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Abstract. We would like to generalize imaginary elements, weight of tp(a,M,N),
P-weight, P-simple types, etc. from [She90, Ch.III,V,§4] to the context of good

frames. This requires allowing the vocabulary to have predicates and function

symbols of infinite arity, but it seems that we do not suffer any real loss.
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§ 0. Introduction

We assume s is a good λ-frame with some extra properties from [She09e]1 (e.g.,
as in the assumption of [She09e, §12]) so we shall assume knowledge of [She09e]
and the basic facts on good λ-frames from [She09c].2

We can look at results from [She90] which were not regained in beautiful λ-
frames (from [She09e, §12]). Well, of course, we are far from the main gap for
the original s ([She90, Ch.XIII]) and there are results which are obviously more
strongly connected to elementary classes, particularly ultraproducts. This leaves
us with parts of type theory: regular and semi-regular types, weight, P-simple3

types, “hereditarily orthogonal to P” (the last two were defined and investigated
in [She78, Ch.V, §0 + Def.4.4–Ex.4.15], [She90, Ch.V §0, pg.226; Def.4.4–Ex.4.15,
pg.277-284]).

Some of Hrushovski’s profound works are a continuation of [She78, Ch.V, §4]
and [She90, Ch.V, §4]; note that “a type q is p-simple (or P-simple)” and “q
is hereditarily orthogonal to p (or P)” here and in [She90] are essentially the4

“internal” and “foreign” in Hrushovshi.
For more on understanding regular types in the first order case, see both [She04]

and Laskowski and the author in [LS15].

We thank Santiago Pinzon for many helpful comments.

* * *

This paper was Part I of the original [Sheb], which has existed (and circulated
to some extent) since 2002. The second and third parts have been split off into
[Shec], [Shea]. They have been continued with Laskowski in [LS06] and [LS11],
respectively.

Notation 0.1. 1) As in [She78] and [She90], M and N are models, M has vocabulary
τM , |M | is its universe and ‖M‖ its cardinality. We write ortp(−) for the orbital
type.

1 =[She09d, Ch.III].
2 =[She09d, Ch.II]. As above, these two are the same paper, but the page numbering is different.
3 The motivation is that for suitable P (e.g. a single regular type), on the one hand

stp(a,A) 6⊥ P⇒ “stp(a/E,A) is P-simple for some equivalence relation definable over A”,

and on the other hand if stp(ai, A) is P-simple for i < α then
∑
i<α

w(ai, A)∪ {aj : j < i} does not

depend on the order in which we list the ai-s. Note that P here is P there.
4 Note: “foreign to P” and “hereditarily orthogonal to P” are equivalent. Now (with P = {p}

for simplicity)

(a) q(x) is p(x)-simple when, in C, we have q(C) ⊆ acl(A ∪
⋃
pi(C)) for some set A.

(b) q(x) is p(x)-internal when, in C, we have q(C) ⊆ dcl(A ∪ p(C)) for some set A.

Also note

(α) Internal implies simple.

(β) If we aim at computing weights, it is better to stress acl as it covers more (as was the
preference in [She78, Ch.V, §4]).

(γ) But the difference is minor, and in existence it is better to stress dcl (as preferred by
Hrushovski).

(δ) Also, it is useful that{
F � (p(C) ∪ q(C) : F an automorphism of C over p(C) ∪ dom(p)

}
is trivial when q(x) is p-internal but not so for p-simple (though form a pro-finite group).
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4 SAHARON SHELAH

2) We use k to denote an AEC (or more generally, an essentially-[λ, µ) AEC — see
Definition 2.1).

3) s will be a good λ-frame (see Definition 2.11, and more fully in [She09d, Ch.II,
§1].)

4) E will denote a smooth kλ-equivalence relation, where k is an AEC (see §2).
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§ 1. Weight and P-weight

On ‘good+,’ see [She09d, Ch.III, Definition 1.3(1), pg.382] and [She09d, Ch.III,
Claim 1.5(1), pg.382], which relies on [She09d, Ch.II, §3], [She01].

On ‘type-full,’ see Definition [She09d, Ch.II, §6]: it means

Ss(M) = S1
s (M) ..=

{
ortp(a,M,N) : M ≤s N, a ∈ N

}
.

On primes and K3,qr
s , see [She09d, Ch.III, 5.15, pg.461].

On K3,vq
s ⊇ K3,qr

s , see [She09d, Ch.III, Definition 5.9, pg.456].

On orthogonality, see [She09e, §6].

Let p(M2) ..= {c ∈M2 : c satisfies the type p}.

Context 1.1. 1) s is a type-full good+ λ-frame with primes, K3,vq
s = K3,qr

s , ⊥ = ⊥
wk

and p ⊥M ⇔ p ⊥
su
M (see [Shec, §3]). Note that as s is full,

Sbs
s (M) = Sna

s (M) =
{

ortp(a,M,N) : M ≤s N, a ∈ N
}

;

also, ks = k[s] = (Ks,≤ks) is the AEC.

2) C is an s-monster so it is Ks
λ+ -saturated over λ, and M <s C means M ≤k[s] C

and M ∈ Ks. As s is full, it has regulars (see [She09d, Ch.III, §10]).

3) Let P denote a subset of {Sbs
s (M) : M <s C}.

4) Let nf(P) be{
p : there exist M0,M1,M2, and p2 ∈ Sbs

s (M2) such that M0 ≤s M2 <s C, M1 ≤s

M2, p2 does not fork over M0 nor over M1, p2 �M1 ∈ P, and p2 �M0 = p
}
.

5) Let nf+(P) be defined similarly, but demanding M0 = M2.

Observation 1.2. sreg satisfies all the above except being full.

Remark 1.3. Recall sreg is derived from s, replacing Ss(M) by
{p ∈ Ss(M) : p regular} (see [She09d, Ch.III, 10.18, pg.573]).

Proof. See [She09d, Ch.III, 10.19=L10.p19tex, pg.573] and [She09d, Ch.III, Definition
10.18=L10.p18tex, pg.573]. �1.2

Claim 1.4. 1) If p ∈ Sbs
s (M) then we can find b,N,M ′, and a finite J such that:

~ (a) M ≤s M
′ ≤s N

(b) J ⊆ N is a finite independent set in (M ′, N).

(c) c ∈ J⇒ ortp(c,M ′, N) is regular, not forking over M
(recalling that ortp stands for ‘orbital type;’ see [She09c, §1]).

(d) (M,N,J) ∈ K3,qr
s

(e) b ∈ N realizes p, and ortp(b,M ′, N) does not fork over M .

2) If M is brimmed, we can add

(f) (M,N, b) ∈ K3,pr
s and M ′ = M .

3) In (2), |J| depends only on (p,M), and only up to isomorphism.

4) If M is brimmed, then we can work in s(brim) and get the same ‖J‖ and N (so
N ∈ Ks is brimmed).
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6 SAHARON SHELAH

Remark 1.5. We may wonder: can we get M ′ = M?

1) Even in the first-order case this is not always true. Define a model M as follows:

(A) τM (the vocabulary of M) will be {E,E0, E1}, where all three members are
binary predicates.

(B) |M | (the universe of M) will be{
k̄ = 〈k0, k1〉 : (∃n < ω)

[
k0, k1 ∈ [n2, (n+ 1)2)

]}
.

(C) EM ..=
{

(k̄1, k̄2) : (∃n < ω)
[
k1

0, k
1
1, k

2
0, k

2
1 ∈ [n2, (n+ 1)2)

]}
(D) For ` = 0, 1, EM`

..=
{

(k̄1, k̄2) ∈ EM : k1
` = k2

`

}
.

Now,

~ (a) T ..= Th(M) is superstable (and even ℵ0-stable).

(b) I(ℵα, T ) = 2|α| for all infinite ordinals α.

(c) T has NDOP, NOTOP, and is shallow.

(d) No p ∈ S(M) is regular.

2) Recall that if we replace T by T eq, the answer is yes.

Proof. 1) We try to choose N`, a`, q` by induction on ` < ω such that:

(∗) (a) N0 = M

(b) N` ≤s N`+1

(c) q` ∈ Ss(N`) (so possibly q` /∈ Sna
s (N`)).

(d) q0 = p

(e) q`+1 � N` = q`

(f) q`+1 forks over N`, so now necessarily q` ∈ Sna
s (N`).

(g) (N`, N`+1, a`) ∈ K3,pr
s

(h) r` = ortp(a`, N`, N`+1) is regular.

(i) r` either is ⊥M or does not fork over M .

If we succeed to carry the induction for all ` < ω, let N ..=
⋃
`<ω

N`. As this is a

countable chain (recalling that Ks has amalgamation), there is q ∈ S(N) such that
` < ω ⇒ q � N` = q and as q is not algebraic (because each qn is not), and s is
full, clearly q ∈ Sbs

s (N); but q contradicts the finite character of non-forking. So
for some n ≥ 0 we are stuck, but this cannot occur if qn ∈ Sna

s (Nn).

[Why? Because we are assuming that s is type-full. Alternatively, we can use sreg,
recalling that by 1.2, we know that sreg has enough regulars and then we can apply
[She09d, Ch.III, 8.3, p.516].5]

So for some b ∈ Nn we have qn = ortp(b,Nn, Nn); i.e. b realizes qn hence it
realizes p.

Let
J ..= {a` : ortp(a`, N`, N`+1) does not fork over N0}.

By [She09d, Ch.III, 8.5, p.518] and ‘K3,uq
s = K3,qr

s ,’ we have (M,Nn,J) = (N0, Nn,J) ∈
K3,qr

s , so we are done.

