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Stable amalgamation over a predicate and the
Gaifman property

Saharon Shelah*and Alexander Usvyatsov!

Abstract

We consider the following property of a first order theory T with a distin-
guished unary predicate P: every model of the theory of P occurs as the P-part
of some model of T. We call this property the Gaifman property. Gaifman
conjectured that if T is relatively categorical over P, then it has the Gaif-
man property. We propose a generalized version of this conjecture: if T fails
the Gaifman property, then it exhibits non-structure over P, i.e., has many
non-isomorphic models over P in many cardinalities. We address this conjec-
ture for countable theories. Motivated by ideas from Classification Theory,
we separate this conjecture into two parts: 1) stability over P (a structure
property of theories) implies the Gaifman property, and 2) instability over P
implies non-structure. In this paper prove the first part of this conjecture.
In fact, we prove a stronger statement: an appropriate version of stability
implies higher stable amalgamation properties.

1 Introduction

In [Gai74], Gaifman has conjectured that, if a countable theory T is categor-
ical over a unary predicate P, then every model of the theory of P “occurs”
as the P-part of some model of T. We will refer to the latter property of
theories as the Gaifman property over P; that is, we say that T has the Gaif-
man property over P (or just T' has the Gaifman property, when P is clear
from the context) when every model of the theory of P is the P-part of some
model of T. Gaifman [Gai] proved this conjecture in case T is rigid over P
(see also [BPW23] for a recent “effective” version of this result). Hodges et al
(e.g., [Hod99, HY09, Hod02]) investigated Gaifman’s conjecture and related
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questions for specific types of theories (an abelian group with a predicate
picking out a subgroup, a pair of linear orders).

The first author has proven an “absolute” version of this conjecture in
[She86]. Specifically, it follows from results there that if T is absolutely cat-
egorical over P (the categoricity is preserved in forcing extensions), then T’
has the Gaifman property over P. As far as we know, the general statement
is still open.

In this paper we formulate and address a much stronger version of Gaif-
man’s Conjecture (which we refer to as the “Generalized Gaifman’s Conjec-
ture”):

Conjecture 1.1. Let T be a countable complete theory, P a distinguished
unary predicate in its vocabulary. Assume that T fails the Gaifman property.
That is, assume that there exists a model N of the theory of P such that for
no M |= T is it the case that PM = N. Then for every reqular cardinal
big enough, and every p > X, T has 2* models of cardinality pu, which are
non-isomorphic over P.

This conjecture states that, if a countable theory T fails the Gaifman
property, then it exhibits “non-structure over P”. In other words, we believe
that a much weaker version of “structure” for T over P (than categoricity) is
enough for the Gaifman property.

In the present paper, we break the above conjecture into two parts, and
prove one of them. The motivation for our approach (and indeed for the
above statement of the conjecture) comes from Classification theory, a study
of dichotomies in model theory, developed by the first author (e.g., [She90]).
Broadly speaking, classification theory is a programme of search for dividing
lines. A dividing line is a property of first order theories (or, more generally, of
classes of models), such that theories that have this property (the ones falling
on the “structure” side of the dividing line) have various “positive structure”
properties, whereas theories that fail the property in questions (fall on the
“non-structure” side of the dividing line) exhibit “non-structure”. The in-
tuition is such dividing lines separate, in some sense, between “classifiable”
theories (whose models can be described using a “reasonable” collection of
invariants, e.g., dimensions), and “non-classifiable” ones, where such classifi-
cation is impossible.

One of the most fundamental and best studied dividing lines is stability,
introduced (first in classical model theory) by the first author, generalizing
the work and ideas of Morley [Mor65]. If (a countable theory) 7" is unstable,
it has the maximal number of non-isomorphic models (and even Y;-saturated
models) in any uncountable cardinality. On the other hand, if T" is stable, it
has a very well-behaved notion of independence, that leads to good notions
of dimension, and many other positive structural properties. These classical
results appear in [She90].

It is our hypothesis that the appropriate notion of stability also plays a
central role in the study of model theory over a predicate. However, we believe
that, unlike in the classical (first order) context, stability over a predicate
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gives rise to more than one (indeed, infinitely many) dividing lines. We will
make this idea of “w levels of classification (introduced by the first author in
[She86]) of “n-stability over P” for n < w more precise in the next section.

One goal of this work is to investigate structure consequences for theories
that fall on the positive side of all these dividing lines. In particular, we prove
the following:

Theorem 1.2. Let T be a countable complete theory, P a distinguished unary
predicate in its vocabulary, such that P is “very stably embedded” (by which
we mean that P is stably embedded, and every subset of P definable in T, is
definable already in TT, the theory of P). Assume that T is “n-stable” for
alln <w. Then T has the Gaifman property.

The next section we discuss the setting of this paper, the notion of n-
stability mentioned in the statement of the Theorem above, our general ap-
proach, and the main technical tools. At the end, we will be able to state
a stronger version of Theorem 1.2 that is actually proven in this paper, and
explain the connections with previous work.

2 Background: the existence property and
higher amalgamation

2.1 Background and setting

From now on, 7" will be a (fixed) complete first order theory, and P a distin-
guished unary predicate in the vocabulary of T'. For simplicity, we assume
that the vocabulary of T" has no function symbols, and that T implies that
P is infinite.

Let € be the monster model of T'. From now on, we assume that all models
of T are elementary submodels of €, and all sets are subsets of €.

For a set A, we denote PA = AN P® We also denote by CF the sub-
structure of €, which (as a set) equals P, and we let ¥ be the theory of
er.

Throughout the paper, we make the following “structure” assumptions:

Hypothesis 2.1. (Hypothesis 2).

