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Abstract

Using creature technology, we construct families of Suslin ccc non-sweet forcing notions
Q such that ZF C is equiconsistent with ZF +”Every set of reals equals a Borel set

modulo the (≤ ℵ1)-closure of the null ideal associated with Q”+”There is an ω1-sequence
of distinct reals”. This answers a question of the second author and Kellner. As an
application of independent interest, we also show how our forcing adds a new Π1

2
singleton over L without relying on L-combinatorics.1

1. Introduction
Some history
The study of the consistency strength of regularity properties originated in Solovay’s
celebrated work [So2], where he proved the following result:
Theorem ([So2]): Suppose there is an inaccessible cardinal, then after forcing
(by Levy collapse) there is an inner model of ZF + DC where all sets of reals are
Lebesgue measurable and have the Baire property.
Following Solovay’s result, it was natural to ask whether the existence of an inac-
cessible cardinal is necessary for the above theorem. This problem was settled by
Shelah ([Sh176]) who proved the following theorems:
Theorem ([Sh176]): 1. If every Σ1

3 set of reals is Lebesgue measurable, then ℵ1
is inaccessible in L.
2. ZF + DC + ”all sets of reals have the Baire property” is equiconsistent with
ZFC.
A central concept in the proof of the second theorem is the amalgamation of forcing
notions, which allows the construction of a suitably homogeneous forcing notion,
thus allowing the use of an argument similar to the one used by Solovay, in which
we have “universal amalgamation” (for years it was a quite well known problem).
As the problem was that the countable chain condition is not necessarily preserved
by amalgamation, Shelah isolated a property known as “sweetness”, which implies
ccc and is preserved under amalgamation. See more on the history of the subject
in [RoSh672].
2. General regularity properties
Given an ideal I on the reals, we say that a set of reals X is I−measurable if
X∆B ∈ I for some Borel set B, this is a straightforward generalization of Lebesgue
measurability and the Baire property.
Given a definable forcing notion Q adding a generic real η

∼
(we may write Q instead

of (Q, η
∼

)) and a cardinal ℵ0 ≤ κ, there is a natural ideal on the reals IQ,κ associated

to (Q, κ) (see definition 18), such that, for example, ICohen,ℵ0 and IRandom,ℵ0 are
the meagre and null ideals, respectively. Hence in many cases the study of ideals on
the reals corresponds to the study of definable forcing notions adding a generic real.
On the study of ideals from the point of view of classical descriptive set theory, see
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[KeSo] and [So1]. For a forcing theoretic point of view, see [RoSh672]. Another
approach to the subject can be found in [Za].

We are now ready to formulate the first approximation for our general problem:

Problem: Classify the definable ccc forcing notions according to the consistency
strength of ZF + DC + ”all sets of reals are IQ,κ−measurable”.

Towards this we may ask: Given a definable ccc forcing notion Q, is it possible to get
a model where all sets of reals are IQ,κ−measurable without using an inaccessible
cardinal and for non-sweet forcing notions?

3. Saccharinity

A positive answer to the last question was given by Kellner and Shelah in [KrSh859]
for a proper non-ccc (very non-homogeneous) forcing notion Q, where the ideal is
IQ,ℵ1 .

In this paper we shall prove a similar result for a ccc forcing notion, omitting the
DC but getting an ω1-sequence of distinct reals. By [Sh176], the existence of such
sequence is inconsistent with the Lebesgue measurability of all sets of reals, hence
our forcing notions are, in a sense, closer to Cohen forcing than to Random real
forcing.

Our construction will involve the creature forcing techniques of [RoSh470] and
[RoSh628], and will result in definable forcing notions Qi

n which are non-homogeneous
in a strong sense: Given a finite-length iteration of the forcing, the only generic
reals are those given explicitly by the union of trunks of the conditions that belong
to the generic set.

The homogeneity will be achieved by iterating along a very homogeneous (thus
non-wellfounded) linear order. By moving to a model where all sets of reals are
definable from a finite sequence of generic reals, we shall obtain the consistency of
ZF + ”all sets of reals are IQi

n,ℵ1−measurable” + ”There exists an ω1-sequence of
distinct reals”.

It’s interesting to note that our model doesn’t satisfy ACℵ0 , thus leading to a finer
version of the problem presented earlier:

Problem: Classify the definable ccc forcing notions according to the consistency
strength of T + ”all sets of reals are IQ,κ−measurable” where T ∈ {ZF, ZF +
ACℵ0 , ZF + DC, ZF + DC(ℵ1), ZFC}, and similarly for T ′ = T + WOω1 where T
is as above and WOω1 is the statement ”There is an ω1-sequence of distinct reals”.

Remark: Note that for some choices of T , Q and κ, the above statement might be
inconsistent.

We intend to address this problem in [F1424] and other continuations.

4. On the special properties of Q2
n

We shall focus in this paper on two types of forcing notions, namely Q1
n and Q2

n.
In the years following the initial posting of this paper online, the forcing Q2

n was
popularized by [KST], where it was reintroduced under the name Ẽ and shown
to play an important role in the study of Cichon’s maximum. See [Me1] for a
systematic presentation and proofs that the forcing has strong FAM limits and
ultrafilter limits for intervals. Another attractive feature of Q2

n which we shall
investigate in the end of this paper is the fact that it provides a novel way to add
a Π1

2 singleton over L, without relying on L-combinatorics (which was crucial for
Jensen’s proof).
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A remark on notation: 1. Given a tree T ⊆ ω<ω and a node η ∈ T , we shall denote
by T [η≤] the subtree of T consisting of the nodes {ν : ν ≤ η ∨ η ≤ ν}.

2. For T as above, if η ∈ T is the trunk of T , let T + := {ν ∈ T : η ≤ ν}.

2. Norms, Q1
n and Q2

n

In this section we shall define a collection N of parameters. Each parameter n ∈ N
consists of a subtree with finite branching of ω<ω with a rapid growth of splitting
and a norm on the set of successors of each node in the tree.

From each parameter n ∈ N we shall define two forcing notions, Q1
n and Q2

n. We
shall prove that they’re nicely definable ccc. We will show additional nice properties
in the case of Q2

n, such as a certain compactness property and the fact that being
a maximal antichain is a Borel property. We refer the reader to [RoSh470] and
[RoSh628] for more information on creature forcing.

Definition 1: 1. A norm on a set A is a function assigning to each X ∈ P (A)\{∅}
a non-negative real number such that X1 ⊆ X2 → nor(X1) ≤ nor(X2).

2. Let M be the collection of pairs (Q, η
∼

) such that Q is a Suslin ccc forcing notion
and η

∼
is a Q-name of a real.

Definition 2: Let N be the set of tuples n = (T, nor, λ̄, µ̄) = (Tn, norn, λ̄n, µ̄n)
such that:

a. T is a subtree of ω<ω.

b. µ̄ = (µη : η ∈ T ) is a sequence of non-negative real numbers.

c. λ̄ = (λη : η ∈ T ) is a sequence of pairwise distinct non-zero natural numbers
such that:

1. λη = {m : η⌢m ∈ T}, so T ∩ ωn is finite and non-empty for every n.

2. If lg(η) = lg(ν) and η <lex ν then λη ≪ λν , where ”m ≪ k” means that "k
is much larger than m", for our purposes it suffices to require that m ≪ k ⇐⇒
ℶm ≤ k.

3. If lg(η) < lg(ν) then lg(η) ≪ λη ≪ λν .

4. lg(η) ≪ µη ≪ λη for η ∈ T .

d. For η ∈ T , norη is a function with domain P−(sucT (η)) = P(sucT (η)) \ ∅ and
range ⊆ R≥0 such that:

1. norη is a norm on sucT (η) (see definition 1).

2. (lg(η) + 1)2 ≤ µη ≤ norη(sucT (η)).

e. λ<η := Π{λν : λν < λη} ≪ µη.

f. (Co-Bigness) If k ∈ R+, ai ⊆ sucTn(η) for i < i(∗) ≤ µη and k + 1
µη

≤ norη(ai)
for every i < i(∗), then k ≤ norη( ∩

i<i(∗)
ai).

g. If 1 ≤ norη(a) then 1
2 < |a|

|sucTn (η)| .

h. If k + 1
µη

≤ norη(a) and ρ ∈ a, then k ≤ norη(a \ {ρ}).

Definition 3: A. For n ∈ N we shall define the forcing notions Q1
n ⊆ Q

1
2
n ⊆ Q0

n as
follows:

1. p ∈ Q0
n iff for some tr(p) ∈ Tn we have:
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a. p or Tp is a subtree of T
[tr(p)≤]
n (so it’s closed under initial segments) with no

maximal node.

b. For η ∈ lim(Tp), lim(norη↾l(sucTp
(η ↾ l)) : lg(tr(p)) ≤ l < ω) = ∞.

c. 2 − 1
µtr(p)

≤ nor(p) (where nor(p) is defined in C(b) below).

2. p ∈ Q
1
2
n if p ∈ Q0

n and norη(Sucp(η)) > 2 for every tr(p) ≤ η ∈ Tp.

We shall prove later that Q
1
2
n is dense in Q0

n.

3. p ∈ Q1
n if p ∈ Q0

n and for every n < ω, there exists kp(n) = k(n) > lg(tr(p))
such that for every η ∈ Tp, if k(n) ≤ lg(η) then n ≤ norη(Sucp(η)).

B. Qi
n |= p ≤ q (i ∈ {0, 1

2 , 1}) iff Tq ⊆ Tp.

C. a. For i ∈ {0, 1
2 , 1}, ηi

n
∼

is the Qi
n−name for ∪{tr(p) : p ∈ GQi

n
∼

}.

b. For i ∈ {0, 1
2 , 1} and p ∈ Q let nor(p) := sup{a ∈ R>0 : η ∈ T +

p → a ≤
norη(sucTp

(η))} = inf{norη(sucTp
(η)) : η ∈ Tp}.

D. For i ∈ {0, 1
2 , 1} let mi

n = mi,n = (Qi
n, ηi

n
∼

).

