ or equivalently “u here? We use Ni-
complete filters on « and a well-ordering of [a]™° for appropriate « or less. We will
consider f : k — w;now forevery Ri-complete filter D on «, the ordinal « = rkp (f)
gives us some information on f, but if A,x\A € DT and f]A = 04, thena = 0
but we have no information on f[(x\A), then @ = 0 but we have no information on
[T\ A). Trying to correct this we consider the ideal J[f,D]={A Ck: A =0
mod D or A € DT but tkpy 4(f) > a}, this is an X;-complete ideal and so we
may consider the pair D = (D1, D>) = (D, dual(J[f, D])). Now « and the pair
D gives more information on f; they determine f modulo D,. This is not enough
so we use an algebra Z on p with no infinite decreasing sequence of sub-algebras
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built using the assumption “[]™ is well ordered". So there is Z € D; such that
A = clgzRang(f[Z)) is S-minimal.

Now the triple (D1, D>, Z) and the ordinal ¢ almost determines f, we need one
more piece of information with domain « : h(i) = otp(a N Z), hence an ordinal
< hrtg(Rang(f)). So we need a bound on it which depends on the choice of £,
usually, it is hrtg([«]%°), natural by the construction of 2.

So f[Z is uniquely determined by the ordinal rkp(f) and the quadruple
(D1, D>, Z, h), which belongs to a set defined from «, independently of u.

Lastly, considering all such filters D (recalling we are assuming DC) we can
find countably many quadruples (DY, D5, Z", h"") which together are enough as

Uz" =«.
n

We thank for the attention and comments the audience in the advanced seminar in Rut-
gers 10/2004 (particularly Arthur Apter) and advanced course in logic in the Hebrew
University 4,5/2005 and to Paul Larson and Shimoni Garti for many corrections as
well as Tanmay Inamdar.

0.2 Preliminaries

Convention 0.6 We assume just V |= ZF if not said otherwise.

Notation 0.7 Let

(D) o, B,v,8,6,¢,&,1, j denote ordinals.

(2) &, A, u, x denote cardinals, infinite if not said otherwise.

(3) n,m, k, £ denote natural numbers.

(4) D denotes a filter (on some set), I, J denote ideals on some set.

Definition 0.8 (1) hrtg(A) = Min{«: there is no function from A onto «}.

(2) wlor(A) = Min{«: there is no one-to-one function froma into Aora = 0A A =
@}, so wlor(A) < hrtg(A).

Remark 0.9 For many the meaning of “Hartogs number” is what is here called “wlor”
(except that usually one would not make an exception for the empty set).

Definition 0.10 (1) For D an X;-complete filter on a set ¥ and f € YOrd and « €
Ord U {oo} we define when rkp (f) = «, by induction on «:

® Fora < oo, tkp(f) = aiff B < a = 1kp(f) # B and for every g € YOrd
satisfying g <p f thereis 8 < « such thattkp(g) = B.

(2) We can replace D by the dual ideal. If f € ?Ordand Z € D then we letrkp(f) =

tkp4z(f UO0y\z2).

Galvin-Hajnal [3] use the rank for the club filter on w;. This was continued in [7]
where varying D was extensively used.

Claim 0.11 [DC] In Definition 0.10, tkp (f) is always an ordinal and if @« < rkp(f)

then for some g € [] (f(y) + 1) we have o = rkp(g), (if ¢ < rkp(f) we can add
yeY

@ Springer



Sh:835

pcf without choice Sh835 627

g <p [, iftkp(f) < oo then DC is not necessary; if tkp(f) = « this is trivial, as
we can choose g = f).

Claim 0.12 (1) [DC]If D is an X{-complete filteron Y and f € YOrdandY = Uy, :
n < o} then tkp(f) = Min{ rkp1y,(f) :n <wand¥, € DT, ([7]).

(2) [DC + ACqy+] If D is a k-complete filter on Y , k a cardinal > RNg and f € ¥ Ord
and Y = U{Yy 1 o < o*}, a® < k then tkp(f) = Min{ rkp1y,(f) : @ < o
and Y, € DT).

Proof (1) By [7], in fact, ACy, suffice.
(2) By [7], in fact, DC is not necessary.

Definition 0.13 For Y, D, f as in 0.10 let J[f,D] =: {Z € Y : Y\Z € D or
Y\Z S D+ and rk(f)D+(Y\Z) > I‘kD(f)}

Claim 0.14 /DC+AC_,] Assume D is a xk-complete filter on Y, k > R.

(1) If f € ¥ Ord then J[f, D]is a k-complete ideal on Y.
) If fi, f» € YOrd and J = J[f1, D] = J[f2, D] then tkp(f1) < tkp(fr) =
fi < formod J and tkp(f1) = tkp(f2) = f1 = f> mod J.

Proof Straightforward or see [10, §5] and the reference there to [9] (and [7]).

Definition 0.15 (1) Here ¥ <qu Z or |Y| <qu |Z] or |Y| <qu Z or ¥ <qu |Z| means
that Y = ¢ or there is a function from Z (equivalently from a subset of Z) onto Y.
(2) reg(or) = Min{d : 0 > « is a regular cardinal}.

Definition 0.16 Foraset Y, cardinal x and ordinal y we define 7~ ,, (¥) by induction

ony:ify =0,%,,Y)=Y,ify =p+1then % ,(Y) = 5 p(Y)U{u :u C

Hi,p(Y) and |u| < «} and if y is a limit ordinal then J7, ,, (Y) = U{H %, p(Y) :

B <v}

Observation 0.17 (1) If A is the disjoint unionof (W, : z € Z)andz € Z = |[W,| < A
and wlor(Z) < A then A = sup{ otp(W;) : z € Z} hence cf()) < hrtg(Z).

(2) If » =U{W, : z € Z} and wlor(Z(Z)) < A then sup{ otp(W,) : z € Z} = A

(3) If»=U{W, :z € Z}and |Z| < X then A = sup{ otp(W;) : z € Z}.

(4) If Z < Ord, W= (Wy:a¢cZ), Wy COrdand » > Ny, |Z], |Wyl| fora € Z
then U{Wy, : o € Z} has cardinality < ).

Proof (1) Let Z; = {z € Z : W, # (J}, so the mapping z — Min(W;) exemplifies
that Z; is well ordered hence by the definition of wlor(Z;) the power |Z;]| is an
aleph < wlor(Z1) < wlor(Z) and by assumption wlor(Z) < A. Now if the desirable
conclusion fails then y* = sup({otp(W;) : z € Z1} U {|Z1]}) is an ordinal < A,
so we can find a sequence (¥, : y < y*) such that otp(u,,) < y*,u,, € X and
A=Uu, 1y <y*},soy* < <|y* x y*|, easy contradiction.

(2)Forx € Zlet W} ={a <X :(Vz € Z)(a € W; =z € x)} hence A is the disjoint
union of {W} : x € Z(Z)\{#}}. So the result follows by part (1).

(3) So let <, be a well-ordering of Z and let W = {« € W,:if y <, zthena ¢ W,},
so (W : z € Z) is a well-defined sequence of pairwise disjoint sets with union equal
to U{W, : z € Z} = A and otp(W)) < otp(W,). Hence if |W,| = A for some z € Z
the desirable conclusion is obvious, otherwise the result follows by part (1).

(4) Should be clear.

@ Springer



Sh:835

628 S. Shelah

Definition 0.18 (1) We say that cZ is a very weak closure operation on A of character
(u, k) when:

(a) ct is a function from & (1) to £ ())
(b) u €A™ = |cbu)| < pn
(¢) u C€x= uU{0} C cl(u), the 0 for technical reasons.

1A) We say that c€ is a weak closure! operation on A of character (i, x) when
(a),(b),(c) above and: E—

d) uCvCi=ucclu) Ccl(v)
(e) cl(u) =U{cl():v Cu,|v| <«}.

So we may identify c€ with c£ | [A]=F.

(1B) Let “... character (< u, ) or (u, < k), or (< u, < k)" have the obvious
meaning but if u is an ordinal not a cardinal, then “< u" means of order type < u;
similarly for “< «". Let “... character (1, Y)" means “character (< u™, < hrtg(¥))"

(1C) We omit the weak when in addition:

(f) cl(u) = cl(ct(u)) foru C A.

(2) We say A is f-inaccessible when § € A N Dom(f) = f(§) < A.

(3) Wesay ¢l : Z (L) = Z(A) is well founded when for no sequence (7%, : n < w)
of subsets of A do we have cl(%,+1) C %, forn < w.

(4) For ¢t a partial function from & («) to & («) (for simplicity assume o = U{u :
u € Dom(cl)}) let c@é, ~, be the function from & («) to & («) defined by induction
on the ordinal ¢ as follows:

(@) cth _ () =u
) cegﬂ,q(u) = {0} Ut _ ) UU{ct) : v € cb! _ () and
v € Dom(ct), |v| < «}

(c) for limit & let c£} _ (u) = Ufel] _ () : ¢ < &}

&, <K
(4A) Instead “< k" we may use “< k".

(5) For any function F : [A]Y0 — A and countable u C A we define cég(u, F) by
induction on ¢ < wy

(@) cl?(u, F) = uU{0}
(b) etz (u, F) =cl2(u, F) U{F(ct(u, F))}
(c) cﬂg(u, F) = U{c@?(u, F):¢ < e} when ¢ < w is a limit ordinal.

(6) For countable u and F as in part (5) let cé%(u) =clu, F) = cﬁz)l (u, F) and
for any u C A let cﬁ‘}p(u) =uU U{cﬂg’p(v) v e [u]M).

(7) For a cardinal 9 we say that ¢£ : Z2(.) — (1) is 9-well founded when for
no C-decreasing sequence (%, : € < 9) of subsets of A do we have e < ¢ < 9 =
cl(Us) D Us.

(8)If F: [A]=X — A and u C A then we let clp(u) = cﬁ},(u) be the minimal subset
v of A such that w € [v]=¥ = F(w) € vand u C v (exists).