(i) P is stably embedded.
(ii) Every definable subset of P® is already definable in TT .

We may assume these without loss of generality while investigating the-
ories that do not exhibit “non-structure”. See a detailed discussion on this
in [SU22]. The proofs of the relevant non-structure results appear in [PS85].
Because of clause (ii) of Hypothesis 2.1 above, we may also assume that 7" has
been Morley-ized (hence has quantifier elimination, even down to the level of
predicates). Again, see [PS85] or [SU22| for a more detailed discussion.
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Clearly, €7 can be viewed as the monster model of T

When no confusion should arise, we will write P for P®. Also, for a set
A, we will often denote by A both the set and the substructure of € with
universe A. So for example, when we write that AN P is A-saturated, or just
that AN P is A-saturated, we mean that the substructure of € with universe
PA is a A-saturated model of the appropriate theory (if AN P < P, which
will be the case in this paper, then the appropriate theory is 7'7).

For two sets A, A’, we will write A = A" if A and A’ are (universes of)
elementarily equivalent substructures of C.

2.2 Basic definitions
We recall some basic concepts from [PS85], [SU22], and [Usv24].

Definition 2.2. (i) We say that a set A has the existence property over P,
or simply the existence property if there exists M = T such that A C M
and PM = pA,

(ii) We say that T has the Gaifman property if every N = T' has the
existence property.

In order for a set A to have the existence property, P# should be “suitable”
for being the P-part of a model of T". For example, P4 should obviously be
itself a model of TF; moreover, P4 has to be “closed enough”.

This closedness condition is summarized in the following definition.

Definition 2.3. A C C is called complete if for every formula 1 (z,y) and
bC A |= (3 € P)yY(z,b) implies (Ja C PN A) = 9(a,b).

The following is clear:
Observation 2.4. If M < € and PM C A C M, then A is complete.

This confirms that in order for a set A to have the existence property, it
has to be complete. In this paper we are interested in the converse.

The following useful characterization offers another understanding of the
notion of completeness (see Observation 4.2 in [SU22J):

Fact 2.5. A set A is complete if and only if for every a C A and ¥ (&, y) the
Y-type tpy(a/PC) is definable over AN P® and AN P¢ < PC.

Now we recall the definitions of relevant types and stability. Note that
these notions are only defined over complete sets.

Definition 2.6. Let A be a complete set.

(i) Denote

Si(A) ={tp(¢/A) : PN (AUc¢) = PN A and AUZ¢ is complete}

(ii) A is stable over P, or simply stable, if for all A’ with A’ = A, we have
S, (AN)] < AT,
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Remark 2.7. (i) Even though “stability over P” is a more appropriate
and accurate name for our notion of stability of a set (and the term
“stable set” exists in literature, and has a different meaning), since we
have only one notion of stability in this article (stability over P), we
will sometimes omit “over P” and simply write “stable”.

(il) We will refer to types in Si(A) as complete types over A which are
weakly orthogonal to P.

2.3 Finite independent systems of models and
higher amalgamation properties

The main technical tool in this paper is so-called “good independent systems
of models”, or just good systems. Informally, such a system corresponds to
a collection of models of T and TF that are “independent from each other”.
A formal definition (which is somewhat long and quite technical) appears in
section 5. The main idea is that, given a partial ordered set I, an I-system is a
collection of sets A, for u € I, satisfying a collection of conditions (some very
natural, some a bit more technical). In our case, we will always assume that
I C P(n) for some n, where P(n) = P({0,...n—1}) = {u: v C {0,...,n—1}}.
This will allow us to distinguish between elements of the system that are
models of 7" and those that are models of T7. Specifically, we will (quite
arbitrarily, but this turns out to be a convenient choice) assume that if 0 ¢ wu,
then A, = TP, otherwise A, = T. Moreover, we assume that P4« = Ay oy

We will be most interested in good P(n)-systems (i.e., I = P(n)) and
P~ (n)-systems, where P~(n) = P(n) \ {n}. For simplicity of notation, in
this section, we shall refer to the former as an n-system, and the latter as an
n~-system (we avoid the use of this shortcut later in the paper).

Note that:

e A l-system consists of Ay and Aygy, where Aggy =T and Ay = PAw}

e A 17 -system consists only of Ay = TF
e A 27-system consists of Ag, Afy) = TP and Aoy with Ag = Py

Additional requirements on a 27 -system demand, for example, that
Ag < Aqyy, and that Aggy is “independent from Ay over Ag (in this spe-
cific case this just means non-forking independence: for every a € Ay, the
type tp(d/A{l}) is definable over Ay, and is “automatic”, since P is stably
embedded, and Ay is a model, hence a complete set). in a 2-system, one
also has a model Ay = Ay 1y = T, which contains all the above sets, and,
indeed, A{O} < Ao, and PA2 = A{l}

In the case of n = 3, the requirements are already more technical, and we
will not discuss them here (see section 5 for a general definition).

Sometimes one wants to discuss a particular type of system, where, for
example, the model A, is always atomic, constructible, or saturated over
the “smaller” sets. For example, in [She86], the first author studied “u.l.a.”
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systems, i.e., systems in which A,, is uniformly locally atomic (u.l.a.) over
the union of the appropriate n~-system (see subsection 2.5).

The property of n-stability mentioned in Theorem 1.2, corresponds to the
fact that every n™-system (more precisely, the union of every n™-system) is
a complete set stable over P. We say that T has n-existence if every n~-
system can be “completed” to an n-system. What we really prove in the
Main Theorem in section 6 is that n-stability for all n implies n-existence
for all n. Moreover, the model A, can, in this case, be taken to be locally
constructible over the union of the n~-system.