We shall now describe a concrete construction of some n ∈ N:

Definition 4: We say n ∈ N is special when:

a. For each η ∈ Tn the norm norη is defined as follows: for ∅ ≠ a ⊆ sucT (η),
norη(a) = log∗(|sucT (η)|)

µ2
η

− log∗|sucT (η)\a|
µ2

η
where log∗(x) = max{n : ℶn ≤ x} (where

ℶ0 = 1 and ℶn+1 = 2ℶn).

b. µη = norη(suctn(η)).

Observation 4A: There are Tn, (λη, µη : η ∈ Tn) and (norη : η ∈ Tn) satisfying
the requirements of definition 2, where the norm is defined as in definition 4 (hence
n ∈ N is special).

Proof: It’s easy to check that the following (Tn, (µη, λη : η ∈ Tn)) together with the
norm from definition 4 form a special n ∈ N where Tn ∩ ωn, (µη, λη : η ∈ Tn ∩ ωn)
are defined by induction on n < ω as follows:

a. Tn ∩ ω0 = {<>}.

b. At stage n+1, for η ∈ Tn ∩ωn, by induction according to <lex, define µη = ℶλ<η ,
λη = ℶµη

3 and the set of successors of η in Tn is defined as {η⌢(l) : l < λη}.

For example, we shall prove the co-bigness property:

Suppose that η ∈ Tn (ai : i < i(∗)) are as in definition 2(f). Denote k1 = |sucTn(η)|
and k2 = max{|sucTn(η) \ (ai)| : i < i(∗)}. Therefore, log∗(k1)

µ2
n

− log∗(k2)
µ2

n
≤ norη(ai)

(so necessarily k+ 1
µη

≤ log∗(k1)
µ2

n
− log∗(k2)

µ2
n

). Let a = ∪
i<i(∗)

ai and k3 = |sucTn(η)\a| ≤

i(∗)k2 ≤ µηk2. Therefore log∗(k1)
µ2

η
− log∗(µηk2)

µ2
n

≤ log∗(k1)
µ2

η
− log∗(k3)

µ2
η

= norη(a). We

have to show that k ≤ norη(a), so it’s enough to show that k ≤ log∗(k1)
µ2

η
− log∗(µηk2)

µ2
n

.

Recalling that k + 1
µη

≤ log∗(k1)
µ2

η
− log∗(k2)

µ2
η

, it’s enough to show that log∗(µηk2)
µ2

η
−

log∗(k2)
µ2

η
≤ 1

µη
.

Case 1: k2 ≤ µη. In this case, it’s enough to show that log∗(µηk2) − log∗(k2) ≤ µη,
and indeed, log∗(µηk2) − log∗(k2) ≤ log∗(µ2

η) ≤ µη.
4
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Case 2: µη < k2. By the properties of log∗, log∗(k2) ≤ log∗(µηk2) ≤ log∗(k2
2) ≤

log∗(k2) + 1, therefore log∗(µηk2)
µ2

η
− log∗(k2)

µ2
η

≤ 1
µη

.

□

Definition 5: For n ∈ N we define m = m2
n = (Q2

n, η2
n

∼
) by:

A) p ∈ Q2
n iff p consists of a trunk tr(p) ∈ Tn, a perfect subtree Tp ⊆ T

[tr(p)≤]
n and

a natural number n ∈ [1, lg(tr(p)) + 1] such that 1 + 1
n ≤ norη(sucTp(η)) for every

η ∈ T +
p .

B) Order: reverse inclusion.
C) η2

n
∼

= ∪{tr(p) : p ∈ GQ2
n

∼
}.

D) If p ∈ Q2
n we let nor(p) = min{n : η ∈ Tp → 1 + 1

n ≤ norη(sucp(η))}.

Claim 6: Qi
n |= ccc for i ∈ {0, 1

2 , 1, 2}.

Proof : First we shall prove the claim for Qi
n where i ∈ {0, 1

2 , 1}. Observe that if
p ∈ Qi

n and 0 < k < ω, then there is p ≤ q ∈ Qi
n such that norη(Sucq(η)) > k for

every η ∈ T +
q . The statement is trivial for i = 1, so suppose that i ∈ {0, 1

2 }. In order
to prove this fact, let Y = {η ∈ Tp :for every η ≤ ν ∈ Tp, norν(SucTp

(ν)) > k},
then Y is dense in Tp (suppose otherwise, then we can construct a strictly increasing
sequence of memebrs ηi ∈ Tp such that norηi(SucTp(ηi)) ≤ k, so ∪

i<ω
ηi ∈ lim(Tp)

contradicts the definition of Qi
n). Now pick tr(p) ≤ η ∈ Y , then q = p[η≤] is as

required. It also follows that from this claim that Q
1
2
n is dense in Q0

n.
Now suppose towards contradiction that {pα : α < ℵ1} ⊆ Qi

n is an antichain, for
every α, there is pα ≤ qα such that norη(Sucqα

(η)) > 2 for every η ∈ qα. For some
uncountable S ⊆ ℵ1, tr(qα) = η∗ for every α ∈ S. By the claim below, qα, qβ are
compatible for α, β ∈ S, contradicting our assumption.
As for Q2

n, given I = {pi : i < ℵ1} ⊆ Q2
n (Q1

n), the set {(tr(p), nor(p)) : p ∈ I}
is countable, hence there is p∗ ∈ I such that for uncountably many pi ∈ I we
have (tr(pi), nor(pi)) = (tr(p∗), nor(p∗)). By the claim below, those pi are pairwise
compatible.

□

Remark: The above argument actually gives σ-linkedness, though this is not used
in the paper.
Claim 7: 1) p, q ∈ Q2

n are compatible in Q2
n iff tr(p) ≤ tr(q) ∈ Tp or tr(q) ≤

tr(p) ∈ Tq.
2) Similarly, p, q ∈ Qi

n are compatible in Qi
n for i ∈ {0, 1

2 , 1} iff tr(p) ≤ tr(q) ∈
Tp ∨ tr(q) ≤ tr(p) ∈ Tq.
Proof : In both clauses, the implication → is obvious, we shall prove the other
direction.
1) First observe that if p ∈ Q2

n and ν ∈ Tp, then p[ν] ∈ Q2
n and p ≤ p[ν] (where p[ν]

is the set of nodes in p comparable with ν).
□1 If tr(p) ≤ tr(q) ∈ Tp then Tp ∩ Tq has arbitrarily long sequences.

Proof: Let η = tr(q), then by the definition of the norm and Q2
n, 1

2 <
|sucTp (η)|
|sucTn (η)| ,

|sucTq η|
|sucTn (η)| .

Hence there is ν ∈ sucTp
(η) ∩ sucTq

(η). Repeating the same argument, we get se-
quences in Tp ∩ Tq of length n for every n large enough.
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□2 Claim: If tr(p1) = tr(p2) = η, p1, p2 ∈ Q2
n, min{nor(p1), nor(p2)} ≤ h and

h < lg(η), then p1 and p2 are compatible.
Proof: For every ν ∈ Tp1∩Tp2 , by the co-bigness property, min{norν(sucp1(ν)), sucp2(ν)}−
1

µν
≤ nor(sucp1(ν)∩sucp2(ν)). By the definition of nor(pi) (recalling that lg(η)2 ≤

µη), 1 + 1
h+1 ≤ (1 + 1

h+1 ) + ( 1
(h+1)2 − 1

µη
) ≤ (1 + 1

h+1 ) + ( 1
h − 1

h+1 − 1
µν

) =
1 + 1

h − 1
µν

≤ min{nor(p1), nor(p2)} − 1
µν

≤ min{norν(sucp1(ν)), sucp2(ν)} − 1
µν

.
Therefore 1 + 1

h+1 ≤ nor(sucp1(ν) ∩ sucp2(ν)), so p1 ∩ p2 is as required. Hence:
□3 p and q are compatible.
Proof: Suppose WLOG that tr(p) ≤ tr(q) ∈ Tp and pick h such that 1 + 1

h ≤
nor(p), nor(q). By □1, there is η ∈ Tp ∩ Tq such that h < lg(η). Now p ≤ p[η], q ≤
q[η] and (p[η], q[η]) satisfy the assumptions of □2, therefore they’re compatible and
so are p and q.
The proof is similar if tr(q) ≤ tr(p) ∈ Tq. The implication in the other direction is
easy.
2) The proof is similar. First observe that if η ∈ lim(Tp)∩lim(Tq), then lim(norη↾l(sucTp(η ↾
l)) : l < ω) = ∞ = lim(norη↾l(sucTq

(η ↾ l)) : l < ω), so by the co-bigness
property (definition 2(f)), lim(norη↾l(sucTp∩q

(η ↾ l)) : l < ω) = ∞. Now let
ν = tr(q) ∈ Tp ∩ Tq, as 2 − 1

µtr(p)
≤ nor(p), nor(q), it follows from the co-bigness

property and definition 2(g) that ν ≤ η ∈ Tp∩Tq → 2 < |Sucp∩q(η)|, so p∩q is a per-
fect tree. It’s easy to see that there exists η ∈ p ∩ q such that norν(Sucp∩q(ν)) > 2
for every η ≤ ν ∈ p ∩ q (otherwise, we can repeart the argument in the proof of
claim 6, and get a branch through p ∩ q along which the norm doesn’t tend to
infinity). Therefore, p[≤η] ∩ q[≤η] ∈ Qi

n (i ∈ {0, 1
2 }) is a common upper bound.

Finally, note that if i = 1, then for every n < ω there exist kp(n + 1), kq(n + 1)
as in definition 3.3. By the co-bigness property, for every η ∈ Tp ∩ Tq of length
> max{kp(n + 1), kq(n + 1)}, n ≤ norη(Sucp∩q(η)). Therefore, the common upper
bound is in Q1

n as well.