2) Let N, b,J be as in part (1) with |J| minimal. We can find N ′ ≤s N such that

(M,N ′, b) ∈ K3,pr
s and we can find J′ such that J′ ⊆ N ′ is independent regular

in (M,N ′) and maximal under those demands. Then we can find N ′′ ≤s N
′ such

that (M,N ′′,J′) ∈ K3,qr
s . If ortps(b,N

′′, N ′) ∈ Sna
s (N ′′) is not orthogonal to

M , we can contradict the maximality of J′ in N ′ as in the proof of part (1), so

5 =[She09e, 8.7=L6.2, p.94]
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ortps(b,N
′′, N ′) ⊥M (or /∈ Sna

s (N)). Also without loss of generality (N ′′, N ′, b) ∈
K3,pr

s , so by [She09d, Ch.III, 8.5, p.518] we have (M,N ′,J′) ∈ K3,qr
s . Hence there

is an isomorphism f from N ′ onto N ′′ which is the identity of M ∪ J′ (by the

uniqueness for K3,qr
s ). So using (N ′, f(b),J′) for (N, b,J) we are done.

3) If not, we can find N1, N2,J1,J2, b such that M ≤s N` ≤s N and the quadruple
(M,N`,J`, b) is as in (a)-(e)+(f) of part (1)+(2) for ` = 1, 2. Assume toward
contradiction that |J1| 6= |J2|, so without loss of generality |J1| < |J2|.

By “(M,N`, b) ∈ K3,pr
s ,” without loss of generality, N2 ≤s N1.

By [She09d, Ch.III, 6(3), p.569], J1 ∪ {c} is independent in (M,N1) for some

c ∈ J2\J1, in contradiction to ‘(M,N,J1) ∈ K3,vq
s ’ by [She09d, Ch.III, 6(4), p.569].

4) Similarly. �1.4

Definition 1.6. 1) For p ∈ Sbs
s (M), let the weight of p, w(p), be the unique natural

number such that if M ≤s M
′, M ′ is brimmed, and p′ ∈ Sbs

s (M ′) is a non-forking
extension of p then it is the unique |J| from Claim 1.4(3). (It is a natural number.)

2) Let ws(a,M,N) = w(ortps(a,M,N)).

Claim 1.7. 0) In Definition 1.6, the weight w(p) of p is well-defined. (That is, it
does not depend on M ′′.)

Also, if M1 ≤s M2 and p ∈ Sbs
s (M2) does not fork over M1, then

w(p) = w(p �M1).

1) If p ∈ Sbs(M) is regular, then w(p) = 1.

2) If J is independent in (M,N) and c ∈ N , then for some J′ ⊆ J with ≤
ws(c,M,N) elements, {c} ∪ (J \ J′) is independent in (M,N).

Proof. Easy by now. �1.7

Note that the converse of 1.7(1) may fail, even for elementary clauses. Also note
that the use of C in Definition 1.8 is for transparency only and can be avoided; see
1.12 below. Lastly, in clause 1.8(1)(B) below, there is no need to demand M∗ ≤s M .

Definition 1.8. 1) We say that P is an M∗-based family (inside C) when:

(A) M∗ <k[s] C and M∗ ∈ Ks.

(B) P ⊆
⋃
{Sbs

s (M) : M <s C} (so M ∈ Ks).

(C) P is preserved by automorphisms of C over M∗.

2) Let p ∈ Sbs
s (M), where M <s C.

(A) We say that p is orthogonal to P (or P-foreign) when if M ≤s N <s C,
q ∈ Sbs

s (N)∩ nf(P), and p1 ∈ Sbs
s (N) extends p and does not fork over M ,

then q is orthogonal to p1.
We say that p is hereditarily orthogonal to P when above, we allow p1

to fork over M .

(B) We say that p is P-regular when p is regular, not orthogonal to P and if
q ∈ Sbs

s (M ′), M ≤s M
′ <s C, and q is a forking extension of p then q is

hereditarily orthogonal to P.

(C) p is weakly P-regular if it is regular and is not orthogonal to some P-regular
p′.
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8 SAHARON SHELAH

3) P is normal when P is a set of regular types and each of them is P-regular.

4) For q ∈ Sbs
s (M) and M <s C, let wP(q) be defined as the natural number

satisfying the following:

~ If M ≤s M1 ≤s M2 ≤s C, M` is (λ, ∗)-brimmed, b ∈M2, ortps(b,M1,M2) is

a non-forking extension of q, (M1,M2, b) ∈ K3,pr
s , (M1,M2,J) ∈ K3,qr

s , and
J is regular in (M1,M2) (i.e. independent and c ∈ J⇒ ortps(c,M1,M2) is
a regular type) then wP(q) = |J1|, where

J1
..= {c ∈ J : ortps(c,M1,M) is weakly P-regular}.

4A) If P is the set of regular types in Sbs
s (M) and q ∈ Sbs

s (M), then w(q) = wP(p).

5) We replace P by p if P = {p}, where p ∈ Sbs(M∗) is regular (see 1.9(1)).

Claim 1.9. 1) If p ∈ Sbs
s (M) is regular then {p} is an M -based family and is

normal.

2) Assume P is an M∗-based family. If q ∈ Sbs
s (M) and M∗ ≤s M ≤k[s] C then

wP(q) is well defined (and is a natural number).

3) Suppose P = nf+(P). Then we can find J,J1 as in Definition 1.8(4), but
ortp(c,M1,M) is P-regular for every c ∈ J1.

4) In 1.8(4), we have w(q) ≥ wP(p).

Proof. Should be clear. �1.9

Discussion 1.10. 1) It is tempting to try to generalize the notion of P-simple
(P-internal in Hrushovski’s terminology) and semi-regular. An important property
of those notions in the first order case is that: e.g.

(∗) If stp(ā, A,C) 6⊥ p and p is regular, then for some equivalence relation E
definable over A, ortp(ā/E,A) 6⊥ p and is {p}-simple.

The aim of defining {p}-simple is:

(A) For an element a ∈ C and A ⊆ Ceq
T , we can define the p-weight wp(a,A).

Moreover, if |A| = ‖M‖ and a realizes p, then wp(a,M) = 1.

(B) The p-weight of such elements behaves like finite sequences from a vector
space — so their weights behave like dimensions of vector spaces.

(C) We have appropriate density results.

Discussion 1.11. 1) Assume (s is full and) that to every p ∈ Sna
s (M) we attach

some ap ∈ M , a so-called base. (E.g. in [She90], this means the canonical base
Cb(p).) We can define for ā, b̄ ∈ ω>C when ortp(ā, b̄,C) is stationary (and/or non-
forking). We should check the basic properties. See §3.

2) Assume p ∈ Sbs
s (M) is regular, definable over ā∗ (in the natural sense). We may

wonder if the niceness of the dependence relation holds for p � ā∗?

If you feel that the use of a monster model is not natural in our context, how do
we “translate” a set of types in Ceq preserved by every automorphism of C which
is the identity on A? By using a “place” defined by:

Definition 1.12. 1) A local place is a pair a = (M,A) such that A ⊆ M ∈ Ks

(compare with [Shea, §1]).

2) The places (M1, A1), (M2, A2) are equivalent if A1 = A2 (call it A) and there
is a sequence 〈N` : ` ≤ n〉 ⊆ Ks with N0

..= M1, Nn ..= M2, A ⊆
⋂
`≤n

N`, and
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N` ≤s N`+1 ∨ N`+1 ≤s N` for each ` < n. We write (M1, A1) ∼ (M2, A2) or
M1 ∼A M2.

3) For a local place a = (M,A), let Ka = K(M,A) = {N : (N,A) ∼ (M,A)}, so in
(M,A)/∼ we fix both A as a set and the type it realizes in M over ∅.

4) We call such class Ka a place.

5) We say that P is an invariant set6 of types in a place K(M,A) when:

(A) P ⊆ {Sbs
s (N) : N ∼A M}

(B) Membership in P is preserved by isomorphism over A.

(C) If N1 ≤s N2 are both in K(M,A) and p2 ∈ Sbs
s (N2) does not fork over N1

then p2 ∈ P⇔ p2 � N1 ∈ P.

6) We say M ∈ Ks is brimmed over A when for some N we have A ⊆ N ≤s M and
M is brimmed over N .

Claim 1.13. [Claim/Definition]

1) If A ⊆M ∈ Ks and P0 ⊆ Sbs
s (M) then there is at most one invariant set P+ of

types in the place K(M,A) such that P+ ∩ Sbs
s (M) = P0 and

M ≤s N ∧ p ∈ P+ ∩ Sbs
s (N)⇒ “p does not fork over M”.

2) If, in addition, M is brimmed7 over A then we can omit the last demand in part
(1).

3) If a = (M1, A) and (M2, A) ∈ Ka, then K(M2,A) = Ka.

Proof. Easy. �1.13

Definition 1.14. 1) If in 1.13 there is such a P+, we denote it by inv(P0, A) =
inv(P0, A,M).

2) If p ∈ Sbs
s (M) and P0 = {p}, then let inv(p) = inv(p,M) = inv({p}) ..=

inv(P0,M).

3) We say p ∈ Sbs
s (M) does not split (or is definable) over A when inv({p}, A,M)

is well-defined.

Claim 1.15. Suppose M ∈ Ks
λ, A ⊆M , and p ∈ Sbs

s (M). Then we have

‘(a)⇔ (b), ’

where:

(a) p does not split over A.

(b) If M ≤s N ∈ Ks
λ, q ∈ Sbs

s (M) is a non-forking extension of p, and π is an
automorphism of N over A, then π(q) = q.

Proof. Straightforward. �1.15

6Really a class.
7 “M is brimmed over A” (see [She09c, §1]) means that there is a ≤s-increasing sequence

〈Mα : α ≤ δ〉 such that M0 ⊇ A, Mδ
..= M , and Mα+1 is ≤s-universal over Mα for all α < λ.
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§ 2. Imaginary elements, an essential-(µ, λ)-AEC, and frames

§ 2(A). Essentially AEC.
We consider revising the definition of an AEC k, by allowing function symbols

in τk with infinite number of places while retaining local characters; e.g. if Mn ≤k

Mn+1 and M =
⋃
n<ω

Mn is uniquely determined. Before this, we introduce the

relevant equivalence relations. In this context, we can give name to equivalence
classes for equivalence relations on infinite sequences.

Definition 2.1. We say that k is an essentially-[λ, µ)AEC or ess-[λ, µ)-AEC (or
[λ, µ)-EAEC8) if (λ < µ and) it is an object consisting of:

I. (a) A vocabulary τ = τk, which has predicates and function symbols of
possibly infinite arity but ≤ λ.

(b) A class K = Kk of τ -models.