In particular, we obtain the following:

Theorem 2.8. Let T be a countable complete theory, P a distinguished unary
predicate in its vocabulary, such that P is “very stably embedded” (as in The-
orem 1.2)). Assume that T is “n-stable” over P for all n < w. Then the
union of every n~ -system has the existence property.

So Theorem 1.2, as stated in the introduction, is a particular case of the
Theorem 2.8 where (in the conclusion) n is taken to be equal to 1.

The property of n-existence can also be interpreted as an appropriate
“stable n-amalgamation” property: every n~-system of models can be amal-
gamated (i.e., embedded into one big model) without increasing the P-part.

2.4 Why systems?

One could ask: why bother with n-systems, if all one is interested is the
Gaifman property (the case n = 1)7 There are several potential answers to
this question.

First, we do not know a general proof of the Gaifman property that does
not go through a proof of a stronger result (the existence property for a larger
class of complete sets).

Second, m-systems are interesting objects in their own right, and n-
existence, which (as we have mentioned above) in a way corresponds to
a higher amalgamation property, can be quite useful, both in theoretical
model theoretic arguments, and in applications to particular theories (in
the same way as excellence in abstract elementary classes can be used in
particular examples to obtain interesting consequence, as is done in e.g.
[Kir13]). Problems related to “higher amalgamation” (n-existence) have gen-
erated much interesting research, with connections to e.g., algebraic topology
([Hru24, GK10, GKK11, GKK13], to only name a few).

Third, we believe that n-stability is a “true” dividing line for all n < w
in the following sense: we believe that one should be able to prove, assuming
that T is n-stable (over P), but n+ l-unstable, that T" exhibits non-structure
over P (and this will hopefully be addressed in subsequent work).

Finally, systems are a convenient and useful tool. Specifically, working
with n-systems allows proofs by induction on A, the cardinality of the system.

We would like to (informally) illustrate this on the following “baby” ex-
ample.
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Let’s say we are interested in the Gaifman property (which is essentially
equivalent to the problem of l-existence). That is, given a model N |= 77,
we ask whether there is M |= T with PM = N. In the language of systems,
given a 17 -system, we ask whether it can be extended to a 1-system.

Let’s say that we somehow already know that T has 1-existence and 2-
existence in cardinality A; and let us deduce by an inductive argument that
it has l-existence in A*. Given a model N |= T of cardinality A*, we write
it as an increasing union N; of models of T of cardinality A. By l-existence
in A, there is My = T of cardinality A whose P-part is Ny. By 2-existence in
A, there is M; |= T of cardinality A, containing My and Ny, whose P-part is
N;. Continuing by induction, we obtain an increasing chain M; = T whose
P-part is V;, and their union M will be the desired model of T of cardinality
AT, whose P-part is N.

In fact, this is a general phenomenon that makes systems so incredibly
useful: they allow inductive transfer of properties between cardinalities. It is
very often the case that a property for n + 1-systems in A implies the same
property for n-systems in AT. This exactly is the case for n-existence. The
proof of the Main Theorem (Theorem 2.8) uses a version of an inductive
argument described above (for all n < w at once), and the definition of
a system, that may appear quite technical at first (and second) glance, is
designed to make arguments of this type work.

2.5 Previous work

In [She86], the first author has established a similar result under the assump-
tion that 7' has “absolutely no two-cardinal models” (a condition that the
second author has called nulldimensionality in [Usv24], since it is equivalent
to: every type over a model of T" which is “weakly orthogonal” to P is alge-
braic; i.e., there are no “free” dimensions that are orthogonal to P). This is
a very strong hypothesis, that does not hold in most of the interesting exam-
ples, such as vector spaces over a field, ACF Ay, ECF, etc (nulldimensionality
is a natural assumption, however, if one is interested in investigating theo-
ries that are categorical over P; in particular, if one’s goal is to address the
original Gaifman’s Conjecture). Under these circumstances, the first author
could work with a special kind of independent systems of models, in which
every model A,, is uniformly locally atomic (u.l.a.) over the union (J, -, Au-
In the general case (where T is not nulldimensional), this notion of a system
is too strong. In section 5 below, we develop a theory of general systems,
that we use in order to prove an analogous result without the assumption of
nulldimensionality.

In [Usv24], the second author proves the full existence property (all com-
plete sets have the existence property) assuming full stability over P (all
complete sets are stable).It is also observed there that some natural examples
(such as ACF Ay) are fully stable. However, it does not seem likely that this
result brings us closer to a generalized version of Gaifman’s Conjecture, since
we do not know how to approach the “non-structure” side of full stability,
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or, indeed, whether the negation of full stability implies any kind of non-
structure. On the other hand, we believe that techniques similar to those
used by the first author in [She86] in order to establish non-structure assum-
ing instability of u.l.a. n-systems, can be strengthened and generalized to the
more general notion of a system defined here. We therefore believe that the
results in this paper are indeed the first step towards the proof of Conjecture
1.1.

Finally, many particular cases of the Gaifman property (and, more gener-
ally, the existence property) have been proven by numerous authors. Let us
just give a few examples. Hodges (partly in collaboration with Yakovlev)
[Hod99, HY09, Hod02] has established the Gaifman property for certain
classes of abelian groups (with a predicate for a distinguished subgroup) and
pairs of linear orders. It follows from the work of Lachlan that the (full)
existence property is always true for a countable stable theory T (the second
author’s work [Usv24] mentioned above generalizes this result). Afshordel
[Afs14] proved that every pseudo-finite field occurs as the fixed field of some
difference closed field. Hence (any completion of) the theory ACFA (al-
gebraically closed fields with a generic automorphism o) has the Gaifman
property, where P is interpreted as the fixed field of ¢. Kirby and Zilber
[KZ14] proved the existence property for the class of exponentially closed
fields (where P is the kernel of the exponent function), assuming that P is
Ng-saturated.