□

Claim 8: Let I ⊆ Q2
n be an antichain and A = ∪{T +

q : q ∈ I} ⊆ Tn. The following
conditions are equivalent:
(a) I is a maximal antichain.
(b) If η ∈ Tn and 0 < n < ω then there is no p ∈ Q2

n such that:
(α) tr(p) = η.
(β) nor(p) = n.
(γ) p is incompatible with every q ∈ I.
(c) Like (b), but replcaing (γ) by
(γ)′ T +

p ∩ A = ∅.
(d) Like (b), but replcaing (γ) by
(γ)′′ For every m > n T +

p ∩ A is disjoint to {ν ∈ Tn : lg(ν) ≤ m}.
(e) If η ∈ Tn and n < ω then for some m > n there is no set T such that:
(α) T ⊆ Tn.
(β) η ∈ T .
(γ) If ν ∈ T + then η ≤ ν and lg(ν) ≤ m.
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(δ) If η ≤ ν1 ≤ ν2 and ν2 ∈ T then ν1 ∈ T .

(ϵ) T ∩ A = ∅.

(ζ) If ν ∈ T and lg(ν) < m then 1 + 1
n ≤ norν(sucT (ν)).

Proof : ¬(a) → ¬(b) : If p is incompatible with every q ∈ I then (p, tr(p), nor(p))
is a counterexample to (b).

¬(b) → ¬(c) : If (p, tr(p), nor(p)) is a counterexample to (b), then it is a counterex-
ample to (c) by the characterisation of compatibility in Q2

n in claim 7.

¬(c) → ¬(d) : Obvious.

¬(d) → ¬(e): Let T = Tp with p being a counter example to (d) and let η = tr(p), n
witness ¬(d). We shall check that for every m > n, {ν : tr(p) ≤ ν ∈ T ∧ lg(ν) ≤ m}
satisfies (α) − (ζ) if (e).

¬(e) → ¬(a) : If (η, n) is a counterexample, then for every m there is Tm satisfying
(α) − (ζ) of clause (e). Let D be a non-principal ultrafilter on ω and define T :=
{ν ∈ Tn : ν ≤ η or {m : m > n, ν ∈ Tm} ∈ D}. It remains to show that T ∈ Q2

n
(as T + is disjoint to A, it follows that I is not a maximal antichain). The proof is
similar to claim 12.

□

Claim 9: Let n ∈ N.

A) The sets Q1
n and Q2

n are Borel, the sets Q0
n and Q

1
2
n are Π1

1.

B) The relation ≤Qi
n

is Borel for i ∈ {0, 1
2 , 1, 2}.

C) The incompatibility relation in Qi
n is Borel for i ∈ {0, 1

2 , 1, 2}.

Proof:

A. The sets Q1
n and Q2

n are Borel: We shall first prove the claim for Q1
n.

Consider Tn as a subset of H(ℵ0). By definition, if p ∈ Q1
n then Tp ⊆ Tn ⊆ H(ℵ0).

Hence S := {p ⊆ H(ℵ0) : p is a perfect subtree of Tn} ⊆ P (H(ℵ0)) is a Borel
subset of P (H(ℵ0)). For every n, k < ω define S1

n,k = {p ∈ S : lg(tr(p)) < k

and if ρ ∈ Tp and k ≤ lg(ρ) then n ≤ norρ(sucp(ρ))}. Each S1
n,k is closed, hence

S ∩ (∩
n

∪
k

S1
n,k) is Borel, so it’s enough to show that p ∈ Q1

n iff p ∈ S ∩ (∩
n

∪
k

S1
n,k)

and 2 − 1
µtr(p)

≤ nor(p), which follows directly from the definition of Q1
n.

In the case of Q2
n, we replace ∩

n
∪
k

S1
n,k with ∪

n,k
S2

n,k where S2
n,k = {p ∈ S : lg(tr(p)) =

n ∧ nor(p) = k}. Each S2
n,k is Borel and since “being a perfect subtree” is Borel,

Q2
n is Borel.

The sets Q0
n and Q

1
2
n are Π1

1: The demand “lim
n<ω

(norη↾n(Sucp(η ↾ n))) = ∞ for
every η ∈ lim(Tp)” is Π1

1,and it’s easy to see that {p ∈ S : tr(p) ≤ η ∈ Tp →
norη(SucTp

(η)) > 2} is Borel.

B. The relation ≤Qi
n

is Borel for i ∈ {0, 1
2 , 1, 2}: For i ∈ {0, 1

2 , 1, 2}, the relation
≤Qi

n
is simply the reverse inclusion relation restricted to Qi

n, hence it is Borel.

C. The incompatibility relation in Qi
n is Borel for {0, 1

2 , 1, 2}: The incom-
patibility relation is Borel by claim 7.

□
7
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Claim 10: A) Assume that pl ∈ Qi
n (l < n) where i ∈ {0, 1}, ∧

l<n
tr(pl) = ρ,

n ≤ lg(ρ) and for every η ∈ p+
l we have 2 ≤ k+1 ≤ norη(sucpl

(η)), then {pl : l < n}
have a common upper bound p such that tr(p) = ρ and k ≤ norη(sucp(η)) for every
η ∈ T +

p .

B) Assume that pl ∈ Q2
n (l < n), ∧

l<n
tr(pl) = ρ, n ≤ lg(ρ) and for every η ∈ p+

l

(l < n) we have 1 + 1
k ≤ norη(sucpl

(η)). In addition, assume that k ≤ lg(ρ) and
k(k + 1) ≤ µη for every η ∈ p+

l (l < n), then {pl : l < n} have a common upper
bound p such that tr(p) = ρ and 1 + 1

k+1 ≤ norη(sucp(η)).

Proof : A) Suppose first that i = 0. Let p = ∩
l<n

pl, then p ⊆ T
[ρ≤]
n is a subtree

conatining ρ. If ν ∈ p then ν ∈ pl for every l < n, hence Sucp(ν) = ∩
l<n

Sucpl
(ν).

As n ≤ lg(ρ) ≤ µη for every ρ ≤ η ∈ p, it follows from the properties of the norm in
the definition of n ∈ N that k ≤ norη(Sucp(η)). Therefore, Tp is a prefect tree, and
similarly to the proof of claim 7, it follows that the norm along infinite branches
tends to infinity, hence p ∈ Q0

n. Suppose now that i = 1. The above arguments are
still valid, and in addition, similarly to the argument on Q1

n in th proof of claim
7(2), it’s easy to see that by the co-bigness property, p ∈ Q1

n.
Remark: Note that as 2 ≤ k+1, it follows from the above arguments that 2− 1

µtr(p)
≤

norη(SucTp
(η)) for every tr(p) ≤ η ∈ Tp. In fact, k + 1 − 1

µρ
≤ norη(SucTp

(η)),
therefore, if 2 < k + 1 − 1

µρ
then we also get the claim for i = 1

2 .

B) The proof is similar, the only difference is that now we have to prove the following
assertion:
(∗) If bl ⊆ sucTn(η) for l < n ≤ µη, ∧

l<n
1 + 1

k ≤ norη(bl) and b = ∩
l<n

bl then

1 + 1
k+1 ≤ norη(b).

The assertion follows from the co-bigness property (definition 2(f), with bi and
1 + 1

k − 1
µη

here standing for ai and k there).

□

Claim 11: Let n ∈ N. ”{pn : n < ω} is a maximal antichain” is Borel for
{pn : n < ω} ⊆ Q2

n.
Proof : By claim 8.

□

Claim 12: Assume {pn : n < ω} ⊆ Q2
n, ∧

n
tr(pn) = η and ∧

n
nor(pn) = k. Then

there is p∗ ∈ Q2
n such that:

(a) tr(p∗) = η, nor(p∗) = k.
(b) p∗ ⊩Q2

n
”(∃∞n)(pn ∈ GQ2

n
)”.

Proof : Let D be a uniform ultrafilter on ω and define Tp∗ := {ν ∈ Tn : {n : ν ∈
pn} ∈ D}. If ν ∈ Tp∗ , then for some n, ν ∈ Tpn

⊆ T
[η≤]
n (recalling that tr(pn) = η),

hence Tp∗ ⊆ T
[η≤]
n . Obviously, l ≤ lg(η) → η ↾ l ∈ Tp∗ as η = tr(pn) ∈ pn for every

n.
(∗)1 If η ◁ ν ◁ ρ and ρ ∈ Tp∗ , then ν ∈ Tp∗ .
Why? Define Aρ = {n : ρ ∈ pn} and define Aν similarly. Aρ ∈ D by the definition
of Tp∗ . Obviously Aρ ⊆ Aν , hence Aν ∈ D and ν ∈ Tp∗ .
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(∗)2 If ν ∈ Tp∗ then 1 + 1
k ≤ norν(sucp∗(ν)).

Why? Define Aν as above, so Aν ∈ D. Let (bl : l < l(∗)) list {sucpn
(ν) : n < ω}.

As {sucpn
(ν) : n < ω} ⊆ P (sucTn(ν)), we have l(∗) ≤ 2|sucTn (ν)| = 2λν < ℵ0. For

l < l(∗) let Aν,l := {n ∈ Aν : sucpn(ν) = bl}. Obviously this is a finite partition
of Aν , hence there is exactly one m < l(∗) such that Aν,m ∈ D and therefore
bm ⊆ sucp∗(ν) and actually bm = sucp∗(ν) (if η ∈ sucp∗(ν) is witnessed by X ∈ D,
then X ∩ Aν,m is a witness for η ∈ bm). Therefore norν(bm) = norν(sucp∗(ν)) and
for some n we have 1 + 1

k = 1 + 1
nor(pn) ≤ norν(sucpn(ν)) = norν(sucp∗(ν)).

It follows from the above arguments that p∗ ∈ Q2
n.

We shall now prove that
(∗)3p∗ ⊩Q2

n
”(∃∞n)(pn ∈ GQ2

n
)”.

Why? Suppose that p∗ ≤ q, then tr(q) ∈ Tp∗ . By the definition of p∗, {n : tr(q) ∈
pn} ∈ D. For every such pn, η = tr(pn) ≤ tr(q) ∈ Tpn

, so pn is compatible with q
and hence with p∗.

□

Claim 12’: For ι ∈ {0, 1
2 , 1, 2}, ηι

n
∼

is a generic for Qι
n, i.e. ⊩Qι

n
”V [GQι

n
∼

] = V [ηι
n

∼
]”.

Proof: Easy.

