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Abstract. We show that in the model obtained by iteratively pseudo-intersecting
a Ramsey ultrafilter via a length-ws countable support iteration of restricted Math-
ias forcing over a ground model satisfying CH, there is a unique @-point up to
isomorphism.
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1 Introduction

Throughout this paper, read ultrafilter as non-principal ultrafilter on w. For x C w, we
denote by [z]¥ the set of infinite subsets of 2 and by fin(z) the set of finite subsets of x.

Recall that an ultrafilter E is a Q-point if and only if for every interval partition
{[ki, kiz1) i € w} of w, there exists some x € E such that Vi € w : [z N [k, ki) < 1.
Furthermore, an ultrafilter U is a Ramsey ultrafilter if and only if the Maiden has no
winning strategy in the ultrafilter game for U, played between the Maiden and Death:

DEFINITION 1.1. Let U be an ultrafilter. The ultrafilter game for U proceeds as follows:

The Maiden opens the game and plays some yo € U. Death responds by playing some
no € Yo. In the (k+ 1)-th move, the Maiden having played yo 2 y1 2 ... 2 yg, and Death
having played ng < nq < ... < ny, the Maiden plays some yr41 € [yp]* NU, and Death
responds by playing some ngi1 € Yrr1, Ngpr1 > Nk

Death wins if and only if {n; : i € w} € U.

'Research partially supported by the Israel Science Foundation grant no. 2320/23. This is paper 1265
on the author’s publication list.



Paper Sh:1265, version 2025-05-23. See https://shelah.logic.at/papers/1265/ for possible updates.

It is well-known that every Ramsey ultrafilter is a @Q-point. Canjar [5, Theorem 2]
showed that the existence of Ramsey ultrafilters — in fact of 2° of them — follows from
the assumption cov(M) = ¢. The weaker assumption cov(M) = 0 implies the existence
of 2¢ Q-points, as was shown by Millan [6, Theorem 3.1]. It is well-known that in the
Mathias model — the model obtained by a length-w, countable support iteration of
unrestricted Mathias forcing over a ground model satisfying CH — there are no Q)-points
(see [1, Proposition 26.23]). In fact, the Mathias model contains no rapid ultrafilters,
where an ultrafilter £ is rapid iff for every f € “w there exists some z € E such that
Vn € w: |z N f(n)] < n (note that every @-point is rapid). It follows that both the
Mathias model and the model considered in this paper satisfy cov(M) =w; < =c¢=
Wa.

We want to mention that — in stark contrast to the Mathias model — our model actually
contains 2¢ rapid ultrafilters: It follows from an observation of Millan [6, page 222
that the existence of a single rapid ultrafilter £ implies the existence of 2° of them, by
considering the products U ® E for different ultrafilters U.2

DEFINITION 1.2. Let U be a Ramsey ultrafilter. Mathias forcing restricted to U, written
My, consists of conditions (s, z) € fin(w) X U with max s < minx, ordered by

(s,x) <y, (t,y) 1 <= sCtAzDyAt\sCu.

Note that we use the convention that stronger forcing conditions are larger. The forcing
notion M, clearly satisfies the c.c.c. and is therefore proper. We will need the following
additional facts.

FacT 1.3 (e.g., see [1, Theorem 26.3]). Let U be a Ramsey ultrafilter. The forcing notion
My, has the pure decision property, i.e., for any sentence ¢ in the forcing language and
any My -condition (s,x), there exists y € [z|* NU such that either (s,y) lFw, ¢ or

(s,y) IFyg, —.

DEFINITION 1.4. Recall that a forcing notion P has the Laver property iff for every
P-name g for an element of “w such that there exists f € “w NV with

PlEVn € w: g(n) < f(n),
we have that P forces that there exists ¢ : w — fin(w) in 'V with
Vn € w: |c(n)| < 2" and g(n) € c(n).

Fact 1.5 (e.g., see [1, Corollary 26.8]). Let U be a Ramsey ultrafilter. The forcing notion
My, has the Laver property.