3 Basic facts

It is our intention to make this paper relatively self content and accessible to
any expert in model theory. We will therefore begin by recalling some basic
properties of the notions defined in the previous section (mostly from [SU22]
and [Usv24]).

First, we restate the assumption that P is stably embedded in a more
uniform way (this is standard, but see Observations 4.1 in [Usv24]).

Observation 3.1. There are (Vy(y,2) : ¥(Z,y) € L(T)) such that for all
a C C, tpy(a/PC) is definable by U (y,¢) for some ¢ C PC.

In other words, for every 1(z,7) and a € € there exists ¢ € P® such that
CEvyy(a,y) «— ¥(y,0).

Now we recall a few basic consequences of completeness.

Observation 3.2. (Observation 3.2 in [Usv24]) For any complete A and for
alla C A, tpy(a/P N A) is definable by U, (y,¢) for some ¢ C AN P (where
U (7, Z) is as in Observation 3.1).

Fact 3.3. (Corollary 4.7 in [SU22]) Let A be a complete set, p(x) a (partial)
type over A with P(z) C p. Then p is equivalent to a TF-type p’ over P4
with |p'| = [p].

In particular, if p is finite, then it realized in PA. Similarly, if [p| < A and
P4 is \-compact.
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Lemma 3.4. (Lemma 4.12 in [SU22]) (The Small Type Extension Lemma)
If A < C is saturated (or just AN P is |A|-compact) and p(Z) is an L(T)-type
over A of cardinality < |A|, then there is some p*(Z) € S«(A) extending p.

Corollary 3.5. (Proposition 4.13 in [SU22]). Suppose that AN P is |Al-
compact. Then A is complete if and only if A has the ezistence property (i.e.,
there exists an M < € with PM C A C M). If |A| = |A|<I > |T|, we can
add “M saturated”.

Fact 3.6. (see Theorem 4.7 in [Usv24]) Let A be a set. Then the following
are equivalent:
(i) A is complete
(ii) P4 < P®, and:
For every finite type po(Z) over A (not necessarily realized in A) and a

formula 1 (Z, b, ) over A , there is d C P4 such that the following is a
(finite) type over A:

po(2) U {(Vg C P) [(Z,b,7) +— Ty(5,d)] : i < k}

where Wy, (y, Z) is the defining formula for ¢ = ¢(zz’, 7).

(iii) For every finite type po(Z) over A (not necessarily realized in A) and
every formula (%, b, Z) over A, there is d C P4 such that the following
is a (finite) type over A:

po(z) U{[(32 C P)¥(2,b,2)] — (Z,b,d)}
Finally, we recall that, although stability over P is not a property of a

specific set A, but rather of its theory as a substructure, it is enough to
consider one saturated A’ = A:

Fact 3.7. (Corollary 5.5 in [SU22]) In Definition 2.3(iv), it is not necessary
to consider all A = A. More specifically, a complete set A is stable if and
only if [S,(A")| < |A'|IT! for some A’ = A saturated, |A'| > |T).

Moreover, it is enough that for A’ as above, |S,(A’)] < 2141,

4 Local Constructibility

4.1 Isolation and atomicity

Let us recall the definitions of the notions of isolation relevant for the discus-
sion in this article.

Definition 4.1. (i) A (partial) type p over a set A is called locally isolated
(Li.) if for every formula ¢(zx,y) there exists a formula 0,(x,a,) € p
such that 6,(z,a,) - ple. We say that p is locally isolated (1.i.) over
B C Afif for every p(x,y), its isolating formula 6, is over B (so a, € B).



Paper Sh:322b, version 2025-07-22. See https://shelah.logic.at/papers/322b/ for possible updates.

10

(ii) A (partial) type p over a set A is called A-isolated if there exists a subset
r C p with |r| < A such that r = p. We say that p is A-isolated over
B C A if r as above is a partial type over B.

Remark 4.2. (i) So p is locally isolated if for every formula ¢, the restric-
tion of p to a p-type is implied by a single formula in p (which does not
itself have to be a p-formula).

(ii) A type p is isolated iff it is Np-isolated.

The following Lemma (that follows from Fact 3.6) with play an important
role in our constructions. It states that a locally isolated type over a complete
set is always weakly orthogonal to P.

Lemma 4.3. (Lemma 6.3 in [Usv2}]) Let B be a complete set, p € S(B)
locally isolated. Then p € Sy(B).

Lemma 4.4. (Lemma 7.1 in [Usv24] Assume that T is countable.

(i) Let B be a stable set, p(Z) be a finite m-type over B, ¥(Z,y) a for-
mula. Then there is a finite Y¥-type q(T) over B such that p(Z)Uq(z) is
consistent, and it implies a complete V-type over B.

(ii) Let B be a stable set, p(x) be a finite m-type over B. Then there is
q(Z) such that |q(z)] < |T| = Rg, p(Z) U q(Z) consistent, and there is
r € S«(B) such that r is locally isolated, and p(z) U q(z) = r(T).

In particular, r(Z) is Wy -isolated.
Definition 4.5. Let N be a model, PNCBCN.

(i) We say that the sequence d = {d; : i < a} C N is a local construction
over B in N if for all i < «, the type tp{d;/B U {d; : j < i}) is locally
isolated.

(ii) We say that a set C C N is N is locally constructible (l.c.) over B in
N if there is a local construction d over B in N.