U so by actually only c£[[A]=¥ count.
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Observation 0.19 For F : [AIN0 — A, the operation u + c@%(u) is a very weak
closure operation of character (N1, Ro).

Remark 0.20 So for any very weak closure operation, Ro-well founded is a stronger
property than well founded, butif u € A = c€(cl(u)) = cf(u) which is reasonable,
they are equivalent.

Observation 0.21 [«]? is well ordered lﬁ‘aa is well ordered when a > 0.

Proof Use a pairing function on « for showing |%«a| < [«]?, so = holds. If ?« is well
ordered by <, map u € [«]° to the <,-first f € P« satisfying Rang(f) = u.

1 Representing “1

Here we give a simple case to illustrate what we do (see later on improvements in
the hypothesis and the conclusion). Specifically, if ¥ is uncountable and [A]¥0 is well
ordered, then the set Y). can be analyzed modulo countable union over few (i.e., their
number depends on Y but not on 1) well ordered sets.

Definition 1.1 (1)

(a) Filg, (Y) = Filél(Y) = {D : D is an Rj-complete filter on Y}, so Y is
defined from D as U{X : X € D}

(b) Fili1 (Y) = {(D1, D2) : D1 € D; are ¥-complete filterson Y, (4 ¢ Da, of
course)}; in this context Z € D means Z € D;

(¢) Fil{ (Y, ) = {(D1, Dy, h) : (D1, Dy) € Filg (Y)andh : Y — «a for
some o < p}, if we omit £ we mean p = hrtg(Y) U w

() Fil{ (Y, ) = {(D1, D2, h, Z) : (D1, D2, h) € Fil§ (Y,n),Z € Da};
omitting u means as above.

(2) Fory € Fil§ (Y, ) let Y = Y = Y[y] and vy = (D}, D}, h",2") =
(D1[v], D2[v], hly], Z[y]); similarly for the others and let DY = D[y] be D? + ZY.

(3) We can replace R by any « > R (the results can be generalized easily assuming
DC + AC_,, used in §2).

Theorem 1.2 [DC] Assume [L]N0 is well ordered.
Then we can find a sequence (Fy : 9 € Fil§| (Y)) satisfying

(@) gzn C ZInly,

(B) Fy is a well ordered set by fi <y fo < 1kp(fi) < rkpy(f2) so f —
rkpiy](f) is a one-to-one mapping from F into the ordinals

(y) if f € YA then we can find a sequence (v, : n < w) withy, € Fil?zl (Y) such that
n<w= f2Z"eFy, and W{Z" :n <w} =Y.

An immediate consequence of 1.2 is

Conclusion 1.3 (1) [DC + “«a is well-orderable for every ordinal o].
For any set Y and cardinal X there is a sequence (Fz : t € “( Fili1 (Y))) such that
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(@) YA =U{F : T e “(Fil{, (V)
(b) F is well orderable for each t € “( Fili1 (Y))
(b)T moreover, uniformly, i.e., there is a sequence (<g:r € Filil(Y)> such
that <z is a well order of F;
(c) there is a function F with domain 2 (Y M\{@} such that: if S < ¥\ is non-
empty then F(S) is a non-empty subset of S of power <qu “( Fil;i1 Y)))
recalling Definition 0.15. In fact, some ordinal o (x) and u we have:

(@) it = (U : o < (%)) is a partition of ¥ A
(B) if S € Y then F(S) = Uyrsy NS where f(S) = Min{a : %, NS # 0}
(y) ifa < a(x) then || < hrtg(“( Fil;‘a1 Y))).

(2) [DC] Forany Y, } above, if [a ()N is well ordered where a(x) = U{ rkp(f)+1 :
fe¥rand D e Fil§l (Y)} then ¥ & satisfies the conclusion of part (1).

Remark 1.4 So clause (c) of 1.3(1) is a weak form of choice.

Proof Proof of 1.3 (1) Let (%, :y € Filil(Y)) be asin 1.2.
For each ¥ € “(Fil{, (¥)) (50 F = (rs 1 n < o)) let

9’% = {f : f is a function from Y to A such that
n<w= f[Z% e, andY =U{Z" : n < w}}.

Now
(01 Va=ULFy 1 F e (IS (V).

[Why? By clause (y) of 1.2.]

Leta(x) = Ufrkp(f) + 1: f € YA and D € Fil{ (Y)}. For f € “(Fil{ (V)) we
define the function Gy : ﬁi’ — Ya(x) by Gz(f) = (1kp[r,1(f) 1 n < w).

Next

(02 (@) G=(Gg:¥e(Fil{ (V) exists
(B) Gg is a function from ﬂé to Yot (%)
(y) Gg is one to one.

[Should be clear, e.g. for (%), (y) read the definition of .%. ;, and clause (8) of Theorem
1.2.]
Let <, be a well ordering of “a () and fort € ¢ (Fil‘é1 (Y)) let <; be the following

two place relation on .%:

()3 f1 <g foiff Gi(f1) <« Gi(f2).
Obviously

(04 (@) (<g: T e (Fil§, (1)) exists

(B) <gisawell ordering of 7.
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By (¥)1 + (x)4 we have proved clauses (a),(b),(b)* of the conclusion. Now clause
(c) follows: for non-empty S € Y, let £(S) be min{otp({g : g <j fl, <) : b€
“’(Filél(Y)) and f € ﬂé N S}. Also for any ordinal y let @/yl := {f: for some
§ € “(Filg, (Y)) we have y = otp({g : ¢ <5 [}, <§)} and %, = %)\ U U{%, :
B<v}

Lastly, we let F(S) = %y(s) N S. Now check.
(2) Similarly.

Proof Proof of Theorem 1.2 First
®1 there are a cardinal x and a sequence it = (uy : o < pu) listing [A]™0.

[Why? By the assumption.]
Second, we can deduce

®, there are 1 < w and a sequence u = (uy : o < 1) such that:

(@) ug € [A]M
(b) if u € [A]=™° then for some finite w € p1, u € U{ug : B € w}
(¢) uqisnotincluded inug, U...Uuy, , whenn < w, ap, ..., 0,1 < a.

[Why? Let i” be of the form (10 : & < a*) such that (@) + (b) holds and £g (i) is
minimal; it is well defined and £g(i®) < by ®1. Let W = {o < g (@) : ug 3Z
U{u% : B € w}when w C « is finite}. Let u; = |W| and let f : u; — W be one-to-
one onto, let u, = u(}(a) 50 (g : & < 1) satisfies (@) + (b) and u = |W| < £g(u?).
So by the choice of " we have £g(i°) = 1. So we can choose f such that it is
increasing hence u is as required.]

®3 we can define n : [A]=¥0 — @ and partial functions Fy : [AEN0 = py forl < w
(so (Fy : £ < w) exists) as follows:

(@) winfinite = Fy(u) = Min{a: forsome finitew C o, u C uaUU{uﬁ 1 B e w}
mod finite}

(b) u finite = Fy(u) undefined

(¢) Foy1(u) := Fou\(upyuy Y ... Uupg,u)) for £ < o when Fy(u) is defined

(d) n(u) := Min{l : Fy(u) undefined}.

Then

®4 (@) Fyy1(u) < Fe(u) < p1 when they are well defined
(b) n(u) is a well defined natural number and u\ U {ur, ) : £ < n(u)} is finite
and k < n(u) = (u\U{ug,u : € < k}) Nug, () is infinite
(c) if up,ur € (A%, u; C up and up\up is finite then Fy(u;) = Fy(up) for
£ <n(up) and n(uy) = n(uy)

®s define Fy : [A]N — A by F(u) = Min(U{u g, : € < m(u)} U {0}\u) if well
defined, zero otherwise
[Note: the reader may wonder: as you add {0} then Min(—) = O in all cases.
However, if 0 € u then by “\u", zero does not belong to the set from which we
choose a minimal ordinal.]

®¢ if u € [A]NO then (recalling 0.18(4), (5), (6)):
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(@) c(u, Fo) = cty (u)is F'(u) := u U Ufur,@ : € < n@)} U {0}

(B) cty, (u) = ctZ, (F) for some &(u) < wy

(y) thereis F = (F/ : ¢ < w) such that: for every u e [A]%0, cﬂ%* () = {F.(u) :
e <e)}and Fl(u) =0if e € [e(u), w1)

(8) in fact F/(u) is the e-th member of cé%* (n)ife < e(u).

[Why? Define w¢ by induction on & by w? = u, we*t! = w? U {F.(w?)} and for
limit ordinal ¢ we let w;, = U{w,f 1 ¢ < ¢e}. We can prove by induction on ¢ that
w& C F'(u) which is countable. The partial function g with domain F’(u)\u to Ord,
g(x) = Min{e : o € wi“} is one to one onto an ordinal call it £(x), so wf,(*) -
F’(u) and if they are not equal that F*(wf,(*)) € F/(u)\wf,(*) hence w,‘i(*) G w,‘i(*)H
contradicting the choice of ¢(x). So clause () holds. In fact, cl3(u, Fy) = w,i(*) and
clause (B) holds. CLauses (y), (&) should be clear.]

@7 there is no sequence (%, : n < w) such that:

(a) 02/n+1 C U C A
(b) %, is closed under Fy, i.e. u € [%,] = F,(u) € %,
(C) %1+1 # %n

[Why? Assume toward contradiction that (7%, : n < w) satisfies clauses (a),(b),(c).
Let oy = Min(%,\%,+1) for n < w hence the sequence @ = (o, : n < w) is
well defined with no repetitions and let B, ¢ = Fy({a, : n > m}) form < o
and £ < n, = n({o, : n € [m,w)}). As a is with no repetition, n,, > 0 and by
®4(c) clearly n,, = ng form < w and B, ¢ = Po¢ form < w, £ < ng. So letting
Uy = U{UF,({aynemw)) @ £ < Ny}, it does not depend on m so v, = vg, and by
the choice of Fy, as {a, : n € [m,w)} € %, and %, is closed under F, clearly
Um € Uy, Together vg = vy, € %y s0 V9 € Ny - m < w}. Also, by the definition
of the Fy’s, {a, : n < w}\vy is finite so for some k < w, {ay, : n € [k, w)} € vg but
vo € c+1 contradicting the choice of ay.]
Moreover, recalling Definition 0.18(6):

@’ there is no sequence (%, : n < w) such that

(@) Uni1 S U S A
(b) U\l (Unsr) # .