□

3. The iteration
In this section we shall describe our iteration. Although our definition will be
general and will follow the technique of iteration along templates as described in
[Sh700], we will eventually use a simple private case of the general construction (see
also [Br] and [Me2]). In our case, we’ll have a non-wellfounded linear order L, and
the forcing will be the union of finite-length iterations along subsets of L. Dealing
with FS-iterations of Suslin forcing will guarantee that the union is well-behaved.
Iteration parameters
The purpose of Definitions 12 and 13 is to show how our construction fits as a special
case in the broader context of the second author’s general method of iterations along
templates. However, we shall only use the private case of Definition 13(A), and so
a reader who only wants to understand the main results in this paper may focus
on Definition 13(A).
Definition 12: Let Q be the class of q (iteration parameters) consisting of:
a. A partial order Lq = L[q].
b. ū0 = (u0

t : t ∈ Lq) such that u0
t ⊆ L<t for each t ∈ Lq (and u0

t is well-ordered
by (d)). In the main case |u0

t | ≤ ℵ0 (in our application, u0
t is actually empty).

c. I = (It : t ∈ Lq) such that each It is an ideal on L<t and u0
t ∈ It. In the main

case here, It = {u ⊆ L<t : u is finite}.
d. L is a directed family of well-founded subsets of Lq closed under initial segments
such that ∪

L∈L
L = Lq and t ∈ L → u0

t ⊆ L (for L ∈ L).

e. (mt : t ∈ Lq) is a sequence such that each mt is a definition of a Suslin ccc forcing
notion Qi

mt
with a generic ηmt

∼
(depending on a formula using Bt(..., ηs, ...)s∈u0

t
, see

f+g and definition 13).
9
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f. Actually, mt = mt,ν
∼t

where νt
∼

= Bt(η̄ ↾ u0
t ) is a name of a real and Bt is a

Borel function (see definition 13(E) below), i.e. mt is computed from the parameter
νt
∼

∈ ωω.

g. For every t ∈ Lq, Bt : Π
i∈u0

t

ωω → ωω is an absolute Borel function.

h. For a linear order L, let L+ := L ∪ {∞} which is obtained by adding an element
above all elements of L.
The iteration
Definition and claim 13: For i ∈ {1, 2}, q ∈ Q and L ∈ L we shall define the FS
iteration Q̄L = (PL

t ,QL
t

∼
: t ∈ L+) with limit PL and the PL

t = PL,<t-names ηt
∼

, νt
∼

by

induction on dp(L) (where dp(L) is the depth of L, recalling that L is well-founded)
such that:
A. a) PL is a forcing notion.
b) ηt

∼
is a PL name when u0

t ∪ {t} ⊆ L ∈ L (so we use a maximal antichain from

PL, moreover, from PL1 for every L1 ∈ L which is ⊆ L).
c) νt

∼
is a PL name when u0

t ⊆ L ∈ L.

d) If L1, L2 ∈ L are linearly ordered, L1 ⊆ L2 and each It has the form {L ⊆ L<t : L
is well-ordered}, then PL1 ⋖ PL2 .
B. p ∈ PL

t iff
a. Dom(p) ⊆ L<t is finite.
b. If s ∈ Dom(p) then for some u ∈ Is ∩ P(L<s) and a Borel function B, p(s) =
B(..., ηr

∼
, ...)r∈u and ⊩PL

s
”p(s) ∈ Qi

ms
”.

C. QL
t

∼
is the PL

t -name of Qi
mt

using the parameter νt
∼

.

D. η̄ = (ηt
∼

: t ∈ Lq). Each ηt
∼

is defined as the generic of QL
t (by a maximal

antichain of PL whenever L ∈ L and u0
t ⊆ L ⊆ L<t), meaning: t ∈ L ∈ L →⊩ ”ηt

∼
is a generic for Qt

∼
” defined as usual.

E. ν̄ = (νt
∼

: t ∈ Lq) such that for each t ∈ Lq, Bt is a Borel function and

νt
∼

= Bt(η̄ ↾ u0
t ).

F. The order on PL is defined naturally.
Proof: Should be clear.

□

13(A) A special case of the general construction
Of special interest here is the case where q ∈ Q satisfies:
a. Lq is a dense linear order, It = [L<t]<ℵ0 for each t ∈ Lq and L = [Lq]<ℵ0 .
b. mt is a definition of Qi

nt
where i ∈ {1, 2} (hence a Suslin c.c.c. forcing), not

using a name of the form νt
∼

.

c. mt ∈ V and u0
t = ∅ for every t ∈ Lq.

13(B) We shall denote the collection of q ∈ Q as above by Qsp.
10
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13(C) Hypothesis: From now on we assume that q ∈ Q satisfies the requirements
of 13(A).

Definition/Observation 14: Let q ∈ Q.

1. {PJ : J ⊆ Lq is finite} is a ⋖-directed set of forcing notions.

2. For J ⊆ Lq, let PJ = ∪{PJ′ : J ′ ⊆ J is finite} and Pq = PLq .

Proof : (1) follows by [JuSh292].

□

Claim 15: 1) For every J1 ⊆ J2 ⊆ Lq, PJ1 ⋖ PJ2 .

2) If J ⊆ Lq then PJ = Pq,J = ∪{PI : I ⊆ J is finite} ⋖ Pq.

Proof: 1) Case 1: |J2| < ℵ0. Easy by [JuSh292].

Case 2: J2 is inifinite. Let q ∈ PJ2 , then for some finite J∗
2 ⊆ J2, q ∈ PJ∗

2
. Let

J∗
1 = J1 ∩ J∗

2 . As PJ∗
1
⋖ PJ∗

2
by observation 14(1), there is p ∈ PJ∗

1
such that

p ≤ p′ ∈ PJ∗
1

→ p′ and q are compatible. It suffices to prove that if J ′
1 ⊆ J1 is

finite and J∗
1 ⊆ J ′

1, then p ≤ p′ ∈ PJ′
1

→ p′ and q are compatible in PJ∗
2 ∪J′

1
(as if

p ≤ p′ ∈ PJ1 , then p′ ∈ PJ′
1

where J ′
1 = J∗

1 ∪ Dom(p′)). We prove this by induction
on sup{|L<t ∩ J∗

1 | : t ∈ J ′
1 \ J∗

1 } as in [JuSh292].

2) By (1).

Observation 16: Suppose that q ∈ Q, J ∈ L is finite and p1, p2 ∈ PJ . If
tr(p1(t)) = tr(p2(t)) for every t ∈ Dom(p1) ∩ Dom(p2), then p1 and p2 are compat-
ible.

Proof : By induction on |J |. The induction step is a corollary of the compatibility
condition for Q2

n (see claim 7).

□

Claim 17: For q ∈ Q, Pq |= ccc.

Proof: Suppose that {pα : α < ℵ1} ⊆ Pq. For each α < ℵ1 there is a finite Jα ⊆ Lq
such that pα ∈ PJα

. Hence there is n∗ ∈ N such that |{pα : |Jα| = n∗}| = ℵ1. For
each α denote Jα = {tα,0 < ... < tα,nα−1}, by cardinallity arguments i.e. the ∆-
system lemma, WLOG there is u ⊆ n∗ such that tα,l = tl for every α < ℵ1 and
(tα,l : l ∈ n∗ \ u, α < ℵ1) is without repetitions. As every condition pα ∈ PJα

belongs to an iteration along Jα in the usual sense, there is pα ≤ p′
α ∈ PJα such

that tr(p′
α(t)) is an object for every t ∈ Jα (so Jα = Dom(p′

α)). Given l ∈ u there
are countably many possible values for tr(pα(tl)), hence there is a set I = {pαi

:
i < i(∗)} ⊆ {pα : α < ℵ1} of cardinality ℵ1 such that tr(pαi

(tl)) is constant for all
i < i(∗). If i < j < i(∗), then Ji,j := Jαi

∪ Jαj
⊆ Lq is finite, pαi

∈ PJαi
⋖ PJi,j

and pαj
∈ PJαj

⋖ PJi,j
, so pαi

and pαj
are compatible in PJi,j

(hence in Pq) by
observation 16.

□

4. The ideals derived from a forcing notion Q
We shall now define the ideals derived from a Suslin forcing notion Q and a name
η
∼

of a real.
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Definition 18: 1. Let Q be a forcing notion such that each p ∈ Q is a perfect
subtree of ω<ω, p ≤Q q iff q ⊆ p and the generic real is given by the union of trunks
of conditions that belong to the generic set, that is η

∼
= ∪

p∈G
∼

tr(p) and ⊩Q ”η
∼

∈ ωω”.

Let ℵ0 ≤ κ, the ideal I0
Q,κ will be defined as the closure under unions of size ≤ κ of

sets of the form {X ⊆ ωω : (∀p ∈ Q)(∃q ≥ p)(lim(q) ∩ X = ∅)}.2

2. For Q as above, we let IQ,<ℵ0 be the set {X ⊆ ωω : (∀p ∈ Q)(∃q ≥ p)(lim(q) ∩
X = ∅)}.
3. For (Q, η

∼
) and κ as in (1), we shall denote I0

Q,κ by IQ,κ.

4. Let I be an ideal on the reals, a set of reals X is called I-measurable if there
exists a Borel set B such that X∆B ∈ I.
5. A set of reals X will be called (Q, κ)-measurable if it is IQ,κ-measurable.
6. Given a model V of ZF , we say that (Q, κ)-measurability holds in V if every set
of reals in V is (Q, κ)-measurable and IQ,κ is a non-trivial ideal.
Remark: In [F1424] we shall further investigate the above ideals.

5. Cohen reals
An important feature of Qι

n is the fact that it adds a Cohen real. This fact will be
later used to show that Qι

n can turn the ground model reals into a null set with
respect to the relevant ideal.
Claim 19: Forcing with Qι

n (i ∈ {0, 1
2 , 1, 2}) adds a Cohen real.

