There may be a unique Q-point

Lorenz Halbeisen

Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland lorenz.halbeisen@math.ethz.ch

Silvan Horvath

Department of Computer Science, ETH Zürich, 8092 Zürich, Switzerland silvan.horvath@inf.ethz.ch

Saharon Shelah¹

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel shelah@math.huji.ac.il

and

Department of Mathematics, Hill Center-Busch Campus, Rutgers, State University of New Jersey 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, U.S.A.

Abstract. We show that in the model obtained by iteratively pseudo-intersecting a Ramsey ultrafilter via a length- ω_2 countable support iteration of restricted Mathias forcing over a ground model satisfying CH, there is a unique Q-point up to isomorphism.

key-words: Q-point, Ramsey ultrafilter, Mathias forcing 2010 Mathematics Subject Classification: 03E35 03E17

Introduction 1

Throughout this paper, read ultrafilter as non-principal ultrafilter on ω . For $x \subseteq \omega$, we denote by $[x]^{\omega}$ the set of infinite subsets of x and by fin(x) the set of finite subsets of x.

Recall that an ultrafilter E is a *Q*-point if and only if for every interval partition $\{[k_i, k_{i+1}) : i \in \omega\}$ of ω , there exists some $x \in E$ such that $\forall i \in \omega : |x \cap [k_i, k_{i+1})| \leq 1$. Furthermore, an ultrafilter \mathcal{U} is a *Ramsey ultrafilter* if and only if the *Maiden* has no winning strategy in the *ultrafilter game for* \mathcal{U} , played between the Maiden and *Death*:

DEFINITION 1.1. Let \mathcal{U} be an ultrafilter. The ultrafilter game for \mathcal{U} proceeds as follows:

The Maiden opens the game and plays some $y_0 \in \mathcal{U}$. Death responds by playing some $n_0 \in y_0$. In the (k+1)-th move, the Maiden having played $y_0 \supseteq y_1 \supseteq ... \supseteq y_k$, and Death having played $n_0 < n_1 < ... < n_k$, the Maiden plays some $y_{k+1} \in [y_k]^{\omega} \cap \mathcal{U}$, and Death responds by playing some $n_{k+1} \in y_{k+1}$, $n_{k+1} > n_k$.

Death wins if and only if $\{n_i : i \in \omega\} \in \mathcal{U}$.

¹Research partially supported by the *Israel Science Foundation* grant no. 2320/23. This is paper 1265 on the author's publication list.

It is well-known that every Ramsey ultrafilter is a Q-point. Canjar [5, Theorem 2] showed that the existence of Ramsey ultrafilters – in fact of 2^c of them – follows from the assumption $cov(\mathcal{M}) = \mathfrak{c}$. The weaker assumption $cov(\mathcal{M}) = \mathfrak{d}$ implies the existence of 2^c Q-points, as was shown by Millán [6, Theorem 3.1]. It is well-known that in the Mathias model – the model obtained by a length- ω_2 countable support iteration of unrestricted Mathias forcing over a ground model satisfying CH – there are no Q-points (see [1, Proposition 26.23]). In fact, the Mathias model contains no *rapid* ultrafilters, where an ultrafilter E is rapid iff for every $f \in {}^{\omega}\omega$ there exists some $x \in E$ such that $\forall n \in \omega : |x \cap f(n)| \leq n$ (note that every Q-point is rapid). It follows that both the Mathias model and the model considered in this paper satisfy $cov(\mathcal{M}) = \omega_1 < \mathfrak{d} = \mathfrak{c} = \omega_2$.

We want to mention that – in stark contrast to the Mathias model – our model actually contains 2^c rapid ultrafilters: It follows from an observation of Millán [6, page 222] that the existence of a single rapid ultrafilter E implies the existence of 2^c of them, by considering the products $U \otimes E$ for different ultrafilters U.²

DEFINITION 1.2. Let \mathcal{U} be a Ramsey ultrafilter. Mathias forcing restricted to \mathcal{U} , written $\mathbb{M}_{\mathcal{U}}$, consists of conditions $\langle s, x \rangle \in fin(\omega) \times \mathcal{U}$ with max $s < \min x$, ordered by

$$\langle s, x \rangle \leq_{\mathbb{M}_{\mathcal{U}}} \langle t, y \rangle : \iff s \subseteq t \land x \supseteq y \land t \setminus s \subseteq x.$$

Note that we use the convention that stronger forcing conditions are larger. The forcing notion $\mathbb{M}_{\mathcal{U}}$ clearly satisfies the c.c.c. and is therefore proper. We will need the following additional facts.

