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Abstract. We investigate the following problem: Given an ultrafilter on the

set of integers, is it generated by a Turing independent set? We show the

following: (1) Assuming the continuum hypothesis, there is an ultrafilter all
of whose bases are cofinal in the Turing degrees. (2) For each n ≥ 1, every

ultrafilter has an n-Turing independent (n + 1)-basis. (3) It is consistent

(relative to a Ramsey cardinal) that there is an ultrafilter that has a Turing
independent basis.

1. Introduction

The aim of this paper is to study some problems about the global structure of
Turing degrees that are sensitive to the ambient set theory. For examples of such
results, see [2, 4, 8, 10]. For some history and motivation behind these questions,
we refer the reader to [6].

In [7], some Ramsey type questions of the following type were studied: Given a
large set of reals, does it have a large Turing independent subset? There, largeness
was interpreted in the sense of cardinality, (Lebesgue) measure and (Baire) category.
The results of this paper are concerned with these questions when largeness is
interpreted to mean “generates an ultrafilter”.

Definition 1.1. Let U be an ultrafilter on some set, 1 ≤ n < ω and B ⊆ U .

(1) B is a basis for U iff for every A ∈ U , there exists B ∈ B such that A ⊆ B.
(2) B is a n-basis for U iff for every A ∈ U there exists F ⊆ B such that |F| ≤ n

and
⋂
F ⊆ A.

(3) B is a subbasis for U iff for every A ∈ U there exists a finite F ⊆ B such
that

⋂
F ⊆ A.

It is clear that basis = 1-basis and every n-basis is also a subbasis.

Definition 1.2. Let A ⊆ 2ω and 1 ≤ n < ω.

(1) A is n-Turing independent iff for every F ∈ [A]≤n and Y ∈ A \ F , the
Turing join of F does not compute Y .

(2) A is Turing independent iff it is n-Turing independent for every n ≥ 1.

Note that 1-Turing independent sets are just Turing antichains (their members
are pairwise Turing incomparable). Throughout this paper, we will assume that
all ultrafilters are non-principal. We can now formulate the general question as
follows.
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2 KUMAR AND SHELAH

Question 1.3. Let m,n ≥ 1 and U be an ultrafilter on ω. Does U have an n-Turing
independent/Turing independent basis/m-basis/subbasis?

The answer will depend on the choice of U and the ambient set theory. We begin
with a negative result.

Theorem 1.4. Under CH, there is an ultrafilter U on ω all of whose bases are
cofinal in the Turing degrees. Hence, U has no Turing antichain basis.

A contrasting ZFC result says the following.

Theorem 1.5. For every X ∈ [ω]ω, there exists Y ∈ [X]ω such that for every
ultrafilter U on ω, if Y ∈ U , then U has a Turing antichain basis.

Next, we show the following (in ZFC).

Theorem 1.6. For each n ≥ 1, every ultrafilter U on ω has an n-Turing independent
(n+ 1)-basis.

It follows that for each n ≥ 1, every ultrafilter on ω has an n-Turing independent
subbasis. Note that by Theorem 1.4, we cannot replace (n + 1)-basis by n-basis.
Finally, we have the following consistency result.

Theorem 1.7. Assume there is a Ramsey cardinal in V . Then there is a ccc
forcing P such that in V P, there is an ultrafilter on ω that has a Turing independent
basis.

Some interesting combinatorial results also appear along the way. One such
result (Theorem 2.3) says that if a family of introreducible sets (see Definition 2.1)
has the FIP, then it is countable. Its proof uses forcing and absoluteness. Another
one (Theorem 2.7) says that if an ultrafilter does not have a Turing antichain basis,
then it cannot be generated by fewer than c sets. Many variants of Question 1.3
remain open. For example,

Question 1.8. In ZFC, can we construct an ultrafilter on ω that has a Turing
independent basis?

Notation. [X]κ = {A ⊆ X : |A| = κ} snd [X]<κ = {A ⊆ X : |A| < κ}. A
family A of sets has the FIP (finite intersection property) iff

⋂
F is infinite for every

finite F ⊆ A. A ⊆? B iff A\B is finite. (∀∞x) means “For all but finitely many x”
and (∃∞x) means “There are infinitely many x”. For F = {x0, x2, . . . , xn−1} ⊆ 2ω,
the Turing join of F , denoted

⊕
k<n xk, is the real y ∈ 2ω satisfying y(nj + k) =

xk(j) for every k < n and n, j < ω. 〈Φe : e < ω〉 is an effective listing of all Turing
functionals. Given y ∈ 2ω and k < ω, we write Φye(k) ↓= n iff the eth Turing
functional with oracle y converges on input k and outputs n. We write Φye(k)[s] ↓=
n, if k, n < s and the oracle use of the computation is contained in y � s. For
σ ∈ <ω2, define [σ] = {y ∈ 2ω : σ � y}. T ⊆ 2<ω is a perfect tree iff every node in
T has two incomparable extensions. For T ⊆ 2<ω, [T ] = {y ∈ 2ω : (∀n)(y � n ∈ T )}
is the set of infinite branches through T . In forcing, p ≤ q means “p extends q”.

2. Turing antichain basis I

We begin by showing that, under CH, there is an ultrafilter on ω with no Turing
antichain basis. Our construction involves introreducible sets.
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Definition 2.1. A ∈ [ω]ω is introreducible iff every infinite subset of A computes
A.

For every d ∈ 2ω, there is an introreducible set of Turing degree d defined as
follows. First, fix a computable bijection h : 2<ω → ω. Define Dd = {h(d � k) : k <
ω} (Dekker set for d). It is easily verified that Dd is an introreducible set of Turing
degree d.

The following lemma says that for any introreducible set A ∈ [ω]ω of Turing
degree d, the set of Turing degrees of introreducible subsets of A is the Turing cone
above d.