Proof : For every η ∈ Tn let gη : sucTn(η) → {0, 1} be a function such that
|g−1

η {l}| >
λη

2 − 1 (l = 0, 1) (recall that λη = |sucTn(η)|). Define a Qι
n-name ν

∼
by

ν
∼

(n) = gηι
n

∼
↾n(ηι

n
∼

↾ (n + 1)) (recalling ηι
n

∼
is the generic). Clearly, ⊩Qι

n
”ν

∼
∈ 2ω”. We

shall prove that it’s forced to be Cohen.
(∗) If p ∈ Qι

n and i = 1 → 2 ≤ norρ(sucp(ρ)) for every ρ ∈ Tp, then for every
η ∈ 2ω, for some ρ ∈ Tp, lg(ρ) = lg(tr(p)) + m and if lg(tr(p)) ≤ i < tr(p) + m then
p[ρ] ⊩ ”ν

∼
(i) = η(i)”.

We prove it by induction on m. For m = 1, as |sucTn(tr(p)) \ sucp(tr(p))| <
|sucTn (tr(p))|

2 − 1 (by clause (g) of definition 2) and for every i ∈ {0, 1} we have
|g−1

tr(p){i}| >
λtr(p)

2 −1, hence there are ρ0, ρ1 ∈ sucp(tr(p))\{ρ} such that gtr(p)(ρ0) =
0, gtr(p)(ρ1) = 1 and by the definition of ν

∼
, p[ρ0] ⊩ ”ν

∼
(tr(p) + 1) = 0” and

p[ρ1] ⊩ ”ν
∼

(tr(p) + 1) = 1”. Suppose that we proved the theorem for m, then
for some ρ ∈ Tp of length lg(tr(p)) + m the conclusion holds. Now repeat the
argument of the first step of the induction for p[≤ρ] to obtain ρ ≤ ρ′ of length
lg(tr(p)) + m + 1 as required.
By (∗), ν

∼
is forced to lie in every open dense set, hence it’s Cohen.

□

2The above definition has the following variant in the literature, which will not be used in this
paper: Let m = (Q, η

∼
) where η

∼
is a Q-name of a real, the ideal I1

m,κ for ℵ0 ≤ κ will be defined

as follows:
A ∈ I1

m,κ iff there exists X ⊆ κ such that A ∩ {η
∼

[G] : G ⊆ QL[X] is generic over L[X]} = ∅.
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Although the following result will not be used in the rest of the paper, it exhibits
a natural property of the forcings that is of independent interest.
Claim 20: If A) then B) where
A) (a) pi ∈ Qι

n for i < m.
(b) tr(pi) = ρ for i < m.
(c) If ι ∈ {0, 1} then 2 ≤ nor(pi) for every i < m.
(d) If ι = 2 then 2 ≤ nor(pi) for every i < m.
(e) lg(ρ) < m∗ < m.
(f) There is ρ < η ∈ Tn such that λ<η ≤ m∗ < m ≤ µη (for example, it follows
from the assumption m ≤ µη ⇐⇒ m∗ ≤ λ≤η).
B) There is an equivalence relation E on {0, 1, ..., m − 1} with ≤ m∗ equivalence
classes such that if i < m then {pj : j ∈ (i/E)} has a common upper bound.

Proof : Let η ∈ T
[ρ≤]
n be as in clause (f). Let k∗ = lg(η) and define λn,k := Π{λν :

ν ∈ Tn, lg(ν) < k}, Tn,ρ,k := {ν ∈ Tn : ρ ≤ ν ∈ Tn, lg(ν) = k}. Recall that λν

is the size of sucn(ν), hence |Tn,ρ,k∗ | is the product of all λν such that ρ ≤ ν and
lg(ν) < k∗, which is ≤ λn,k∗ . For each i < m let ρi ∈ pi be of length k∗, then
ρi ∈ Tn,ρ,k∗ by the definition of Tn,ρ,k∗ and the assumptions on pi. Define ρ+

i for
i < m as follows: if λη < λρi

, define ρ+
i := ρi. Otherwise we let ρ+

i ∈ sucpi
(ρi).

Define the equivalence relation E := {(i, j) : ρ+
i = ρ+

j }. Let j < m, for every

i ∈ (j/E) define p′
i = p

[ρ+
j

]
i (this is well defined, as ρ+

i = ρ+
j ), then tr(p′

i) = ρ+
j for

every i ∈ (j/E). By the choice of η, for j < m, |j/E| ≤ m ≤ µη ≤ µρ+
j

(by the
choice of ρ+

j and definition 2).
By claim 10, the set {p′

i : i ∈ (j/E)} has a common upper bound, hence {pi : i ∈
(j/E)} has a common upper bound.
By the choice of p+

i , the number of E-equivalence classes is bounded by λ<η. As
λ<η ≤ m∗, we’re done.

□

6. Not adding an unwanted real
A crucial step towards our final goal is to prove that the only generic reals in finite
length iterations of Q2

n are the ηts. This will be used later in order to show that
ωω \{ηt : t ∈ L} is null with resepect to the relevant ideal. We intend to strengthen
this result dealing with arbitrary length iterations in [F1424].
Claim 21: We have p∗ ⊩P ”ρ

∼
is not (Qι

n, ηι
n

∼
)-generic over V ” when:

a) ι ∈ {1, 2} and α∗ < ω.
b) (Pα,Qα

∼
: α < α∗) is a FS iteration with limit P = Pα∗ .

c) nα ∈ N is special (note: nα is not a Pα−name).

d) ⊩Pα ”Qα
∼

= (Qι
nα

)V Pα

”.

e) n ∈ N is special.
f) For every α, n and nα are far (i.e. η1 ∈ Tn ∧ η2 ∈ Tnα

→ λn
η1

≪ µnα
η2

or
λnα

η2
≪ µn

η1
). Moreover, for every α < α∗ for every l large enough, for some

m ∈ {l, l + 1} we have:
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If ρ ∈ Tn, lg(ρ) = l, ν1, ν2 ∈ Tnα(l) and lg(ν1) < m ≤ lg(ν2)) then λnα(l),ν1 ≪ µn,ρ

and λn,ρ ≪ µnα(l),ν2 .
g) p∗ ⊩P ”ρ

∼
∈ lim(Tn)”.

Proof : For η ∈ Tn define Wn,η := {w : w ⊆ sucTn(η) and i = 1 → lg(η) ≤ norn
η (w)

and i = 2 → 2 ≤ norn
η (w)}. For n < ω define Λn = {η ∈ Tn : lg(η) < n}, so

Tn = ∪
n<ω

Λn. Define Sn := {w̄ : w̄ = (wη : η ∈ Λn ∧ wη ∈ Wn,η)} and S = ∪
n<ω

Sn.
(S, ≤) is a tree with ω levels such that each level is finite and lim(S) = {w̄ : w̄ =
(wη : η ∈ Tn) and w̄ ↾ Λn ∈ Sn for every n}. For w̄ ∈ lim(S) let Bw̄ := {ρ ∈
lim(Tn) : for every n large enough, ρ ↾ (n + 1) ∈ wρ↾n}, so Bw̄ = ∪

m<ω
Bw̄,m where

Bw̄,m = {ρ ∈ lim(Tn) : if m ≤ n then ρ ↾ (n + 1) ∈ wρ↾n}. We shall prove that
(∗) ⊩Qι

n
”ηι

n
∼

∈ Bw̄” for every w̄ ∈ lim(S). In fact, for every p ∈ Qι
n there is a

stronger q and m < ω such that lim(q) ⊆ Bw̄,m.
Let p ∈ Qι

n, we shall prove that for some p ≤ q and m < ω, q ⊩ ηi
n

∼
∈ Bw̄,m. Let

ν ∈ Tp such that lg(ν) is large enough and let m = lg(ν). Now q will be defined
by taking the subtree obtained from the intersection of T

[≤ν]
p with ( ∪

ν≤ρ
wρ). By the

co-bigness property, q is a well defined condition, and obviously q ⊩ ηi
n

∼
∈ Bw̄,m.

By (∗) it suffices to prove that for some w̄ ∈ lim(S), p∗ ⊮P ”ρ
∼

∈ Bw̄”.

Proof: Assume towards contradiction that p ⊩ ”ρ
∼

∈ Bw̄ for every w̄ ∈ lim(S)”, so

there is a sequence (pw̄ : w̄ ∈ lim(S)) and a sequence (m(w̄) : w̄ ∈ lim(S)) such
that:
a) p∗ ≤ pw̄.
b) pw̄ ⊩ ρ

∼
∈ Bw̄,m(w̄).

By increasing the conditions pw̄ if necessary, we may assume WLOG that:
1. tr(pw̄(α)) is an object for every w̄ and every α ∈ Dom(pw̄).
2. If ι = 1 and α ∈ Dom(pw̄), then pw̄ ↾ α ⊩Pα

”ν ∈ pw̄(α) → norν(Sucpw̄(α)(ν)) >
2”.
If ι = 2 and α ∈ Dom(pw̄), then for some m ≪ lg(tr(pw̄(α))), pw̄ ↾ α ⊩Pα

ν ∈
pw̄(α) → 1 + 1

m ≤ nor(sucpw̄(α)(ν)).
In order to prove (1)+(2), we shall prove by induction on β ≤ α∗ that for every
p ∈ Pβ there is p ≤ q ∈ Pβ satisfying (2) and forcing a value to the relevant trunks.
The induction step: assume that β = γ + 1. As p(γ) is a Pγ−name of a condition
in Q2

n, there are p ↾ γ ≤ p′ ∈ Pγ and ρ such that p′ ⊩Pγ
tr(p(γ)) = ρ. As p′ ⊩Pγ

p(γ) ∈ Q2
n and by the definition of Q2

n, there is p′ ≤ p′′ and m ≤ µlg(ρ) such that
p′′ ⊩Pγ ν ∈ p(γ) → 1+ 1

m ≤ nor(sucp(γ)(ν)). Now choose m ≪ m1, so p′′ ⊩Pγ ”there
is ν ∈ p(γ) such that lg(ν) = m1”. Therefore there are p′′ ≤ p∗ and ν of length
m1 such that p∗ ⊩Pγ

”ν ∈ p(γ) ∧ (ν ≤ η ∈ p(γ) → 1 + 1
m ≤ nor(sucp(γ)(η)))”.

