
CONSISTENCY OF SQUARE BRACKET PARTITION RELATION

SAHARON SHELAH

Abstract. Characteristic earlier results were of the form CON(2ℵ0 → [λ]2n,2),

with 2ℵ0 an ex-large cardinal, in the best case the first weakly Mahlo cardinal.
Characteristic new results are CON

(
(2ℵ0 = ℵm) + ℵ` → [ℵk]2n,2

)
, where

k < ` < m. So we improve in three respects: the continuum may be small (e.g.
not a Mahlo weakly inaccessible), we use no large cardinal, and the cardinals

λ involved are < 2ℵ0 after the forcing.

§ 0. Introduction

In their seminal list of problems [EH71], Erdös and Hajnal posed the question
(15(a)): does 2ℵ0 6→ [ℵ1]23? Recently, Komjáth [Kom21] provided a comprehensive
update on this topic.

We continue here works which start with the problem above:[She88, §2], [She92],
[She89], [She95] [She96], [She00] and the work with Rabus [RS00].

The simplest case of our result is (recall 0.3 below):

Theorem 0.1. Assume GCH for transparency. Then for some ccc forcing notion
of cardinality ℵ8 in the universe VP, we have 2ℵ0 = ℵ8 and for any n ≥ 3, ℵ7 →
[ℵ2]2n,2.

Proof. Choose (µ, θ, ∂, λ) as (ℵ8,ℵ7,ℵ2.ℵ0) and apply Theorem 0.2 �0.1

The general case is:

Theorem 0.2. Assume λ = λ<λ < ∂ < θ < µ = µθ and 2∂
+`

= ∂+`+1 for
` = 0, 1, 2, 3 and ∂+4 < θ. Then for some λ+-cc, (< λ)-complete forcing notion P
of cardinality µ (so the forcing does not collapse any cardinal and preserves cardinal
arithmetic outside [λ, µ)), in the universe VP we have, 2λ = µ and for every σ < λ,
θ → [∂]2σ,2

Proof. All this paper is dedicated to proving this theorem. Pedantically Hypothesis
1.1 holds (see Fact 1.12) so we can apply Concusion 1.11. �1.11

We may replace θ → [∂]2σ,2 by (∀∂1 < ∂)(∃θ1 < θ)[θ1 → [∂1]2σ,2] and change the
assumption on cardinal arithmetic accordingly.

Recall,

Definition 0.3. For possibly finite cardinals θ, ∂, σ and κ, let θ → [∂]2σ,κ mean:
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2 S. SHELAH

• if c is a function from [θ]2 := {u ⊆ θ : |u| = 2} into σ, then there exists
some subset U of θ of cardinality ∂ such that {c(u) : u ∈ [U ]2} has at most
κ-many members.

We thank Yair Hayut for many helpful comments.

§ 0(A). Preliminaries.

Notation 0.4. cof(δ) is the class of ordinals of cofinality cf(δ).

Notation 0.5.
(1) P, Q and R are forcing notions.
(2) p, q, r called conditions are members of a forcing notion.
(3) q is as in Definition 1.3, some kind of (< λ)-support iterated forcing with

extra information.

Notation 0.6. We may write e.g. N [q, β, u] instead Nq,β,u to help with sub-scripts
(or super-script).

Definition 0.7. Let θ, ∂, κ and λ be infinite cardinals. We say that θ →sq (∂)λ,2κ
when θ > ∂ ≥ κ ≥ λ and:

� If (a) then (b), where:
(a) B is an expansion of (H<λ(µ),∈, <∗), where <∗ is a well-ordering of

H<λ(µ), µ+ > θ, and its vocabulary τB has cardinality ≤ λ.
(b) There is a tuple s = (U , N̄ , π̄) solving p = (θ, ∂, κ, λ,B), which means:

�p,s for u, v ∈ [U ]≤2,
•1 N̄ = 〈Nu : u ∈ [U ]≤2〉,
•2 U ⊆ θ is such that otp(U ) = ∂,
•3 Nu ≺ B, [Nu]<λ ⊆ Nu,
•4 ε[s] := min(U ),
•5 Nu ∩U = u,
•6 ‖Nu‖ = κ and κ+ 1 ⊆ Nu,
•7 Nu ∩Nv ≺ Nu∩v,
•8 π̄ = 〈πu,v : u, v ∈ [U ]≤2 and |u| = |v|〉 such that if |u| = |v|,

then πu,v is an isomorphism from Nv onto Nu mapping v
onto u,

•9 if u1 ⊆ u2 and v1 ⊆ v2 all from [U ]≤2 and |u2| = |v2|,
π′′u2,v2(u1) = v1 then πu1,v1 , πu2,v2 are compatible func-

tions1,
•10 for ` = 1, 2, the sets Nu ∩ ∂ for u ∈ [U ]` are pairwise equal

2 and included in N∅.