(c) A two-place relation ≤k on K.

(Note that λ < µ, and we allow µ =∞).

We demand:

II. (a) If M1
∼= M2 then M1 ∈ K ⇔M2 ∈ K.

(b) If (N1,M1) ∼= (N2,M2) then M1 ≤k N1 ⇔M2 ≤k N2.

(c) Every M ∈ K has cardinality ∈ [λ, µ).

(d) ≤k is a partial order on K.

III1. If 〈Mi : i < δ〉 is ≤k-increasing and the cardinality of
⋃
i<δ

Mi is less than µ,

then there is a unique M ∈ K such that |M | =
⋃
i<δ

|Mi| and

i < δ ⇒Mi ≤k M.

III2. If in addition, i < δ ⇒Mi ≤k N then M ≤k N .

IV. If M1 ⊆M2 and M` ≤k N for ` = 1, 2 then M1 ≤k M2.

V. If A ⊆ N ∈ K, then there is M satisfying A ⊆M ≤k N and ‖M‖ ≤ λ+ |A|.
(Here it is enough to restrict ourselves to the case |A| ≤ λ ..= LSTk.)

Definition 2.2. 1) We say k is an ess-λ-AEC if it is an ess-[λ, λ+)-AEC.

2) We say k is an ess-AEC if there is λ such that it is an ess-[λ,∞)-AEC, so
λ = LST(k).

3) If k is an ess-[λ, µ)-AEC and λ ≤ λ1 < µ1 ≤ µ then let

Kk
λ1

= (Kk)λ1
= {M ∈ Kk : ‖M‖ = λ1}

and Kk
λ1,µ1

= {M ∈ Kk : λ1 ≤ ‖M‖ < µ1}.

4) We define Υor
k as in [She09d, Ch.IV, 0.8(2), p.648-9].9

5) We may omit the “essentially” when arity(τk) = ℵ0, where (arity(k) = arity(τk)
and)

arity(τ) ..= min{κ : every predicate and function symbol has arity < κ}

for a vocabulary τ .

We now consider the claims on ess-AECs.

8And we may write (µ, λ) instead of [λ, µ).
9 = [She09b, 0.8(2)=L11.1.3A].
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Claim 2.3. Let k be an ess-[λ, µ)-AEC.

1) The parallel of Axs.(III)1,(III)2 hold with a directed family 〈Mt : t ∈ I〉.
2) If M ∈ K we can find 〈Mā : ā ∈ ω>M〉 such that:

(a) ā ⊆Mā ≤k M

(b) ‖Mā‖ = λ

(c) If b̄ is a permutation of ā then Mā = Mb̄.

(d) if ā is a subsequence of b̄ then Mā ≤k Mb̄.

3) If N ≤k M we can add in (2) that ā ∈ ω>N ⇒Mā ⊆ N .

4) If for simplicity

λ∗ ..= λ+ sup
{ ∑
R∈τk

|RM |+
∑
F∈τk

|FM | : M ∈ Kk has cardinality λ
}

then Kk and {(M,N) : N ≤k M} are essentially PCχ,λ∗-classes,10 where

χ ..=
∣∣{M/∼= : M ∈ Kk

λ

}∣∣
(noting that χ ≤ 22θ). That is, M ∈ Kk iff there is a sequence M = 〈Mā : ā ∈ ω>A〉
satisfying clauses (b)–(d) of part (2) such that A =

⋃
ā∈ω>A

|Mā|,

ā ∈ ω>A⇒Mā ≤k M,

and M has universe A. (Also, M is uniquely determined by M .)
Similarly for ≤k. Note that if, in τk, there are no two distinct symbols with the

same interpretation in every M ∈ Kk, then |τk| ≤ 22λ .

5) The results on omitting types in [She99] or [She09d, Ch.IV, 0.9, p.649]11 hold.
I.e. if α < (2λ∗)+ ⇒ Kk

iα 6= ∅ then θ ∈ [λ, µ) ⇒ Kθ 6= ∅ and there is an EM-
model: i.e. Φ ∈ Υor

k with |τΦ| = |τk|+λ and EM(I,Φ) having cardinality λ+ |I| for
any linear order I. We may replace λ∗ by χ ..=

∣∣{M/∼= : M ∈ Kk
λ

}∣∣.
6) The lemma on the equivalence of being universal model homogeneous and of being
saturated (see [She09f, 3.18=L3.10] or [She09d, Ch.II, 1.14, p.237]12) still holds.

7) We can generalize the results of [She09d, Ch.II, §1] on deriving an ess-(∞, λ)-
AEC from an ess-λ-AEC.

Proof. The same proofs as in [She09a]13 for AECs.
On the generalization mentioned in 2.3(7), see more in [Shec, §1]. The point is

that, in the language of [Shec, §1], our k is a (λ, µ, κ)-AEC (and automatically has
primes). �2.3

Remark 2.4. 1) In 2.3(4), we can decrease the bound on χ if we have a nicer

definition of Kλ: e.g. ‘if arity(τ) ≤ κ then χ = 2λ
<κ+|τ |,’ where

arity(τ) ..= min{κ : every predicate and function symbol of τ has arity < κ}.

2) Above, we may use |τs| ≤ λ, arity(τk) = ℵ0 to get that{
(M, ā)/∼= : M ∈ Kk

λ, ā ∈ λM lists M
}

has cardinality ≤ 2λ. (See also 2.18.)

10 On the definition of PCχ,λ∗ , see [She09a, 1.4(3)].
11 = [She09b, 0.9=L0n.8,0.2=L0n.11]
12 = [She09c, 1.14=L0.19]
13 =[She09d, Ch.I]
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12 SAHARON SHELAH

3) In 2.7 and 2.10 below, if we omit “E is small” and have

λ1
..= sup

{
|seq(M)/EM | : M ∈ Kk

λ

}
< µ,

then k〈E〉 is an ess-[λ1, µ)-AEC.

4) In Definition 2.1, we may omit Axiom V and define LST(k) ∈ [λ, µ] naturally,
and if M ∈ Kk

λ ⇒ µ > |seq(M)/EM | then in 2.10(1) below we can omit “E is
small.”

5) Can we preserve the finiteness of the arity in such a “transformation?” This is not
clear. Note that a natural candidate is trying to code p ∈ Sbs

s (M) by {ā : ā ∈ ω>M},
where there are M0 ≤s M1 such that M ≤s M1, ortp(a`,M0,M1) is parallel to p,
and ā is independent in (M0,M1). If (e.g.) Ks is saturated this helps, but still we
suspect that it may fail.

6) What is the meaning of ess-[λ, µ)-AEC? Can we just look at 〈Mt : t ∈ I〉, I
directed, with t ≤I s ⇒ Mt ≤s Ms ∈ Kλ? For isomorphism types we take a kind
of completion and so make more pairs isomorphic, but

⋃
t∈I

Mt does not determine

M = 〈Mt : t ∈ I〉, and the completion may depend on this representation.

7) If we like to avoid this and this number is λ′, then we should change the definition
of seq(N) (see 2.5(b)) to

seq′(N) =
{
ā : `g(ā) = λ, a0 < µ∗, and for some M ≤s N from Kk

λ,

〈a1+α : α < λ〉 lists the members of M
}
.

§ 2(B). Imaginary Elements and Smooth Equivalence Relations.

Now we return to our aim of getting canonical bases for orbital types.

Definition 2.5. Let k = (Kk,≤k) be a λ-AEC, or just an ess-[λ, µ)-AEC. (If kλ = ks
we may write s instead of kλ; see 2.11.) We say that E is a smooth k-equivalence
relation when:

(A) E is a function with domain Kk,λ mapping M to EM .

(B) For M ∈ Kk
λ, EM is an equivalence relation on a subset of14

seq(M) ..= {ā ∈ λM : M � rang(ā) ≤k M}
(so ā is not necessarily without repetitions). Note that k determines λ
(pedantically, when it is non-empty).

(C) If M1 ≤k M2 then EM2 � seq(M1) = EM1 .

(D) If f is an isomorphism from M1 ∈ Ks onto M2 then f maps EM1
onto EM2

.

(E) If 〈Mα : α ≤ δ〉 is ≤s-increasing continuous then{
ā/EMδ

: ā ∈ dom(EMδ
) ⊆ seq(Mδ)

}
=
{
ā/EMδ

: ā ∈
⋃
α<δ

dom(EMα
)
}
.

2) We say that E is small if each EM has ≤ ‖M‖ equivalence classes.

Remark 2.6. 1) Note that if we have 〈Ei : i < i∗〉, where each Ei is a smooth kλ-
equivalence relation and i∗ < λ+, then we can find a smooth kλ-equivalence relation
E such that the EM -equivalence classes are essentially the Ei-equivalence classes for
i < i∗.

In detail: without loss of generality i∗ ≤ λ, and ā EM b̄ iff

14 Of course, for A ⊆ M , M � A is the unique model with universe A such that τM�A = τM ,

if such a model exists.
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~1 i(ā) = i(b̄) < i∗ and

ā � [1 + i(ā) + 1, λ) Ei(ā) b̄ � [1 + i(b̄) + 1, λ),

where i(ā) = min
(
{j : j + 1 < i∗ ∧ a0 6= a1+j} ∪ {λ}

)
.

2) In fact, i∗ ≤ 2λ is okay: e.g. choose a bijection e from the set of equivalence
relations on λ onto i∗. For ā, b̄ ∈ seq(M) we let i(ā) ..= e

(
{(i, j) : a2i+1 = a2j+1}

)
and

~2 ā EM b̄ iff i(ā) = i(b̄) and 〈a2i : i < λ〉 Ei(ā) 〈b2i : i < λ〉.

3) We can redefine seq(M) as λ≥M , but then we have to make minor changes above.

Definition 2.7. Let k be a λ-AEC or just ess-[λ, µ)-AEC and E a small smooth
k-equivalence relation and the reader may assume for simplicity that the vocabulary
τ = τk has only predicates. Also assume F∗, c∗, P∗ /∈ τk. We define τ∗ and k∗ =
k〈E〉 = (Kk∗ ,≤k∗) as follows.