Definition 4.6. Let N be a model, PN C B C N.
(i) We say that the sequence d = {d; : i < a} C N is a A-construction over
B in N if for all i < a, the type tp{d;/B U {d; : j < i}) is A-isolated.
(ii) We say that a set C C N is N is A-constructible over B in N if there is
a A-construction d over B in N.

In particular, we say that N is A-constructible over B if there is a con-
struction N = B U {d; : i < a} such that for all i < A the type
tp{d;/B U {d; : j <i}) is A-isolated.

(iii) We say that a model N is A-primary over B if it is A-constructible and
A-saturated.

Definition 4.7. Let N be a model, PN C B C N.

(i) We say that N is locally atomic (l.a.) over B if for every d C N, tp(d, B)
is locally isolated over B.
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(ii) We say that N is A-atomic over B if for every d C N, tp(d, B) is M-
isolated over some B; C B,|Bj| < A.

Observation 4.8. Let A be a set, and p € S(A) locally isolated. Then p is
|T| " -isolated.

4.2 Locally constructible existence property

Definition 4.9. Let A be a complete set. We say that A has the locally
constructible (l.c.) existence property if there exists M = T with PM C A C
M such that M is locally constructible over A.

Lemma 4.10. Let A be a stable set, a a finite tuple. Then the set Aa is also
stable.

Proof: Let B = Aa. By Fact 3.7, it is enough to verify stability for B’ = B
saturated. Let M be a model containing B. Expand the language by an
additional unary predicates @ for A and Q1 for B. Let M’ be saturated in the
expanded language, and let B’ = Q{” /, considered as a substructure of M’ in
the original language. Clearly B’ = B, and is saturated. Similarly, A’ = Q™'
is elementarily equivalent to A (in the original language). Let a’ = B’ \ A,
so it is still finite (of the same length as a, which we will call n). Every type
tp(b/B') € S™(B') gives rise to a type of a tuple tp(ab/A’) € S+ (A’), and
two different types tp(b1/A’), tp(ba/A’) give rise to two different such types
over A’. By stability of A, there are < |A’|IT1 types in S?*™(A’); hence the
same is the case for S7"(B’). |

Lemma 4.11. Assume that T is countable, and let A be a countable stable
set. Then A has the locally constructible existence property.

Proof: Let {pi(x,a;): i < w} list all formulae over A. Construct an increasing
continuous sequence of sets A; such that:

(i) 4p=4
(ii) Aip1 =AU {bl}
(il) F wi(bi, @)
(iv) tp(bi/Ai) € S«(A;) and is locally isolated

This can be done by induction using Lemma 4.4 for the successor stages, since
all A; are stable by Lemma 4.10. Note that clause (iv) for b;, A; implies by
induction that all A; are complete, and P4 = pA,

]

5 Consequences of stability of models

Again, in order to keep the paper relatively self-contained, in this section, we
recall some of the main concepts and results from our previous article [SU22],
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that were proven under the assumption that every model M |= T is stable
over P. Since our ultimate goal in this paper is to investigate consequences
of n-stability for all n < w (and, as we shall see, stability of models is merely
1-stability), this is a “harmless” assumption for the current investigation.
Moreover, in [She86], the first author has shown that the negation of this
assumption implies (consistent) non-structure. So even when it comes to
approaching Conjecture 1.1, at least a “consistent”, or, rather, “absolute”
version thereof, this hypothesis is “justified” by the non-structure side of the
global picture.
So for the rest of the paper, we assume, in addition to Hypothesis 2.1:

Hypothesis 5.1. (Hypothesis 2). Every (equivalently, some) M < C is stable
over P (as in Definition 2.6(ii)).
In other words, |Sy(M)| < |M|IT! for all M = T.

All the results stated below have been proven assuming this Hypothesis.

Theorem 5.2. (Theorem 7.2 in [SU22]) If A is stable, |A| > 2, then for
every Y(z,y) there is a quantifier free Wy (y,2) € L(T) such that whenever

B = A and p € S«(B) then ply is defined by Wy (y,d) for some d C B, i.e.
pW) = {¢(i’,(_l) ra€B,B ): \II¢(&’ d)}
Theorem 5.3. (Theorem 7.3 in [SU22]) Let A be complete and A = A<
The following are equivalent:

(i) A is stable.

(i) If A" = A is A\-saturated, X\ = |A'| > |T|, then over A’ there is a -
primary model M.

(115)y If A" = A is A-saturated, X\ > |T|, then every m-type p over A, |p| < A
can be extended to a A-isolated q € S.(A’).

We now recall some new concepts introduced in [SU22], and their prop-
erties (see section 8 of [SU22|) for details).

Definition 5.4. A C; B if for every a € A,E_e B and ¢ € L(T') such that
E 1(b,a) there is some b’ C A such that = ¢ (V,a)

Definition 5.5. Suppose A is stable, p € S,(A) and A C; B. Then q € S(B)
is a stationarization of p over B if for every ¢ € L there is some definition
U (Y, ay) with a, C A that defines both py, and gy.

Notation 5.6. (i) We write a | , B if A is stable and q = tp(a/B) is a
stationarization of p = tp(a/A) (so in particular p € S.(A) and A C,
B). In this case, will also write ¢ = p|B.

(ii) We write C | , B if for every a € C' we have a | , B.

Lemma 5.7. ([SU22, 8.5,8.6,8.7]) Assume A is stable, A Cy B and p €
S«(A). Then:

(i) p has a stationarization q over B.
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(it) It is unique: We can replace “some Wy, (y,ayp)” by “every...”, so q does
not depend on its choice.
(i1i) If B is complete, ¢ € Si(B).

(iv) If A C; B, A stable, ¢ C Bltp(B/A) € S.«(A), then tp(c/A) € Si(A) and
the stationarization of tp(b/A) over B includes the stationarization of
tp(¢/A) over B.