[Why? As above but letting a, = Min(%,\ct3. (Z11)).]

Now we define for (D, Dy, h, Z) € Fil;tl (Y) and ordinal « the following, recalling
Definition 0.18(6) for clauses (e),(f):

®8 F(D,.Dy.h.2) 0 = {f (@) fisafunction from Z to A
b) tkp+z(fUO\z) =«
(c) Dy ={Y\X :X CY satisfies X = ¥ mod D
or X € Di’_ and rkp,+x(f U Or\z)) > «a
thatis tkp, +x (f) > o}
(d) Z € D, really follows
(e) ifZ' CZAZ € Djthen
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cty, (Rang(f | Z')) = b}, (Rang(f))
(f) yezZ= f) =theh(y)-thmemberofc£3F*(Rang(f))}.

So we have:

®9 F(D,.Dy.h,2).« has at most one member; call it f(p, p,.n z).« (When defined;
pedantically we should write f(p,,p,.n,7),ct,a)
®10 F (D, Dy h.7) =2 HF(D,.Dy.h,7).a © @ an ordinal} is a well ordered set.

[Why? Define <(p,,p,,n,z) by the a’s, i.e. f1 < f2 iff there are oy < ap such that
Y= fipy.pyn 2y for € =1,21]

®11 if f: Y — X and Z C Y then the set Rang(f | Z) has cardinality < hrtg(Z).
[Why? By the definition of hrtg(—) this should be clear.]

®12 if f:Z — Land Z C Y then cﬁ‘;* (Rang(f)) C A has cardinality < hrtg([Z]%0)
or is finite.

Why? This will take some time. [f Rang( f) is countable more holds by 0.19. Otherwise,
by ®¢(B) recallng Definition 0.18(6) we have cZ‘;* (Rang(f)) = Rang(f)U{F/(u) :

u € [Rang(f)IN and & < ).

Let a(*) be minimal such that Rang(f) N «(x) has order type w. Let hy, hy :
w1 — w1 be such that hy(¢) < max{e, 1} and for every €1, &2 < w; there is { €
[e1 + &2 + 1, w1) such that hyp(¢) = e¢ for £ = 1,2. Define F : [Z]® — X as
follows: if u € [Rang(f)]™, let e¢(u) = h¢(otp(u N a(x)) for £ = 1,2 and F(u) =
F! (o euifa < a(x) then otp(u Nar) < &1(u)}).

2 (u)

Now

o ifue [Rang(f)]NO then F(u) is F;(v) for some v € [Z]0 and ¢ < wy.

[Why? As F(u) € Rang(F,,, [[Rang(f)1*)]

o {F(u):u € [Rang(f)]™} € cﬁ‘}*(Rang(f))-
[Why? By e recalling ®¢.]
o3 ifu e [Rang(f)]RO and ¢ < w then F/(u) is F(u) for some v € [Rang(f)]xo.

[Why? Let e; = otp(u Na(x)), &2 = &; now let { < w; be such that hy () = g, for
£ =12 Letv=uU{o:a € Rang(f) Na(x) and @ > sup(u Na(x)) + 1 and
otp(Rang(f) N\ (sup(u N (x) + 1)) < (& —¢1))}.]

So F(u) = F/(u). By e + e3 we can conclude:
e, in e we have equality.

Together cﬂ‘}* (Rang(f)) ={F(u) :u € [Rang(f)]“"} U Rang(f) so it is the union

of two sets; by the definition of hrtg(—) the first is of cardinality < hrtg([Z]¥0) and
the second is of cardinality < hrtg[Z], so we are easily done proving ®12

®13 if f : Y — A then for some sequence ((,, o) : n < w) we have ), € Fil;i1 Y)
and a, € Ordforn < wand f = U{fy, q, : 7 < 0}
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[Why? Let

f}) ={ZCY: forsomey € Filil(Y) satisfying Z" = Z
and ordinal o, f 4 is well defined and equal to f | Z}

Sy ={Z C Y : Zisincluded in a countable union of members of J})}.

So recalling we are assuming DC it is enough to show that ¥ € ..

Toward contradiction assume not. Let Dy = {Y\Z : Z € %}, clearly it belongs to
Fily, (Y), noting that Y ¢ .#¢. So a(x) := tkp, (f) is well defined (by 0.11) recalling
that only DC = DCy, is needed.

Let

D,={XCY:XeDjor rkDH—(Y\X)(f) > a(*)}.

By 0.13 + 0.14 clearly D> is an Xj-complete filter on Y extending D;.

Now we try to choose Z,, € Dy forn < wsuchthat Z, 1 € Z, and cﬂ‘;* (Rang(f |
Zn+1)) does not include Rang(f [ Z,).

Forn =0,Zy =Y is O.K.

By @’ we cannot have such w-sequence (Z, : n < w); so by DC for some (unique)
n = n(x), Z, is chosen but not Z, ;1.

Leth : Z, — hrtg([Y]™) U w be:

h(y) = otp(f(y) Ncl}, (Rang(f | Zy))).

Now £ is well defined by ®1,. Easily

f 1 Zn € Z(Dy+2,.D1.0.2,).0(5)

hence Z,, € f}) C J, contradiction to Z,, € D>, D1 € D».

So we are done proving ®;3.]

Now clause (B) of the conclusion holds by the definition of .7, clause («) holds
by ®1¢ recalling ®g, ®9 and clause (y) holds by ®1,.

Remark 1.5 We can improve 1.2 in some way by weakening the demands on u.
We may replace the assumption “[A]¥0 is well ordered" by:

(x) there is (uy, : @ < o), a sequence of members of (AN such that (Vu €
(A1) 3e) (u N uy infinite).

[Why? We define F; : A0 — o* by induction on ¢ < w; by F¢(v) := Min{a <
a*:(v\U {MF;(U) 1 ¢ < €}) Nug infinite} if well defined and let F : A0 — [A]No
be defined by F(v) = U{F:(v) : ¢ < w1, F¢(v) well defined}.

Lastly, let F, (1) = min(F (u)\u).]

@ Springer



Sh:835

pcf without choice Sh835 635

Observation 1.6 (1) The power of Fil;‘(l (Y, w) is smaller or equal to the power of
the set (P(P(Y))? x 2Y) x ul¥l; if Rg < |Y| this is equal to the power of
P(PX)) x .

(2) The power afFil‘é1 (Y) is smaller or equal to the power of the set (P (P (Y)))? x
2Y) x Ul : a < hrtg([YTY0)).

(3) In part (2), if Ro < |Y| this is equal to | 2(P(Y))| x U{¥a : a < hrtg([Y]™0)});
also a < hrig([Y1Y) = |2(2(Y)) x Ya| = |2(2(Y))| and |Fil§, (Y)| <qu
P(PY xY)).

Remark 1.7 (1) As we are assuming DC, the case Rg ﬁ |Y| means that Y is finite, so
degenerated. Now, if | Y| < Rg, then Filgtl(Y) ={{ZCY:Z2X}:X CY}hence
|Fﬂ§1 Y)| = |2(Y)| hence FIL;§I (Y, 1) has the same power as > Z(Y) x ©yu this is
a dull case.

Proof 1.6 (1) Reading the definition of Fil;‘<1 (Y, w) clearly its power is < the power of
P (P X)) x P(PY)) x PY) x pYI If Ry < |Y]| then | 2(P2(Y)) x ZP(Y)| <
| P(P(Y)) x P(P(Y))| = 22y NP < UPDHZD — P -
|P(P(Y)| < |P(PX)x PX)xuas Z(Y)+2(Y) =2¥ I x2 =2V I+ =
2171 5o the second conclusion follows.
(2) Read the definitions.
(3) If @ < hrtg([Y]™0) then let f be a function from [Y]™ onto « and for 8 < « let
Arp={u € [YI™ : f(u) < B}. So B +> Ay p is a one-to-one function from o
onto {As, 1y <a} € 2(P(Y))so | a| < P(P(Y)) and Z(2(Y)) x |Ya| <
P(P(Y)) x P(P(Y)) < 2ZDHPINN = 2|V Better, for f afunction from
[YT™ onto o < Z(Y) let Ar = {(y1,y2) : f(y1) < f(2)} € Y x Y. Define
F:PY xY)— hrtg(Y) by F(A) = aif A = Ay and f, o are as above, and
F(A) = 0 otherwise.

So |22 UU a :a < hrtg([Y]N)}] <qu P(P(Y)) x P(P(Y xY))) =
| P(P (Y x Y))|. By the proof above we easily get |Fi1§| )| Squ (LY xY)).

Claim 1.8 /DC] Assume

(a) ais a countable set of limit ordinals

(b) <« is awell ordering of Tla

(c) 0 € a= cf(0) > k where k = hrtg(P(w)) or just Tla/[a] <N is < k-directed.
Then we can define J, b, f) such that

()

(i) J = (Ji:i <i(x)) wherei(x) < hrtg(Z(w))

(ii) J;i is an ideal on a (though not necessarily a proper ideal)
(iii) J; is increasing continuous with i, Jo = {0}, Ji¢x) = P (a)
(iv) b= (b; :i <i(0),b; C aand Jip1 = Ji +b; # Ji,

(v) so J; is the ideal on a generated by {b; : j < i}

B)
(i) E=(fl:i<i(®)
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(i) f'=(f4 a<a)
(iii) fl € [l ais <y -increasing with o < o;
(iv) {fy :a < a;}iscofinal in ([]a, <j,4+(a\b;))

)
(i) cf(Jla) < X o

i<i(%)
(ii) for every f € Ila for some n and finite set {(i¢, y¢) : € < n} such that iy <
i(x),ye < oy, we have [ < maxy-, ff/f ie, (VM0 e a)(F <n)[f(O) < f ()]

Remark 1.9 Note that there is no harm in having more than one occurence of 6 € a.
See more in [13], e.g. on uncountable a.