Observation 0.8. If N̄ = 〈Nu : u ∈ [U ]≤2〉 satisfy 0.7(b)•1 + •7, then:

(∗) For every x ∈ ∪{Nu : u ∈ [U ]≤2} the set {u ∈ [U ]≤2 : x ∈ Nu} has one of
the following forms:
(a) {u} for some u ∈ [U ]2,
(b) {ζ} for some ζ ∈ U ,
(c) {{ζ}} ∪ {{ε, ζ} : ε ∈ U ∩ ζ} for some ζ ∈ U ,
(d) {{ζ}} ∪ {{ζ, ξ} : ξ ∈ U \ (ζ + 1)} for some ζ ∈ U ,
(e) {∅},
(f) {∅} ∪ {{ζ} : ζ ∈ U },
(g) {∅} ∪ {{ζ} : ζ ∈ U } ∪ {{ε, ζ} : ε < ζ are from U }.

1So e.g. it follows that: if ζ1, ζ2 ∈ U then π{ζ2},{ζ2} � (N∅ ∩N{ζ2}) is the identity map.
2Note that ∂ has two distinct roles: the size of U and the restriction on Nu ∩ ∂. We may

separate.
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CONSISTENCY OF SQUARE BRACKET PARTITION RELATION 3

§ 1. The forcing

Our aim here is to prove the consistency of the following configuration:

2 < σ < λ = λ<λ ≤ ∂ = ∂<λ ≤ µ = µθ = 2λ,

and having θ → [∂]2σ,2.

A continuation is in preparation [S+], aiming to further develop the directions
explored here, particularly for the case of superscript n > 2, as dealt within [She92].
We also show there that we can weaken the requirements on the cardinals and have
more pairs.

Hypothesis 1.1. The parameter p = (µ, θ, ∂, λ, λ,B) consists of the following:

(a) λ = λ<λ < ∂ < θ ≤ µ = µθ,

(b) θ →sq (∂)λ,2λ (see Definition 0.7, a variant of [She89, 2.1]); in our case using
λ twice in intentional.

(c) σ will vary on the cardinal numbers from (2, λ) and the “nice” µ-s are such
that γ < µ⇒ |γ|θ < µ.

(d) • B is a model expanding (H<λ(µ),∈, <B), where <B is well-ordering
of H<λ(µ),
• τ(B) is a vocabulary of cardinality ≤ λ.

We intend to use (<λ)-support iterated forcing of quite a special kind but first,
we define the iterand.

Definition 1.2.
(1) Let A be the set of objects a consisting of:

(a) • γ < µ and σ ∈ (2, λ),
• P is a forcing notion such that:

p ∈ P⇒ dom(p) ∈ [γ]<λ ∧ (∀α ∈ dom(p))(p(α) ∈ [ω ∪ γ]<λ),

• P is λ+-cc and (< λ)-complete,
• the order ≤P is: p ≤P q iff:

dom(p) ⊆ dom(q) ∧ (∀α ∈ dom(p))[p(α) ⊆ q(α)],

(b) • c
˜

is a P-name of a function from [θ]2 to σ, (we may write c
˜

(α, β)
instead c

˜
({α, β}) for α 6= β < θ).

(c) We have (U , N̄ , π̄) solving p = (θ, ∂, λ, λ,B), (with B as in Definition
0.7�(b) and 1.1) such that c

˜
∈ Nu for every u ∈ [U ]≤2.