FacT 1.6 (e.g., see [2, Ch. VI, 2.10D]). The Laver property is preserved under countable
support iterations of proper forcing notions.

2U ® E is an ultrafilter on w x w defined by U E = {r Cwxw:{n €w: (z), € E} € U}, where
(@)p={mew: (n,m) € x}.
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2 Result

MAIN THEOREM. It is consistent that there exists a unique QQ-point, and this QQ-point
1s a Ramsey ultrafilter.

Proof. Assume that the ground model V satisfies CH. By induction, we define:

(i) A countable support iteration P, := (P¢,, Q¢ : § € wy) of c.c.c. forcing notions,
(ii) A sequence (U : £ € wy), such that

VE € wy : Pe IF “Ue is a Ramsey ultrafilter extending UQ{L”
Le€

and Q)¢ is a Pe-name for Mathias forcing restricted to U,

Assume that we are in step & € wy. Let G¢ be Pe-generic over V and work in V[Ge].
Note that since IP¢ is a countable support iteration of proper forcing notions that are
forced to be of size < wy, we have V[G¢| = CH (e.g., see [3, Theorem 2.12]). For each
L € &, let m, be the Mathias real added at stage ¢.

If £ = ¢ + 1, ne pseudo-intersects Ue [Ge] and we may construct a Ramsey ultrafilter
on 7 using CH (and extend it to w to obtain U). Similarly, if £ is a limit ordinal and
cf(§) = w, we can build U on a pseudo-intersection of the tower (n, : ¢ € £). Finally,
if cf(§) = wi, then [, U.[G¢] is already a Ramsey ultrafilter, since no new reals are
added at stage §. For the same reason we also have that Uy, := (., Ue[G] is a Ramsey
ultrafilter in V[G], where G is P,,-generic over V.

Fact 2.1 (e.g., see [3, Theorem 2.10]). P, is proper and satisfies the wy-c.c..
We need to show that U, is the only @-point in V[G]. To see this, assume by contra-
diction that V|G| = “F is a Q-point and not isomorphic to U,,”.

LEMMA 2.2. There exists § € wy such that E N V|[Gs] € V[Gs] and V[Gs] = “EN
V|[Gs] is a Q-point and not isomorphic to Us” .

Proof. Fix £ € wy and consider names e, i, ¢, be and f¢ such that P, forces that

(i) “ec is an enumeration (in wy) of £ N V[G¢]”. For each a € w; and n € w let
Ee.an C Py, be a maximal antichain deciding “n € e¢(«)”.

(i) “i is an enumeration (in w;) of the set of interval partitions of w in V[G¢]”. Note
that we may assume that i, is a Pe-name.

(iii) “For all & € wy, s¢() is an element of £ that intersects each interval in the interval
partition i¢(a) in at most one point”. Let S¢n,, C P, be a maximal antichain
deciding “n € s¢(a)”.
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(iv) “be is an enumeration (in wy) of all permutations of w in V[G¢]”. We may again
assume that ¢ is a Pe-name.

(v) “For all a € wi, fe(a) is a pair op(za, ya) such that z, is in E, y, is in U, and
be(a)[zo] s disjoint from y,”. Let Xgan C Py, be a maximal antichain deciding
“n € x,”, and define Y o, analogously.

By the ws-c.c. of P, , there exists for each £ € wy some 7 € w, greater than § such that
all the above antichains consist of P..-conditions. Recursively define A(0) = 0, A({+1) =
Yace) and for limit ordinals € : A(§) = U, A(), for £ <wi. Set 6 := A(w;) and consider
the extension V[Gj]. Since cf(§) = w;, we have that £ N V[Gs] = U,c,, BN V[Grw),
and since each N V[G)(,] is an element of V[G;] by (i), £ N V[Gs] is an element of
V|[G;] (and an ultrafilter). Furthermore, any interval partition of w in V[Gs] already
appears in some V|G, ¢ € wi, where it equals i\,)[G)](a) for some o € wy. Since
5\ [Gs)(a) € ENV[Gs), we obtain that ENV[G;] is a @Q-point. Finally and analogously,
any permutation of w in V[Gs] already appears in V[G(,)] for some ¢ € w; and hence
there are witnesses 2,[Gs] € EN VI[Gs] and y,[Gs| € Uy, N V[Gs| = Us witnessing that
E N V[G;s] and Us are not isomorphic. -