Proof 1.8 Note that:
®1 clause (y) follows from («) + (B).

[Why? Easily (y)(ii) = (y)(i). Now let ¢ € ITa and let I, = {b C a: we can find
n <wandip <i(x)and By < «;, for £ < nsuchthat® € b = (I < n)(g) <
FiO)).

Easily I, is an ideal on a though not necessarily a proper ideal. Note that if a € /,
we are done. So assume a ¢ /,. Note that I, C J;(x) hence j, = min{i <i(*): some
¢ € Z(a)\I, belongs to J;}is well defined (as a € Z(a)\I; Aa € Jix). As Jo = {/}
and clearly as € Iy, so ¢ = a witness jo, > 0. As (J; : i < i(x))is C-increasing
continuous, necessarily j, is a successor ordinal say j, = iz + 1 and let i(g) = i,
and choose ¢ € J;,\ 1, clearly Jig) < Ig so ¢ belongs to Jj,\J;,. By clause (8)(iv)
there is o < a;(g) such that g < fo’; mod (Ji(g) + (a\bj(g))).

Now let 0 = {6 € a : g(8) < fL(9)} so by the choice of @ we have 0 = a
mod (Jjg) + (a\b())), which means that b;;) € 0 mod J;) so as Jig+1 =
J,'(g) + b,‘yg and ¢ € Ji(g)+l\~,i(g) clearly ¢ C b,'(g) mod ],'(g).

But by the definition of the ideal J;(g) and of ? necessarily ? € J;(g) and recall
Jig) € Ji(g), contradicting the conclusion of the last sentence.]

Since (y) follows from () + (B), it suffices to prove these parts By induction on
i < k we try to choose (J', bt f) where J' = (Jj:j=<i),b (bl j<i)f =
(f7 :j < i) which satisfies the relevant parts of the conclusion and do it uniformly
from (a, <4). Once we arrive at i such that J; = £?(a) we are done.

For i = 0 recalling Jo = {#} there is no problem.

For i limit recalling that J; = U{J; : j < i} there is no problem and note that if
j<i=>a¢Jjthena¢ J;.

So assume that (J?, b, f/) is well defined and a ¢ J; and we shall define for i + 1.

We try to choose g'*¢ = (g(’;;‘E i < & ¢) and b; ¢ by induction on ¢ < w; and for
each ¢ we try to choose g/ € Ia by induction on « (in fact & < hrtg(ITa) suffice,
we shall get stuck earlier) such that:

o,

(a) if B < o then g° <, gk,
(b) if ¢ < ethend; ; > 8 . anda < & . implies gy° < gi*,
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(c) if cf(a) = 8y then g.* is defined by

6eca=glfO) = Min{U ggs(Q) : Cisaclubof a},
peC

(d) if « is a limit ordinal and cf(a) # Ry, o # O then g(’f is the <,-first g € Ila
satisfying clauses (a) + (b),
(e) if we have (gjg"8 1 B < a), cf(a) > Ry, moreover cf(a) > min{cf(0) : 6 € a} and
there is no g as required in clause (d) then §; » = «,

(f) if @ = 0 or « is a successor, then g(’f is the <,-first g € I1a such that:
o [ <eNa <, =>gé;§ <g,
o B<a :>gf,9€ < gk® mod Jj,
o3 e =+ 1= (VB < bi)l~(g <y g4l follows if & > 0.
(g) J; is the ideal on & (a) generated by {b; : j < i},
(h) b; e € (J)T s0b;e Ca,
(i) g"* is increasing and cofinal in (T1(a), <j,+(a\b; .))>
(j) b; ¢ issuch thatunder clauses (h) 4 (i) the set {otp(aNB) : 6 € b; .} is <,-minimal

recalling the claim assumptions,
(k) if ¢ < ethenb; ; C b;  mod J; (follows by “if { < & then g(i)’g isa <J;+b; . -upper

bound of g¢".
Clearly in stage ¢ we first choose g’;¢ by induction on . As f < o = glis’g # g(’;s we
are stuck in some §; . and then choose b; ;.

We now give details on some points:
(*%)o if @ = 0 then we can choose gé"g.
[Why? Trivial.]
(%) Clause (c) is O.K., that is: if we arrive to (g, ), cf (o) = R then we can define

84"

[Why? We already have (g"f o < §)and (gf;;{ jo < 8¢, ¢ < ¢),and we define
gé’g as there. Now gé’s(G) is well defined as the “Min" is taken on a non-empty set
of ordinals as we are assuming cf(6) = N and by DC, 87 is regular. The value is
< 6 because for some club C of 8, otp(C) = w, s0 gé’a(e) < U{g;’S(O) : B eC}
but this set is € 6 while cf(9) > Ry by clause (¢) of the assumption. By ACy, we
can find a sequence (Cyp : 6 € a) such that: Cy is a club of § of order type w;
satisfying gé’s(G) = U{ gé;s(é’) :a € Cyg} hence for every club C of § included in Cy
we have gé’g(é) = U{gf(0) : @ € Cyp}. Now 0 € a = gj;'g(e) = U g.¢(6) when

aeC
C :=N{Cy, : 0 € a}, because C too is a club of § recalling a is countable. Soif ¢ < §

then for some 8 we have o« < 8 € C hence the setc¢ := {0 € a : gff(@) > ggf(e)}

belongs to J; and 6 € a\c = gi?(9) < g%’s(é) < g5 (0), soindeed g.* <y, g5°.
Lastly, why ¢ < ¢ = gé’C < gé’s? As we can find a club C of § which is as above

for both gé’g and gé’g and recall that clause (b) of ®; . holds for every B € C. Together

gy is as required.]
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(x)2 cf(d; ) > N1 and even cf(d; ) > min{cf(0) : 6 € a}.

[Why? We have to prove that arriving to o > 0, if cf(e) < min{cf(9) : 0 € a} then we

can choose gf);s as required. The cases cf(a) = Ry, « = 0 are covered by ()1, (*)g

respectively, otherwise let # € o be unbounded of order type cf(«), and define a

function g from a to the ordinals by g(0) = sup({gf,!‘c’(é) :B e u}U{g&’z(G) 1L <€}

This is a subset of 8 of cardinality < |a|+ cf(x) whichis < 8 = cf(6) hence g € Ila,

easily is as required, i.e. satisfies clauses (a) + (b) and the <,-first such g is g"f.]
Note that clause (e) of ®; . follows.

(k)3 if ¢ < ethend; o < ;.
[Why? Otherwise gé,i contradict clause (e) of ®i2’ ;']

(%)4 if g% = (glf : @ < &) is well defined and cf(8; ) > « then b; . is well
defined.

[Why? Clearly, it suffices to prove that there is b as required on b; . (in clauses (b),(i)).
So toward contradiction assume that for every b € J*, g1 is not <, 4(q\p)-cofinal
in I[Ta hence there is & € [Ta such thatw < 6; = h fji gé’g and let hp be the <,-
minimal such A. Let &, be the function with domain a such that 2(0) = U{hy(0) + 1 :
be ).

As hrtg(Ji+) < hrtg(#(a)) < min{cf(®) : 0 € a}, clearly h, € Ila. Now for
a < bigletdigq =1{0 € a: gl’;‘g(O) < h«(0)}. So (Viea/Ji 1 a0 < §ig) 1S
<-increasing in the Boolean Algebra &?(a)/J;, so for some B; . < J; we have
@ € (Bie,8ie) = 0iea = 0iep;, mod J;. This implies 0; . can serve as b; ¢.]

To finish consider the following two cases.

Case 1: We succeed to carry the induction, i.e. choose g'*¢ for every & < k.
So (b; ¢ : € < k) is a sequence of subsets of a, pairwise distinct (by ®/2<,0 clauses
(g) + (b)), but « > hrtg(#(w)) and a is countable; contradiction.

Case 2: We are stuck in € < «.

For ¢ = 0 there is no problem to define gf);s by induction on « till we are stuck,
say in «, necessarily « is of large enough cofinality > « by (x)2, and so g"¢ is well
defined. We then prove b; . exists by ()4 again using <.

For & limit we can also choose g°. '

Fore = ¢+ 1,if a € J, then we are done; otherwise g(’)"9 as required can be chosen
by ()0, and then we can prove that g%, b; . exists as above.

Remark 1.10 From 1.8 we can deduce bounds on hrtg(Y (Rs)) when § < ¥ and more
like the one on Niff’ (even better, the bound on pp(R,)).

2 No decreasing sequence of subalgebras

In this section we concentrate on weaker axioms. We consider Theorem 1.2 under

weaker assumptions than “[A]% is well orderable". We are also interested in replacing
w by 9 in “no decreasing w-sequence of cf-closed sets", but the reader may consider
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d = 8o only. Note that for the full version, Axi, i.e., [oz]a is well orderable, the case
of 0 = 8y is implied by the d > R( version and suffices for the results. But for other
versions, the axioms for different 9’s seem incomparable.

Note that if we add many Cohens (not well ordering them) then Ax;t fails below even
for 9 = R, whereas the other axioms are not affected. But forcing by R{-complete
forcing notions preserve Axy.

Hypothesis 2.1 DCj and let 9(x) = 9 + R. Actually we use only DC in 2.5(1) and
DCj in 2.5(3) and the later claims. We fix a regular cardinal 9.

Definition 2.2 Below, pedantically we should, e.g. write Axg instead of Ax‘ and
assume o > @ > k > 9. If k = 0 we may omit it.

(D) Axg, 1. means that there is a weak closure operation on A of character (i, «), see
Definition 0.18(1A), such that there is no C-decreasing d-sequence (% : &€ < 9)
of subsets of o with ¢ < 0 = cl(Ze+1) ;_5 .. We may here and below replace
k by < «; similarly writing < u has the obvious meaning; let < |Y|™ means |Y|.