Corollary 5.8. Let q € S.(B) definable over A Cy B, A a stable set. Then
q 1is the stationarization of q[A.

Lemma 5.9. (Lemma 8.10 in [SU22]) Let A, B,C' be sets such that A Cy B,
ACC, C L ,B (see Notation 5.6). Let F' be an elementary map from B
onto B', G be an elementary map from C onto C' such that F|A = GlA.
Then F'UG is elementary.

Lemma 5.10. (Lemma 8.11 in [SU22]) Let A be A-saturated and stable,
A Cy B, N a A-saturated model A-atomic over A such that N | , B.
Then tp(N/A) & tp(N/B); so the types tp(N/A) and tp(B/A) are weakly

orthogonal.

6 Good Systems

Finally we are ready to formally define the main tool that is used in our
proofs: good systems.

Notation 6.1. e PYV)={Z:ZCY}LP(Y)=PY){Y}
e We also use the standard set theoretic notation n = {0,1,...,n — 1}.

Definition 6.2. (1.) We say that I is weakly nice if for some n,I C
P(n),P({1,...,n}) C I and I is hereditary (i.e. t C s and s € I implies
t € IN\. We say I is nice if in addition it is an initial segment of P(n)
ordered lexicographically (identifying s € P(n) with its characteristic
function; so {t € I : 0 ¢ ¢} is an initial segment and for every s € I all
subsets of s precede s with respect to this ordering.) Let n; be this n.
If s is the last element on this list, 0 € s, then we say (I, s) is nice.

(2.) If I is weakly nice, we define by induction on n; that § = (4, : s € I)

is a good system (or good I-system) if:

(i) I is nice,

(i) AsN A = Asns

(iii) (a) 0 ¢ s= Ag < PC,
(b) 0es=As<C.

(iv) AsN P¢ = AS\{O},

(v) if n > 2, then (A5 : s € P({1,...,n = 2})) < (Asuqn-1} : 5 €
P({1,...,n—2})) and these are good systems,

(vi) Urep-(s) At is stable when 0 € s € I
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(vii) For any ¢ € L and bs € Ag for s € I such that = ¢(...,bs,...)
there are b}, s € I, satisfying: b, € A f,,—1} and = o(... L),
and, in addition, if n — 1 ¢ s, then we can choose b, = by.)

(viii) (Asugn-1} 8 € I[p—1)) and (A5 : s € I["=1Y are both good systems
where
(a) I ={s:n—-1¢scl}

() Iy ={s:su{n—-1}el,(n—1) ¢ s}.

3. We call 8 a weakly good (w.g.) system if (ii) — (iv) hold and a medium
good (m.g.) system if (v), (vi) hold too. We call 8§ a presystem if it has
the right form. A (A, I)-system or A-system means |As| = A for all s € I,
and the system is called stable if | J,.; As is a stable set.

Lemma 6.3. (i) If (As : s € I) = (A} : s € I) where these presystems are
treated as structures, then one is good if and only if the other one is
good; similarly for w.g., m.g.

(ii) If (As : s € I) is good where (I,t) is nice, then (A5 : s € I ~{t}) is also

good.

(iii)IfO:l0<ll<~-<lm_1<n1andJ:{vgm:{l,-:ie
v} € I}, By = Ayicoy and (As 1 s € I) is a good system, then so is
(By :v € J).

Proof: (i): For clause (vi) of Definition 6.2 recall that stability is a property
of the theory of a set. For the rest use induction on nj.

(ii): Straightforward checking.

(iii) Clauses (i) — (v) are straightforward, and we prove clauses (vi)— (viii)
by induction on n (for all possible systems, m and lp < -+ < lp—1). If
lm—1 < n—1 use the induction hypothesis applied to (4, : s € I, which
is a good system by Definition 6.2 (viii). For l,,—1 = n—1 clauses (vi) — (viii)
for (B, : v € J) follow from the corresponding clauses for (45 : S € I).

]

Remark 6.4. Note that from clause (vii) of Definition 6.2 it follows that if
(As s €1) is a good system, then | Jycpm—1 As St Uger As-

Lemma 6.5. (i) Suppose (A, :v € I ~{s}) is good, (I,s) nice, then
User-(s) Av St Uer,vsts Av-
(i4) Further, if (A, :v € I) is good, (I,s) nice, then for every b € Ay,
tp(b/ Uve]m# Ay) is definable over UvefP*(s) A,.
Hence, combining with (i) and Lemma 5.7, tp(b/ Uvervzs Av) is the
stationarization of tp(b/ Uyep- () Av)-

Proof: By induction on ny = n and |I|. Let J = I~ {s}. If nf = 0, the
statements are vacuous. Let n; = 1, necessarily s = {0}, (0 € s as ([, s) is
nice), so [ = {@,s}; P (s) ={@} ={v:v € I,v # s}, so (i) holds trivially.
As for (ii), using the same equality, the conclusion holds by Hypothesis 2.1



Paper Sh:322b, version 2025-07-22. See https://shelah.logic.at/papers/322b/ for possible updates.

15

every type over PC is definable as A, < €, P4 = Ay by Definition 6.2
(13i), (iv).

So let ny > 2. We first prove (7). U,cjm-1A4v St Upes Ao by (vid)
of Definition 6.2 (see Remark 6.4). By the induction hypothesis applied to
(A, :v € JP=1) (which is a good system by (viii) of the definition) we have
Uvep-(s) Av St Upegin-1 Av (as P (s) C J=11), But C; is transitive, so we
get the desired conclusion of part (7).