(A) τ∗ = τ ∪ {F∗, c∗, P∗} with P∗ a unary predicate, c∗ an individual constant
and F∗ a λ-place function symbol.

(B) Kk∗ is the class of τ∗k -models M∗ such that for some model M ∈ Kk we
have:
(a) |M | = PM

∗

∗

(b) If R ∈ τ then RM
∗

= RM .

(c) If F ∈ τ has arity α, then FM
∗
�M = FM and for any ā ∈ α(M∗)\αM

we have FM
∗
(ā) = cM

∗

∗ .
(Or allow partial functions, or use FM

∗
(ā) = a0 when α > 0 and

FM
∗
(〈 〉) when α = 0 — i.e. F is an individual constant.)

(d) F∗ is a λ-place function symbol, and
•1 If ā ∈ dom(E) ⊆ seq(M) then FM

∗

∗ (ā) ∈
(
|M∗| \ |M |

)
\ {cM∗

∗ }.
•2 If ā, b̄ ∈ dom(E) ⊆ seq(M) then FM

∗

∗ (ā) = FM
∗

∗ (b̄)⇔ ā EM b̄.

•3 If ā ∈ λ(M∗) and ā /∈ dom(E) ⊆ seq(M) then FM
∗

∗ (ā) = cM
∗

∗ .

(e) cM
∗

∗ /∈ |M |, and if b ∈
(
|M∗|\|M |

)
\{cM∗

∗ } then for some ā ∈ dom(E) ⊆
seq(M) we have FM

∗

∗ (ā) = b.
Note that for every M ∈ Kk there is such an M∗, and it is unique.

(C) ≤k∗ is the two-place relation on Kk∗ defined as follows.

M∗ ≤k∗ N
∗ if

(a) M∗ ⊆ N∗

(b) For some M,N ∈ k dependent on M∗ and N∗, respectively, as in clause
(B), we have M ≤k N .

Definition 2.8. 1) We call M ∈ k a witness for M∗ ∈ Kk∗ (pedantically, E is the
witness) if it is as in clause 2.7(B) above. Therefore M is uniquely determined by
M∗.

2) We call (M,N) a witness for ‘M∗ ≤k∗λ
N∗’ if M and N are witnesses for M∗ and

N∗, respectively, and M ≤k N .

Discussion 2.9. Up to now we have restricted ourselves to vocabularies with each
predicate and function symbol of finite arity, and this restriction seems very rea-
sonable. Moreover, it seems a priori sensible that in any analogue to superstable
it would be quite undesirable to have infinite arity. Still, our desire to have imag-
inary elements (in particular, canonical basis for types) forces us to accept them.
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14 SAHARON SHELAH

The price is that for a general class of τ -models, the union of increasing chains of
τ -models is not a well-defined τ -model; more accurately, we can show its existence
but not smoothness.15 However, inside the class k〈E〉 defined above, it will be.

Claim 2.10. 0) If E is a smooth k-equivalence relation, I is a directed partial order,
and 〈Mt : t ∈ I〉 is |leqk-increasing with union M , then for every ā ∈ dom(Eµ) there
exists s ∈ I and b̄ ∈ dom(EM`

) such that ā EM b̄.

1) If k is a [λ, µ)-AEC (or just an ess-[λ, µ)-AEC) and E a small smooth k-equivalence
relation, then k〈E〉 is an ess-[λ, µ)-AEC.

2) If k has amalgamation and E is a small k-equivalence class then k〈E〉 has the
amalgamation property.

3) Similarly for the JEP (the joint embedding property).

Proof. The same proofs as in [She09d, Ch.II]. Left as an exercise to the reader.
�2.10

§ 2(C). Good Frames.

Now we return to good frames.

Definition 2.11. We say that s is a good ess-[λ, µ)-frame similarly to [She09d,
Ch.II, Def. 2.1, p.259].16 It consists of k, Ss,

⋃
s

, with the obvious differences. In

particular:

(a) k = ks = (Ks,≤s), k is an ess-[λ, µ)-AEC.

(b) Ks has a superlimit model in χ in every χ ∈ [λ, µ).

(c) Ss(M) and
⋃
s

are as there.

Discussion 2.12. We may consider other relatives as our choice and mostly have
similar results. In particular:

(A) We can demand less: as in [SV24, §2] we may replace Sbs
s by a formal

version of Sbs
s .

(B) We may demand goodness only for sλ: i.e. Ss and
⋃
s

apply only to models

in Ks
λ (hence we can use their nice properties from [She09d, Ch.II, 2.1,

p.259].17) and amalgamation and JEP are required only for models of
cardinality λ.

Claim 2.13. All the definitions and results in [She09c], [She09e] and §1 here work
for good ess-[λ, µ)-frames.

Proof. No problem. �2.13

Definition 2.14. If s is a [λ, µ)-frame (see Definition 1.1) – or just an ess-[λ, µ)-
frame – and E is a small smooth s-equivalence relation, then let t = s〈E〉 be defined
as follows.

15 ‘k is smooth’ means Axiom III2 from Definition 2.1.
16 = [She09c, Def. 2.1=L1.1tex]
17 = [She09c, Def. 2.1=L1.1tex]
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(A) kt ..= ks〈E〉
(B) Sbs

t (M∗) ..={
ortpkt(a,M

∗, N∗) : M∗ ≤kt N
∗, and if M ≤k N witness M∗, N∗ ∈ kt

then a ∈ N \M and ortps(a,M,N) ∈ Sbs
s (M)

}
(C) Non-forking is defined similarly. That is,⋃
t

..=
{

(M∗0 ,M
∗
1 , a,M

∗
3 ) : M∗` ∈ Kt, as witnessed by M`, for ` ≤ 3, where

M0 ≤s M1 ≤s M3 and (M0,M1, a,M3) ∈
⋃
s

}
Note that we may lose fullness, because ortp(b,M∗1 ,M

∗
3 ) is not in Sbs

t (M∗1 )
for b ∈M∗3 \M∗1 .

(D) In clause (C), if p∗ ..= ortpt(a,M
+
0 ,M

+
3 ) and p ..= ortps(a,M0,M3) then

we may say p∗ is projected to p (or is (s,E)-projected to p).

Remark 2.15. We may extend this: if s is18 an NF-frame we define t = s〈E〉 as an
NF-frame similarly (see [Shea, §1]).

Claim 2.16. 1) If s is a good ess-[λ, µ)-frame, E a small, smooth s-equivalence
relation then s〈E〉 is a good ess-[λ, µ)-frame.

2) In part (1), İ(κ,Ks〈E〉) = İ(κ,Ks) for every κ.

3) If s has primes/regulars then s〈E〉 does as well.

Remark 2.17. We may add: if s is an NF-frame then so is s〈E〉, hence (s〈E〉)full is
a full NF-frame. (See [Shea, §1].)

Proof. Straightforward. �2.16

Our aim is to make some inconsequential changes to s so that for every p ∈
Sbs
s (M) there is a canonical base, etc. The following claim shows that in the

context we have presented, this can be done.

Claim 2.18. The imaginary elements Claim
Assume s a good λ-frame or just a good ess-[λ, µ)-frame.

1) If M∗ ∈ Ks and p∗ ∈ Sbs
s (M∗), then19 there is a small, smooth ks-equivalence

relation E = Es,M∗,p∗ and a unique function F satisfying (∗) below.

(∗) (α) •1 F(N, ā) is well-defined iff ā ∈ dom(EN ).

•2 If F(N, ā) is well-defined then F(N, ā) ∈ Sbs
s (N) (and it does

not fork over N � ā).

(β) S ⊆
{

(N, ā, p) : N ∈ Ks, ā ∈ dom(EN ), p ∈ Sbs
s (N)

}
is the minimal

class such that:
(i) If ā ∈ seq(M∗) and p∗ does not fork over M∗ � rang(ā), then

(M∗, ā, p
∗) ∈ S.

(ii) S is closed under isomorphisms.

(iii) If N1 ≤s N2 and p2 ∈ Sbs
s (N2) does not fork over ā ∈ seq(N1),

then (N2, ā, p2) ∈ S ⇔ (N1, ā, p2 � N1) ∈ S.

18 The reader may ignore this version.
19 Note that there may well be an automorphism of M∗ which maps p∗ to some p∗∗ ∈ Sbss (M∗)

such that p∗∗ 6= p∗.
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(iv) If ā1, ā2 ∈ seq(N) and p ∈ Sbs
s (N) does not fork over

N` ..= N � rang(ā`) for ` = 1, 2, then

(N2, ā1, p) ∈ S ⇔ (N2, ā2, p) ∈ S.

(γ) F(N, ā) = p iff (N, ā, p) ∈ S; and if ā, b̄ ∈ seq(N) then ā EN b̄ iff
F(N, ā) = F(N, b̄).

2) There are a unique small20 smooth ks-equivalence relation E = Es and a function
F = Fs such that:

(∗∗) (α) If F(N, ā) is well-defined then N ∈ Ks and ā ∈ seq(N).

(β) F(N, ā), when defined, belongs to Sbs
s (N).

(γ) If N ∈ Ks
λ and p ∈ Sbs

s (N) then there is ā ∈ seq(N) such that
rang(ā) = N and F(N, ā) = p.

(δ) If ā ∈ seq(M), (M, ā) ∈ dom(FM ), and M ≤s N , then F(N, ā) (is
well-defined and) is the non-forking extension of F(M, ā).

(ε) If ā` ∈ seq(N) and F(N, ā`) is well defined for ` = 1, 2 then

ā1 EN ā2 ⇔ F(N, ā1) = F(N, ā2).

(ζ) F commutes with isomorphisms.

(η) Es,N
..={

(ā1, ā2) ∈ seq(M)×seq(M) : (N, ā1), (N, ā2) ∈ dom(F) and F(N, ā1) = F(N, ā2)
}
.

3) Let t ..= s〈E〉, where E is as in part (2).

(A) [Notation:] Whenever M∗ ∈ Kt as witnessed by M ∈ Ks, p∗ ∈ Sbs
t (M∗) is

projected to p ∈ Sbs
s (M) (see 2.14(D)), and ā ∈ seq(M) satisfies F(M, ā) =

p, then we let
bas(p∗) = bas(p) ..= FM

∗

∗ (ā)

(see Definition 2.7).