(2) Let Axé’ <u,c Mean thereis cf, a weak closure operation on A of character (< u, k),
so may think cf : []=¥ — [a]=* such that there is no C-decreasing sequence
(%, : ¢ < 3) of members of [«]=* such that e < 0 = cl(%e41) D U.

(2A) Writing Y instead of k means c€ : [a]<Me1) — [a]<F. Let clfe) : P(a) —
P(a) be cZ;’ reg(ct) 3 defined in 0.18(4) recalling reg(y) = Min{y : x a regular
cardinal > y}.

(2B) In parts (1) and (2) omitting ¢« mean u = hrtg(Z?(«x) and omitting u and x mean
K = d(x)

3) Axg means that there is &7 C [«]? which is well orderable and for every u € [o]?
for some v € &7, u N v has power = 9.

“4) Axg means that cf([«]=?, C) is below some cardinal, i.e., some cofinal o7 C [«]?
(under C) is well orderable.

(5) Ax? means that [«]=? is well orderable.

(6) Above omitting « (or writing co) means “for every «", omitting © we mean
“< hrtg(£(0))".

(7) Lastly, let Axp = Ax‘for ¢ =1,2,3.

So easily (or we have shown in the proof of 1.2):

Claim 2.3 (1) Ax? implies Ax2, Ax} implies Ax2, Ax2 implies Ax)} and Ax) implies
Axg. Similarly for Ax!

o, <[,K*

(2) In Definition 2.2(2), the last demand only ct | [«]=? is relevant, in fact, an

equivalent demand is that if (B : ¢ < ) € %« then for some ¢, Bs € cl{fr : ¢ €

(e,0)}.

(3) If AX) _,,, g and 6 < hrtg(Y) and® > = supfhrig(us x [1%) : B < hrtg(Y)}
0

thﬂ Axoz,<u2,<hrtg(Y)'

Proof (1) Clearly Ax> = Ax!

o, <[L,K O, <[L,K
implications hold by inspection.

holds similarly to the proof of 1.5; the other

2 Can do somewhat better; we can replace [a] <1 by {v C o : otp(v) C 1}
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(2) First assume that we have a C-decreasing sequence (%, : ¢ < 9) such that
e < 0 = cl(U+1) 77_5 Y. Let B = min(%:\ct(%.+1)) for ¢ < 9 so clearly
B = (Bs : € < ) exists; so by monotonicity cl({fr ¢ ele+1,0)} € cl(Xetr1)
hence B; ¢ cl({B; : ¢ € [e +1,0)}.

Second, assume that 8 = (B, : ¢ < 3) € %« satisfies B, ¢ cl({B; : ¢ €[e+1,0)}
for e < 9. Now letting % = {B; : ¢ < 0 satisfies ¢ < ¢} for e < 9 clearly
(%] : & < 9) exists, is C- decreasmg ande < 9 = Be ¢ cl(%/ ) N Be € %/ . Sowe
have shown the equlvalence
(3) Let cf(—) witness Axa <y, <" We define the function c¢¢’ with domain [«]
by ¢/ (u) = U{cl(v) : v C u has cardinality < 0}.

Now

()9 ¢t/ is a function from [o]<P"€Y) into [o]<H2.

<hrtg(Y)

For this, it is enough to note:

()1 ifu € [a]<MeY) then cf/(u) has cardinality < o := sup{hrtg(u; x [B]7 : B <
hrtg(Y)}.

[Why? Let C,, = {(v,¢) : v € u has cardinality < 6 and ¢ < otp(cf(v)) which

is < u1}. Clearly |cf/(u)| < hrtg(Cy) and |Cy| = |u1 X [otp(u)]<9|, so (*)1 holds.

Note that if a, < ,uf we can replace the demand v € [u]<? = |cl(v)| < u; by

ve [ul<? = otp(cl(v) < ay.]

(%)2 If (ug : & < 0) is C-decreasing where u, C « then u, C cf'(ug41) for some
e < 0.

[Why? If not we can choose a sequence (8; : ¢ < d) by letting ¢ < 9 = B, =
min(ug\cl' (ug41)). Let ul, = {B; : ¢ € [e,0)}. As (u} : ¢ < ) is C-decreasing
by the choice of cf(—) for some ¢, B, € cl{B; : ¢ € (¢ + 1,0)}, but this set is
C cl/(ugey1) by the definition of ¢£/'(—), so we are done.]

Claim 2.4 Assume cf witness Ax° 500 <k < pandsocl : [a]=X — [a]™H

o, <[, K
and recall cZ; <« P P(@) > P(a) is from 2.2(2A), 0.18(4).

(1) cﬁl <« is a weak closure operation, it has character ([, k) whenever 9 < k < «
and /,LK =hrtg(u x P(k)), see Definition 0.18.

(2)ce! reg(K+) -, s aclosure operation and it has character (< Wiy K)whend <k <«
and p, = hrtg(H_ 5+ (1 X K)).

Proof (1) By its definition cﬁl <
Assume u C a, |u| < k; non-empty for simplicity. Clearly p x [|u|]<? has the
same power as [t X [u]<?. Define? the function G with domain [T [u]<? as follows:
ifo < pandv € [u]=? then G ((a, v)) is the a-th member of c£(v) if ¢ < otp(cf(v))
and G((«, v)) = min(u) otherwise.
So G is a function from pu x [u]=? onto cZ{ <
character (< iy, k) as u, = hrtg(u x Z(x)).
() If (u : & < reg(kt)) is an increasing continuous sequence of sets then [uy+]=? =
Uf[ue]=2 s e < reg(k )} as reg(k™) is regular (even of cofinality > 9 suffice) by its
definition, note reg(3*) = 9™ when AC, holds when DCj holds.

is a weak closure operation.

(u). This proves that CK%,SK has

3 clearly we can replace < u by < y fory € (u, u+)
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Second, letu C «, |u| < k and let u, = cég’K(u) fore < 8t itis enough to show
that |uy+| < u,.. The proof is similar to earlier one.

Definition/Claim 2.5 Let ¢¢ exemplify AX% Y and Y be an uncountable set such
that 9(%) <qu Y
(1) Let %, %y o be as in the proof of Theorem 1.2 fory € Fil? (*)(Y ) and ordinal
o (they depend on XA and cf but note that ¢£ determines A; so if we derive c by Axk
then they depend indirectly on the well ordering of [1]?) so we may write Fya =
Fy(a, cl), etc.

That is, fully

(x)1 forp e Flla(*)(Y, ) and ordinal « let ﬁ’n,a be the set of f such that:

(a) f is afunction from Z" to A,
(b) 1kppy)(f) = o recalling that this means rkD?+Z,, (f UOy\zv) = a by Defini-
tion 0.10(2),

(c) D} = D] U{Y\A: A e J[f, D] + Z"]}, see Definition 0.13,

d) 7Y ¢ Dz,

(e) if Z € DU and Z € Z"thencl({f(y): y € Z}) D {f(y) : y € Z"},

(f) hY is a function with domain Z" such that y € Z° = hb(y) otp(f(y) N

{ct({ f(z) : z € ZY)).

(¥)2 Fy = U{F o : a an ordinal}.
(2) Notice that .7, 4 is a singleton or the empty set. Let B,y = By (cf) = By (R, cf) =
{a 1 Fya # V) and f o is the function f € %, o when € Ey; it is well defined.
3)If D € Fily(Y), tkp(f) = a and f € Yithen @ € Ep(A,cl) and f | ZY =
fy,« for some y € Fil4 (Y)' MOreover, (D‘f, Dg) = (D, dual(J(J[f, D])) where
Ep(h, cl) ;== U{Ey : c Filt 3 (¥) and D = D}.
A If D € Filywy(Y), f € YA, Z € D and tkpyz(f) > « then for some g €
[TGEM+1D < YL+ 1) we have rkp(g) = o hence @ € Ep (X, cl).
yeY
(5) So we should write .%#y[cl], Ey[A, cl], fy.«lcl].
Proof As in the proof of 1.2 recalling “cf exemplifies Axg “u hng(y)” holds, this
replaces the use of F, there; and see the proof of 2.11 below in part (3), for this we
need:
Bif D e Fil;)(Y) and f € “0, then for some Z € D we have:

e if Y C Z belongs to D then cf(Rang(f[Y) = cf(Rang(f[Z)).
[Why H holds? By Definition 2.2(2) using the axiom DCj.]
Claim 2.6 We have &, is an ordinal and AX22»<M2 y holds when,(note that u is not
much larger than [11):

(a) Ax <upy SO d < hrtg(Y),

) ct wztnesses clause (a),

(¢) D € Fily(Y),

(d) & = {a : fyulcl] is well defined for some vy € Filg(*)(Y, 1) which satisfies
D? = D and necessarily Rang( fy, [c€]) C &1},
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(e) o is defined as j12,3 where:

(@) let oo = hrtg(Y),
(B) pa,1 = supg_y, , hrtg(B x Fily, (Y, ),
(V) M22 = Supa<p,2,1 hrtg(“l X [a]fd)’

(8) p2,3 = supthrtg(* B x Fily(Y)) : B < pa}
(this is an overkill).

Proof ®; &> is an ordinal.
[Why? To prove that &; is an ordinal we have to assume o < 8 € &; and prove « € &;.
As B € & clearly B € Ey[cl] for some y € Filg(*)(Y, 1) for which DY = D so
there is f € Y (£1) such that f]ZY € Fy.p- S0 1kpy 7191 (f) = B hence by 0.10 there
is g € Y\ such that g = f.ie,(¥y € Y)(g(y) < f(») and tkpy7[y)(g) = . By

2.5(4) there is 3 € Filj (Y, u1) such that D} = D + Z[y] and g|Z3 € F; 4 50 we

are done proving &, is an ordinal.]
We define the function c¢¢’ with domain [£,]<M"€(Y) ag follows:

@) cl/(u) = {0} U {a: there is y € Fﬂg(*)(y, 1) such that f o[c] is well defined*
and Rang( fy «[cl]) € cl(v[u])}.

where
@3 v[u] :=U{cl(v) : v C & is of cardinality < 9 and is € w(v)}.
where

@4 forv C & we let w(v) = U{Rang(f; glcl]) : 3 € Filg(*)(Y, u1) and B € u and
f;.plct] is well defined}.