By the induction hypothesis, there is p∗ ≤ q′ ∈ Pγ satisfying (1)+(2). Now define
q := q′ ∪ (γ, p(γ)[ν≤]), obviously q is as required. The proof for Q1

n is similar.
Now we shall define a partition of lim(S) to ℵ0 sets as follows:
Let Wm,u,ρ̄ = {w̄ ∈ lim(S) : m(w̄) = m, Dom(pw̄) = u ∈ [α∗]<ℵ0 , ρ̄ = (tr(pw̄(α)) :
α ∈ u)}. Choose (m∗, u∗, ρ̄∗) such that W = Wm∗,u∗,ρ̄∗ ⊆ lim(S) is not meagre.
Let ū∗ ∈ S such that W is comeager above ū∗. Let l(∗) be such that ū∗ ∈ Sl(∗).
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Denote ρ̄∗ = (ρ∗
α : α ∈ u∗), let (αn : n < n(∗)) list u∗ in increasing order and

let αn(∗) = α∗. Therefore, if ū∗ ≤ w̄ ∈ W then Dom(pw̄) = {α0, ..., αn(∗)−1} and
tr(pw̄(αn)) = ρ∗

αn
for every n < n(∗).

By our assumption, n is far from nα. As increasing ū∗ is not going to change
the argument, we may assume that l(∗) is large enough so ∧

α∈u∗
lg(ρ∗

α) < l(∗) and if
l < n(∗), ν ∈ Tn, ρ ∈ Tnαl

and lg(ū∗) ≤ lg(ν), then λn,ν ≪ µnαl
,ρ or λnαl

,ρ ≪ µn,ν .
Note that we don’t have to assume that lg(ū∗) ≤ lg(ρ): For every n < n(∗), there is
mn as guaranteed by (f), with (nαn

, lg(ν), mn) here standing for (nα, l, m) there.
If lg(ρ) ≤ mn, then by taking an arbitrary ν2 of length > mn, it follows from (f)
that λnαn ,ρ ≪ µn,ν . If mn < lg(ρ), then by taking an arbitrary ν2 of length ≤ mn,
we get λn,ν ≪ µnαn ,ρ.
Recalling (f) (and by increasing ū∗ if necessary), let (mn : n < n(∗)) be a series of
natural numbers such that (n, nαn , l(∗), mn) satisfy that assumptions of (f) (with
(n, nαn

, l(∗), mn) here standing for (n, nα, l, m) there).
Let Λ0

m = Λm+1\Λm = {ρ ∈ Tn : lg(ρ) = m} and let S0
m = {w̄ : w̄ = (wη : η ∈ Λ0

m),
for every η ∈ Λ0

m, wη ∈ Wn,η}.
Recalling that above ū∗, W is nowhere meagre, for every v̄ ∈ S0

l(∗) there is w̄v̄ ∈
W ⊆ lim(S) such that ū∗

⌢v̄ ≤ w̄v̄.
Choose pn, Un by induction on n ≤ n(∗) such that:
1. pn ∈ Pαn

.
2. If m < n then pm ≤ pn ↾ αm.
3. Un ⊆ S0

l(∗).

4. If m < n then Un ⊆ Um.
5. If E is an equivalence relation on Un with ≤ Π{|Tnαl

,ml
| : n ≤ l < n(∗)}

equivalence classes, then for some v̄∗ ∈ Un, ∩{ ∪
ρ∈Tn,l(∗)

wv̄ρ
: v̄ ∈ v̄∗/E} = ∅.

6. If v̄ ∈ Un then pw̄v̄
↾ αn ≤ pn.

Suppose we’ve carried the induction, then for every v̄ ∈ Un(∗), pw̄v̄
= pw̄v̄↾αn(∗)

≤
pn(∗), hence by the choice of pw̄v̄

, pn(∗) ⊩ ρ
∼

∈ ∩{Bw̄v̄,m∗ : v̄ ∈ Un(∗)}. Therefore

it’s enough to show that ∩{Bw̄v̄,m∗ : v̄ ∈ Un(∗)} = ∅. By its definition, Bw̄v̄,m∗ =
lim(Tv̄) where Tv̄ = {η ∈ Tn : if m∗ < lg(η) then η(m + 1) ∈ wη↾m for every
m∗ ≤ m}. Therefore, if we show that ∩{Tv̄ ∩ Tn,l(∗)+1 : v̄ ∈ Un(∗)} = ∅, then it will
follow that ∩{lim(Tv̄) : v̄ ∈ Un(∗)} = ∅. This follows from part (5) of the induction
hypothesis, as ∩{ ∪

ρ∈Tn,l(∗)
wv̄ρ

: v̄ ∈ Un(∗)} = ∅. This contradiction proves the claim.

Carrying the induction: For n = 0, choose any p0 ∈ Pα0 and let U0 = S0
l(∗). It’s

enough to show that U0 satisfies (5). Let E be an equivalence relation on U0 with
m∗∗ ≤ Π{|Tnα(l),ml

| : l < n(∗)} equivalence classes and denote Π{|Tnα(l),ml
| : l <

n(∗)} by m′. For every m < m∗∗, denote by U0,m the mth equivalence class of
E. Suppose towards contradiction that for every m < m∗∗ there is some ηm in
∩{∪

ρ
wρ : w̄ ∈ U0,m}. For every m there is ρm such that ηm ∈ sucTn(ρm). Choose

w̄ = (wρ : ρ ∈ Tn,l(∗)) by letting wρ = sucTn(ρ) \ {ηm : m < m∗∗ ∧ ρm = ρ}. We
shall prove that w̄ ∈ U0. It will then follow that w̄ ∈ U0,m for some m, therefore
ηm ∈ ∪

ρ
wρ, contradicting the definition of wρ. This proves that U0 is as required.

In order to prove that w̄ ∈ U0, note that for every ρ, |sucTn(ρ) \ wρ| ≤ |{m :
ρm = ρ}| ≤ m∗∗ ≤ m′ = Π{|Tnα(l),ml

| : l < n(∗)} ≪ µn,ρ (the last inequality
15

Paper Sh:1067, version 2025-05-26. See https://shelah.logic.at/papers/1067/ for possible updates.



follows by (f) and the choice of ml, recalling that the ml were chosen to satisfy the
assumptions of (f) and recalling the definition of the λn,ν). Therefore, w̄ ∈ U0.
Suppose now that n = k + 1 ≤ n(∗). Choose qk ∈ Pαk

such that pk ≤ qk and
qk forces a value Λk

v̄ to {ρ ∈ pw̄v̄
(αk) : lg(ρ) = mk} for every v̄ ∈ Uk. For every

ρ ∈ Tnαk
,mk

let Uk,ρ = {v̄ ∈ Uk : ρ ∈ Λk
v̄}. If v̄ ∈ Uk, then qk forces the value Λk

v̄

to {ρ ∈ pw̄v̄ (αk) : lg(ρ) = mk}, hence Uk = ∪{Uk,ρ : ρ ∈ Tnα,mk
}. WLOG Uk,ρ are

pairwise disjoint. Now suppose towards contradiction that none of them satisfies
requirement (5) of the induction for k +1, then each Uk,ρ has a counterexample Eρ,
and the union ∪

ρ
Eρ is therefore an equivalence relation which is a counterexample

to Uk satisfying (5). Therefore, for some ρ, Uk,ρ satisfies (5), so choose Un = Uk,ρ.
Define pn ∈ Pαk+1 ⊆ Pαn as follows:
1. pn ↾ αk = qk.
2. pn(αk) = ∩{pw̄v̄

(αk)[ρ≤] : v̄ ∈ Un}.
Now for every v̄ ∈ Uk, pw̄v̄ ↾ αk ≤ pk ≤ qk, hence qk ⊩Pαk

ν ∈ pw̄v̄ (αk) →
1 + 1

m ≤ nor(sucpw̄v̄ (αk)(ν)). We shall prove that qk ⊩Pαk
pn(αk) ∈ Q2

nα
. As,

|Un| ≤ |S0
l(∗)| ≤ 2Σ{λn,ρ′ :ρ′∈Λ0

l(∗)} < µnαk
,ρ (with the last inequality following from

(f) and the choice of the mk’s), the assumptions of claim 10 hold, the conclusion
follows by the proof of claim 10. A similar argument (using the first part of claim
10) proves the claim for the case of Q1

n.
So pn obviously satisfies requirements 1,2 and 6.

□

7. Main measurability claim
We’re now ready to prove the main result. We shall first prove that Cohen forcing
(hence Qi

n) turns the ground model set of reals into a null set with respect to our
ideal. We will then prove the main result by using a Solovay-type argument.
Claim 22: For ι ∈ {0, 1

2 , 1, 2} we have ⊩Cohen ”there is a Borel set B ⊆ lim(Tn∗)
such that lim(Tn∗)V ⊆ B and B is (Qι

n∗
, ηι

n∗
∼

)-null” (where by "(Qι
n∗

, ηι
n∗
∼

)-null" we

mean that for every p there is a stronger q with lim(q) ∩ B = ∅)
Proof : Let Q be the set of finite functions with domain {η ∈ Tn∗ : lg(η) < k}
for some k < ω such that f(ρ) ∈ sucTn∗

(ρ). (Q, ⊆) is countable and for every
q ∈ Q there are q ≤ q1, q2 ∈ Q which are incompatibe, hence is equivalent to
Cohen forcing. Let f

∼
:= ∪

g∈G
∼

g. For f ∈ S = Π{sucTn∗
(ρ) : ρ ∈ Tn∗} define

Bf := {η ∈ lim(Tn∗) : for infinitely many n we have η ↾ (n + 1) = f(ηn)}. For
every n < ω let Bf,n = {η ∈ lim(Tn∗) : η ↾ (m + 1) ̸= f(ρ) if n ≤ m and
n ≤ lg(ρ)}. Clearly, ⊩ ”f

∼
∈ S”, Bc

f = ∪
n<ω

Bf,n, and obviously each Bf,n is Borel,

hence Bf is Borel. For every η ∈ Tn∗ let wη = sucTn∗
(η) \ {f(η)}. As in claim

21, ⊩Qι
n∗

”ηι
n∗
∼

∈ Bw̄” for w̄ and Bw̄ as in that proof. Hence ⊩Qι
n∗

”ηι
n∗
∼

/∈ Bf ,

so Bf is (Qι
n∗

, ηι
n∗
∼

)-null. Let G ⊆ Q be generic and let g = f
∼

[G], so Bg is a

(Qι
n∗

, ηι
n∗
∼

)-null Borel set in V [G]. We shall prove that V [G] |= lim(Tn∗)V ⊆ Bg.