(B) If M` witnesses that M∗` ∈ Kt for ` = 1, 2 and (M∗1 ,M
∗
2 , a) ∈ K3,bs

t , then

(M1,M2, a) ∈ K3,bs
s , p∗ = ortpt(a,M

∗
1 ,M

∗
2 ), and p = ortps(a,M1,M2).

(C) If M∗` ≤s M
∗ and p` ∈ Sbs

t (M∗` ) then

p∗1 ‖ p∗2 ⇔ bas(p∗1) = bas(p∗2).

(D) p∗ ∈ Sbs
t (M∗) does not split over bas(p∗) (see Definition 1.14(3) or [She09e,

§2 end]).

Proof. 1) Let M∗∗ ≤s M
∗ be of cardinality λ such that p∗ does not fork over M∗∗.

Choose an enumeration ā∗ = 〈aα : α < λ〉 of the elements of M∗∗.
We say that p1 ∈ Sbs

s (M1) is a weak copy of p∗ when there is a witness (M0,M2, p2, f),
which means:

~1 (a) M0 ≤s M2 and M1 ≤s M2.

(b) if ‖M1‖ = λ then ‖M2‖ = λ.

(c) f is an isomorphism from M∗∗ onto M0.

(d) p2 ∈ Sbs
s (M2) is a non-forking extension of p1.

(e) p2 does not fork over M0.

(f) f(p∗ �M∗∗) is p2 �M0.

For M1 ∈ Ks
λ and p1 ∈ Sbs

s (M1) a weak copy of p∗, we say that b̄ explicates its
being a weak copy when, for some witness (M0,M2, p2, f) and c̄,21

20 For ‘small,’ we use stability in λ.
21 So necessarily M2 has cardinality λ.
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~2 (a) b̄ = 〈bα : α < λ〉 lists the elements of M1.

(b) c̄ = 〈cα : α < λ〉 lists the elements of M2.

(c) The set {α : bα = b0} codes the following sets:
•1 The isomorphism type of (M2, c̄).

•2
{

(α, β) : bα = cβ
}

•3 {(α, β) : f(a∗α) = cβ}
Now,

~3 If p ∈ Sbs
s (M) is a weak copy of p∗ then for some ā ∈ seq(M), there is a

M1 ≤s M over which p does not fork such that ā lists M1 and explicates
‘p �M1 is a weak copy of p∗.’

~4 (a) If M ∈ Ks
λ and b̄ explicates ‘p1 ∈ Sbs

s (M) is a weak copy of p∗,’ then
we can reconstruct p1 from M and b̄. (Call it pM,b̄.)

(b) If in addition M ≤s N , then let pN,b̄ be its non-forking extension in

Sbs
s (N). We also call it F(N, b̄).

Now we define E. First, for N ∈ Ks we define a two-place relation EN .

~5 (α) The domain of EN is

{ā : for some M ≤s N of cardinality λ and p ∈ Sbs
s (M) which is a

weak copy of p∗, the sequence ā explicates p being a weak copy of p∗}.

(β) ā1 EN ā2 iff (ā1, ā2 are as above and) pN,ā1
= pN,ā2

.

Now

�1 For N ∈ Ks, EN is an equivalence relation on dom(EN ) ⊆ seq(N).

�2 If N1 ≤s N2 and ā ∈ seq(N1) then ā ∈ dom(EN1
)⇔ ā ∈ dom(EN2

).

�3 If N1 ≤s N2 and ā1, ā2 ∈ dom(EN1
) then ā2 EN1

ā2 ⇔ ā1 EN2
ā2.

�4 If 〈Nα : α ≤ δ〉 is ≤s-increasing continuous and ā1 ∈ dom(ENδ) then, for
some α < δ and ā2 ∈ dom(ENα), we have ā1 ENδ ā2.

[Why? Let p = pNδ,ā1
∈ Sbs

s (Nδ). Hence for some α < δ, p does not fork over Mα;
hence for some M ′1 ≤s Mα of cardinality λ, the type p does not fork over M ′1. Let
ā2 list the elements of M ′1 such that it explicates p � M ′1 being a weak copy of p∗.
So clearly ā2 ∈ dom(ENα) ⊆ dom(ENδ) and ā1 ENδ ā2.]

Clearly we are done.

2) Similar; we vary (M∗, p∗), but it suffices to consider 2λ such pairs.
Let us elaborate. First, we shall manipulate the sequence ā so that it lists not

only some M ∈ Ks
λ, but also some p ∈ Sbs(M). Towards this end,

(∗)1 Let
〈
(Mα, pα) : α < α∗

〉
be such that:

(a) α∗ ≤ 2λ

(b) Mα ∈ Ks has universe λ.

(c) pα ∈ Sbs(Mα)

(d) For every M ∈ Ks
λ,
∣∣{α < α∗ : Mα

∼= M}
∣∣ =

∣∣Sbs
s (M)

∣∣.
(e) If α < α∗ then 〈pβ : Mβ = Mα〉 lists Sbs(Mα) without repetition.

Next, choose 〈āα : α < α∗〉 such that:

(∗)2 (a) āα lists the elements of Mα.

(b) If α 6= β then {i : aα,i = aα,0} 6= {i : aβ,i = aβ,0}.
(∗)3 Now if ā ∈ seq(N) lists the elements of M ≤s N , then we choose F(N, ā) ∈

Sbs(N) such that:
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18 SAHARON SHELAH

(a) If there is α such that uα ..= {i < λ : aα,i = aα,0} = {i < λ : ai = a0}
and ai 7→ aα,i is an isomorphism from N � ā to Mα, then F(N, ā) ∈
Sbs(N) does not fork over M and that isomorphism maps F(N, ā) �M
to pα.

(b) If there is no such α as in clause (a), then we let F(N, ā) be undefined.

(∗)4 Let EN be the set of pairs
(
(N, ā), (N, b̄)

)
from dom(F) such that F(N, ā) =

F(N, b̄).

Note that

(∗)5 In (∗)3, F(N, ā) is well-defined and the function is as required.

3) Should be clear. �2.18

Definition 2.19 (Definition / Claim). Assume that s is a good ess-[λ, µ)-frame,
so without loss of generality it is full.

1)We will choose a good ess-[λ, µ)-frame tn = tn〈s〉 by induction on n < ω.

For n = 0 let t0 ..= s.
If n is even we define tn+1 as in 2.18(2), with (tn+1, tn) here standing in for (t, s)

there. That is, tn+1
..= tn〈En〉, where En ..= E〈tn〉.

If n is odd, then by [She90, Ch.III] we can choose a full tn+1 such that ktn+1
= ktn

and Sbs
tn+1

(M) ⊆ Sbs
tn (M) for all M ∈ Ktn .

2) In the limit (so after ω times) we get a tω which is full22 and has canonical
type-bases, as witnessed by a function bastω

..=
⋃
n<ω

bast2n+1
(see Definition 2.20

below).

Proof. Should be clear. �2.19

Definition 2.20. We say that s has type bases if there is a function bas(−) such
that:

(A) If M ∈ Ks and p ∈ Sbs
s (M) then bas(p) is (well defined and is) an element

of M .

(B) p does not split over bas(p) (see Definitions 1.14, 1.15). Hence any auto-
morphism23 of M over bas(p) maps p to itself.

(C) If M ≤s N and p ∈ Sbs
s (N) then bas(p) ∈M iff p does not fork over M .

(D) If f is an isomorphism from M1 ∈ Ks onto M2 ∈ Ks and p1 ∈ Sbs(M1)
then f(bas(p1)) = bas(f(p1)).

Remark 2.21. 1) In §3 we can add:

(E) Strong uniqueness: if A ⊆ M <s C and p ∈ S(A,C) is well defined then
bas(p) ∈ A and there is at most one q ∈ Sbs

s (M) such that q extends p.
(Needed for non-forking extensions).

2) In 2.22 we can work in C.

Now, motivated by 2.19, we can define

Definition 2.22. We say that s is equivalence-closed when:

(A) s has type bases p 7→ bas(p).

22 That is, Sbstω
(Mω) = Snatω

(Mω).
23 There are reasonable stronger versions, but it follows that the function bas(−) satisfies

them.
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(B) If (for each M ∈ Ks) EM is a definition of an equivalence relation on ω>M
preserved by isomorphisms and ≤s-extensions (i.e. M ≤s N ⇒ EM =
EN � ω>M) then there is a definable function F from ω>M to M such that
FM (ā) = FM (b̄) iff ā EM b̄.

To phrase the relation between (e.g.) k and k〈E〉, we define the following.

Definition 2.23. Assume k2 is a ess-[λ, µ)-AEC.

1) We say i is an interpretation candidate in k2 when i consists of

(A) A predicate P ∗i .

(B) A subset τi of τk2 .

2) In this case, for M2 ∈ Kk2 , define the τi-model M
[i]
2 as follows:

•
∣∣M [i]

2

∣∣ ..= PM2

i

• RM
[i]
2 ..= RM2 � |M [i]

2 | for R ∈ τi.

• FM
[i]
2 is defined similarly, so it can be a partial function even if FM2 is full.

3) We say that the ess-[λ, µ)-AEC k1 is i-interpreted (or interpreted by i) in k2
when:

(A) i is an interpretation candidate in k2.

(B) τk1 = τi

(C) Kk1 = {M [i]
2 : M2 ∈ Kk2}

(D) If M2 ≤k2 N2 then M
[i]
2 ≤k1 N

[i]
2 .

(E) If M1 ≤k1 N1 and N1 = N
[i]
2 (so N2 ∈ Kk2) then for some M2 ≤k N2 we

have M1 = M
[i]
2 .

(F) If M1 ≤k1 N1 and M1 = M
[i]
2 (so M2 ∈ Kk2) then (possibly replacing M2 by

a model isomorphic to it over M1) there is N2 ∈ Kk2 such that M2 ≤k2 N2

and N1 = N
[i]
2 .