FACT 1.3 (e.g., see [1, Theorem 26.3]). Let \mathcal{U} be a Ramsey ultrafilter. The forcing notion $\mathbb{M}_{\mathcal{U}}$ has the pure decision property, i.e., for any sentence φ in the forcing language and any $\mathbb{M}_{\mathcal{U}}$ -condition $\langle s, x \rangle$, there exists $y \in [x]^{\omega} \cap \mathcal{U}$ such that either $\langle s, y \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} \varphi$ or $\langle s, y \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} \neg \varphi$.

DEFINITION 1.4. Recall that a forcing notion \mathbb{P} has the Laver property iff for every \mathbb{P} -name g for an element of $^{\omega}\omega$ such that there exists $f \in {}^{\omega}\omega \cap \mathbf{V}$ with

$$\mathbb{P} \Vdash \forall n \in \omega : g(n) \le f(n),$$

we have that \mathbb{P} forces that there exists $c: \omega \to fin(\omega)$ in \mathbf{V} with

$$\forall n \in \omega : |c(n)| \le 2^n \text{ and } g(n) \in c(n).$$

FACT 1.5 (e.g., see [1, Corollary 26.8]). Let \mathcal{U} be a Ramsey ultrafilter. The forcing notion $\mathbb{M}_{\mathcal{U}}$ has the Laver property.

FACT 1.6 (e.g., see [2, Ch. VI, 2.10D]). The Laver property is preserved under countable support iterations of proper forcing notions.

 $^{^{2}}U \otimes E$ is an ultrafilter on $\omega \times \omega$ defined by $U \otimes E = \{x \subseteq \omega \times \omega : \{n \in \omega : (x)_{n} \in E\} \in U\}$, where $(x)_{n} = \{m \in \omega : \langle n, m \rangle \in x\}$.

2 Result

MAIN THEOREM. It is consistent that there exists a unique Q-point, and this Q-point is a Ramsey ultrafilter.

Proof. Assume that the ground model V satisfies CH. By induction, we define:

- (i) A countable support iteration $\mathbb{P}_{\omega_2} := \langle \mathbb{P}_{\xi}, Q_{\xi} : \xi \in \omega_2 \rangle$ of c.c.c. forcing notions,
- (ii) A sequence $\langle \mathcal{U}_{\xi} : \xi \in \omega_2 \rangle$, such that

 $\forall \xi \in \omega_2 : \mathbb{P}_{\xi} \Vdash ``\mathcal{U}_{\xi} \text{ is a Ramsey ultrafilter extending } \bigcup_{\iota \in \xi} \mathcal{U}_{\iota}"$

and Q_{ξ} is a \mathbb{P}_{ξ} -name for Mathias forcing restricted to \mathcal{U}_{ξ} ,

Assume that we are in step $\xi \in \omega_2$. Let G_{ξ} be \mathbb{P}_{ξ} -generic over \mathbf{V} and work in $\mathbf{V}[G_{\xi}]$. Note that since \mathbb{P}_{ξ} is a countable support iteration of proper forcing notions that are forced to be of size $\leq \omega_1$, we have $\mathbf{V}[G_{\xi}] \models \mathsf{CH}$ (e.g., see [3, Theorem 2.12]). For each $\iota \in \xi$, let η_{ι} be the Mathias real added at stage ι .

If $\xi = \xi' + 1$, $\eta_{\xi'}$ pseudo-intersects $\mathcal{U}_{\xi'}[G_{\xi}]$ and we may construct a Ramsey ultrafilter on $\eta_{\xi'}$ using CH (and extend it to ω to obtain \mathcal{U}_{ξ}). Similarly, if ξ is a limit ordinal and $\mathrm{cf}(\xi) = \omega$, we can build \mathcal{U}_{ξ} on a pseudo-intersection of the tower $\langle \eta_{\iota} : \iota \in \xi \rangle$. Finally, if $\mathrm{cf}(\xi) = \omega_1$, then $\bigcup_{\iota \in \xi} \mathcal{U}_{\iota}[G_{\xi}]$ is already a Ramsey ultrafilter, since no new reals are added at stage ξ . For the same reason we also have that $\mathcal{U}_{\omega_2} := \bigcup_{\xi \in \omega_2} \mathcal{U}_{\xi}[G]$ is a Ramsey ultrafilter in $\mathbf{V}[G]$, where G is \mathbb{P}_{ω_2} -generic over \mathbf{V} .

FACT 2.1 (e.g., see [3, Theorem 2.10]). \mathbb{P}_{ω_2} is proper and satisfies the ω_2 -c.c..