Let η ∈ lim(Tn∗)V and m < ω, it’s enough to show that in V , ⊩Q ”for some m ≤ k
and ρ ∈ Tn∗ , f

∼
(ρ) = η ↾ (k + 1)”. Let p ∈ Q, we can extend p to a function p ≤ q

with domain {η ∈ Tn∗ : lg(η) < k} for some m ≤ k. Now let q ≤ s be an extension
16
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of q with domain {η ∈ Tn∗ : lg(η) ≤ k} such that s(η ↾ k) = η ↾ (k + 1). Obviously,
s forces the required conclusion, so we’re done.

□

Main conclusion 23: Let i ∈ {1, 2}. Let V |= CH and suppose ℵ1 < µ = µℵ0 .
Let L be a linear order of cardinality µ that is homogeneous, i.e. that any two
nonempty open intervals are isomorphic (for an example of such a linear order, see
e.g. Section 4 in [KrSh859]) 3. Suppose that q is as in 13(A) such that Lq = L and
mt = m for every t ∈ Lq is a (constant) definition of the forcing Qi

n, then:
a) Pq is a c.c.c. forcing notion of cardinality µ.
b) ⊩Pq ”2ℵ0 = µ”.
c) Let G ⊆ Pq be generic over V and let ηt = ηt

∼
[G] for t ∈ Lq. In V [G] we

have the sets X := {ηt : t ∈ Lq} and <X := {(ηs, ηt) : s <Lq t}. Note that
these sets are definable over V : η ∈ X iff it satisfies "η is (Qi

n, η
∼

)-generic over V ",

and (ηs, ηt) ∈<X iff they satisfy "ηs is not (Qi
n, η

∼
)-generic over V [ηt]". Now let

V [X+] be the collection of sets hereditarily definable from elements of V and finite
sequences of members of X+ := X ∪ {X, <X}, so X, <X∈ V [X+] 4. Similarly, for
Z ⊆ X, let Z+ := Z ∪ {X, <X}. Note that, in V [G], if y ⊆ H(ℵ0) then y ∈ V [X+]
iff y ∈ V [Z+] for some finite Z ⊆ X.

(α) V [X+] |= ZF + ¬ACℵ0 and lim(Tn)V [X+] = ∪{lim(Tn)V [{ηt:t∈u}] : u ⊆ Lq is
finite}.

(β) (Qi
n, ℵ1)-measurability holds in V [X+]: Every A ⊆ lim(Tn)V [X+] is IQi

n,ℵ1 -
measurable.
(γ) V [X+] |= ”{ηt : t ∈ Lq} = lim(Tn) mod IQi

n,ℵ1”.
(δ) In V [X+], if J ⊆ Lq is a proper initial segment then {ηt : t ∈ J} ∈ IQi

n,ℵ1 .
(ϵ) In V [X+], the ideal IQi

n,ℵ1 is non-trivial.
(ζ) ℵ1 is not collapsed, there is an ω1-sequence of different reals, and if V = L (here
L is the constructible universe) then ℵL

1 = ℵV [X+]
1 .

Proof : Clause a) By the definition of Pq and claim 17, so |Pq| ≤ Σ{|Pq,J | : J ⊆ L
is finite} ≤ 2ℵ0 + |L|<ℵ0 = 2ℵ0 + µ = µ.

Clause b) By a) we have ⊩Pq ”2ℵ0 ≤ µ”, and as |L| = µ we have ⊩Pq ”µ =
|L| ≤ |{ηt

∼
: t ∈ L}| ≤ 2ℵ0”. Together we’re done.

Clause c) (α) By the definitions of V [X+] and Pq. In particular, ¬ACℵ0 , as we can
use (An : n < ω) where An := {{ηtl

: l < n} : t0 <L ... <L tn−1}. As V [X+] is
really just HOD(V ∪ X<ω) in V [G], V [X+] |= ZF follows by the standard argu-
ments in the literature.

Clause c)(β) Let A ∈ V [X+] be a subset of lim(Tm∗). A is definable in V [G]
by a first order formula ϕ(x, ā, c) such that c ∈ V and ā = (ηt0 , ..., ηtn−1) is a

3Note that such an order L is dense with no endpoints, and that if −∞ = sl
0 < sl

1 < ... <

sl
n−1 < sl

n = ∞ (l = 0, 1), then there is an automorphism π of L such that π(s0
k) = s1

k. In
addition, if s0

k = s1
k and s0

k+1 = s1
k+1, then π can be the identity on (s0

k, s0
k+1).

4The addition of X, <X was done only for the sake of clarity. We could have worked instead
in V [X], i.e. the collection of sets hereditarily definable from finite sequences of members of X
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finite sequence from X. Let J = {s ∈ Lq : s ≤ tl for some l}. For s ∈ L \ J
let Ls = {tl : l < n} ∪ {s}, then Ls ∈ Lq hence by 14 we have PLs

⋖ PLq . Let
Ts
∼

= TV (ϕ(ηs
∼

, ā, c)), so Ts
∼

is a PLq-name and actually a PLs -name.

Let (ps,i : i < ω) be a maximal antichian in PLs
and let Ws ⊆ ω such that

ps,i ⊩ Ts
∼

= true if and only if i ∈ Ws. Define the P{tl:l<n}-name U
∼

:= {i < ω :
ps,i ↾ {tl : l < n} ∈ GP{tl:l<n}

∼
}.

If G0 ⊆ P{tl:l<n} is generic over V and U = U
∼

[G0], then in V [G0], (lim(ps,i(s)[G0]) :
i ∈ U) are pairwise disjoint: by claim 7, if p, q ∈ Qι

n are incompatible and η ∈
lim(p), then η /∈ lim(q) (otherwise, WLOG lg(tr(p)) ≤ lg(tr(q)), and both tr(p)
and tr(q) are initial segments of η, hence tr(p) ≤ tr(q) ∈ Tp which is a contradiction
by claim 7). Hence it’s enough to show that ((ps,i(s)[G0]) : i ∈ U) is an antichain in
V [G0]. Assume towards contradiction that for some i ̸= j ∈ U there is a common
upper bound q for ps,i(s)[G0] and ps,j(s)[G0]. Therefore there is a P{tl:l<n}-name
q
∼

and r ∈ G0 such that r ⊩P{tl:l<n} ”ps,i(s), ps,j(s) ≤ q
∼

”. Since i, j ∈ U , we have

ps,i ↾ {tl : l < n}, ps,j ↾ {tl : l < n} ∈ G0, and as G0 is directed, there is a common
upper bound r1 ∈ G0 for ps,i ↾ {tl : l < n}, ps,j ↾ {tl : l < n} and r. Now let
r+ := r1 ∪ {(s, q

∼
)} ∈ PLs

, then obviousy r+ is a common upper bound (in PLs
) for

ps,i and ps,j , which contradicts our assumption.

Moreover, (ps,i(s)[G0] : i ∈ U) is a maximal antichain: If q ∈ Qι
n

V [G0] is incom-
patible with ps,i(s)[G0] for every i ∈ U , then as before, there are r ∈ G0 and
a P{tl:l<n}-name q

∼
such that r forces that q

∼
is incompatible with ps,i(s) for every

i ∈ U . As before we can get a member of PLs
that is incompatible with (ps,i : i < ω),

contradicting its maximality. Hence (ps,i(s)[G0] : i ∈ U) is a maximal antichain in
V [G0].
If s1, s2 ∈ Lq \ J , by the homogeneity assumption, there is an autommorphism
f of Lq over J such that f(s1) = s2. Therefore the natural map induced by f is
mapping ā to itself and ηs1

∼
to ηs2

∼
. Hence Ts1

∼
is mapped to Ts2

∼
. As (f̂(ps1,i) : i < ω)

and Ws1 have the same properties (with respect to Ts2
∼

) as (ps2,i : i < ω) and Ws2 ,

we may assume WLOG that Ws1 = Ws2 (denote it by W ) and f̂(ps1,i) = ps2,i.
Therefore, if G0 ⊆ P{tl:l<n} is generic and i ∈ U

∼
[G0], then there is pi ∈ (Qι

n)V [G0]

and W such that for every s ∈ L \ J , ps,i(s)[G0] = pi and Ws = W (and W can be
found in the ground model).
Work now in V [G0]: Let B := ∪{lim(pi) : i ∈ W ∩ U}, so B is a Borel set and we
shall prove that A = B modulo the ideal: by clauses (c)(γ) + (c)(δ) proved below,
it’s enough to show that if s ∈ Lq \ J , then ηs /∈ A∆B (note that, by its definition,
J ∈ V and hence J ∈ V [X+]).
Let s ∈ Lq \J and i ∈ U , then ps,i ∈ PLs/G0 and by the choice of ps,i, ps,i ⊩PLs /G0

”ϕ(ηs
∼

, ā, c) iff Ts
∼

= true iff i ∈ W”. In other words, in V [G0] we have: pi ⊩Qι
n

”ϕ(ηs
∼

, ā, c) iff i ∈ W”. Since (pi : i ∈ U) is a maximal antichain, every G ⊆ Q2
n

generic over V [G0] must contain exactly one of the pi, hence in V [G0] : ⊩Qι
n

”ϕ(ηs
∼

, ā, c) iff i ∈ W for the pi such that pi ∈ G
∼

”. Now ps,i(s) = pi ∈ G
∼

iff

ηs
∼

∈ lim(Tps,i(s)) = lim(Tpi
), hence we got ⊩Q2

n
”ϕ(ηs

∼
, ā, c) iff i ∈ W where i is

such that ηs
∼

∈ lim(Tpi)”. Therefore ⊩Qι
n

”ηs
∼

∈ A iff ηs
∼

∈ B”.
18
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Clause c)(γ) If ρ ∈ lim(Tn)V [X+] \{ηt : t ∈ Lq}, then ρ ∈ lim(Tn)V [{ηt:t∈u}∪{X,<X }]

for some finite u. By claim 21, ρ is not (Qι
n, ηn

∼
)-generic over V . Therefore, by the

definition of IQi
n,ℵ1

, ⊩Pq ”lim(Tn) \ {ηt
∼

: t ∈ Lq} ∈ IQi
n,ℵ1”. This is due to the

fact that being (Qi
n, η

∼
)-generic over V means avoiding every Borel (Qi

n, η
∼

)-null set

from V , and as V |= CH, there are ℵ1-many such sets. Why can we use claim 21?
Assume that in claim 21 α∗ is finite, assumptions (a) − (e) and (g) hold and (f) is
replaced by (h) where:
(h) p∗ ⊩P ρ

∼
/∈ {ηα

∼
: α < α∗}.