Definition 2.24. 1) Assume k1 is interpreted by i in k2. We say strictly interpreted

when M
[i]
2 = N

[i]
2 implies that M2 and N2 are isomorphic over M

[i]
2 .

2) We say k1 is equivalent to k2 if there are n and k′0, . . . , k
′
n such that k1 = k′0,

k2 = k′n, and for each ` < n, k` is strictly interpreted in k`+1 or vice versa.
(Actually, we can demand n = 2 and that k` is strictly interpreted in k′1 for

` = 1, 2.)

Definition 2.25. As in 2.23, 2.24 above, for good ess-[λ, µ)-frames.

Claim 2.26. 1) If a good ess-(λ, µ)-frame t is derived from a good ess-(λ, µ)-frame
s as in 2.19, then ks and kt are equivalent as AECs.

1A) Similarly to part (1), omitting “good.” (Use 2.18(2),(3).)

2) Assume s is a good ess-[λ, µ)-frame. Then there exists C (called a µ-saturated
monster for Ks) such that:

(a) C is a τs-model of cardinality ≤ µ.

(b) C is a union of some ≤s-increasing continuous sequence 〈Mα : α < µ〉.
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20 SAHARON SHELAH

(c) if M ∈ Ks (so λ ≤ ‖M‖ < µ) then M is ≤s-embeddable into some Mα

from clause (b).

(d) Mα+1 is brimmed over Mα for α < µ.

Proof. Easy. �2.26

Paper Sh:839, version 2025-05-24 2. See https://shelah.logic.at/papers/839/ for possible updates.



STABLE FRAMES AND WEIGHTS SH839 21

§ 3. P-simple types

We define the basic types over sets not necessary models. Note that in Definition
3.5(2) there is no real loss using C of cardinality ∈ (λ, µ), as we can replace λ by
λ1

..= λ+ |C| and so replace Kk to Kk
[λ1,µ).

Hypothesis 3.1. 1) s is a good ess-[λ, µ)-frame (see Definition 2.11).

2) s is full and has type bases (see Definition 2.20).

3) C will denote some µ-saturated model for Ks of cardinality ≤ µ; see 2.26.

4) Without loss of generality, ā ∈ ω>M can be treated as elements, but M,A, . . .
will be <s C and ⊆ C, respectively. However, they will be of cardinality < µ.

Definition 3.2. Let A ⊆M ∈ Ks.

1) dcl(A,M) = {a ∈ M : if M ′ ≤s M
′′, M ≤s M

′′, and A ⊆ M ′ then a ∈ M ′ and
for every automorphism f of M ′, f � A = idA ⇒ f(a) = a}.
2) acl(A,M) is defined similarly, but only with the first demand.

Definition 3.3. 1) For A ⊆M ∈ Ks let

Sbs
s (A,M) ..=

{
q ∈ Sbs

s (M) : bas(q) ∈ dcl(A,C)
}
.

2) We call p ∈ Sbs
s (A,M) regular if p as a member of Sbs

s (M) is regular.

Definition 3.4. 1) Es is as in Claim 2.18(2).

2) If A ⊆M ∈ Ks and p ∈ Sbs
s (M), then ‘p ∈ Sbs

s (A,M)’ means that p is definable
over A (see 1.14(3)).

Definition 3.5. Let A ⊆ C.

1) We define a dependency relation on

good(A,C) ..= {c ∈ C : for some M <s C with c /∈M, A ⊆M and

ortp(c,M,C) is definable over some finite ā ⊆ A}

as follows.24

~ c depends on J in (A,C) iff there is no M <s C such that A ∪ J ⊆ M and
ortp(c,M,C) is the non-forking extension of ortp(c, ā,C), where ā witnesses
c ∈ good(A,C).

2) We say 〈Mα : α < α∗〉 is independent over M inside N when for some N =
〈Nα : α < α∗〉 and J = 〈Jα : α < α∗〉, we have

(A) M ≤s Mα ≤s Nα ≤s N for all α < α∗.

(B) (M,Nα,Jα) ∈ K3,vq
s

(C) J ..=
⋃

α<α∗
Jα is independent inside (M,N).

(D) The Jα-s are pairwise disjoint.

[An alternative definition can be found in [She09d, Ch.III, 8.8, p.520], but they are
equivalent when µ = λ+ — see [She09d, Ch.III, §8,10].]

3) We say 〈Aα : α < α∗〉 is independent over (M,A) in C if we can find
〈Mα : α < α∗〉 such that:

24For the definition of <s, see 1.1(2).
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~ (a) A ⊆M ≤s Mα <s C for α < α∗.

(b) Aα is good over (A,M). (See part (5) below.)

(c) Aα ⊆Mα

(d) ortp(Aα,M,C) definable over A
(equivalently, ‘does not split over A’).

(e) 〈Mα : α < α∗〉 is independent over M (inside C).

4) We define ‘locally independent’ naturally; that is, every finite subfamily is inde-
pendent.

5) For A,B ⊆ C, we say B is good over (A,M) (or ‘ortp(B,M) is definable over
A’) when

(A) A ⊆M <s C

(B) There exist M1,M2 such that
(a) M ≤s M1 ≤s M2

(b) B ⊆M2

(c) M1 is brimmed over M2.

(d) M2 is brimmed over M1.

(e) ortp(B,M1,M2) does not split over A.

(In the first-order context, we would say tp(B,M) does not fork over A and is
stationary. Here this definition is problematic, as ortp(B,A,C) is not necessarily
basic.)

Claim 3.6. 1) If p ..= ortp(b,M,N) ∈ Sbs
s (M) and a ..= base(p) ∈ M , then {b} is

good over ({a},M).

2) For any A and M , A is good over (M,M).

3) [Monotonicity:]

(a) Whether 〈Mα : α < α∗〉 is independent over M inside N does not depend
on the order. That is, if π is a one-to-one function from an ordinal β∗ onto
α∗ then 〈Mπ(β) : β < β∗〉 is independent over M inside N .

(b) If 〈Mα : α < α∗〉 is independent over M inside N , then∧
α<α∗

[
M ≤s M

∗
α ≤s Mα

]
⇒ 〈M∗α : α < α∗〉 is independent over M inside N.

(c) If M , 〈Nα,Jα : α < α∗〉, and N are as in 3.5(2), N ≤s N∗,

Nα ≤s N
∗
α ≤s N∗,

and (M,N∗α,Jα) ∈ K3,vq
s for all α < α∗, then 〈N∗α,Jα : α < α∗〉 is inde-

pendent over M inside N∗.

Claim 3.7. 1) Assume Aα ⊂ C for all α < α∗ and 〈Mα : α ≤ α∗〉 is ≤s-increasing
continuous. If Aα is independent over (A,Mα) for all α < α∗, then 〈Aα : α < α∗〉
is independent over (A,M).

2) If 〈Aα : α < α∗〉 is independent over (A,M), A ⊆ A′ ⊆M , and A′α ⊆ Ah(α) for
all α < α′∗ (where h : α′∗ → α∗ is one-to-one) then 〈A′α : α < α∗〉 is independent
over (A′,M).

3) If p ∈ Sbs
s (ā,C) is regular, then, on p(C) ..= {c : c realizes p}, the independence

relation satisfies:
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(a) If c depends on {b0, . . . , bn} but not on {b0, . . . , bn−1}, then bn depends on
{b0, . . . , bn−1, c}.
(Recall that dependency was defined in 3.5(1)~.)

(b) If b1` depends on {b00, . . . , b0n−1} for ` < k and b2 depends on {b1` : ` < k},
then b2 depends on {b0` : ` < n}.

(c) If b depends on J and J ⊆ J′, then b depends on J′.

Remark 3.8. 1) We have not mentioned finite character, but the local independence
satisfies it trivially.

Proof. Straightforward. �3.7

Definition 3.9. Assume p, q ∈ Sbs
s (M), and p is regular. We say that q is p-simple

when ‘(A) ⇒ (B)’ holds, where

(A) (a) M ≤s M1 ≤s M2

(b) M1 is brimmed.

(c) b ∈M2 \M1 and (M1,M2, b) ∈ K3,pr
s .

(d) ortp(b,M1,M2) is a non-forking extension of q.

(e) p1 ∈ Sbs
s (M1) is a non-forking extension of p.

(B) There do not exist any M3,M4 such that
(a) M2 ≤s M4 and M3 ≤s M4.

(b) M1 ∪ p(M2) ⊆M3 (recalling p(M) = {a ∈M : a realizes p}).
(c) b /∈M3

Claim 3.10. Assume M <s C, p, q ∈ Sbs
s (M), p is regular, and M1,M2, b are as

in 3.9(A).

1) Assume further that p′, q′ ∈ Sbs
s (M ′), are parallel to p and q, respectively. Then

q′ is p′-simple iff q is p-simple.

2) If q is p-simple then, for some J ⊆ p(M2):

(∗) (a) J is finite, and independent over M .

(b) (M1,M2,J) ∈ K3,vq
s

(c) We have b ∈ N whenever
•1 M1 ≤s N ≤s M2

•2 (M1, N,J) ∈ K3,vq
s

•3 p(N) = p(M2).

3) If J satisfies (∗) above, then q is p-simple (recalling b realizes q).

4) If p′, q′ ∈ Sbs
s (M ′), M ′1,M

′
2, b
′ are as in 3.9(A) (for M ′, p′, q′), and J′ is as in

3.10(2), then |J′| = |J|.

5) If J∗ ⊆ p(M2) is independent over M , and every c ∈ J depends on J∗ over M ,

then (M1,M2,J∗) ∈ K3,vq
s (so J∗ is as in clause (2)(∗)).

6) If J is as in clause (2)(∗), (M,N,J) ∈ K3,vq
s , and N <s C, then b̄ ⊆ N or

ortp(b̄, N,C) ⊥ p.

Proof. Straightforward. �3.10
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Definition 3.11. 1) Assume p`, q` ∈ Sbs
s (M`) for ` = 1, 2, p1 ‖ p2, and q1 ‖ q2. We

define wp1
(q2) (the p1-weight of q2) as the finite number of elements of J as defined

in 3.10(2) (with (p2, q2,M2) standing in for (p, q,M) there).