So assume now n —1 € s. Let t := s~ {n—1},s00 € t and ¢t C ¢/
implies t' € {t,s}. As t is the second to last element in I with respect to
lexicographical ordering, (I \ {s,t}) is nice.

Suppose | ¢(a,b,¢) where a € A;b € Uueﬂ’*(t) Auuin-1y,€¢ €
Uvervzs Av, and we should find ¢ € U,ep-(5)Ay such that = ¢(a, b,c*).
Clearly without loss of generality ¢ € J,¢ Tudsit A,. By the induction hy-
pothesis on (ii) applied to I \ {s}, tp(a/U,espr5s Av) 15 definable over
Uvep- (1) Av- So we can choose ¥ = Wy(y, 2, d) with d € Uvep- (1) Av which
defines tpy(a/U,es pspss Av). Hence = U(b,E d).

Consider the system (A, -1} : v € Ij_q) \ {t}). (Note: since [ is an
initial segment of P(ny), s last in I and n—1 € s, we have that uU{n—1} € I
whenever w € I.) This system is good by clause (viii) of Definition 6.2 and
the previous lemma clause (i) and bd € |J,, Au). So we can apply part (i)
of the induction hypothesis to find ¢* € Uyep- (1) Auufn—1}Ct Uue]n_l,u;ét Ay
so that = W (b, ¢*, d), hence by the choice of d, = ¢(a, b, ¢*) as required.

Next we have to prove the induction step for (i7).

First assume that n — 1 ¢ s.

(Ay = v € I[”*1]> is a good system, so by the induction hypothesis
tp(a/Uye -1 Av) is definable over |J,cp- (s Av (note that a € A, and
s € I by the assumption).

We claim that these same definitions work for tp(a/J,c; Av). Indeed,
we know that for some d € (J,ep-(5 Av for all b € ;e jim-1 A we have
p(a,b) <= Y, (b,d). If for some b € A, € bigcup,cjA, the above is not
the case, since (J,cjm-11 4o St Uyes Av (see Remark 6.4), we can find a
“counterexample” in J,¢ jin—1) Ay, a contradiction.

Now suppose n—1 € s. Let a € As and ¢(Z,y) be a formula. By Theorem
5.2 tpy(a/ Uyep-(s) Au) is definable by some ¥(y,b) where b € Unep-(s) Au
since the domain is a stable set by part (vi) of the definition. Let b = b1bo
where by € Ay, by € Uue?,(t) Auu{n—1y where again ¢ := s~ {n — 1}. Suppose
¥(,b) does not define tp,(a/ Uueruzs Au). Let ¢ be a witness to this lack
of definability and ¢* = €163, ¢] € A1, & € Uyesurpst Auvfn—1}-

Hence we have | ¢(a,c;,¢;) if and only if &= —(e},e5,b1,b2). By
part (viii) of the definition (A,yn—1} @ v € Ij_y)) is a good system,
so by part (vi) applied to the type tp[¢1(aci/Uy,ep- ) Ausfn-1}) (Where
01 = ¢(Z,Y1,72)) is defined by some (g, d) for some d € UuefP—(t) Auuin—1}
and by (viii) of the definition and the induction hypothesis this definition
works for UuEI,u;és,t Ay = Uuel[n,l],u;ﬁt AUU{N—l}‘
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As we can replace ¢ by —¢, without loss of generality we have
#(a, e}, ) A (e, e, b1,b2). So = 0(c;,d). As we have already proved
part (i) for (I,s), we can apply it to find ¢&* € UuefP_(s) A, satisfying
= 0(cs*,d) A (eies*,b1,ba). Now by the choice of 6(j2,d) this says
= ¢(a,c;,c5"). But ¢f, ¢ € UUG?,(S) Ay, hence by the choice of ¢ we have
= (cf,c5,b). But b = b1by, so the last statement contradicts the second
conjunct above, and we finish. |

We can finally conclude that the union of a good system is a complete set:

Corollary 6.6. (i) If (A : s € I) is a good system, then |J . As is com-
plete.

(ii) If 8 = (AL : t € I) are good systems for | = 1,2, (I,s) is nice, I is and
elementary mapping from U#S A}l onto U#S A2, G is an elementary
mapping from A} onto A% and F|J,c, At = G|U,c, At then GUF s
an elementary mapping.

Proof: By induction on |I|; without loss of generality I # P({1,...,n; —1})
(that is, I D P({1,...,nr —1})) since for I = P({1,...n; — 1}) the claim
follows from condition (iii) (b) of the definition. Let A = A<* > |T'| and let
8" = (A} : t € I) be such that:

(a) (Aj:tely=(A;:tel)
(b) 8 is A-saturated
(c¢) 8 has cardinality A

It suffices to prove the statement for 8’. Let s € I be the last mem-
ber of I. By our “wlog” assumption, 0 € s, that is, (I,s) is nice. By
condition (vi) of the definition, (J,, A} is a stable set, so by Theorem 5.3
we can find M, J,-,A; € My C A, My M-primary over J,.,A}. For
a € M, tp(a/U;cs Ap is Asolated. As ey 45 At is complete (by the in-
duction hypothesis) there is a A-saturated model M, PM Cycry.s A} C M.
So for a € My we have tp(a/ U, A;) implies tp(a/U;es 145 A7) (see Lemma
5.10), and by the choice of Mj this type is realized in M. Similarly So without
loss of generality, Ms C M. Hence U;c; . A U M is complete.