Lemma 2.2. Suppose A ∈ [ω]ω is introreducible, X ⊆ ω and A ⊕X ≤T d. Then
there exists an introreducible B ∈ [A]ω such that B ≡T d. Furthermore, either
B ⊆ X or B ∩X = ∅.

Proof. Let {nk : k < ω} be an enumeration of A in increasing order. Fix a
computable bijection h : 2<ω → ω. Put S = {h(d � k) : k < ω} and A′ =
{nk : k ∈ S}. Note that S is an introreducible set of Turing degree d. Define
B = A′ ∩ X, if A′ ∩ X is infinite. Otherwise, define B = A′ ∩ (ω \ X). In either
case, it is clear that B ∈ [A]ω. Let us check that B is as required.

(i) B ≤T d. First assume that B = A′ ∩ X. Since A ≤T d and S ≡T d,
it follows that A′ is computable from d. By assumption, X ≤T d and so
B = A′ ∩X ≤T d. A similar argument works when B = A′ ∩ (ω \X).

(ii) B is introreducible and B ≡T d. Let C ∈ [B]ω. We will show that d ≤T C.
This suffices since B ≤T d. Since C ∈ [A]ω and A is introreducible, we
get that A and hence the function k 7→ nk are computable from C. Define
S′ = {k : nk ∈ C}. Then S′ ≤T C. Now since S is introreducible and
S′ ∈ [S]ω, we get S ≤T S′ ≤T C. Finally, as S ≡T d, we get d ≤T C.

(iii) Either B ⊆ X or B ∩X = ∅. This is clear by the definition of B.

�

In view of Lemma 2.2, it is natural to wonder if, assuming CH, one could
construct a family A of introreducible sets satisfying the following.

(1) A has the FIP.
(2) Every d ∈ 2ω is computable from some member of A.

This would imply that no ultrafilter U extending A can have a Turing antichain
basis. Unfortunately, this is impossible.

Theorem 2.3. Every family of introreducible sets with the FIP is countable.

Proof. Suppose F is an uncountable family of introreducible sets with the FIP. Let
P be a ccc forcing for adding a pseudointersection B̊ ∈ [ω]ω ∩V P for F . P is defined
as follows. p ∈ P iff p = (sp, Fp) where sp ∈ [ω]<ω and Fp ∈ [F ]<ω. For p, q ∈ P,
p ≤P q iff sq ⊆ sp, Fq ⊆ Fp and for every A ∈ Fq, sp \ sq ⊆ A.

As P is ccc, all cardinals are preserved between V and V P. Hence V P |= F is
uncountable. Next, observe that A is introreducible iff

(∀X ∈ [ω]ω)(∃e < ω)(X ⊆ A =⇒ ΦXe = A)

which is a Π1
1(A)-formula. By Mostowski’s absoluteness theorem, it follows that for

every A ∈ F , V P |= A is introreducible.
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Let B̊ =
⋃
{sp : p ∈ G̊P}. A density argument shows that V P |= B̊ ∈ [ω]ω. Also,

for every A ∈ F , V P |= A ⊆? B̊. Since V P |= A is introreducible, it follows that

V P |= A ≤T B̊ for every A ∈ F . This is impossible since no real can compute
uncountably many reals. �

Corollary 2.4. There is a descending sequence 〈An : n < ω〉 of introreducible sets
such that there is no introreducible set B such that B ⊆? An for every n.

Proof. Suppose not. Inductively construct 〈Aα : α < ω1〉 such that each Aα ∈ [ω]ω

is introreducible and for every α < β < ω1, Aα ⊆? Aβ and Aβ �T Aα. To carry out
this construction, at successor stages, we use Lemma 2.2, and at limit stages, we
use the assumption that every ⊆?-descending sequence of introreducible sets has an
introreducible pseudointersection. It follows that {Aα : α < ω1} is an uncountable
family of introreducible sets with the FIP. This is impossible by Theorem 2.3. �

Lemma 2.5. Assume CH. There is a family F of subsets of ω × ω that satisfies
the following.

(1) For every A ∈ F and n < ω, An = {m : (n,m) ∈ A} ∈ [ω]ω is introreducible.
(2) For every A,B ∈ F , either (∀∞n)(An ⊆ Bn) or (∀∞n)(Bn ⊆ An).
(3) For every d ∈ 2ω, there exists A ∈ F such that (∀n)(d ≤T An).

Proof. Using CH, fix an enumeration {di : i < ω1} of 2ω and inductively construct
〈Ai : i < ω1〉 such that the following hold.

(i) Each Ai ⊆ ω × ω and for every n < ω, (Ai)n = {m : (n,m) ∈ Ai} ∈ [ω]ω is
introreducible.

(ii) If i < j < ω1, then (∀∞n)((Ai)n ⊆ (Aj)n).
(iii) For every i < ω1 and n < ω, di ≤T (Ai+1)n.

Start by defining A0 = ω × ω. At successor stages, use Lemma 2.2 to obtain
an introreducible (Ai+1)n ⊆ (Ai)n of Turing degree ≥T di. This guarantees Clause
(iii). If i < ω1 is limit, fix an increasing cofinal sequence 〈ik : i < ω〉 in i and define
Ai by (Ai)n = (Aik)n where k is the largest k ≤ n satisfying

(Ai0)n ⊇ (Ai1)n ⊇ · · · ⊇ (Aik)n

Let us check that (∀j < i)(∀∞n)((Ai)n ⊆ (Aj)n). Let j < i. Let m < ω be least
such that j < im. Using Clause (ii), choose n? ≥ m such that for every n ≥ n?,

(Ai0)n ⊇ (Ai1)n ⊇ · · · (Aim−1
)n ⊇ (Aj)n ⊇ (Aim)n

By the definition of Ai, it follows that (Ai)n ⊆ (Aj)n for every n ≥ n?. So Clauses
(i)-(ii) continue to hold at stage i. Having completed the construction, we can
define F = {Ai : i < ω1}. �

Theorem 2.6. Assume CH. There is an ultrafilter U on ω all of whose bases are
cofinal in the Turing degrees. Hence, U does not have a Turing antichain basis.