We need to show that \mathcal{U}_{ω_2} is the only *Q*-point in $\mathbf{V}[G]$. To see this, assume by contradiction that $\mathbf{V}[G] \models "E$ is a *Q*-point and not isomorphic to \mathcal{U}_{ω_2} ".

LEMMA 2.2. There exists $\delta \in \omega_2$ such that $E \cap \mathbf{V}[G_{\delta}] \in \mathbf{V}[G_{\delta}]$ and $\mathbf{V}[G_{\delta}] \models "E \cap \mathbf{V}[G_{\delta}]$ is a Q-point and not isomorphic to \mathcal{U}_{δ} ".

Proof. Fix $\xi \in \omega_2$ and consider names $\underline{e}_{\xi}, \underline{i}_{\xi}, \underline{s}_{\xi}, \underline{b}_{\xi}$ and f_{ξ} such that \mathbb{P}_{ω_2} forces that

- (i) " \underline{e}_{ξ} is an enumeration (in ω_1) of $\underline{E} \cap \mathbf{V}[G_{\xi}]$ ". For each $\alpha \in \omega_1$ and $n \in \omega$ let $\mathcal{E}_{\xi,\alpha,n} \subseteq \mathbb{P}_{\omega_2}$ be a maximal antichain deciding " $n \in \underline{e}_{\xi}(\alpha)$ ".
- (ii) " i_{ξ} is an enumeration (in ω_1) of the set of interval partitions of ω in $\mathbf{V}[G_{\xi}]$ ". Note that we may assume that i_{ξ} is a \mathbb{P}_{ξ} -name.
- (iii) "For all $\alpha \in \omega_1, \underline{s}_{\xi}(\alpha)$ is an element of \underline{E} that intersects each interval in the interval partition $\underline{i}_{\xi}(\alpha)$ in at most one point". Let $\mathcal{S}_{\xi,\alpha,n} \subseteq \mathbb{P}_{\omega_2}$ be a maximal antichain deciding " $n \in \underline{s}_{\xi}(\alpha)$ ".

- (iv) " \underline{b}_{ξ} is an enumeration (in ω_1) of all permutations of ω in $\mathbf{V}[G_{\xi}]$ ". We may again assume that \underline{b}_{ξ} is a \mathbb{P}_{ξ} -name.
- (v) "For all $\alpha \in \omega_1$, $f_{\xi}(\alpha)$ is a pair op $(\underline{x}_{\alpha}, \underline{y}_{\alpha})$ such that \underline{x}_{α} is in $\underline{\mathcal{E}}$, \underline{y}_{α} is in \mathcal{U}_{ω_2} and $\underline{b}_{\xi}(\alpha)[\underline{x}_{\alpha}]$ is disjoint from \underline{y}_{α} ". Let $\mathcal{X}_{\xi,\alpha,n} \subseteq \mathbb{P}_{\omega_2}$ be a maximal antichain deciding " $n \in \underline{x}_{\alpha}$ ", and define $\mathcal{Y}_{\xi,\alpha,n}$ analogously.

By the ω_2 -c.c. of \mathbb{P}_{ω_2} , there exists for each $\xi \in \omega_2$ some $\gamma_{\xi} \in \omega_2$ greater than ξ such that all the above antichains consist of $\mathbb{P}_{\gamma_{\xi}}$ -conditions. Recursively define $\lambda(0) = 0, \lambda(\xi+1) = \gamma_{\lambda(\xi)}$ and for limit ordinals $\xi : \lambda(\xi) = \bigcup_{\iota \in \xi} \lambda(\iota)$, for $\xi \leq \omega_1$. Set $\delta := \lambda(\omega_1)$ and consider the extension $\mathbf{V}[G_{\delta}]$. Since $\mathrm{cf}(\delta) = \omega_1$, we have that $E \cap \mathbf{V}[G_{\delta}] = \bigcup_{\iota \in \omega_1} E \cap \mathbf{V}[G_{\lambda(\iota)}]$, and since each $E \cap \mathbf{V}[G_{\lambda(\iota)}]$ is an element of $\mathbf{V}[G_{\delta}]$ by (i), $E \cap \mathbf{V}[G_{\delta}]$ is an element of $\mathbf{V}[G_{\delta}]$ (and an ultrafilter). Furthermore, any interval partition of ω in $\mathbf{V}[G_{\delta}]$ already appears in some $\mathbf{V}[G_{\lambda(\iota)}], \iota \in \omega_1$, where it equals $\underline{i}_{\lambda(\iota)}[G_{\lambda(\iota)}](\alpha)$ for some $\alpha \in \omega_1$. Since $\underline{s}_{\lambda(\iota)}[G_{\delta}](\alpha) \in E \cap \mathbf{V}[G_{\delta}]$, we obtain that $E \cap \mathbf{V}[G_{\delta}]$ is a Q-point. Finally and analogously, any permutation of ω in $\mathbf{V}[G_{\delta}]$ already appears in $\mathbf{V}[G_{\lambda(\iota)}]$ for some $\iota \in \omega_1$ and hence there are witnesses $\underline{x}_{\alpha}[G_{\delta}] \in E \cap \mathbf{V}[G_{\delta}]$ and $\underline{y}_{\alpha}[G_{\delta}] \in \mathcal{U}_{\omega_2} \cap \mathbf{V}[G_{\delta}] = \mathcal{U}_{\delta}$ witnessing that $E \cap \mathbf{V}[G_{\delta}]$ and \mathcal{U}_{δ} are not isomorphic. \dashv