Note that
®s cl'(u) = {0} U {rkp(f): D € Filyu(Y),Z € DT and f € Y'v(u)).
Note that (by 2.5(1)):

X foreachu C & andy € Filg(*)(Y, 1) the set {a < & @ fr o[cl] is a well defined
function into u} has cardinality < Wlor(TDg (u)), thatis, ( fy «[cl] : o € E; N&)
is a sequence of functions from Z* to u C &, any two are equal only on a set = {J
mod D5 (with choice it has cardinality < !"!|u[)), call this bound [T

Note
Xy ifu; C ur C & then

(@) w(uy) €S w(uz) and v(uy) C v(up) C &
(B) cl'(ur) S ' (u2)

(y) u S v(u) and wlu] C v[u]

(8) ur € ct'(uy).

4 We could have used {t €Y : fpalctlt) € ct(v(u))} # ¥ mod Dg; also we could have added u to
¢t/ (u) but not necessarily by H,.
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[Why? E.g. for clause (§); assume o € u and let f be a unique function from Y
into {«}. Hence for some y € Filg(*)(Y, w1) we have f, 4 is well defined. Now
Rang( fy,«) € w(u) by the choice of w(u) in @©4 and so Rang( f;; ) € v(u) by clause
(y) of B, hence Rang( fyy,«) € c£(v, u) by the assumption on c£, see by 2.6(a),(b) and
2.2(2). So we have fy) g well defined and Rang( fyy,) € c£(v(u)) so by the definition
of ¢f/(u) in @, we have a € cl' (1) so we are done.]

X3 if u C &, |u| < hrtg(Y) then wu) = {fy,o(z) 0 € u,y € Filg(*)(y, ©“1)s fo.a
is well defined and z € Z"} is a subset of & of cardinality < hrtg(|u| x
Fﬂg(*)(y, u1)) < sup{hrtg(B) x Fﬂg(*)(y, u1)) : B < hrtg(Y)} which was
named w21 in 2.6(e)(B)

Xy ifu C & and |u| < pp,1 then U{cl(v) : v € [u]=?} is a subset of 11 of cardinality
< hrtg(ug x [u]=?) < SUPg <15 hrtg(ug x [a]SB) which we call p2 2 in 2.6(e)(y)

Ms if u € & and |u| < hrtg(Y) then v(u) has cardinality < us .

[Why? By @3 and X3 and Xj.]

e ifu C & and |u| < hrtg(Y) then ¢’ (1) C & and has cardinality < ;3 is defined
in 2.6(e)(8) which we call .

[Why? Without loss of generality v(u) # #. By @5 we have |cl/(u)| < hrtg(YV(u)) X
Fily(+)(Y)) and by Hs the latter is < sup{hrtg(Yﬂ x Filygu(Y)) : B < n22} = 12,3
recalling clause (e)(8) of the claim, so we are done.]

X7 cf’ is a very weak closure operation on A and has character (< o, hrtg(Y)).

[Why? In Definition 0.18(1), clause (a) holds by the Definition of c£’, clause (b) holds
by Hg and as for clause (c), 0 € cf'(u) by the definition of c£’ and u C ct’'(u) by
clause (8) of X.]

Now it is enough to prove

0

o
Mg cf’ witnesses Axg, _ . y-

Recalling X7, toward contradiction assume U = (%, : ¢ < 0) is C-decreasing,
U € [E11°MeM) and e < 3 = % ¢ cl(Wet1). We define 7 = (e 1 & < ) by

Ye = Min(Z\cl(U:+1))-

As AC; follows from DCj, we can choose (h; : &€ < 9) such that fy, ,, [cL] is well
defined for ¢ < 0.
Letfore < 90

ue ={y; : ¢ € e, 9)}.

So
()1 ug € [£]50 C [£]<hre®),
[Why? By clause (a) of the assumption of 2.6.]

(*)2 ug is C-decreasing with €.
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[Why? By the definition.]
()3 Ve € ug\cl(ug41) fore < a.

[Why? e € u, by the definition of u,.]

Now if ¢ € [g, y) then f, ,, [c€] is well defined and y; € % \cl(%;+1) (see the
choice of ;) but (% : & < d) is C-decreasing hence y, € %, by the definition of
wlue], Rang(fy, ) € W(%e), hence Rang(fy, ) € V(%) S cl(v(%:)). As this
holds for every ¢ € [e, y) we can deduce u, = {y; : ¢ € [&,d)} C ct/(V(%)).

Lastly, Y. ¢ V(%.+1) by the choice of B¢. So (i, : € < 9) contradict the assumption
on (&1, ¢f). From the above the conclusion should be clear.

Claim 2.7 Assume Ry < k = c¢f (A) < A hence k is regular > 9 of course, and D is
the club filter on k and A = (A; 1 i < k) is increasing continuous with limit ).
Then A% < {rkp (f): fe [[ A/}

i<kt

Proof For each @ < A7 there is a one to one’ function g from « into || < A and we
let fo € [] A be

S@) =otp({B < :g(B) <A}
Let

Foq = {f : f is afunction with domain « satisfyingi < k = f(i) < )Ll.+
such that for some one to one function g from « into A
for eachi < x we have f(i) = otp({B <« : g(B) < A D}

Now

(0)1 (@) Fo =D fora < AT,
(B) (Fy :a < AT) exists as it is well defined.

[Why? For clause (o) let g : « — X be one to one and so the f defined above belongs
to .%,. For clause (B) see the definition of .%, (for @ < A™).]

()2 () if f € Fp,a < B < AT then for some [’ € .Z, we have [’ <o fs
(B) (min{tkp(f) : f € Fo} : a < AT) is strictly increasing hence min{rk p (f) :
f€Fu)>a.

[Why? For clause (@), let g witness “f € .Zg" and define the function f" € [] )»j'
i<k
by f/(i) = otp{y < a : g(y) < A;i}. So gla witness f/ € Z,, and letting i (x) =
min{i : g(a) < A;} we have i € [i(%),k) = f/'(i) < f(i) hence f’ <gw f as
promised. For clause (f) it follows.]
So we have proved 2.7.

Conclusion 2.8 (1) Assume

5 but, of course, possibly there is no such sequence (fy : @ < AT)
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(@ AX) _, o
(b) A > cf(A) = k (not really needed in part (1)).

Then for some F, C “A =: {f : f a partial function from k to L} we have

(o) every f € ¥ is a countable union of members of F,

(B) F is the union of | Filg(*) (k, < w)| well ordered sets: {ﬁ;‘ 'y e Filg(*) (k, m)},
(y) moreover there is a function giving for each ) € Filg(*) (k) awell ordering ofﬂ‘;".

(2) Assume in addition that hrtg( Fil‘a‘(*) (k, < ) < A, cf(A") and hrtg(* ) < A
then for some t) € Filg(*)(K) we have |f§| > A

(3) If in part (2) we may omit the assumption on cf (A1) still At = sup{otp(E, NAT) :
v € Filj (e, o)}

Proof (1) By the proof of 1.2.

(2) Assume that this fails; so for every 1y € Filg(*) (k, < w), the set Sy = Ey N AT has
order type < AT. But we are assuming cf(AT) > hrtg(,@(Filf;O*
y < AT such that y > otp(Sy) for every relevant y, without loss of generality y > A
and let g be a one-to-one function from y onto A.

We choose f € “A by

(k, 0))), so there is

f(@) = MinQW\{fy o () : v € Filj, (e, )
fy.a(0) is well defined, i.e.
i €Z[ylanda € Ey and
glotp(a N Ey)) < u;}).

Now f (i) is well defined as the minimum is taken over a non-empty set of ordinals,
this holds as we substruct from A a set which has cardinality < u; which is < A. But
f contradicts part (1). Note that in fact f € [] /,Li+.

i

(3) Same proof as in part (2).

H 0
Conclusion 2.9 Assume AXy i SO N> .
Then the cardinal \™ is not measurable (even in cases it is regular6 ) when

X (@) A > cf(A) =k > Ry,
(b) & > hrtg(( Fily, (c, p)).

Proof Naturally we fix a witness c¢ for Axg)qm. Let %y, By, fy.a» 3“‘;0( be defined
as in 2.5 so by claims 2.5, 2.7 we have U{E, : py € Filfd‘(*) (k)} © AT; moreover,
a €T NEy = fra €A

Lety € Fil‘a‘(*) (k, u) be such that |#,| > A, we can find such y by 2.8, as
without loss of generality we can assume AT is regular (or even measurable, toward
contradiction). Let Z = Z[y]. So &y is a set of ordinals of cardinality > A. For
¢ < otp(Ey) let a; be the {-th member of By, s0 fy o, is well defined. Toward
contradiction let D be a (non-principal) ultrafilter on A ™ which is A*T-complete. For

6 the regular holds many times by 2.13
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i € Z lety; < A be the unique ordinal y such that {¢ < AT : JSo.a, () =y} € D.As

|Z| <k < A% and D is k" -complete clearly {¢ : A\ fy.q (i) = yi} € D,soas D is
ieZ

a non-principal ultrafilter, for some ¢{; < &2, f\w:l = fn,%, contradiction. So there

is no such D.

Remark 2.10 Similarly if D is x *-complete and weakly AT -saturated and Axg+ -
see [13]. e

Claim 2.11 Ifog,<u,K’ then we can find C such that:

(a) C=(Cs:5¢€08),

(b) S ={8§ < X :6isalimit ordinal of cofinality > 9(x)},
(¢) Cs is an unbounded subset of 8, even a club,

(d) if§ € S, cf(5) <k then |Cs| < u,

(e) if 5 €8, cf(8) > k then |Cs| < hrtg(u x [ ¢f(8)]°).