(1A) In the context of Definition 1.2(1), a = (γ,B,P, c
˜
,U , N̄ , π̄) = (γa,Ba, ...),

so e.g. Na,u = Nu.
(2) We say that the pair (p, ῑ) is a solution of a ∈ A, and write (a, p, ῑ) ∈ A+,

when:

(a) ῑ = (ι1, ι2) ∈ σ × σ,
(b) p ∈ Pa ∩Na,{ε[a]}, recalling ε(a) = min(U ),
(c) if p ≤ q ∈ Pa ∩Na,{ε[a]} and ζ1 < ζ2 are from U then there are q1, q2, r1, r2

such that for ` = 1, 2, we have:
•0 q ≤Pa q`,
•1 q` ∈ Pa ∩Na,{ε[a]} and q1 � (Na,∅ ∩ lg(q)) = q2 � (Na,∅ ∩ lg(q)),
•2 r` ∈ Pa ∩Na,{ζ1,ζ2},
•3 r` 
“c

˜
(ζ1, ζ2) = ι`”,

•4 r` � Na,{ζ1} is ≤Pa -below πa
{ζ1},{ε[a]}(q`),

•5 r` � Na,{ζ2} is ≤Pa -below πa
{ζ2},{ε[a]}(q3−`).

(3) If b = (a, p, ῑ) ∈ A+ then let Q
˜

b be the P-name of the following forcing
notion:
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4 S. SHELAH

(∗) For G ⊆ P generic over V,
(a) the set of elements of Qb = Q

˜
b[G] is:{

u ∈ [U ]<λ : if ζ1 < ζ2 in U , then c
˜
{ζ1, ζ2}[G] ∈ {ι1, ι2}, moreover

for some q1, q2, r1, r2 as in Definition 1.2(1)(c)(•1)-(•5), we have r1 ∈ G or r2 ∈ G
}
,

(b) the order of Q
˜

b[G] is inclusion,
(c) the generic is V

˜
b =

⋃
G
˜

Q
˜

b
.

Definition 1.3.
(1) Let Q := Qp be the class of q which consist of (below, α ≤ lg(q) and

β < lg(q) and e.g. Pα = Pq,α):

(a) lg(q) is an ordinal ≤ µ,
(b) 〈Pα,Q

˜
β : α ≤ lg(q), β < lg(q)〉 is a (<λ)-support iteration,

(c) Pβ satisfies the λ+-cc,
(d) Q

˜
β is Q

˜
bβ , where:

•1 bβ := (aβ , p
∗
β , ῑ
∗
β) ∈ A+,

•2 aβ := (γβ ,Bβ ,P•β , c˜β
,Uβ , N̄β , π̄β) ∈ A,

•3 P•β is equal to P′ξ(β) for some ξ(β) = ξq(β) ≤ β (on P′β , see below),

•4 The sequence 〈(Pγ ,P′γ ,aγ ,bγ , ξ(γ)) : γ < β〉 belongs to Nβ,u for every

u ∈ [Uβ ]≤2.
•5 Letting Wβ =

⋃
{Nβ,u ∩ β : u ∈ [Uβ ]≤2}, we 3 have: for every γ ∈ Wβ

the set Wβ ∩ Wγ has cardinality ≤ λ, and there is u = uβ,γ ∈ [Uβ ]≤2

such that Wβ ∩Wγ ⊆ Nβ,u and without loss of generality u is minimal
with this property.

(e) P′α is a dense subset of Pα, where,
• P′α is Pα restricted to the set of conditions p ∈ Pα such that:

if β ∈ dom(p) then p(β) is a member of V (not just a Pα-name)
and if ζ1 < ζ2 are in p(β) ⊆ Uβ , then there are q1, q2, r1, r2 as in
Definition 1.2(2)(c)(•1)-(•5) with aβ ,bβ here standing for a,b there
and

2∨
`=1

(∀γ ∈ dom(r`))[γ ∈ dom(p) ∧ r`(γ) ⊆ p(γ)].

(f) γq := γ(q) := sup{γq,β : β < lg(q)}, so P′γ(q) ⊆ H<λ(γq); let Pq := Plg(q)

and P′q := P′lg(q).
(1A) We may write either Pq,α or Pα whenever q is clear and (ιq,β,1, ιq,β,2) is

ῑbβ .
(2) Let ≤p be the following two-place relation on Qp:

q1 ≤p q2 iff q1 = q2 � lg(q1), see below.

(3) For q2 ∈ Qp and α∗ ≤ lg(q2), we define q1 := q2 � α∗ by:

(a) lg(q1) = α∗,
(b) (Pq1,α,P′q1,α) = (Pq2,α,P′q2,α) for α ≤ α∗,
(c) (Q

˜
q1,β ,bq1,β , ξq1

(β)) = (Q
˜

q2,β ,bq2,β , ξq2
(β) for β < α∗.