There is a condition p∗ ≤ p∗∗ and a natural number k such that p∗∗ ⊩P ρ
∼

↾ k /∈

{ηα
∼

↾ k : α < α∗} and p∗∗ forces values to ρ
∼
↾ k and ηα

∼
↾ k (α < α∗), which will

be deonted by ρ∗ and η∗
α (α < α∗). In addition, we shall choose k to be sufficiently

large.

For n ∈ N and η ∈ Tn, let n[η≤] be the natural restriction of n to T
[η≤]
n . Now let

n∗ = n[ρ∗≤] and n∗
α = n[η∗

α≤]
α . By the choice of k, n∗ and n∗

ηα
are far, moreover,

they satisfy assumption f of claim 21, and by iterating Qi
n∗

α
instead, we get the

desired conclusion.

Clause c)(δ) By claim 19, each Qmt
adds a Cohen real, hence the set of previ-

ous generics is included in a null Borel set by claim 22. More precisely: For t ∈ L,
let V2,t := V [G∩PL<t

] and let V1,t be the class of elements from V2,t that are hered-
itarily definable in V [G] from elements of V , finite sequences form {ηs : s < t} and
{ηs : s < t}. As {ηs : s < t} ⊆ lim(Tn)V1,t , it suffices to show that the Cohen
real νt

∼
added by Qt

∼
is Cohen over V1,t. As νt

∼
is Cohen over V PJ for every finitie

J ⊆ L<t, it suffices to show that every nowhere dense tree T ∈ V1,t belongs to V PJ

for some finite J ⊆ L<t (and so νt ∈ lim(T )). Suppose then that A = A
∼

[G] ∈ V1,t

is a real, so there are t0 < t1 < ... < tn−1 < t, a formula ϕ and some a ∈ V such
that A is definable in V [G] using ϕ(x, a, ηt0 , ..., ηtn−1). We claim that A ∈ V PJ for
some finite J ⊆ L<t. As A ∈ V [G ∩ PL<t

] and PL<t
⋖ Pq, A

∼
is a PL<t

-name and
A = A

∼
[Gt], where Gt = G ∩ PL<t

. Let p ∈ Gt force the above facts, and WLOG
{t0, ..., tn−1} ⊆ Dom(p). Now if q ∈ PL<t

is above p and forces "i ∈ A
∼

", then this is
also forced by q ↾ Dom(p). In order to prove this fact, note that we can find for ev-
ery n < ω an automorphism πn of L<t such that πn is the identity over Dom(p) and
such that the sets πn(Dom(q)\Dom(p)) are pairwise disjoint. Letting qn := πn(q),
each qn forces "i ∈ A

∼
". It follows that this is forced by q ↾ Dom(p) as well: Suppose

not, then there is some q′ above q ↾ Dom(p) forcing "i /∈ A
∼

". But then there is
some n < ω such that (Dom(πn(q)) \ Dom(p)) ∩ Dom(q′) = ∅. It follows that q′

and πn(q) are compatible, a contradiction. Therefore, q ↾ Dom(p) forces "i ∈ A
∼

".
The proof for the case of "i /∈ A

∼
" is similar. It follows that A

∼
∈ V PDom(p) , as required.

Clause c)(ϵ) We shall prove that, in V [X+], X = {ηt : t ∈ L} /∈ IQi
n,ℵ1 and so

the ideal is non-trivial. So let Z̄ = (Zα : α < ω1) ∈ V [X+] be a sequence of
(Qi

n, η
∼

)-null sets and let Z = ∪
α<ω1

Zα, it suffices to show that ηt /∈ Z for every

large enough t ∈ L. Let p∗ ∈ G force the above-mentioned facts about Z̄
∼

and let
(tl : l < n) ∈ Ln be an increasing sequence containing Dom(p∗) and all t ∈ L

19

Paper Sh:1067, version 2025-05-26. See https://shelah.logic.at/papers/1067/ for possible updates.



relevant for Z̄
∼

. Let t ∈ L such that tn−1 < t, we shall prove that ηt /∈ Z. Let
α < ω1 and suppose that q1

∼
is a P{sl:l<k}-name for a member of (Qi

n)V [ηsl
:l<k]

with (sl : l < k) ∈ (L<t)k. Then there are p′ ∈ Pq above p∗ and q2
∼

′ such that

q2
∼

′ is a P{s′
l
:l<m}-name, p′ forces "q1

∼
≤ q′

2
∼

and lim(q′
2) ∩ Zα

∼
= ∅" and WLOG

{t0, ..., tn−1} ⊆ {s0, ..., sk−1} ⊆ {s′
0, ..., s′

m−1}. There is an automorphism π of L
that is the identity over {s0, ..., sk−1} such that π({s′

0, ..., s′
m−1}) ⊆ L<t, so we may

assume WLOG that {s′
0, ..., s′

m−1} ⊆ L<t. It follows that ηt /∈ Zα, and therefore,
ηt /∈ Z.

Clause c)(ζ) V |= AC, therefore there is an ω1-sequence of distinct reals in V .
Pq |= ccc, therefore ℵ1 is not collapsed, and that sequence is as required in V [X+]
as well. If V = L, then ℵL

1 = ℵV [X+]
1 follows from ccc.

□

8. An Application to Π1
n Singletons

We conclude the paper with an easy application of Q2
n that is of independent in-

terest. By a classical result of Jensen ([Je]), there exists a forcing P ∈ L that adds
a Π1

2 singleton over L. Jensen’s construction relies heavily on structural properties
of L such as diamond. Thanks to the explicit definability of Q2

n and its property of
adding a unique generic real, we are able to get a Π1

2 singleton over L almost "for
free". As we saw, the existence and the relevant properties of Q2

n are already estab-
lished in ZFC, and the only extra assumption needed for our new construction of
a Π1

2 singleton is that the ground model reals are constructible. Our construction
easily generalizes to other models of set theory, in which case if the ground model
reals are Σ1

n then the new singleton will be Π1
n. Below we shall only deal with

lightface definitions, so Σ1
n will always mean "lightface Σ1

n".

Throughout the rest of this section, fix a computable n ∈ N (e.g. the one from
Observation 4A).

Claim 24: Let Q = Q2
n and let G ⊆ Q be generic over V . Suppose that (ωω)V is

lightface Σ1
n definable in V [G], then letting η be the canonical generic real added

by Q, the singleton {η} is a lightface Π1
n singleton.

Proof : η is Q-generic over V iff
(*) For every maximal antichain I ⊆ Q from V , there exists p ∈ I such that
η ∈ lim(p).
As "I is a maximal antichain in Q" is a lightface Borel statement by Claim 11, and
as (ωω)V is lightface Σ1

n in V [G], it follows that (*) is a lightface Π1
n statement in

V [G]. By the uniqueness of the generic real (Claim 21), (*) defines a Π1
n singleton

in V [G]. □

The assumptions of Claim 24 hold in L for n = 2. By the following result of Steel,
canonical inner models for Woodin cardinals satisfy the assumptions for n > 2:

Theorem 25: Let Q be a Borel ccc forcing. Let n > 2 and let Mn−2 be the
least inner model with n − 2 Woodin cardinals, then (ωω)Mn−2 is lightface Σ1

n-
definable in MQ

n−2.
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Proof : See the proof of Theorem 3.4 in [St]. □

By Shoenfield’s absoluteness theorem, the minimal possible complexity of a non-
constructible singleton is Π1

2. In order to obtain a similar optimality result over
Mn−2, we shall use the following absoluteness result due to Woodin:

Theorem 26: Let Q be a Borel ccc forcing. Let n > 2 and let Mn−2 be as in the
previous theorem, then for every Σ1

n formula ϕ(x) and a ∈ (ωω)Mn−2 , Mn−2 |= ϕ(a)
iff MQ

n−2 |= ϕ(a).

Proof : See e.g. Section 4 in [St] or Lemma 1.17 in [MSW]. □

Putting everything together we get the main result of this section:

Theorem 27: Let Q = Q2
n.

a. Suppose that V |= ZFC+"all reals are constructible", then Q adds a Π1
2 single-

ton over V . In particular, Q adds a new Π1
2 singleton over L and over any forcing

extension of L not adding new reals.
b. Let n > 2 and let Mn−2 be the least inner model with n − 2 Woodin cardinals,
then Q adds a new Π1

n singleton over Mn−2.
c. Clause (b) is optimal in the following sense: If P ∈ Mn−2 is a Borel ccc forcing,
then P doesn’t add a new Σ1

n singleton over Mn−2.

Proof : Clauses (a) and (b) follow from Claim 24, with clause (a) using the fact
that R∩L is Σ1

2 definable and clause (b) using Theorem 25. Clause (c) follows from
Theorem 26. □

9. Open Questions
As our model doesn’t sasitfy ACℵ0 , it’s natural to ask whether we can improve
the result getting a model of ACℵ0 or even DC. Hopefully in [F1424] it will be
shown that assuming the existence of a measurable cardinal, we can get a model of
DC(ℵ1). This leads to the following question:
Problem 1: Can we improve the current result and get a model of DC without
large cardinals?
A very recent work in preparation ([Sh1257]) answers this question in the affirma-
tive.
As the current result gives measurability with respect to the ideal In,ℵ1 , it’s natural
to ask:
Problem 2: Can we get a similar result for the ideal In,ℵ0?
This problem will be addressed in [GHS1097].
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