Proof. Since there is a computable bijection between ω × ω and ω, it suffices to
construct such an ultrafilter on ω×ω. Let F be as in Lemma 2.5. Fix an ultrafilter
V on ω. Using Zorn’s lemma, choose a maximal filter U on ω× ω such that F ⊆ U
and for every B ∈ U , {n : Bn ∈ [ωω]} ∈ V. It is easy to see that U is an ultrafilter
on ω × ω.

Let B be any basis for U and d ∈ 2ω. We will find a C ∈ B that computes d.
Choose A ∈ F such that (∀n)(d ≤T (A)n) (possible by Clause (3) of Lemma 2.5).
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As B is a basis for U , we can find C ∈ B such that C ⊆ A. Since {n : Cn ∈ [ω]ω} ∈ V,
we can fix an n? such that Cn? ∈ [An? ]ω. It follows that d ≤T An? ≤T Cn? ≤T C.
Hence B is cofinal in the Turing degrees. �

We do not know if the existence of an ultrafilter without a Turing antichain basis
is consistent with c > ω1. The next result says that such an ultrafilter cannot be
generated by fewer than continuum sets.

Theorem 2.7. Let U be an ultrafilter on ω with no Turing antichain basis. Then
every basis for U has size c.

Proof. Let A ⊆ U such that |A| = κ < c. It suffices to construct E ⊆ U such that
E is a Turing antichain and for every x ∈ A, there exists y ∈ E such that y ⊆ x.

For each x ∈ A, fix x′ ∈ [x]ω such that x′ /∈ U . Let Px = {x \ y : y ⊆ x′}. Then
Px is a perfect subset of 2ω and each member of Px is in U ∩P(x). For each e < ω,
fix a Borel function fe : 2ω → 2ω such that

(∀z ∈ 2ω)(Φze is total =⇒ Φze = fe(z))

Put F = {fe : e < ω}. Since |A| < c, we can apply Lemma 2.11 below to obtain
an F-free refinement 〈Qx : x ∈ A〉 of 〈Px : x ∈ A〉. For each x ∈ A, fix yx ∈ Qx
and define E = {yx : x ∈ A}. Then E is as required. �

Definition 2.8. Let F be a family of functions f : 2ω → 2ω and Ā = 〈Aα : α < κ〉
be a sequence of subsets of 2ω. We say that Ā is F-free iff for every f ∈ F and for
every distinct α, β < κ, f−1[Aα] ∩Aβ = ∅.

Lemma 2.9. Suppose F is a countable family of Borel functions f : 2ω → 2ω and
A is a disjoint family of perfect subsets of 2ω. Then for every perfect P ⊆ 2ω, there
exists a perfect Q ⊆ P such that for every f ∈ F , for all but finitely many R ∈ A,
Q ∩ f−1[R] is countable.

Proof. Let {fn : n < ω} be an enumeration of A. For a perfect tree T ⊆ 2<ω, define
Splitnodek(T ) to be the set of all kth level splitting nodes of T . So Splitnode0(T ) is
the singleton containing the stem of T and Splitnodek(T ) has 2k nodes.

Fix a perfect tree T ⊆ 2<ω such that [T ] = P and construct a (fusion) sequence
of perfect trees 〈Tn : n < ω〉 as follows.

(i) T0 = T .
(ii) Given Tn, define Tn+1 as follows. Let {σj : j < 2n} list Splitnoden(Tn). For

each j < 2n, let T jn = {ρ ∈ Tn : ρ � σj or σj � ρ} be the subtree of Tn
above σj . Choose a perfect tree Sj ⊆ T jn as follows.

(a) If for every R ∈ A, f−1n [R] ∩ [T jn] is countable, then Sj = T jn.
(b) If for some R ∈ A, f−1n [R]∩ [T jn] is uncountable, then fix one such

R and a perfect tree Sj ⊆ T jn such that [Sj ] ⊆ f−1n [R] ∩ [T jn].

Define Tn+1 =
⋃
j<2n

Sj .

Put S =
⋂
n<ω

Tn and Q = [S]. Then Q is a perfect subset of P and for every

n < ω, there are at most 2n members R ∈ A such that f−1n [R] ∩Q is uncountable.
Hence Q is as required. �
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Fact 2.10 (Balcar-Vojtas [1]). Suppose κ < c and 〈Pα : α < κ〉 is a sequence of
perfect subsets of 2ω. Then there exists a sequence 〈Qα : α < κ〉 of pairwise disjoint
perfect sets such that Qα ⊆ Pα for every α < κ.

Proof. Since every perfect set can be partitioned into c perfect sets, we can apply
Theorem 3.14 in [1] to the boolean algebra of all Borel subsets of 2ω modulo
countable sets. �

Lemma 2.11. Suppose F is a countable family of Borel functions f : 2ω → 2ω.
Let 〈Pα : α < κ〉 be a sequence of perfect subsets of 2ω where κ < c. Then there
exists an F-free sequence 〈Dα : α < κ〉 in which each Dα is a perfect subset of Pα.

Proof. By Fact 2.10, we can find a 〈P ′α : α < κ〉 such that each P ′α is a perfect
subset of Pα and P ′α’s are pairwise disjoint.

Fix a partition P ′α =
⊔
i<cRα,i where each Rα,i is perfect. Put A = {Rα,i :

α < κ and i < c}. Apply Lemma 2.9 to A and P = Rα,i to get a perfect subset
Qα,i ⊆ Rα,i such that for every f ∈ F , there are finitely many pairs (β, j) ∈ κ× c
such that f−1[Rβ,j ] ∩ Qα,i is uncountable. Next, inductively choose 〈Qα : α < c〉
as follows.