We now designate $\mathbf{V}[G_{\delta}]$ as the new ground model and rename the Q-point $E \cap \mathbf{V}[G_{\delta}]$ to E and the Ramsey ultrafilter \mathcal{U}_{δ} to \mathcal{U} . Note that by the Factor-Lemma (e.g., see [4, Theorem 4.6]), the quotient $\mathbb{P}_{\omega_2}/G_{\delta}$ is again isomorphic to a countable support iteration of restricted Mathias forcings. In particular, by Facts 1.5 and 1.6, $\mathbb{P}_{\omega_2}/G_{\delta}$ is isomorphic to the two-step iteration $\mathbb{M}_{\mathcal{U}} * \mathcal{R}$, where $\mathbb{M}_{\mathcal{U}} \Vdash \mathcal{R}$ has the Laver property".

It remains to show the following.

PROPOSITION 2.3. Let E be a Q-point and \mathcal{U} a Ramsey ultrafilter such that E and \mathcal{U} are not isomorphic. Let $\mathbb{M}_{\mathcal{U}}$ be Mathias forcing restricted to \mathcal{U} and let \underline{R} be a $\mathbb{M}_{\mathcal{U}}$ -name such that $\mathbb{M}_{\mathcal{U}} \Vdash \ \ \underline{R}$ has the Laver property". Then $\mathbb{M}_{\mathcal{U}} * \underline{R} \Vdash \ \ \underline{E}$ cannot be extended to a Q-point".

Proof. It suffices to show that if $\langle p, q \rangle \in \mathbb{M}_{\mathcal{U}} * \mathcal{R}$ and a $\mathbb{M}_{\mathcal{U}} * \mathcal{R}$ -name \mathfrak{A} for a strictly increasing element of ${}^{\omega}\omega$ are such that

$$\langle p,q\rangle \Vdash_{\mathbb{M}_{\mathcal{U}}*\underline{R}} \forall n \in \omega : \underline{a}(n) \in (\eta(n-1),\eta(n)],$$

then there exists some $v \in E$ and some $\langle \bar{p}, \bar{q} \rangle$ greater than $\langle p, q \rangle$ such that

$$\langle \bar{p}, \bar{q} \rangle \Vdash_{\mathbb{M}_{\mathcal{U}} * \underline{R}} |\operatorname{range}(\underline{a}) \cap v| < \omega.$$

Recall that η is the canonical $\mathbb{M}_{\mathcal{U}}$ -name for the Mathias real (assume $\mathbb{M}_{\mathcal{U}} \Vdash \eta(-1) = -\infty$).

Note that \underline{a} is forced by $\mathbb{M}_{\mathcal{U}}$ to be dominated by $\underline{\eta}$. Hence, by the Laver property of \underline{R} , there exists a $\mathbb{M}_{\mathcal{U}}$ -name \underline{c} for a function from ω to $fin(\omega)$ and some $\langle p', \underline{q}' \rangle \geq_{\mathbb{M}_{\mathcal{U}} * \underline{R}} \langle p, \underline{q} \rangle$ such that

$$\langle p', q' \rangle \Vdash_{\mathbb{M}_{\mathcal{U}} * R} \forall n \in \omega : \underline{a}(n) \in \underline{c}(n) \text{ and } |\underline{c}(n)| \leq 2^n.$$