Still unclear. Do you mean “. . . as the cardinality of the finite
set J.”? Or is the weight the set J itself?

This is well-defined by 3.10(4). We can allow q algebraic.

2) We say that b̄ is p-simple over M when b̄ is a finite sequence from C such that
ortp(ā,M) is p-simple.

3) Let [End of Line]

Claim 3.12. Assume p ∈ Sbs
s (M) (so M <s C).

1) If b̄1, b̄2 ∈ C are p-simple over M , then

(a) b̄1ˆb̄2 is p-simple over M .

(b) If M ≤s N <s C then b̄1 is p-simple over N .

(c) If (M,N`,J`) ∈ K3,vq[p]
s , b̄` ⊆ N`, and |J`| = wp(b̄`,M), then

wp(b̄2, N1) = wp(b̄2, N2).

(d) Every subsequence of b̄1 is p-simple over M .

2) If āα is p-simple over M for all α ≤ δ, 〈M `
α : α ≤ δ〉 is ≤s-increasing continuous,

M0
..= M , and (Mα,Mα+1, āα) ∈ K3,vq[p]

s for all α < δ, then

wp(āδ,M
1
δ ) = wp(āδ,M

2
δ ) = min

{
wp(āδ,M ∪ b̄) : b̄ ⊆

⋃
α<δ

āα is finite
}
.

Proof. Straightforward. �3.12

Definition 3.13. Assume M <s N , A ⊆ N , and b̄ ⊆ N is p-simple over M . Then

wp(a,A,M) = min
{
wp(b̄ˆ〈a〉,M)− wp(b̄,M) : b̄ ⊆ A is finite

}
.

Claim 3.14. If M <s N , ā ⊆ N , b̄α ⊆ N is p-simple over M for α < α∗, and
π : β∗ → α∗ is one-to-one and onto, then∑

α<α∗

wp
(
bα, ā ∪

⋃
`<α

bα
)

=
∑
β<β∗

w
(
bπ(β), ā ∪

⋃
i<β

b̄π(i)

)
.

Proof. Straightforward. �3.14

Lastly, we would like to have an existence theorem for p-simple elements over
M . This is done as in §2, using 3.15, 3.16.

Definition 3.15. 1) Assume M1 <s M2 are brimmed models from Ks,λ, M2 is
brimmed over M1, and p ∈ Sbs

s (M) is regular. We define an equivalence relation
EM1,M2 on M2 \M1 as follows.

b1 EM1,M2 b2 iff there is an automorphism π : M2 →M2 over M1

which is the identity on M1 ∪ p(M2) and maps b1 to b2.

2) Assume M1 <s M2 are from Ks,λ, and p ∈ Sbs
s (M) is regular. We define an

equivalence relation EM1,M2,p as follows.

(∗) b1 EM1,M2,p b2 iff there are M+
1 , M+

2 such that:
(a) M1 ≤s M

+
1 ≤s M

+
2 and M2 ≤s M

+
2 .
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(b) M+
1 ,M

+
2 , p

+ are as in part (1).

(c) p+ is a non-forking extension of p.

(d) {M+
1 ,M2} is independent over M1 inside M+

2 .

(e) b1, b2 are EM+
1 ,M

+
2

-equivalent.

(f) M+
1 is brimmed, and M+

2 is brimmed over M+
1 .

Claim 3.16. 1) For (M1,M2, p) as in 3.15(1), the relation EM1,M2,p is an equiva-
lence relation on M2 \M1, and is equality on p(M2).

2) If (M1,M2, p) and (M+
1 ,M

+
2 , p

+) are as in 3.15(2)(∗), then

EM1,M2,p = EM+
1 ,M

+
2 ,p

+ �M2.

Claim 3.17. For M ∈ Kks,λ , there is E = EM such that

(A) E is a smooth ks,λ-equivalence relation (see 2.5).

(B) ā ∈ dom(E), ā codes (Mā,2,Mā,1, pā, bā), where
(a) M2 ≤s M with ‖M2‖ = λ, and ā lists the set of elements of M2

(b) M1 ≤s M2 (using
{

(i, j) ∈ λ× λ : ai = aj
}

).

(c) p ∈ Sbs
s (M) is regular.

(d) b ∈M2 \M1

(C) ā1 EM ā2 iff
(a) ā1, ā2 ∈ dom(EM )

(b) For some M∗ ∈ Ks,λ brimmed over M , we have ā1 E′M∗
ā2, where

E′M∗
is the closure (to an equivalence relation) of the union of the two

sets below.{
(c̄, d̄) ∈ dom(E′M∗

) : (Mc̄,1,Mc̄,2, pc̄) = (Md̄,1,Md̄,2, pd̄) and bc̄ EMc̄,1,Mc̄,2,pc̄ bd̄
}

∪
{

(c̄, d̄) ∈ dom(E′M∗
) : bc̄ = bc̄, Mc̄,1 ≤s Md̄,1, Mc̄,2 ≤s Md̄,2, pd̄ is a

non-forking extension of pc̄, and {Mc̄,2,Md̄,1} is

independent over Mc̄,1 inside Md̄,2

}
.

* * *

Definition 3.18. 1) Assume q ∈ Sbs
s (M) and p ∈ Sbs

s (ā,C). We say that q is
explicitly (p, n)-simple when:

~ There are b0, . . . , bn−1, c such that:25

(a) b` realizes p.

(b) c realizes q.

(c) b` is not good26 over (ā, c) for ` < n.

(d) 〈b` : ` < n〉 is independent over ā.

(e) 〈c, b0, . . . , bn−1〉 is good over ā.

(f) If27 c′ realizes q then c = c′ iff for every b ∈ p(C) we have that b is
good over (ā, c) iff b is good over (ā, c′).

25 Clauses (c)+(e) are replacements for ‘c is algebraic over ā + {b` : ` < n}’ and ‘each b` is

necessary.’
26 ‘Not good’ here is a replacement to “ortp(b`, ā+ c,C) does fork over ā.”
27 This seems a reasonable choice here but we can take others; this is an unreasonable choice

for first order.
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1A) We say that a is explicitly (p, n)-simple over A if ortp(a,A,C) is; similarly, in
the other definitions replacing (p, n) by p will mean “for some n.”

2) Assume q ∈ Sbs
s (ā,C) and P as in Definition 1.8. We say that q is P-simple if we

can find n and explicitly P-regular types p0, . . . , pn−1 ∈ Sbs
s (ā,C) such that each

c ∈ p(C) is definable by its type over ā ∪
⋃
`<n

p`(C).

3A) In part (1) we say weakly (p, n)-simple if in ~, clause (f) is replaced by

(f)′ If b is good over (ā, a∗m) then c and c′ realize the same type over āˆ〈a∗m, b〉.

3B) In part (1) we say (p, n)-simple if for some ā∗ ∈ ω>C good over ā, for every
c ∈ q(C), there are b0, . . . , bn−1 ∈ p(C) such that c ∈ dcl(ā, ā∗, b0, . . . , bn−1) and
āˆ〈b0, . . . , bn−1〉 is good over ā if simple.

4) Similarly in (2).

5) We define gwp(b, ā) for p regular and parallel to some p′ ∈ Sbs
s (ā). (Here gw

stands for ‘general weight.’) Similarly for gwp(q).

We first list some obvious properties.

Claim 3.19. 1) If c is P-simple over ā, with ā ⊆ A ⊂ C, then wp(c, A) is finite.

2) The obvious implications.

Claim 3.20. 1) [Closures of the simple bs].

2) Assume p ∈ Sbs
s (ā,C). If b̄1, b̄2 are p-simple over A then

(a) b̄1ˆb̄2 is p-simple (of course, ortps(b̄2b̄2, ā,C) is not necessary in Sbs
s (ā,C)

even if ortps(b̄`, ā,C) ∈ Sbs
s (ā,C) for ` = 1, 2).

(b) Also, ortp(b̄2, āb1,C) is p-simple.

3) If b̄α is p-simple over ā for α < α∗ and π : β∗ → α∗ one to one and onto, then∑
α<α∗

gwp

(
bα, ā∗ ∪

⋃
`<α

bα
)

=
∑
β<β∗

gw
(
bπ(β), ā ∪

⋃
i<β

b̄π(i)

)
.

The following definition comes from [Shec, 6.9(1)=Lg29].

Definition 3.21. Assume p1, p2 ∈ Sbs(M). We say p1, p2 are weakly orthogonal
(and denote it p1⊥

wk
p2) when the following implication holds: if M0 ≤s M` ≤s M3,

(M0,M`, a`) ∈ K3,pr
s and ortps(a`,M0,M`) = p` for ` = 1, 2 then ortps(a2,M1,M3)

does not fork over M0. (this is symmetric by Ax.E(f).)

Claim 3.22. [s is equivalence-closed.]

Assume that p, q ∈ Sbs(M) are not weakly orthogonal (see 3.21). Then for some
ā ∈ ω>M we have that p, q are definable over ā (this works without being station-
ary) and for some ks-definable function F, for each c ∈ q(C), ortps(F(c, ā), ā,C) ∈
Sbs
s (ā,C) and is explicitly (p, n)-simple for some n. (If –e.g.– M is (λ, ∗)-brimmed,

then n = wp(q).)

Proof. We can find n and c1, b0, . . . , bn−1 ∈ C with c realizing q, b` realizing p,
{b`, c} not independent over M , and n maximal. Choose ā ∈ ω>M such that

ortps(〈c, b0, . . . , bn−1〉,M,C)

is definable over ā. Define Eā, an equivalence relation on q(C): c1 Eā c2 iff for
every b ∈ pC, we have “b is good over (a, c1)” ⇒ “b is good over (ā, c2).” By “s is
eq-closed,” we are done. �3.22
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Claim 3.23. 1) Assume p, q ∈ Sbs
s (M) are weakly orthogonal (see 3.21) but not

orthogonal. Then we can find ā ∈ ω>M over which p, q are definable and r1 ∈
Sbs
s (ā,C) such that (letting p1

..= p � ā, q1
..= q � ā, n ..= wp(q) ≥ 1) we have:28

~nā,p1,q1,r2 (a) p1, q1, r1 ∈ Sbs
s (ā), ā ∈ ω>C.