(a) Q0 = Q0,0.
(b) Assume Qβ has been chosen for β < α. Let Xα be the set of all i < c

such that for some f ∈ F and β < α, f−1[Rα,i]∩Qβ is uncountable. Then
|Xα| < c. Choose i < c such that i /∈ Xα and define Qα = Qα,i.

Note that for every α < β < κ, f−1[Qβ ] ∩Qα is countable. Next, by induction
on α < κ, construct Sα and {Sα,i : i < c} as follows.

(c) S0 = Q0 and {S0,i : i < c} is a partition of S0 into perfect sets.
(d) Suppose Sβ , {Sβ,i : i < c} have been defined for every β < α such that

Sβ ⊆ Qβ is perfect and {Sβ,i : i < c} is a partition of Sβ into perfect sets.
Put A = {Sβ,i : β < α and i < c} and apply Lemma 2.9 to obtain a perfect
subset Sα ⊆ Qα such that for each f ∈ F , there are only finitely many
S ∈ A such that f−1[S] ∩ Sα is uncountable. Let {Sα,i : i < c} consist of
pairwise disjoint perfect subsets of Sα.

Let Yα consist of all i < c such that for some γ > α and f ∈ F , f−1[Sα,i] ∩ Sγ
is uncountable. Note that |Yα| < c (this is where we need κ < c) so we can choose
i(α) < c such that i(α) /∈ Yα. Define Eα = Dα,i(α) and E′α = Eα ∩

⋃
{f−1[Eβ ] :

β 6= α, f ∈ F}. Then |E′α| < c so we can choose a perfect subset Dα ⊆ Eα \ E′α
and 〈Dα : α < κ〉 is as required. �

3. Turing antichain basis II

Let M denote the Mathias forcing defined as follows. M consists of all pairs
p = (sp, Xp) where sp ∈ [ω]<ω, Xp ∈ [ω]ω and max(sp) < min(Xp). For p, q ∈ M,
define p ≤P q iff sq ⊆ sp, Xp ⊆ Xq and sp \ sq ⊆ Xq. Let D be a family of dense
subsets of M. We say that X ∈ [ω]ω is a D-generic Mathias real iff there is a filter
G on M such that X =

⋃
p∈G sp and G meets every set in D. The following facts

were proved by Soare in [11].

Fact 3.1 (Soare [11]). Let e < ω and p = (sp, Xp) ∈M. There exists q = (sq, Xq) ∈
M such that sq = sp, Xq ⊆ Xp and for every n ∈ Xq and Y1, Y2 ∈ [sq ∪ Xq]

ω, if
ΦY1
e = Y2 and n ∈ Y2, then n ∈ Y1.
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Let De consist of q = (sq, Xq) ∈M such that for every n ∈ Xq and Y1, Y2 ∈ [sq ∪
Xq]

ω, if ΦY1
e = Y2 and n ∈ Y2, then n ∈ Y1. Then De is dense in M by Fact 3.1. Put

D = {De : e < ω} and let X be any D-generic Mathias real. Suppose Y1, Y2 ∈ [X]ω

and Y2 ≤T Y1. Fix e < ω such that ΦY1
e = Y2. Choose q = (sq, Xq) ∈ De such

that sq ⊆ X ⊆ sq ∪ Xq. As q ∈ De and Y1, Y2 ∈ [X]ω ⊆ [sq ∪ Xq]
ω, it follows

that (∀n ∈ Xq)(n ∈ Y2 =⇒ n ∈ Y1). Hence Y2 \ Y1 ⊆ sq is finite. So we get the
following.

Fact 3.2 (Soare [11]). Let X ∈ [ω]ω be a D-generic Mathias real. Then for every
Y1, Y2 ∈ [X]ω, if Y2 ≤T Y1, then Y2 ⊆? Y1 (i.e., Y2 \ Y1 is finite).

Definition 3.3. Let U be an ultrafilter on ω and B ⊆ U . We say that B is a
⊆?-basis for U if for every A ∈ U , there exists B ∈ B such that B ⊆? A.

Lemma 3.4. Suppose U is an ultrafilter on ω and κ is the least cardinality of a
basis for U . Let B be a ⊆?-basis for U of size κ. Then there exists F : B → ω such
that {B \ F (B) : B ∈ B} is a basis for U .

Proof. Note that ω1 ≤ κ ≤ c. For each A ∈ U , define BA = {B ∩A : B ∈ B}. Then
BA is also a ⊆?-basis for U and hence |BA| = κ. Fix an enumeration {Bα : α < κ}
of B and recursively choose 〈Sα : α < κ〉 such that the following hold.

(i) Each Sα ∈ [κ]ℵ0 .
(ii) If β < α, then Sβ ∩ Sα = ∅.

(iii) For every γ ∈ Sα, Bγ ∈ BAα (so Bγ ⊆? Aα).

At any stage α < κ, such an Sα can be chosen using the fact that |BAα | = κ ≥ ω1.
For each α < κ, fix an enumeration Sα = {α(n) : n < ω} and define F : B → ω
as follows. If B = Bα(n), then F (B) is defined to be the least N < ω such that
Bα(n) \ N ⊆ Aα \ n. Otherwise define F (B) = 0. It is easy to check that F is as
required. �

Lemma 3.5. Let U be an ultrafilter on ω and n ≥ 1. Suppose there is an n-
Turing independent (resp. Turing independent) ⊆?-basis for U . Then there exists
an n-Turing independent (resp. Turing independent) basis for U .