We may assume without loss of generality that $p' \Vdash_{\mathbb{M}_{\mathcal{U}}} \forall n \in \omega : \underline{c}(n) \subseteq (\underline{\eta}(n-1), \underline{\eta}(n)]$. Let \underline{C} be a $\mathbb{M}_{\mathcal{U}}$ -name for an element of $[\omega]^{\omega}$ such that $p' \Vdash_{\mathbb{M}_{\mathcal{U}}} \underline{C} = \bigcup \operatorname{range}(\underline{c})$. Hence we have

$$\langle p', \underline{q}' \rangle \Vdash_{\mathbb{M}_{\mathcal{U}} * \underline{R}} \forall n \in \omega : \underline{a}(n) \in \underline{C} \cap (\underline{\eta}(n-1), \underline{\eta}(n)] \text{ and } |\underline{C} \cap (\underline{\eta}(n-1), \underline{\eta}(n)]| \leq 2^n.$$

LEMMA 2.4. Write $p' = \langle s, x_0 \rangle$. There exists $x_1 \in [x_0]^{\omega} \cap \mathcal{U}$ such that the $\mathbb{M}_{\mathcal{U}}$ -condition $\langle s, x_1 \rangle \geq_{\mathbb{M}_{\mathcal{U}}} \langle s, x_0 \rangle$ has the following property:

For every $t \in fin(x_1)$, there exists $C_t \in fin(\omega)$ such that

$$\langle s \cup t, x_1 \setminus (\max t)^+ \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} \mathcal{L} \cap (\max t)^+ = C_t$$

Proof. We define a strategy for the Maiden in the ultrafilter game for \mathcal{U} , which will not be a winning strategy since \mathcal{U} is a Ramsey ultrafilter.

Since $\mathbb{M}_{\mathcal{U}}$ has pure decision, there exists $C_{\emptyset} \subseteq (\max s)^+$ and $y_0 \in [x_0]^{\omega} \cap \mathcal{U}$ such that $\langle s, y_0 \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} \mathbb{C} \cap (\max s)^+ = C_{\emptyset}$. The Maiden starts by playing y_0 .

Assume $y_0 \supseteq y_1 \supseteq ... \supseteq y_k$ and $n_0 < n_1 < ... < n_k$ have been played, where $\forall i \leq k : y_i \in \mathcal{U}$ and $n_i \in y_i$. Again by pure decision, for each $t \subseteq \{n_0, n_1, ..., n_k\}$ with max $t = n_k$, there exists $z_t \in [y_k \setminus n_k^+]^{\omega} \cap \mathcal{U}$ and $C_t \subseteq n_k^+$ such that $\langle s \cup t, z_t \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} \mathcal{L} \cap (n_k)^+ = C_t$. The Maiden plays

$$y_{k+1} := \bigcap_{\substack{t \subseteq \{n_i : i \le k\} \\ \max t = n_k}} z_t$$

Since Death wins, we have that $x_1 := \{n_i : i \in \omega\} \in \mathcal{U}$. It is easy to check that this x_1 satisfies the lemma.

The following lemma strengthens the previous one.

LEMMA 2.5. Assume $\langle s, x_1 \rangle$ is as in the conclusion of the previous lemma. There exists $x_2 \in [x_1]^{\omega} \cap \mathcal{U}$ such that $\langle s, x_2 \rangle$ has the following property:

For every $t \in fin(x_2)$, every $m \in x_2 \setminus \max t$ and all $n, n' \in x_2 \setminus m^+$, it holds that $C_{t \cup \{n\}} \cap m^+ = C_{t \cup \{n'\}} \cap m^+$.

Proof. We again prove this by playing the ultrafilter game for \mathcal{U} . Assume $y_0 := x_1 \supseteq y_1 \supseteq ... \supseteq y_k$ and $n_0 < n_1 < ... < n_k$ have been played. For every $t \subseteq \{n_0, n_1, ..., n_k\}$ and every $d \subseteq n_k^+$ consider the set

$$P_{t,d} := \{ n \in y_k \setminus n_k^+ : C_{t \cup \{n\}} \cap n_k^+ = d \}.$$

Note that for every $t \subseteq \{n_0, n_1, ..., n_k\}$, the set $\{P_{t,d} : d \subseteq n_k^+\}$ is a partition of $y_k \setminus n_k^+$ into finitely many pieces. Hence, there exists one $d_t \subseteq n_k^+$ such that $P_{t,d_t} \in \mathcal{U}$.

The Maiden plays

$$y_{k+1} := \bigcap_{t \subseteq \{n_i : i \le k\}} P_{t,d_t}$$

Death will win and hence $x_2 := \{n_i : i \in \omega\} \in \mathcal{U}$. It is again not hard to check that x_2 satisfies the lemma. \dashv

The following fact will be needed later.