Now A;\{O} = P4 C M, < A, hence for every a € A’ tp(a/M,) is
stationary and definable. By the first part of the previous lemma (as for every
a € Al tp(a/M,) € S,(M,) since P4 C M,) the same definition works for
tp(a/MsUUyer pzs At)- As MsUU,ep 26 At Is complete, there is a A-saturated
M’ Aoy = PM C M, U Userezs At © M'. We can extend tp(A; /M) to
a complete type over M’ using the same definitions. So it necessarily extends
tp(AL/MsUyer iz At)- So without loss of generality tp(A;/M’) is definable
over M.

(ii): Follows from Lemma 5.9. [ |

Definition 6.7. We say that T is n-stable over P if for every good system
(As : s € P7(n)), its union B = [J ep-(,) As is stable over P.
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Definition 6.8. We say that T has the n-existence property if for every
good system (A : s € P~ (n)), there is A, such that (A; : s € P(n)) is a good
System.

7 Existence property

Hypothesis: Every good system (A : s € P7(n)) is stable. That is, T is

n-stable over P for all n < w.

Conclusion: For every nice I and good system (A : s € I), [, As is stable.
The conclusion follows from the Hypothesis by clause (vi) of the definition

of a good system. So in particular, Hypothesis 5.1 (every model is stable over

P) follows from the Hypothesis of this section.

Theorem 7.1. If (A, : s € I) is a good system, X\ = __;|As|, A > [T|, then
we can find A} for s € I, a0 < \ such that

(a) 143] < lo] +|T).

(b) (A2 :a < \) is increasing continuously.

(c) For each a, (A3, :se€l) < (As:s€l).

(d) (A5 :se€l) is a good system.

(e) Let J=1TU{tU{n;}:t eI}, and for s € J,a < 3 let

45 | A ifsel
{ef} = Atﬂ ifseJ, ny€st=s~{ns}

Then <A?a gy S € J) is a good system.

Proof: We can easily define (Léwenhem-Skolem) the A? such that (a), (b) and
(c) hold. Now (d) holds by 6.3 (7). Now, clause (e) follows:

Claim If (Af : s € I) is a good system, (A§ :s € I) < (Aj:seI), and J
and A?O,l} are defined as in (e), then <A?071} :s € J) is a good system.

Proof (of claim): Let (s' : I < 2/ be the lexicographic enumeration
of J. We prove by induction on m, |[I UP({1,...,nr})| < m < 2Vl that
<A‘?{ZO71} :l <'m) is a good system.

For m = [T UP({1,...,nr})| easy. For m + 1 check Definition 6.2.

(1) — (v) are easy. (vi) holds as the induction hypothesis implies that
<A’f{071} :t C s < m)is a good system, hence (by the hypothesis of the section)
Uics,, A?{O’l} is stable. Next, (vii) holds as (A§ : s € I) < (A} : s € I). Lastly
(viit) holds as (A : s € I) is a good system (by assumption) and (A : s € I)
is a good system (by 6.3 (7)). |

Theorem 7.2. (T countable) If I = P~ (n),(As : s € I) is a good sys-
tem then over | J,c; As there is an locally constructible model. Moreover, if
tp(c/Us As) € S«(U; As), then we can find a locally constructible model over
Us AsUe.
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We have the following easy fact:

Fact 7.3. If B is locally constructible over A, A C; C, then B is locally
constructible over C' by the same sequence, AU B C; C'U B, and tp(B/A) -
tp(B/C).

Proof: (of Theorem 7.2) We prove the theorem by induction on A = ) | A4
Remember I = P~ (n).

For A < N, use Lemma 4.11. Note that the set As¢ is countable and
stable by Lemma 4.10.

For A > Ry choose A}, < X as in Theorem 7.1 such that tp(¢/J, A ) i

increasing contlnuously, A{O’ o 1} is locally constructible over [ J{A{ : s € I'}

and for o < A Aig;l’ } is locally constructible over A{O’ =1y {A?
s € I}. |T| is countable, so use the case A = N
Since (Fact 7.3)

a+1 :

tpe (ALY Ay U ALy b ap (A U Ay)

and
tpu (A A v apa(Al | A ue)
we have

tp (AL A5 ue) b ap. (AL Asue)

Let for s € P~ (n+ 1),

Bs_{A‘; ifn¢s,s#{0,....,n—1}

At itnes

Note that in the notation of Theorem 7.1 for I = P~ (n), B = B oty
So (BS :s € P~ (n+1)) is a good system.

We use the induction hypothesis on A to carry the induction step from «
to a4 1. |

Corollary 7.4. (T countable) Assume that T is n-stable over P for alln < w.
Then T has n-existence for all n < w. Moreover: let (As : s € P~ (n))
be a good P~ (n)-system. Then its union B = Jsep- () As has the locally
constructible existence property,

Corollary 7.5. (T countable). Assume that T is n-stable over P for all
n < w. Then T has the Gaifman property. Moreover, every N =TT has the
locally constructible existence property.
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The last Corollary is just a particular case of the previous one with n = 1.

In light of the results above, we restate our generalized version of Gaif-
man’s Conjecture:

Conjecture 7.6. (T countable) Assume that T is n-unstable over P for some
n. Then for every regular cardinal X big enough, and every > X\, T has 2*
models of cardinality p, which are non-isomorphic over P.

Proving the last conjecture as stated may be challenging. We therefore
state a weaker version of it, which, we believe, may be more attainable:

Conjecture 7.7. (T countable) Assume that T is m-stable over P for all
m < n, but n-unstable for some n. Then for every regular cardinal A big
enough, and every p > k= A", T has 2% models of cardinality u, which are
non-isomorphic over P.

An even more “reasonable” goal may be proving that for every regular A
(perhaps A = A<?), there is a forcing extension of the universe that does not
collapse any cardinals, in which we have non-structure as stated in the last
Conjecture. We plan to address these questions in subsequent work.
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