Proof. Let B1 be an n-Turing independent (resp. Turing independent) ⊆?-basis for
U . Let κ be the smallest cardinality of a ⊆?-basis for U and B be a ⊆?-basis for
U of size κ. Choose B2 ⊆ B1 such that |B2| = κ and for every A ∈ B, there exists
B ∈ B2 such that B ⊆? A. Apply Lemma 3.4 to obtain F : B2 → ω for B2 as there.
Then {B \ F (B) : B ∈ B2} is an n-Turing independent (resp. Turing independent)
basis for U . �

Theorem 3.6. Let U be an ultrafilter on ω that contains a D-generic Mathias real
X. Then U has a Turing antichain basis.

Proof. Let κ be the least cardinality of a basis for U . Then ω1 ≤ κ ≤ c. Fix a basis
B of size κ for U . By replacing each B ∈ B with B ∩X, we can assume that every
member of B is a subset of X. Fix an injective enumeration 〈Aα : α < κ〉 of B and
define h : κ→ κ recursively as follows.

(1) h(0) = 0.
(2) Suppose h(β) has been defined for each β < α. We define h(α) casewise as

follows.
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Case 1: There exists some β < α such that Ah(β) ⊆? Aα. In this case,
we define h(α) to be the least such β.

Case 2: There is no β < α such that Ah(β) ⊆? Aα. In this case, we define
h(α) to be the least γ < κ satisfying the following.

(a) Aγ ⊆? Aα and
(b) Aγ �T Ah(β) for every β < α.

In Case (2), h(α) is well defined because |{γ < κ : Aγ ⊆ Aα}| = κ and |{γ < κ :
(∃β < α)(Aγ ≤T Ah(β))}| ≤ max(|γ|, ω) < κ.

Claim 3.7. Put B′ = {Ah(α) : α < κ}.
(1) B′ is a ⊆?-basis for U .
(2) B′ is a Turing antichain.

Proof. (1) This follows from the fact that {Aα : α < κ} is a basis for U and
Ah(α) ⊆? Aα for every α < κ.

(2) Put Wα = {Ah(β) : β < α}. It suffices to show that for every α < κ, either
Ah(α) ∈ Wα or Ah(α) is Turing incomparable with every member ofWα. So assume
Ah(α) /∈ Wα and towards a contradiction fix β < α such that Ah(α) and Ah(β) are
Turing comparable. This means that h(α) = γ was chosen according to Case 2. So
Aγ �T Ah(β). So we must have Ah(β) ≤T Aγ . Since Ah(β), Aγ are both subsets of
the Mathias generic X, Fact 3.2 implies that Ah(β) ⊆? Aγ . As Aγ ⊆? Aα, we get
Ah(β) ⊆? Aα. But this means that we are in Case 1. A contradiction. �

The theorem now follows from Lemma 3.5. �

Since every X ∈ [ω]ω contains a D-generic Mathias real, Theorem 1.5 readily
follows.

4. n-Turing independent (n+ 1)-basis

In this section, we are going to prove Theorem 1.6. Fix n ≥ 1. Suppose U is
an ultrafilter on ω and B ⊆ U is a basis for U . Assume |B| = κ and enumerate
B = {Bα : α < κ}. For each α < κ, we will choose {Bα,i : i ≤ n} ⊆ U such that⋂
i≤nBα,i ⊆ Bα. This would imply that {Bα,i : α < κ, i ≤ n} is an (n + 1)-basis

for U . Now for Theorem 1.6, we will also like to ensure that {Bα,i : α < κ, i ≤ n} is
n-Turing independent. One may try to do this by choosing Bα,i’s by induction on
α < κ. But this strategy fails. For example, it may happen that ω1 < κ and at the
end of stage ω1, the family {Bα,i : i ≤ n, α < ω1} is already a maximal n-Turing
independent set (This situation is consistent by [4]). We avoid this difficulty by
choosing everything simultaneously and quite independently. For this purpose, we
make use of the following notion of e-splitting.

Definition 4.1. Let e,m, r, n1, n2 < ω, 2 ≤ r ≤ m, n1 < n2 and ā = 〈ak : k < m〉
where each ak ⊆ [n1, n2). Let F̄ = 〈Fk : k < m〉 where each Fk ⊆ [0, n1).

(1) Let j̄ = 〈jk : k < r〉 be an injective sequence where each jk < m. We say
that Splite(n1, n2, r, F̄ , ā, j̄) holds if (a) implies (b) below.

(a) There exists 〈Xk : 1 ≤ k < r〉 such that for each k, Xk ∩ [0, n2) =
Fjk ∪ ajk and letting X =

⊕
1≤k<rXk, we have (∃∞`)(ΦXe (`) ↓6= 0).

(b) There exist `, s < n2 such that letting W =
⊕

1≤k<r Fjk ∪ ajk , we

have ΦWe (`)[s] ↓6= (Fj0 ∪ aj0)(`).
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(2) We say that Splite(n1, n2, r, F̄ , ā) holds if Splite(n1, n2, r, F̄ , ā, j̄) holds for
every injective j̄ = 〈jk : k < r〉 where each jk < m.

(3) We say that Splite(n1, n2, r, ā) holds if Splite(n1, n2, r, F̄ , ā) holds for every
F̄ = 〈Fk : k < m〉 where each Fk ⊆ [0, n1).

Lemma 4.2. Suppose e,m, r, n1, n2 < ω, 2 ≤ r ≤ m, n1 < n2, ā = 〈ak : k < m〉
where each ak ⊆ [n1, n2) and F̄ = 〈Fk : k < m〉 where each Fk ⊆ [0, n1). Let j̄ =
〈jk : k < r〉 be an injective sequence where each jk < m. Then there exist n3 ≥ n2
and b̄ = 〈bk : 1 ≤ k < r〉 where each bk ⊆ [n2, n3) such that Splite(n1, n2, r, F̄ , c̄, j̄)
holds where c̄ = 〈ck : k < m〉, cjk = ajk ∪ bk for 1 ≤ k < r and ck = ak if either
k = 0 or k /∈ range(j̄).