Remark 2.12 (1) Recall that if we have Axi (see 2.2(5)) then trivially there is (Cs :
8 < A, cf(8) < 9), Cs aclub of § of order type cf(d) as if <, well order [A]1=? we let
Cs := be the <,-minimal C which is a closed unbounded subset of § of order type
cf(8).

2) Axg’%w suffices if k < & < A.

Proof The “even a club" is not serious as we can replace Cs by its closure in §.
Let ¢¢ witness AXR’W’K. For each § € S with cf(8) € [0(x%), k] we let

Cs =N{dNcel(C): C aclub of § of order type cf(5)}.

Now C’/ = (Cs : 8 € Sand cf(5) € [d(x), k]) is well defined and exist. Clearly Cj is
a subset of §.

For any club C of § of order type cf(§) € [d(x), k] clearly § N c€(C) S ct(C)
which has cardinality < w.

The main point is to show that Cs is unbounded in §, otherwise we can choose
by induction on ¢ < 9, a club Cs ¢ of § of order type cf(§), decreasing with & such
that Cs ¢ SZ cl(Cs.¢+1), we use DCj. But this contradicts the choice of cf recalling
Definition 2.2(1).

If § < A and cf(§) > « we let

Cy =n{u{dNcl(u) : u C C has cardinality < «} :
C is aclub of § of order type cf(5)}.

A problem is a bound of |Cj|. Clearly for C a club of § of order type cf(6) the order-
type of the set U{§ N cf(v) : v € C has cardinality < «} is < hrtg(u x [cf(§)]%). As
for “Cy is a club" it is proved as above.

The following lemma gives the existence of a class of regular successor cardinals.

Lemma 2.13 (1) Assume
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(a) § is a limit ordinal < A, with cf(§) = 9,

(b) A} is a cardinal fori < § increasing with i,

(©) e = Z{A] 10 < 8},

(d) A7 = hrtg(p x “(A7)) fori < § and (@) V (B) hold where:

(@) Axi,
(B) Ay = hrtg(Fily,, (WF, ) and hrig(IM159) < A%, .

(e) Axg’q“( and jL < A,

(f) r=2f.

Then ) is a regular cardinal.

(2) Assume Axi,)\ = )\:,)\* singular and x < Ay = hrtg(a)() < Ay then M\ is
regular.

Remark 2.14 This says that the successor of many strong limit singulars is regular.

Question 2.15 (1) Is hrtg(Z(Z(1)))) > hrtg(Filg(*)()\;‘))?
(2)Is |ct(f | B)| < hrtg([B]=0) for the natural ¢€ and f, B as in the proof of 2.13?

Proof 2.13 (1) We can replace § by cf(§) so without loss of generality § is a regular

cardinal so § = 0.
So

()1 (a) fix ¢ : [A]Z¥ — Z()) a witness to Axg‘W(,
(b) let {(Ce[cl] : & < A, cf(§) > 9) be as in the proof of 2.11,50& < A A Q <
cf(¢) < A = |Celcl]] < A

[Why the last inequality? If § < A, then there is i such that A7 > p + cf() hence
otp(Cs) < hrtg(u x [cf($)]) < hrtg([A11) < A%, ]

First, we shall use just 2 > A, A (V8§ < A)(cf(8) < Ay), a weakening of the
assumption that A = 1.

Now

X, foreveryi < § and A C A of cardinality < A;", we can find B C A of cardinality
< Ay satisfying (Yo € A)[o is limit A cf(a) < AT = a = sup(a N B)].

The proof of this will take some time. By 2.11 (and 0.17) the only problem is for
Y ={o:0 € A,a > sup(A Na), « alimit ordinal of cofinality < 9 + R}; so
Y| < )»;‘. Note: if we assume Axi this would be immediate.

We define D as the family of sets A C Y such that:

®}4 for some set C € A of < 0 ordinals, the set Bc =: U{Rang(fy¢) : ¢t €
Filg(*)(kj, w) and ¢ € C or for some £ € C, we have AY > cf(§) > 9 and
¢ € Cglcl]) satisfies « € Y\A = o = sup(a N Be).

Clearly

@ (a) YeD,
(b) D is upward closed,
(¢) D is closed under intersection of < d hence of < d(x) sets.
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[Why? For clause (a) use C = @, for clause (b), note that if C witness aset A C Y
belongs to D then it is a witness for any A’ C Y such that A C A’. Lastly, for clause
(c)if A, € Dfore < e(x) < ™, as we have ACjy, there is a sequence (C; : & < &(%))
such that C, witnesses A, € D for ¢ < e(x) < 3%, then C := U{C; : ¢ < (%)}
witnesses A := N{A; : ¢ < e(x)} € D and, again by ACj, we have |C| < 9.]

®3 if ¥ € D then we are done.

[Why?Fora =@ € D let C C X be as promised in ® and then Bc is as required,; its
cardinality < A7, by 2.11.]

So assume @ ¢ D, so D is an 3+ -complete filteron Y. As 1 < |Y]| < A;‘, let gbea
one to one function from [¥| < A} onto Y and let

®4 (@) D1 :={B CAf :{g(a) :ax € BN|Y|} € D},
(b) ¢ = 1kp,(8),
() Dy:={BC);:BeDyorB ¢ Djand tkp, By (8) > U Dy.

So D; is an 9T -complete filter on )L;.“ extending D;.

Let B, € D be such that (VB')[B’ € Dy A B € B, = cf(Rang(g | B')) D
(Rang(g | By)]. Let Z = N{ct(Rang(g | B") : B’ € Dy}, soRang(g | By) C %,
even equal.

Let & be the function with domain B, definedby« € B, = h(a) = otp(g(a)N%).

Sot := (D1, Dy, By, h) € Filg(*)(kf,u) and for some ¢ we have g | By, =
Sr.clet].

It suffices to consider the following two subcases.

Subcase la: cf(¢) > 9.

So recalling ()1(b), C¢[ct] is well defined and let C := (¢} hence Bc =
U{Rang(f;.elcl] : ¢ € C¢[ct]} so C exemplifies that the set X := {a € ¥ : o >
sup(a N Bc)} belongs to D hence X, = {a < |Y] : g(o) € X} belongs to Dy.

Now define g’, a function from A7 to Ord by g (@) = sup(g(@)NBe)+1ifa € X,
and g'(«) = 0 otherwise. Clearly g’ < g mod D hence tkp, (g’) < ¢, hence there is
8", 8 <p, 8" <p, gsuchthat& := rkp, (g”) € C[cl].

Now for some y € Filg(*) (A}) we have DY = D and g = f; ¢ mod Dg.

SoB =:{e <|Y|:g"(¢) = fye(e)} € D) hence B € D.So BNB.NX, € Dy
butif e € BN B, N A, then fy £(¢) € Bc and fy £(e) € sup((Bc N g(¢)), g(¢)).

This gives contradiction.

Subcase 1b: cf(¢) < o.

We choose a C C ¢ of order type < d unbounded in ¢ and proceed as in subcase
la.

As we have covered both subcases, we have proved X .
Recall we are assuming § = 9; now:

X, forevery A C X of cardinality < A, there is B C A of cardinality < X, such that:

D ACB,Ja+leA=aeBland[d € AAR) < cf(a) < Ay = a =
sup(B Na)].

[Why? Choose a C-increasing sequence (A; : j < &) such that A = U{A; : i < 8}
and j < 8 = |A;| < A%, possible as |A| < A,. For each j < § there exists B; such
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that the conclusion of H; holds with (A}, B;, kjf) here standing for (A, B, 1;) there,
0 |Bj| < A4. So as AC; holds (as § < 0) there is a sequence (E’j 1 j < §),each Bj
as above.

Lastly, let B =U{B; : j < 8}, itis as required.]

X3 for every A C A of cardinality < A, we can find B C A of cardinality < A, such
that A C B,[a+1 € B= «a € B]land [@¢ € B isalimit ordinal A cf(a) < A, =
o =sup(B Na)l.

[Why? We choose B; by induction on i < w < 9 such that |B;| < A, by By =
A, Byiy1 ={a:a € Byjora+ 1 € By} and Byjyp is chosen as B was chosen in
X, for i with By;y1, Boi4+2 here in the role of A, B there. There is such (B; : i < w)
as DC = DCy, holds. So easily B = U{B; : i < w} is as required.]

Now return to our main case A = A}

Xy A is regular.

[Why? Otherwise cf(A}) < A} hence cf(A}) < A, but A, is singular so cf(A]) < A
hence there is a set A of cardinality cf(A]) < A, such that A € A} = sup(A). Now
choose B asinXl3. So |B| < Ay, B is an unbounded subsetofkj, a+leB=aeB
and if « € B is a limit ordinal then cf(a) < || < X, but cf() is regular so
cf() < A4 hence o = sup(B N «). But this trivially implies that B = 1], but
|B| < A, contradiction. ]

(2) Similar, just easier.

Remark 2.16 Of course, if we assume Axi then the proof of 2.13 is much simpler: if
<4 1s a well ordering of [)L]Sa for § < A of cofinality < 9 let Cs = the <.-first closed
unbounded subset of § of order type cf(§), see 3.3.

Claim 2.17 Assume

(a) (X :i < k) is anincreasing continuous sequence of cardinals > k
b)) x=A=2{); i <k}
(¢) k = cf(x) >0
0
(d) AX; _,x
(e) hrtg( Fil‘a‘(*) (k, ) < Aand k, L < Ao
(f) S={i<xk: )»l* is a regular cardinal} is a stationary subset of k
(g) let D := Dy + S where Dy is the club filter on «
() y () = rkp((A] i < «)).

Then y (%) has cofinality > A, so (A, y(x)] N Reg # 0.

Proof 2.17 Recall 2.5 which we shall use. Toward contradiction assume that
cf(y (%)) < A, but A, is singular hence for some i (x) < «, cf(y (%)) < Aj). Let ¢l
witness AX2,<M,K'

Let B be an unbounded subset of y (x) of order type cf(y (*)) < A;(x). By renaming
without loss of generality i(x) = 0.