(b) p1, q1 are weakly orthogonal.

(c) If {a∗n : n < ω} ⊆ r1(C) is independent over ā and c realizes q then
for infinitely many m < ω there is b ∈ p(C) such that b is good over
(ā, a∗n) but not over (ā, a∗n, c).

(d) In (c) there really are n independent b0, . . . , bn−1 which are all good
over (ā, a∗n) but not over (ā, a∗n, c) (but we cannot find n+1 such b-s.).

2) If ~nā,p1,q1,r1 then (see Definition 3.18(3) for some definable function F, if c
realizes q1, c∗ = F (c, ā) and ortpn(c∗, ā,C) is (p1, n)-simple.

See proof below.

Claim 3.24. 0) Assuming A ⊆ C and a ∈ A, we say ortp(a,A,C) is finitary when
it is definable over A∪{a0, . . . , an−1} for some n, where each a` is in C and is good
over A inside C.

1) If a ∈ dcl
(⋃
{Ai : i < α} ∪ A,C

)
, ortp(a,A,C) is finitary, and {Ai : i < α} is

independent over A then for some finite u ⊆ α we have

a ∈ dcl
( ⋃
i∈u

Ai ∪A,C
)
.

2) If ortp(b, ā,C) is P-simple, then it is finitary.

3) If {Ai : i < α} is independent over A and a is finitary over A then for some
finite u ⊆ α (even |u| < wg(c, A)), {Ai : i ∈ α\u} is independent over (A,A∪{c}).
(Or use (A′, A′′), (A′, A′′ ∪ {c}).)

Definition 3.25. 1) dcl(A) = {a : f(a) = a for every automorphism f of C}.
2) dclfin(A) =

⋃
{dcl(B) : B ⊆ A finite}.

3) a is finitary over A if there are n < ω and c0, . . . , cn−1 ∈ good(A) such that
a ∈ dcl(A ∪ {c0, . . . , cn−1}).
4) For such A, let wg(a,A) be w(tp(a,A,C)) when well defined.

5) Strongly simple implies simple.

Claim 3.26. In Definition 3.18(3), for some m, k < ω large enough, for every
c ∈ q(C) there are b0, . . . , bm−1 ∈

⋃
`<n

p`(C) such that

c ∈ dcl
(
ā ∪ {a∗` : ` < k} ∪ {b` : ` < m}

)
.

Proof. Let M1,M2 ∈ Ks(brim) be such that M ≤s M1 ≤s M2, M1 is (λ, ∗)-brimmed

over M , p` ∈ Sbs
s (M`) a non-forking extension of p, q` ∈ Sbs

s (M`) is a non-forking

extension of q, c ∈ M2 realizes q1, and (M1,M2, c) ∈ K3,pr
s(brim). Let b` ∈ p1(M2)

for ` < n∗ ..= wp(q) be such that {b` : ` < n∗} is independent in (M1,M2); let
ā∗ ∈ ω>(M1) be such that ortps(〈c, b0, . . . , bn−1〉,M1,M2) is definable over ā∗ and
r = ortps(ā

∗,M1,M2), r+ = ortp(ā∗ˆ〈b0, . . . , bn−1〉,M,M2).
Let ā ∈ ω>M be such that ortps(ā

∗, 〈c, b0, . . . , bn−1〉,M,M2) is definable over
ā. As M1 is (λ, ∗)-saturated over M , there is {ā∗f : f < ω} ⊆ r(C) independent

28 We can say more concerning simple types.

Paper Sh:839, version 2025-05-24 2. See https://shelah.logic.at/papers/839/ for possible updates.



28 SAHARON SHELAH

in (M,M1). Moreover, letting a∗ω = ā∗, we have 〈a∗α : α ≤ ω〉 is independent
in (M,M1). Clearly ortps(cā

∗
n,M,M2) does not depend on n hence we can find〈

〈bα` : ` < n〉 : α ≤ ω
〉

such that bα` ∈ M2, bω` = b`, and {cā∗α, bα0 . . . bαn−1 : α ≤ ω}.
(As usual, this is because the index set is independent in (M1,M2).)

The rest should be clear. �3.23

Definition 3.27. Assume ā ∈ ω>C, n < ω, and p, q, r ∈ Sbs(M) are as in the
definition of p-simple[−] but p and q are weakly orthogonal (see e.g. Definition
3.21(1)). Let p be a definable related function such that for any āν` ∈ r(C), ` < k∗,
the independent mapping c 7→

{
b ∈ q(C) : RC |= R(b, c, ā∗` )

}
is a one-to-one

function from q(C) into{
〈J` : ` < k∗〉 : J` ⊆ p(C) is closed under dependence and has p-weight n∗

}
.

1) We can define E = Ep,q,r, a two-place relation over r(C): ā∗1 E ā∗2 iff ā1, ā2 ∈ r(C)
have the same projection common to p(C) and q(C).

2) Define the unitless group on r/E and its action on q(C).

* * *

Remark 3.28. 1) A major point: as q is p-simple, wp(−) acts “nicely” on p(C), so
if c1, c2, c3 ∈ q(C) then wp(〈c1, c2, c3〉ā) ≤ 3n∗. This enables us to define averages
using a finite sequence in a quite satisfying way. Alternatively, look more at averages
of independent sets.

2) Silly Groups: Concerning interpreting groups, note that in our present context,
for every definable set PM we can add the group of finite subsets of PM with
symmetric difference (as addition).

3) The axiomatization above has prototype s, where

Ks = {M : M a κ-saturated model of T},
≤s = ≺� Ks,

⋃
s

is non-forking, T a stable first order theory with κ(T ) ≤ cf(κ).

But we may prefer to formalize the pair (t, s) with s as above, Kt = models of T ,
≤t = ≺� Kt,

⋃
t

is non-forking.

From s we can reconstruct a t by closing ks under direct limits, but in interesting
cases we end up with a bigger t.

References

[LS06] Michael Chris Laskowski and Saharon Shelah, Decompositions of saturated models of
stable theories, Fund. Math. 191 (2006), no. 2, 95–124. MR 2231058

[LS11] , A trichotomy of countable, stable, unsuperstable theories, Trans. Amer. Math.

Soc. 363 (2011), no. 3, 1619–1629, arXiv: 0711.3043. MR 2737280
[LS15] , P-NDOP and P-decompositions of ℵε-saturated models of superstable theories,

Fund. Math. 229 (2015), no. 1, 47–81, arXiv: 1206.6028. MR 3312115
[Shea] Saharon Shelah, AEC for strictly stable III.
[Sheb] , AEC: weight and p-simplicity, arXiv: 2305.01970.
[Shec] , MODIFIED AECS FOR STRICTLY STABLE THEORIES, arXiv:

2305.02020.
[She78] , Classification theory and the number of nonisomorphic models, Studies in

Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co.,
Amsterdam-New York, 1978. MR 513226

[She90] , Classification theory and the number of nonisomorphic models, 2nd ed., Studies
in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co.,
Amsterdam, 1990, Revised edition of [Sh:a]. MR 1083551

Paper Sh:839, version 2025-05-24 2. See https://shelah.logic.at/papers/839/ for possible updates.

https://arxiv.org/abs/0711.3043
https://arxiv.org/abs/1206.6028
https://arxiv.org/abs/2305.01970
https://arxiv.org/abs/2305.02020
https://arxiv.org/abs/2305.02020


STABLE FRAMES AND WEIGHTS SH839 29

[She99] , Categoricity for abstract classes with amalgamation, Ann. Pure Appl. Logic 98

(1999), no. 1-3, 261–294, arXiv: math/9809197. MR 1696853

[She01] , Categoricity of an abstract elementary class in two successive cardinals, Israel
J. Math. 126 (2001), 29–128, arXiv: math/9805146. MR 1882033

[She04] , Characterizing an ℵε-saturated model of superstable NDOP theories by its
L∞,ℵε -theory, Israel J. Math. 140 (2004), 61–111, arXiv: math/9609215. MR 2054839

[She09a] , Abstract elementary classes near ℵ1, Classification theory for abstract elemen-

tary classes, Studies in Logic (London), vol. 18, College Publications, London, 2009,
arXiv: 0705.4137 Ch. I of [Sh:h], pp. vi+813.

[She09b] , Categoricity and solvability of A.E.C., quite highly, 2009, arXiv: 0808.3023 Ch.

IV of [Sh:h].
[She09c] , Categoricity in abstract elementary classes: going up inductively, 2009, arXiv:

math/0011215 Ch. II of [Sh:h].

[She09d] , Classification theory for abstract elementary classes, Studies in Logic (London),
vol. 18, College Publications, London, 2009. MR 2643267

[She09e] , Toward classification theory of good λ frames and abstract elementary classes,
2009, arXiv: math/0404272 Ch. III of [Sh:h].

[She09f] , Universal Classes: Axiomatic Framework [Sh:h], 2009, Ch. V (B) of [Sh:i].

[SV24] Saharon Shelah and Sebastien Vasey, Categoricity and multidimensional diagrams, J.
Eur. Math. Soc. (JEMS) 26 (2024), no. 7, 2301–2372, arXiv: 1805.06291. MR 4756567

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The He-

brew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathe-

matics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110
Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il

URL: http://shelah.logic.at

Paper Sh:839, version 2025-05-24 2. See https://shelah.logic.at/papers/839/ for possible updates.

https://arxiv.org/abs/math/9809197
https://arxiv.org/abs/math/9805146
https://arxiv.org/abs/math/9609215
https://arxiv.org/abs/0705.4137
https://arxiv.org/abs/0808.3023
https://arxiv.org/abs/math/0011215
https://arxiv.org/abs/math/0011215
https://arxiv.org/abs/math/0404272
https://arxiv.org/abs/1805.06291

	§ 0. Introduction
	§ 1. Weight and P-weight
	§ 2. Imaginary elements, an essential-(,)-AEC, and frames
	§ 2(A). Essentially AEC
	§ 2(B). Imaginary Elements and Smooth Equivalence Relations
	§ 2(C). Good Frames

	§ 3. P-simple types
	References