Proof. We ask the following: Does there exist 〈Xk : 1 ≤ k < r〉 such that for every k,
Xk ∩ [0, n2) = Fjk ∪ ajk and letting X =

⊕
1≤k<rXk, we have (∃∞`)(ΦXe (`) ↓6= 0)?

If the answer is yes, we fix such 〈Xk : 1 ≤ k < r〉 and ` > n2 such that ΦXe (`) ↓6= 0
where X =

⊕
1≤k<rXk. Choose s > ` such that ΦXe (`)[s] ↓. Define n3 = s and

bk = Xk ∩ [n2, n3) for each 1 ≤ k < r. If the answer is no, then define n3 = n2
and bk = ∅ for every 1 ≤ k < r. It should be clear that, in either case, n3, b̄ are as
required. �

Lemma 4.3. Let e,m, r, n1, n2 < ω, 2 ≤ r ≤ m, n1 < n2 and ā = 〈ak : k < m〉
where each ak ⊆ [n1, n2). Let n3 ≥ n2 and bk ⊆ [n2, n3) for each k < m. Put
ck = ak ∪ bk and c̄ = 〈ck : k < m〉. Let F̄ = 〈Fk : k < m〉 where each Fk ⊆ [0, n1).

(1) Let j̄ = 〈jk : k < r〉 be an injective sequence where each jk < m. Assume
Splite(n1, n2, r, F̄ , ā, j̄) holds. Then Splite(n1, n3, r, F̄ , c̄, j̄) also holds.

(2) If Splite(n1, n2, r, F̄ , ā) holds, then Splite(n1, n3, r, F̄ , c̄) holds.
(3) If Splite(n1, n2, r, ā) holds, then Splite(n1, n3, r, c̄) holds.

Proof. (1) Suppose there are 〈Xk : 1 ≤ k < r〉 such that for every k, Xk ∩
[0, n3) = Fjk ∪ cjk and letting X =

⊕
1≤k<rXk, we have (∃∞`)(ΦXe (`) ↓6= 0).

Fix such Xk’s and note that Xk ∩ [0, n2) = Fjk ∪ ajk . As Splite(n1, n2, r, F̄ , ā, j̄)
holds, it follows that we can find `, s < n2 such that letting W =

⊕
1≤k<r Fjk ∪

ajk , we have ΦWe (`)[s] ↓6= (Fj0 ∪ aj0)(`). Since `, s < n2 ≤ n3, it follows that
Splite(n1, n3, r, F̄ , c̄, j̄) holds.

Clauses (2) and (3) follow from Clause (1) and Definition 4.1. �

Lemma 4.4. Let r,m, n1 < ω where 2 ≤ r ≤ m. There exist n2 > n1 and
ā = 〈ak : k < m〉 such that the following hold.

(a) Each ak ⊆ [n1, n2) and ak’s are pairwise distinct and nonempty.
(b) For every e ≤ n1, Splite(n1, n2, r, ā).
(c) If F ⊆ m and |F | ≥ r, then

⋂
k∈F ak = ∅.

Proof. Let R be the set of all triplets (F̄ , j̄, e) where j̄ = 〈jk : k < r〉 is an injective
sequence with each jk < m, e ≤ n1 and F̄ = 〈Fi : i < m〉 is a sequence of subsets of
[0, n1). Put |R| = N and note that N < ω. Fix an enumeration 〈(F̄t, j̄t, et) : t < N〉
of R. Choose 〈(āt, `t) : t ≤ N〉 satisfying the following.

(i) `0 < `1 < · · · < `t < `t+1 < · · · < `N .
(ii) āt = 〈at,k : k < m〉 where each at,k ⊆ [0, `t).
(iii) `0 = n1 +m and a0,k’s are pairwise distinct subsets of [n1, `0).
(iv) (∀k < m)(at+1,k ∩ [0, `t) = at,k) and if k = j0 or k /∈ range(j̄), then

at+1,k = at,k.
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(v) For every t < N , Splitet(n1, `t+1, r, F̄t, āt+1, j̄t) holds.

Given `t, āt, we use Lemma 4.2 to get `t+1, āt+1. After completing the construction,
define n2 = `N and ak = aN,k for each k < m. By Lemma 4.3(1), it follows that for
every (F̄ , j̄, e) ∈ R, Splite(n1, n2, r, F̄ , ā, j̄) holds. Hence, Splite(n1, n2, r, ā) holds.
Item (iv) ensures that if F ⊆ m and |F | ≥ r, then

⋂
k∈F ak = ∅. So Clause (c) holds.

Finally, Clause (a) holds because a0,k’s are nonempty and pairwise distinct. �

Lemma 4.5. Assume 2 ≤ ri ≤ mi < ω for i < ω. There exists 〈(ni, āi) : i < ω)〉
such that the following hold.

(1) 0 = n0 < n1 < · · · < ni < ni+1 < · · · < ω.
(2) For each i < ω, āi = 〈ai,k : k < mi〉 consists of pairwise distinct nonempty

subsets of [ni, ni+1) such that for every F ⊆ mi, if |F | ≥ ri, then
⋂
k∈F ai,k =

∅.
(3) If e ≤ i, then Splite(ni, ni+1, ri, āi) holds.

Proof. Construct (ni, āi) by induction on i < ω, using Lemma 4.4. �

Proof of Theorem 1.6. Let U be an ultrafilter on ω and r ≥ 2. For each
i < ω, let ri = r and fix mi ≥ 2i + r. Let 〈(ni, āi) : i < ω)〉 be as in Lemma 4.5 for
this 〈ri,mi : i < ω〉.