For o < y(x) let
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Uy = U{Rang(fy.o) : fo,«lcl]is well defined € IT{A; :i € Z9}
andy € Filj,, («) and D) = D}.

Clearly %, is well defined by 2.5; moreover, (%, : o« < y(x)) exists and | %]
hrtg(x x Filg(*) (k, m)) = hrtg(Fil‘a‘(*) (k, 1)), even < recalling 0.17(4). Let %

U{%, : o € B} so |%| < hrtg(Filg(*)(K, w) + |B|.
We define f € [] A/ by
i<k
() f(@)is:sup(Z N )»;’) + 1if cf()\l*) > |% | and zero otherwise.
So

(B) fellr.

i<k

1A

Clearly
(y) {i <k : f(i) =0} =@ mod D.

Let a(x) = rkp(f), itis < rkp(()nl.+ : i < k)) = y(x), so by clause (y) there
is B(x) € B such that «(x) < B(x) < y(x) hence for some g € [] Aj‘ we have
i<k
rkp(g) = B(x) and f < g mod D, so for some ) € Filg(*) (k) we have D? =D+ S
and g € Fy g(x), hence f(i) < g(i) < fy,pen () € # N A;” foreveryi € Z9 N S.
So we get an easy contradiction to the choice of g.

Claim 2.18 Assume cf witness Ax? and hrtg(Y) € [k, ). The ordinals y;, £ =

o, <[, K
0, 1, 2 are nearly equal see, i.e. ® below holds where:

X

(a) vo = hrtg(Yot), a cardinal

(b) y1 =Ulrtkp(y) : y =rkp(a) for some D € Fily)(Y)}

(c) y2 =sup{ otp(Eylct) +1:p € Filg(*)(Y)}

®@) 2=y1 =y
(B) yo is the union ofFilg(*) (Y) sets each of order type < y»
(y) o is the disjoint union of < hrtg(@(Filg(*) (Y))) sets each of order type < y»
®) if wo > hrg(P(Fil},(Y) and yo = lyal* then Il = |yal** and

ef(2l*) < hrig(P(Fill,, (V).

Proof 2.18 Straightforward, see 0.17.

3 Concluding remarks

In May 2010, David Aspero asked whether it is true that I have results along the
following lines (or that it follows from such a result):
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If GCH holds and A is a singular cardinal of uncountable cofinality, then there is a
well-order of 7’ (A1) definable in (# (A ™), €) using a parameter.

The answer is yes by [9, 4.6,pg.117] but we elaborate this below somewhat more
generally. Much earlier Gitik [4] had proved (using suitable large cardinals) the con-
sistency of “ZF + every infinite cardinal has cofinality R, i.e. N is the only regular
cardinal". This naturally raises the question what suffices to have a class of regulars.
Gitik told me that in Luming 2008 Woodin has conjectured:

B let V be a model of ZF + DC, suppose that « is a singular strong limit cardinal of
cofinality w; and |77 (k)| = k. Is then & («) well orderable?

Now [9] gives some information. The results here (3.1) confirm H.

Claim 3.1 [DC] Assume that w is a singular cardinal of cofinality k > Ry (no GCH
needed), the parameter X C  codes in particular the tree J = “~ u and the set
P (P (k)), in particular, from X a well-ordering of [u]=* U P (P (k)) is definable.
Then (with this parameter) we can define a well-ordering of the set of k-branches of
the tree (“~ A, <).

Proof 3.1 Proof of 3.1:
Let (cd; : i < «) satisfies

M cd; is a one-to-one function from ? ;4 into 1, (definable from X uniformly (in 7))
H, let <, be a well-ordering of Filﬁ (k) definable from X.

For n € “u let f, : k — p be defined by f,,(i) = cd;(n]i), so f= (fy:nefu)is
well defined.

Let # = (%, : v € Fil(k)) be as in Theorem 1.2 with i, « here standing for
A, Y there; there is such .Z definable from X as X codes also a well-ordering of [e]No,
see §1.

So for every n € “u there is y € Filﬁ (k) such that f[Z, € %, and D? con-
tains all co-bounded subsets of « so let (1) be the <, -first such n. Now we define
a well ordering <, of “u: for n,v € “ulet n <, v iff rkp, (w1 (f1Zyep) <
tkp, (y(v)) (fv[Zy(v)) or equality holds and y(1) < p(v).

This is O.K. because

(k) if n #v € “u then f;,(7) # £, (i) for every large enoughi < « (i.e.i > min{j :
n(j) # v}

Conclusion 3.2 [DC] Assume p is a singular cardinal of uncountable cofinality « and
€ () is well orderable of cardinality p and X C u codes 77’ (i) and a well ordering
of (). Then we can (with this X as parameter) define a well-ordering of & (u);
hence of 7 (u™).

Proof 3.2 Proof of 3.2:

Let (u; : i < k) be an increasing sequence of cardinals < p with limit x; wlog
X code this sequence. Clearly 2 < pu (as |*2| < |7 (n)] = n, and 2 = pis
impossible).

Let (cdf : i < k) satisfies

@ Springer



Sh:835

652 S. Shelah

B> cdf is a one-to-one function from &(u;) into u, (definable uniformly from X).

Socds : Z(n) — “pu defined by (cdi(A)) (i) = cdi(ANpu;) for A C p,i <k,isa
one-to-one function from (i) into “ . Now use 3.1.

We return to 2.13(2)
Claim 3.3 [DC] (1) The cardinal ) is regular when:

H (a) Axi+, i.e. W10 is well orderable,
(b) o < rfora <A,
(¢) M is singular.

(2) Also thereis e = {e5 : 8 < AT),es €68 = sup(es), les| < cf((S)NO.
Remark 3.4 Compare with 2.13; we use here more choice, but cover more cardinals.

Proof 3.3 Let <, be a well ordering of the set (A%,

As earlier let F : ®(AT) — AT be such that there is no C-decreasing sequence
(clp(up) :n < o) withu,, € AT.Let @ = {6 < AT : § alimit ordinal, cf(§) < A},
sootp(R) € (AT, AT +1}.

We define e = (es : § € Q) as follows.
Case 1: cf(8) = R, es is the <,-minimal member of {# € § : § = sup(u) and
otp(u) = w}.
Case 2: cf(§) > No.

Letes = N{cfF(C) : C aclub of §}.

So

(%)1 es is an unbounded subset of § of order type < A.

[Why? If cf(§) = Ro then es has order type w which is < A by clause (b) of the
assumption.

If cf(8) > Ry then for some club C of §, es = cF(C) has otp(es) < |clr(C)| <
(cf(3)®0 < A. The last inequality holds as cf(8) < A as§ < AT, cf(§) # A as A is
singular by clause (c) of the assumption, and lastly ((cf()R0) < A by clause (b) of the
assumption. |

This is enough for part (2). Now we shall define a one-to-one function f, from «
into A by induction on @ € 2 as follows: let pry : A x A — A be a pairing function
so one to one (can add “onto 1"); if we succeed then f;+ cannot be well defined so
At ¢ Q hence cf(AT) > A, but A is singular so cf(AT) = AT, i.e. AT is not singular
so we shall be done proving part (1).

The inductive definition is:

H (a) ifa < Athen f, is the identity
() ifa =p+1¢€[rAT)then fori < a welet f,(i) be
o 14 fgi)ifi <p
e Oifi=p
(¢) ifx € Qsowaisalimitordinal, e, € o = sup(ey), ey Of cardinality < A and

welet f, bedefinedby: fori < awelet fo (i) = pr; (fmin(e,\(i+1)) @), otp(egN
i)).
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We later add:

Claim 3.5 [ZFC] Assume p > k = cf () > R and p = u™o 4 2%°.

(1) From some X C p we can define a well ordering of some set 9 C *u such that
“u=A{sup{fy :n <w}: f €9 forn < w}.

(2) If moreover 2% < 1 where 6 = ™0 then from some X C u we can define a well
ordering of © .

Proof 3.5 (1) Let X C u code Z(Z(k)) and ®u which is as in 3.1. Unlike the proof
of 3.1 we do not use the cd; (i < «) and we use the family of 8-complete filters on
«, the rest should be clear.

(2) As @ = 6™ there is a one-to-one onto function cd : ®6 — 6 onto 0, and fori < w
let cd; : & — 6 be such that:

(1)1 if cd(n) = ¢, then cdo(§) = £g(n) and cd14;(¢) = n(i) fori < £g(n).

Let D be {A C 0: for some u € [)]=™0 wehave A D {e <0 :u C {cd;(¢) : i < w}},
o)

(%)2 D is an Rj-complete filter on 6.
[Why? Should be clear.]

(#)3 for fePuletg, g + be the unique function g with doman 6 such that:

o ife <k andi < cdp(e), then cdi4;(e) < 0 = cdi4i(g(e)) = f(cdi+i(e)) and
cdo(g(e)) = cdp(e) and f(e) = 0 otherwise

[Why g exists? Just think.]

(g if felu,a= tkp(gy) and vy =y, as in the proof of 3.1 for g ¢, then:
(a) from gr[Z, we can define f (using some Y C « as a parameter)

(b) Rang(f) S {cdi4i(gr(e)) 1 € € Zy and i < cdo(gy(e))}.

[Why? Clause (a) follows clause (b). Clause (b) holds as for every & < «, the set
{e <0 :& e{cditi(e) :i <cdp(e)}} € D.]
We continue as in the proof of 3.1.

Conclusion 3.6 [DC] Assume [A]N0 is well ordered for every M.
(1) 1If 2% is well ordered then for every A, [A]* is well ordered.
(2) For any set Y, there is a derived set Y so called Fﬂ?zl (Y) of power near (2 (Y))

such that Ib Leyyny,v) “for every A, Y is well ordered".

Proof 3.6 (1) By 3.1.
(2) Follows easily.
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