We now designate V[G;] as the new ground model and rename the Q-point E N V[Gy]
to E and the Ramsey ultrafilter Us to U. Note that by the Factor-Lemma (e.g., see [4,
Theorem 4.6]), the quotient P, /G5 is again isomorphic to a countable support iteration
of restricted Mathias forcings. In particular, by Facts 1.5 and 1.6, P,,, /Gy is isomorphic
to the two-step iteration My, * R, where M, I “R has the Laver property”.

It remains to show the following.

PROPOSITION 2.3. Let E be a Q-point and U a Ramsey ultrafilter such that E and U
are not tsomorphic. Let My, be Mathias forcing restricted to U and let R be a My -name
such that My IF “R has the Laver property”. Then My * R |- “E cannot be extended to
a Q-point”.

Proof. 1t suffices to show that if (p, g> € My *« R and a My, * R-name g for a strictly
increasing element of “w are such that

(P, Q) P V1 € w 2 a(n) € (n(n —1),n(n)],

then there exists some v € E and some (p, q) greater than (p,q) such that

(D, @) IFay«r [range(a) Nv| < w.

Recall that n is the canonical My-name for the Mathias real (assume My IF n(—1) =
—00).
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Note that @ is forced by My, to be dominated by 7. Hence, by the Laver property of R,
there exists a My-name ¢ for a function from w to fin(w) and some (p, ¢') >my,«r (P, @)
such that

(p’,g’) Fyvr V1 € w i a(n) € ¢(n) and |¢(n)| < 2"
We may assume without loss of generality that p’ lFy,, Vn € w: ¢(n) C (n(n —1),n(n)].

Let C be a My-name for an element of [w]” such that p’ Iy, C = [Jrange(c). Hence
we have

(P, q) Fer ¥ € w : a(n) € €N (n(n —1),m(n)] and [C'N (n(n — 1), n(n)]| < 2".
LEMMA 2.4. Write p' = (s,x0). There exists 1 € [xo]” NU such that the My-condition
(s,21) >my, (8,x0) has the following property:

For every t € fin(xy), there exists C; € fin(w) such that

(sUt,z1 \ (maxt)?) Ik, C N (maxt)t = C.
Proof. We define a strategy for the Maiden in the ultrafilter game for ¢/, which will not

be a winning strategy since U is a Ramsey ultrafilter.

Since My, has pure decision, there exists Cy C (maxs)t and yg € [xo]” NU such that
(s,90) Ik, € N (maxs)™ = Cy. The Maiden starts by playing yq.

Assume yg D y; 2 ... 2 yr and ng < ny < ... < ng have been played, where Vi < k : y; €
U and n; € y;. Again by pure decision, for each t C {ng,ny,...,nx} with maxt = ny,
there exists z; € [yx \ n{]* NU and C; C n; such that (s Ut,z) Iy, CN(ng)™ = C.
The Maiden plays

Yk+1 = ﬂ Zt-

tC{n;: i<k}
maxt=nyg

Since Death wins, we have that x; := {n; : i € w} € U. It is easy to check that this z;
satisfies the lemma. =

The following lemma strengthens the previous one.

LEMMA 2.5. Assume (s, x1) is as in the conclusion of the previous lemma. There exists
Ty € [21]* NU such that (s,x2) has the following property:

For every t € fin(xs), every m € xo \ maxt and all n,n’ € xy \ m™, it holds that

CtU{n} Nmt = CtU{n’} Nmt.

Proof. We again prove this by playing the ultrafilter game for . Assume yy := z; 2
Y1 2 ... 2y and ng < ny < ... < ny have been played. For every t C {ng, n1, ..., n;} and
every d C n) consider the set

Prg:={ne€ys\ny : Ciugny Nnf =d}.