Claim 4.6. There exists a family T ⊆ ωω such that

(1) |T | = c,
(2) (y ∈ T ∧ i < ω) =⇒ (y(i) < mi) and
(3) for every y 6= y′ in T , y and y′ are eventually different: (∀∞i)(y(i) 6= y′(i)).

Proof. For each i < ω, fix a bijection hi : i2 → 2i. For each x ∈ ω2, define
yx : ω → ω by yx(i) = hi(x � i). Then T = {yx : x ∈ ω2} is as required. �

Since U is an ultrafilter, exactly one of the sets N0 =
⋃
i<ω[n2i, n2i+1), N1 =⋃

i<ω[n2i+1, n2i+2) lies in U . Without loss of generality, assume N1 ∈ U . For each
y ∈ T and S ⊆ N1, define

Ay,S = S ∪
⋃
i<ω

a2i,y(i).

Note that since ai,k’s all are nonempty, each Ay,S must be infinite.

Claim 4.7. Suppose 〈yk : k < r〉 consists of pairwise distinct members of T and
Sk ⊆ N1 for each k < r. Then Ay0,S0

is not computable from the Turing join of
〈Ayk,Sk : 1 ≤ k < r〉.

Proof. Let A =
⊕

1≤k<r Ayk,Sk . Towards a contradiction, fix e < ω such that

ΦAe = Ay0,S0
. Since yk’s are eventually different, we can fix i? > e such that

〈yk(i?) : k < r〉 are pairwise distinct. Define j̄, F̄ , ā as follows.

(i) j̄ = 〈jk : k < r〉 where jk = yk(i?) < 2i? < m2i? .
(ii) F̄ = 〈F` : ` < m2i?〉 where

(a) Fjk = Ayk,Sk ∩ [0, n2i?) for k < r and
(b) F` = ∅ if ` /∈ range(j).

(iii) ā = 〈a` : ` < m2i?〉 where a` = a2i?,`. Note that for every k < r, ajk =
a2i?,yk(i?) = Ayk,Sk ∩ [n2i? , n2i?+1).
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Since e < i? < 2i?, Splite(n2i? , n2i?+1, r, ā) holds by Lemma 4.5(3). It follows
that Splite(n2i? , n2i?+1, r, F̄ , ā, j̄) holds. Define Xk = Ayk,Sk for 1 ≤ k < r. As
ΦAe = Ay0,S0

is an infinite subset of ω, Clause (a) of Definition 4.1(1) holds for
〈Xk : 1 ≤ k < r〉. Hence Clause (b) of Definition 4.1(1) must also hold which implies
that for some ` < n2i?+1, ΦAe (`) 6= (Fj0 ∪ aj0)(`) = Ay0,S0

(`). A contradiction. �

Claim 4.8. Suppose 〈yk : k < r〉 consists of pairwise distinct members of T and

S ⊆ N1. Then
⋂
k<r

Ayk,S ⊆? S.

Proof. Put A =
⋂
k<r

Ayk,S . Since yk’s are pairwise eventually different, we can fix

i? < ω such that for every k < k′ < r and i ≥ i?, yk(i) 6= yk′(i). By Lemma 4.5(2),
for every i ≥ i?,

A ∩ [n2i, n2i+1) =
⋂
k<r

Ayk,S ∩ [n2i, n2i+1) =
⋂
k<r

a2i,yk(i) = ∅.

It follows that A ⊆ S ∪ [0, n2i?) ⊆? S. �

Let B be a basis for U . Put κ = |B| ≤ c and fix an injective enumeration
〈Bα : α < κ〉 of B.

Claim 4.9. For each n ≥ 1, there exists 〈Bα,k : α < κ and k ≤ n〉 such that the
following hold.

(1) Each Bα,k ∈ U .

(2)
⋂
k≤n

Bα,k ⊆ Bα.

(3) The family {Bα,k : α < κ and k ≤ n} is n-Turing independent.

Proof. Put r = n+ 1 and fix 〈(ni, āi,mi) : i < ω〉, N0, N1, T for this r as described
above. Put Sα = Bα ∩N1. Since N1 =

⋃
i<ω[n2i+1, n2i+2) ∈ U , each Sα ∈ U . Fix

pairwise distinct {y(α, k) : α < κ and k < r} ⊆ T and define B′α,k = Ay(α,k),Sα .

By Claim 4.7, {B′α,k : α < κ and k < r} is n-Turing independent and by Claim

4.8,
⋂
{B′α,k : k < r} ⊆? Sα. For each α < κ, fix Nα < ω such that

⋂
{B′α,k : k <

r} ⊆ Sα ∪Nα and define Bα,k = B′α,k \Nα. Then
⋂
{Bα,k : k < r} ⊆ Sα and since

Bα,k differs from B′α,k on a finite set, {Bα,k : α < κ and k < r} remains n-Turing
independent. �

It follows that {Bα,k : α < κ and k ≤ n} is an n-Turing independent (n+1)-basis
for U and the proof of Theorem 1.6 is complete. �

5. Turing independent basis

We are now going to prove Theorem 1.7.

Definition 5.1. Let θ < κ be infinite cardinals and h : [κ]<ω → [κ]≤θ.

(1) We say that X ⊆ κ is free for h iff for every s ∈ [X]<ω and α ∈ X \ s,
α /∈ h(s).

(2) We say that ?(κ, θ) holds iff for every h : [κ]<ω → [κ]≤θ, there exists
X ∈ [κ]κ such that X is free for h.

Recall (see [5]) that κ is a Ramsey cardinal iff for every γ < κ and c : [κ]<ω → γ,
there exists H ∈ [κ]κ such that for every n < ω, c � [H]n is constant.
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Lemma 5.2. Suppose κ is a Ramsey cardinal and P is a forcing. If ω ≤ θ < κ
and P satisfies θ+-cc, then V P |= ?(κ, θ). Hence if P satisfies ccc, then V P |= (∀θ <
κ)(?(κ, θ)).