FACT 2.6. Without loss of generality, we may assume that for all $n \in \{\max s\} \cup x_2$, if n is the j'th element of $s \cup x_2$ in increasing order, then $n > 2^{j+1}$.

Proof. Note that the conclusion of Lemmas 2.4 and 2.5 also holds for each $\langle s', x' \rangle \geq_{\mathbb{M}_{\mathcal{U}}} \langle s, x_2 \rangle$. Hence we simply trim x_2 such that the enumeration of $s \cup x_2$ dominates 2^{j+1} above |s| and replace s with $s \cup \{\min x_2\}$ and x_2 with $x_2 \setminus \{\min x_2\}$.

Next, let N be a countable elementary submodel of some large enough \mathcal{H}_{χ} such that $\{\mathcal{U}, \mathbb{M}_{\mathcal{U}}, \mathcal{Q}, \langle s, x_2 \rangle\} \in N$. By induction, construct a sequence $N_0 \subseteq N_1 \subseteq ...$ of finite subsets of N such that

- (i) $\{\mathcal{U}, \mathbb{M}_{\mathcal{U}}, \mathbb{Q}, \langle s, x_2 \rangle, s, x_2\} \subseteq N_0,$
- (ii) $\bigcup_{i \in \omega} N_i = N$,
- (iii) $\forall i \in \omega : k_i := N_i \cap \omega \in \omega.$
- (iv) $\forall i \in \omega : \forall t \in fin(\omega) : t \in N_i \iff t \subseteq N_i$,
- (v) If $\langle m, l, D \rangle \in (\omega \times \omega \times \operatorname{fin}(\omega)) \cap N_i$, then $m, l, D \in N_i$ (and hence $D \subseteq N_i$ by the previous condition).
- (vi) $\forall i \in \omega$: If $\varphi(x, a_0, ..., a_l)$ is a formula of length less than 2025 with $a_0, ..., a_l \in N_i$ and $N \models \exists x \varphi(x, a_0, ..., a_l)$, then there exists $b \in N_{i+1}$ such that $N \models \varphi(b, a_0, ..., a_l)$.

LEMMA 2.7. $\langle s, x_2 \rangle$ forces that

$$\forall i \in \omega \setminus \{0,1\} : \underline{C} \setminus (\max s)^+ \cap [k_{i-1}, k_i) \neq \emptyset \implies \begin{cases} range(\underline{\eta}) \cap [k_{i-2}, k_{i-1}) \neq \emptyset, \text{ or} \\ range(\underline{\eta}) \cap [k_{i-1}, k_i) \neq \emptyset, \text{ or} \\ range(\underline{\eta}) \cap [k_i, k_{i+1}) \neq \emptyset. \end{cases}$$

Proof. Assume $\langle s \cup t, x' \rangle \ge_{\mathbb{M}_{\mathcal{U}}} \langle s, x_2 \rangle$, $a \in \omega \setminus (\max s)^+$ and $i \in \omega \setminus \{0, 1\}$ are such that $\langle s \cup t, x' \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} a \in C \setminus (\max s)^+ \cap [k_{i-1}, k_i).$

We show that $\langle s \cup t, x' \rangle$ forces one of the three possible conclusions in the statement of the lemma.

By possibly extending t, we may assume that t contains at least one element that is greater than a. Let $l_0 := \max(t \cap a)$ and $l^* := \min(t \setminus a)$. Furthermore, let $m^* := \max(x_2 \cap l^*)$. Hence, l_0 and l^* are consecutive elements of t and $l_0 \leq m^* < l^*$ and $l_0 < a \leq l^*$. We distinguish between two cases:

Case I. Assume $l_0 \leq m^* \leq a \leq l^*$.

If $l^* \in [k_{i-1}, k_i)$, we are done, since this means that $\langle s \cup t, x' \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} l^* \in \operatorname{range}(\eta) \cap [k_{i-1}, k_i)$. Hence, assume $l^* \notin [k_{i-1}, k_i)$, which means that $l^* \notin N_i$, since l^* is certainly not in N_{i-1} (if it were, a would be as well by (iii)). Note that l^* witnesses that

$$N \models \exists l : l = \min(x_2 \setminus a).$$

Hence, by (v), we have that $l^* \in N_{i+1}$ and thus $l^* \in [k_i, k_{i+1})$.

Case II. Assume $l_0 < a < m^* < l^*$.