5
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Note that for every ¢t C {ng,n1,...,nx}, the set {P,4: d C nj} is a partition of yj \ n}
into finitely many pieces. Hence, there exists one d; C n,j such that P, 4, € U.

The Maiden plays
Yk+1 = ﬂ Pt,dt'

tC{n;:i<k}

Death will win and hence 5 := {n; : i € w} € U. It is again not hard to check that z
satisfies the lemma. -
The following fact will be needed later.

FacT 2.6. Without loss of generality, we may assume that for all n € {max s} U xo, if
n is the j 'th element of s Uy in increasing order, then n > 27+1,

Proof. Note that the conclusion of Lemmas 2.4 and 2.5 also holds for each (s',z') >,
(s,z5). Hence we simply trim 5 such that the enumeration of s U x5 dominates 277!
above |s| and replace s with s U {minxs} and x5 with x5 \ {minz,}. -

Next, let NV be a countable elementary submodel of some large enough #H, such that
{U,My,C, (s,x2)} € N. By induction, construct a sequence Ny C N; C ... of finite
subsets of N such that

(i) {U, My, C, (s, x2),s,22} C Ny,

(i) Uje, Ni = N,

)
)

(ili) Vi e w 1 ki == N;Nw € w.

(iv) Vicw:Vt €fin(w):t € N; < t C N;,
)

(v) If (m,l,D) € (w X w x fin(w)) N N;, then m, [, D € N; (and hence D C N; by the
previous condition).

(vi) Vi € w: If p(z,ag, ..., q;) is a formula of length less than 2025 with aq, ...,a; € N;
and N = Jxp(x, ag, ..., a;), then there exists b € N;;1 such that N = (b, ag, ..., a;).

LEMMA 2.7. (s,xs) forces that

range(n) N [ki—2, ki—1) # 0, or
Vi€ w\ (0.1} : O\ (maxs)* N [k k) £0 = 4 range(n) N ks, k) # 0, or

range(n) N [ki, kit1) # 0.

N
N
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Proof. Assume (s Ut,x') >, (S,22), a € w\ (maxs)™ and i € w\ {0, 1} are such that
(sUt,a") Iky, a € C\ (maxs)™ N [ki—1, k).
We show that (s Ut,z’) forces one of the three possible conclusions in the statement of

the lemma.

By possibly extending ¢, we may assume that ¢ contains at least one element that is
greater than a. Let [y := max(t Na) and [* := min(¢ \ a). Furthermore, let m* :=
max(xe N [*). Hence, |y and [* are consecutive elements of ¢ and Iy < m* < [* and
lo < a <1*. We distinguish between two cases:

Case I. Assume [p < m* <a <I[*.

If I* € [ki_1, k;), we are done, since this means that (sUt, 2’) IFy,, I* € range(n)N[ki—1, k;)-

Hence, assume [* ¢ [k;_1, k;), which means that [* ¢ N;, since [* is certainly not in N;_;
(if it were, a would be as well by (iii)). Note that [* witnesses that

N E=3dl: 1 =min(xs \ a).

Hence, by (v), we have that [* € N;;1 and thus I* € [k;, kiy1).

Case II. Assume [ < a < m* < [*.

Let t' :=tNa, ie., lp := maxt’, and let i* € w \ {0} be such that ly € [ky_1, ki), i.e.,
lp first appears in N;«. If i* = i, we are again done, hence assume that a ¢ N;«. We will
show that * =4 — 1.

Let j € w be such that [* is the j'th elements of s Ut in increasing order. By Lemmas
2.4 and 2.5, there is Cypyp+y C (I*)* such that

<S Ut U {l*},xz \ (l*)+> ”_Mu Q N (l*)+ = Ctlu{l*}.

Set D* := Cyug=y N (lo,m*). Since
(sUtU{l"}, o\ (1)) <, (sUE ),
and since [y < a < m* by assumption, we must have a € D*. Furthermore, note that
D* C Cyugey N (lo, I*] and thus |D*| =: v < 27
Now, m*, [* and D* witness that
m,l € x5\ lpT,m < [, and
D - (h):m)a and

|D| =, and
(sUt' U{l}, za \ IT) IFng, C N (lg,m) = D.