Proof. Assume p ∈ P, h̊ ∈ V P and p 
 h̊ : [κ]<ω → [κ]≤θ. Since P satisfies θ+-cc, we

can find g ∈ V such that g : [κ]<ω → [κ]≤θ and for every s ∈ [κ]<ω, p 
 f̊(s) ⊆ g(s).
Define c : [κ]<ω → <ω2 as follows. If |s| ≤ 1, then c(s) = 0. Otherwise, list
s = {α0 < α1 < · · · < αn} in increasing order and define c(s) = 〈ik : k ≤ n〉
where (∀k ≤ n)(ik = 1 ⇐⇒ αk ∈ g(s \ {αk})). As κ is Ramsey, we can find
X ∈ [κ]κ such that for every n < ω, c � [H]n is constant. We claim that X is
free for g and hence also for f . Towards a contradiction, assume this fails and fix
s = {β0 < β1 < · · · < βn} ⊆ X and ` ≤ n such that β` ∈ g(s \ {β`}). This means
that the `th entry of c(s) is 1. Choose α0 < α1 < · · · < αn in X such that each one
of the sets X∩α0 and X∩(αk, αk+1) for k < n has cardinality > θ. This is possible
because |X| = κ is Ramsey and hence inaccessible (see [5]). Put s′ = {αk : k ≤ n}.
Now by our choice of αk’s, and the fact that c � [X]n+1 is constant, we get that
g(s′ \ {α`}) must have size > θ. A contradiction. �

Lemma 5.3. Let X ⊆ 2ω and ?(|X|,ℵ0) holds. Then there exists Y ⊆ X such that
|Y | = |X| and Y is Turing independent.

Proof. Define h : [X]<ω → [X]≤ℵ0 by h(a) is the set of all y ∈ X that are
computable from the join of s. By ?(|X|,ℵ0), there exists Y ⊆ X such that
|Y | = |X| and for every s ∈ [Y ]<ω and y ∈ Y \ s, y /∈ h(s). So Y is Turing
independent. �

For an ultrafilter U on ω, M(U) denotes Mathias forcing along U defined as
follows. p ∈ M(U) iff p = (sp, Xp) where sp ∈ [ω]<ω, Xp ∈ U and max(sp) <
min(Xp). For p, q ∈M(U), p ≤ q iff sq ⊆ sp, Xp ⊆ Xq and sp \ sq ⊆ Xq. Note that
M(U) is σ-centered and hence ccc since if (s,X1), (s,X2) ∈M(U), then (s,X1∩X2)
is a common extension. If G is an M(U)-generic filter over the ground model V ,
then X =

⋃
p∈G sp is a Mathias generic real added by M(U). Standard genericity

arguments show that X ∈ [ω]ω, X /∈ V and (∀Y ∈ U)(X ⊆? Y ).

Theorem 5.4. Let κ be a Ramsey cardinal. Then there is a ccc forcing P of size
κ such that in V P, there is an ultrafilter on ω that has a Turing independent basis.

Proof. Let 〈Pα, Q̊α, X̊α, Ůα : α < κ〉 be defined as follows

(i) 〈Pα, Q̊α : α < κ〉 is a finite support iteration of ccc forcings with limit P.
(ii) P0 is the trivial forcing and U0 is an ultrafilter on ω.

(iii) V Pα |= Ůα is an ultrafilter on ω that satisfies (∀β < α)(X̊β ∈ Ůα).

(iv) Pα+1 = Pα?Q̊α where V Pα |= Q̊α = M(Ůα) and X̊α ∈ V Pα+1 is the Mathias

generic real added by Q̊α.

Let G be P-generic over V . Since P is a ccc forcing of size κ = κ<κ, a standard
name counting argument shows that V [G] |= c ≤ κ. Put Xα = X̊α[G] and Uα =

Ůα[G]. Since each Xα is a pseudointersection of Uα and {Xβ : β < α} ⊆ Uα, it
follows that 〈Xα : α < κ〉 is a strictly ⊆?-decreasing sequence of members of [ω]ω.
Hence V [G] |= c = κ.

Claim 5.5. Put U = {Y ⊆ ω : (∃α < κ)(Xα ⊆? Y )}. Then U is an ultrafilter on
ω that has a Turing independent basis.
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Proof. U is clearly a filter on ω. Let Y ∈ P(ω)∩V [G]. Since cf(κ) = κ > ω, we can

find α < κ and Y̊ ∈ V Pα such that Y = Y̊ [G]. Now either Y or ω\Y is in Uα. Hence
either Xα ⊆? Y or Xα ⊆? ω\Y . So U is an ultrafilter. Put B = {Xα : α < κ}. As P
satisfies ccc, by Lemma 5.2, V [G] |= ?(κ,ℵ0). By Lemma 5.3, we can choose B′ ⊆ B
such that |B′| = κ and B′ is Turing independent. Since |B′| = κ, {α < κ : Xα ∈ B}
is cofinal in κ. It follows that B′ is a Turing independent ⊆? basis for U . So by
Lemma 4.5, U has a Turing independent basis. �

Another model : Start with a Ramsey cardinal κ and force MA (Martin’s axiom)
plus c = κ using the standard ccc forcing, call it Q, for MA (see [9]). In V Q, using
p = c = κ, construct a strictly ⊆?-decreasing sequence 〈Xα : α < c〉 in [ω]ω such
that for every Y ⊆ ω, there exists α < c such that either Xα ⊆? Y or Xα ⊆? ω \Y .
Let U be the ultrafilter with B = {Xα : α < c} as a ⊆?-basis. Now use Lemmas 5.2
and 5.3 to obtain a Turing independent subbasis for U as before and apply Lemma
3.5. �
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