Let $t' := t \cap a$, i.e., $l_0 := \max t'$, and let $i^* \in \omega \setminus \{0\}$ be such that $l_0 \in [k_{i^*-1}, k_{i^*})$, i.e., l_0 first appears in N_{i^*} . If $i^* = i$, we are again done, hence assume that $a \notin N_{i^*}$. We will show that $i^* = i - 1$.

Let $j \in \omega$ be such that l^* is the j'th elements of $s \cup t$ in increasing order. By Lemmas 2.4 and 2.5, there is $C_{t' \cup \{l^*\}} \subseteq (l^*)^+$ such that

$$\langle s \cup t' \cup \{l^*\}, x_2 \setminus (l^*)^+ \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} \underline{C} \cap (l^*)^+ = C_{t' \cup \{l^*\}}.$$

Set $D^* := C_{t' \cup \{l^*\}} \cap (l_0, m^*)$. Since

$$\langle s \cup t' \cup \{l^*\}, x_2 \setminus (l^*)^+ \rangle \leq_{\mathbb{M}_{\mathcal{U}}} \langle s \cup t, x' \rangle,$$

and since $l_0 < a < m^*$ by assumption, we must have $a \in D^*$. Furthermore, note that $D^* \subseteq C_{t' \cup \{l^*\}} \cap (l_0, l^*]$ and thus $|D^*| =: \gamma \leq 2^j$.

Now, m^* , l^* and D^* witness that

$$N \models \exists \langle m, l, D \rangle : \begin{cases} m, l \in x_2 \setminus l_0^+, m < l, \text{ and} \\ D \subseteq (l_0, m), \text{ and} \\ |D| = \gamma, \text{ and} \\ \langle s \cup t' \cup \{l\}, x_2 \setminus l^+ \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} \underline{C} \cap (l_0, m) = D. \end{cases}$$

Since l_0 is the (j-1)'th element of $s \cup t'$, we have $l_0 > 2^j$ by Fact 2.6.³ Hence, since $l_0 \in N_{i^*}$, it follows that $\gamma \in N_{i^*}$. Thus, all the parameters in the above formula lie in N_{i^*} , which implies that there exists $\langle m^{\dagger}, l^{\dagger}, D^{\dagger} \rangle \in N_{i^*+1}$ satisfying the formula.

Claim. $l^{\dagger} \geq a$

Note that the proof of this claim will finish the proof of the Lemma, since $l^{\dagger} \in N_{i^*+1}$ by (v) and thus $a \in N_{i^*+1} \setminus N_{i^*}$.

Proof. Assume by contradiction that $l^{\dagger} < a$, i.e.,

$$l_0 < m^{\dagger} < l^{\dagger} < a < m^* < l^*.$$

By Lemma 2.5, we have that

$$C_{t' \cup \{l^{\dagger}\}} \cap (m^{\dagger}) = C_{t' \cup \{l^{*}\}} \cap (m^{\dagger}).$$

Since $\langle s \cup t' \cup \{l^{\dagger}\}, x_2 \setminus (l^{\dagger})^+ \rangle \Vdash_{\mathbb{M}_{\mathcal{U}}} \underline{C} \cap (l_0, m^{\dagger}) = D^{\dagger}$, it follows that $C_{t' \cup \{l^*\}} \cap (m^{\dagger}) = D^{\dagger}$ and hence $D^{\dagger} = D^* \cap (l_0, m^{\dagger})$. However, both D^{\dagger} and D^* have size γ and thus $D^* \subseteq (l_0, m^{\dagger})$, which is a contradiction to the fact that $a \in D^*$ and $a > m^{\dagger}$.

We now only need one final lemma to finish the proof of the proposition and thus of the main theorem.

LEMMA 2.8. Let $I := \{[k_i, k_{i+1}) : i \in \omega\}$ be any interval partition of ω and E and \mathcal{U} non-isomorphic Q-points. Then there exist $v \in E$ and $u \in \mathcal{U}$ such that

$$\forall i \in \omega \setminus \{0\} : v \cap [k_i, k_{i+1}) \neq \emptyset \implies \begin{cases} u \cap [k_{i-1}, k_i) = \emptyset, and \\ u \cap [k_i, k_{i+1}) = \emptyset, and \\ u \cap [k_{i+1}, k_{i+2}) = \emptyset. \end{cases}$$