N = 3(m,1,D) :

7



Paper Sh:1265, version 2025-05-23. See https://shelah.logic.at/papers/1265/ for possible updates.

Since [y is the (j — 1)’th element of s Ut we have [y > 2/ by Fact 2.6.> Hence, since
lo € N;, it follows that v € N;«. Thus, all the parameters in the above formula lie in
N+, which implies that there exists (m', (T, DT) € N;-,, satisfying the formula.

Claim. I > a

Note that the proof of this claim will finish the proof of the Lemma, since I € N;«,; by
(v) and thus a € Ny \ Njs.

Proof. Assume by contradiction that I < a, i.e.,
lo<m! <l <a<m* <.
By Lemma 2.5, we have that
Cyugn N (mh) = Cyuge N (m).

Since (sUt'U{IT}, 2\ (I1) ") Ikwg, CN(lo, mt) = D1, it follows that Cyyg-yN(m') = Dt and
hence DT = D* N (ly, m"). However, both D' and D* have size v and thus D* C (I, m'),
which is a contradiction to the fact that a € D* and a > m'. | —

We now only need one final lemma to finish the proof of the proposition and thus of the
main theorem.

LEMMA 2.8. Let I := {[ki,kit1) 1 i € w} be any interval partition of w and E and U
non-isomorphic QQ-points. Then there exist v € E and uw € U such that

u M [l{ii_l, kz) == @, and
Vi € w \ {0} v N [k’z, ki—i—l) 7é @ — u M [k’“ ki—l—l) = @, and
u N [Kigr, kive) = 0.

Proof. Say that a Q-point element selects from an interval partition if it intersects each
interval in exactly one point. Let vy € E and ug € U be such that they select from 1.
Let f be an order-preserving bijection from vy to ug, extended to a permutation of w.
Thus, for each ¢ € w, f sends the element selected by vy in [k;, kj11) to the element
selected by wug in [k;, kiy1). Since E and U are non-isomorphic, there exist vy € [v]“ N E
and uy € [up]” NU such that uy N flvy] = 0. Hence, for all i € w \ {0}:

v N (ki kiv1) #0 = wi N ki kiya) = 0.
Both F and U contain the set

vi= U ki kin),
i=e Z(fn%d 3)

3Note that the additional requirement in Fact 2.6 that max s is already larger than 2/*| is needed
here, since [y could be max s.
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each for exactly one e = ¢(E),e(U) € 3. Let vy := v1Ny-p) € E and ug 1= u1 Ny € U.
If e(FE) = e(U) then vy and uy satisfy the lemma, hence assume without loss of generality
that e(E) =0 and e(U) = 1.

Let 79 € E and ug € U be elements that select from the interval partition
{[kl, kH_g) 11 E w,z’ =0 (mod 3)} U {[kl, ki—l—l) 11 E w,i =2 (mod 3)}

Again, by considering a permutation of w that maps the element selected by 7y in any
interval to the element selected by g in the same interval, we find v; € [9p] N E and
Uy € [ug]* NU such that v; and 4y never select from the same interval. Now, clearly,
vy N € E and vy Ny € U work. =

We can now finish the proof of the proposition and hence of the main theorem: Let
v € E, u € U be given by the previous lemma for the interval partition {[k;, kii1) :
i € whU{[0,ko)} constructed in the proof of Lemma 2.7. Let G * H be any My, * R-
generic filter containing ((s, x3), ¢’). By Lemma 2.7, we have that in V[G % H|, whenever

range(a|G x H]) \ (max s)t intersects one of the intervals [k;, k;11), then the Mathias
real 7 intersects [k;, k;1) or one of the adjacent intervals [k;_q, k;) or [kii1, kiy2). Since
range(n) is almost contained in u, the same is true for u in place of 1 above some
n > (max s)*. Hence, range(a[G * H]) \ n is disjoint from v. -

_|
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