Proof. Say that a Q-point element selects from an interval partition if it intersects each interval in exactly one point. Let $v_0 \in E$ and $u_0 \in \mathcal{U}$ be such that they select from I. Let f be an order-preserving bijection from v_0 to u_0 , extended to a permutation of ω . Thus, for each $i \in \omega$, f sends the element selected by v_0 in $[k_i, k_{i+1})$ to the element selected by u_0 in $[k_i, k_{i+1})$. Since E and \mathcal{U} are non-isomorphic, there exist $v_1 \in [v_0]^{\omega} \cap E$ and $u_1 \in [u_0]^{\omega} \cap \mathcal{U}$ such that $u_1 \cap f[v_1] = \emptyset$. Hence, for all $i \in \omega \setminus \{0\}$:

$$v_1 \cap [k_i, k_{i+1}) \neq \emptyset \implies u_1 \cap [k_i, k_{i+1}) = \emptyset.$$

Both E and \mathcal{U} contain the set

$$y_{\varepsilon} := \bigcup_{\substack{i \in \omega \\ i \equiv \varepsilon \pmod{3}}} [k_i, k_{i+1}),$$

³Note that the additional requirement in Fact 2.6 that max s is already larger than $2^{|s|}$ is needed here, since l_0 could be max s.

each for exactly one $\varepsilon = \varepsilon(E), \varepsilon(\mathcal{U}) \in 3$. Let $v_2 := v_1 \cap y_{\varepsilon(E)} \in E$ and $u_2 := u_1 \cap y_{\varepsilon(\mathcal{U})} \in \mathcal{U}$. If $\varepsilon(E) = \varepsilon(\mathcal{U})$ then v_2 and u_2 satisfy the lemma, hence assume without loss of generality that $\varepsilon(E) = 0$ and $\varepsilon(\mathcal{U}) = 1$.

Let $\bar{v}_0 \in E$ and $\bar{u}_0 \in \mathcal{U}$ be elements that select from the interval partition

 $\{[k_i, k_{i+2}) : i \in \omega, i \equiv 0 \pmod{3}\} \cup \{[k_i, k_{i+1}) : i \in \omega, i \equiv 2 \pmod{3}\}.$

Again, by considering a permutation of ω that maps the element selected by \bar{v}_0 in any interval to the element selected by \bar{u}_0 in the same interval, we find $\bar{v}_1 \in [\bar{v}_0]^{\omega} \cap E$ and $\bar{u}_1 \in [\bar{u}_0]^{\omega} \cap \mathcal{U}$ such that \bar{v}_1 and \bar{u}_1 never select from the same interval. Now, clearly, $v_1 \cap \bar{v}_1 \in E$ and $u_1 \cap \bar{u}_1 \in \mathcal{U}$ work.

We can now finish the proof of the proposition and hence of the main theorem: Let $v \in E, u \in \mathcal{U}$ be given by the previous lemma for the interval partition $\{[k_i, k_{i+1}) : i \in \omega\} \cup \{[0, k_0)\}$ constructed in the proof of Lemma 2.7. Let G * H be any $\mathbb{M}_{\mathcal{U}} * \mathbb{R}$ generic filter containing $\langle \langle s, x_2 \rangle, q' \rangle$. By Lemma 2.7, we have that in $\mathbf{V}[G * H]$, whenever
range $(\mathfrak{A}[G * H]) \setminus (\max s)^+$ intersects one of the intervals $[k_i, k_{i+1})$, then the Mathias
real η intersects $[k_i, k_{i+1})$ or one of the adjacent intervals $[k_{i-1}, k_i)$ or $[k_{i+1}, k_{i+2})$. Since
range (η) is almost contained in u, the same is true for u in place of η above some $n \geq (\max s)^+$. Hence, range $(\mathfrak{A}[G * H]) \setminus n$ is disjoint from v.

 \dashv

References

- Lorenz Halbeisen, Combinatorial Set Theory: With a Gentle Introduction to Forcing, (2nd ed.), [Springer Monographs in Mathematics], Springer-Verlag, London, 2017.
- [2] Saharon Shelah, Proper and Improper Forcing, (2nd ed.), [Perspectives in Mathematical Logic], Springer-Verlag, Berlin, 1998.
- [3] Uri Abraham, **Proper forcing**, Handbook of set theory, pages 333–394, 2009, Springer.
- [4] Martin Goldstern, Tools for your forcing construction, 1992, Weizmann Science Press of Israel.
- [5] Michael Canjar, On the generic existence of special ultrafilters, Proceedings of the American Mathematical Society, 110, 1, pages 233–241, 1990.
- [6] Andres Millán, **A note about special ultrafilters on** ω , Topology Proc, 31, pages 219–226, 2007
- [7] Arnold Miller, There are no Q-points in Laver's model for the Borel conjecture, Proceedings of the American Mathematical Society, pages 103–106, 1980, JSTOR