(4) We say that two conditions p, q ∈ P′α are isomorphic, when:

(a) otp(dom(p)) = otp(dom(q)), and
(b) if β ∈ dom(p) ∩ dom(q) then:

•1 otp(p(β)) = otp(q(β)),

3 Why? By 0.8(b)•10.
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CONSISTENCY OF SQUARE BRACKET PARTITION RELATION 5

•2 if ε ∈ p(β) ∩ q(β) then otp(ε ∩ p(β)) = otp(ε ∩ q(β)),
•3 if ε ∈ p(β), ζ ∈ q(β) and otp(ε ∩ p(β)) = otp(ζ ∩ q(β)) then:

πβ,{ζ},{ε}(p � Nβ,{ε}) = q � Nβ,{ζ}.

•4 if ε < ε1 belongs to p(β), ζ < ζ1 belongs to q(β) then:

πβ,{ζ,ζ1},{ε,ε1}(p � Nβ,{ε,ε1}) = q � Nβ,{ζ,ζ1}.

Remark 1.4. If we prefer in clause (d) (•3) of Definition 1.3 (1) to have ξ(β) = β,
i.e., P•β = P′β , we need to add, e.g. “µ is regular and e.g. use a preliminary forcing

({q ∈ Qp : lg(q) < µ},C)”.

Claim 1.5.
(0) For q ∈ Qp, we have: P′q |=“p ≤ q” iff {p, q} ⊆ P′q, dom(p) ⊆ dom(q), and

β ∈ dom(p)⇒ p(β) ⊆ q(β).
(1) For q ∈ Qp, any increasing sequence of members of length < λ of P′q has

a lub, in fact, if δ < λ, p̄ = 〈pi : i < δ〉 ∈ δ(P′q) is increasing, then the following
p ∈ P′q is a lub of p̄; defined by: dom(p) =

⋃
{dom(pi) : i < δ}, and if β ∈ dom(p)

then

p(β) =
⋃
{pi(β) : i < δ and β ∈ dom(pi)} .

We denote this p by lim(p̄).
(2) For q ∈ Qp, we have:

• p ∈ P′q iff:

(a) p is a function with domain ∈ [lg(q)]<λ,
(b) if β ∈ dom(p) then p(β) belongs to [Uβ ]<λ.
(c) If β ∈ dom(p) and (ι1, ι2) = (ιq,β,1, ιq,β,2) then for every ζ1 < ζ2 from

p(β), (p � β) �Nq,β,{ζ1,ζ2} 
Pq,β
“c
˜
{ζ1, ζ2} ∈ {ι1, ι2}”. Moreover, there

are q1, q2, r1, r2 as in Definition 1.2(2)(c)(•1)-(•5) and

2∨
`=1

(∀γ ∈ dom(r`))[γ ∈ dom(p) ∩ β ∧ r`(γ) ⊆ p(γ)].

(3) If q ∈ Qp and α ≤ lg(q) then q � α ∈ Qp.
(4) ≤p is a partial order on Qp.
(5) If q̄ = 〈qj : j < δ〉 is ≤p-increasing then it has a ≤p-lub, lim(q̄), of length

∪{lg(qj) : j < δ}.
(6) If β < lg(q), a = aq,β, u ∈ [Ua,β ]≤2 and Nu = Na,u, then:

(∗) if p ∈ P′ then q = p � Nq,β,u satisfies q ∈ Nu and q ≤Pq p where q is defined
by:
•1 dom(q) = dom(p) ∩Nu ∩ β
•2 If γ ∈ dom(q) then q(γ) = p(γ) ∩Nu.

(7) If (A) then (B), where:

(A) (a) i∗ < λ,
(b) pi ∈ P′q for i < i∗,
(c) if i < j < i∗, then pi and qi are essentially comparable, i.e.:

• if β ∈ dom(pi) ∩ dom(pj) then pi(β) ⊆ pj(β) or pj(β) ⊆ pi(β).
(B) (a) {pi : i < i∗} have a common upper bound in P′q,

(b) moreover, p is the least common upper bound when:
• dom(p) =

⋃
{dom(pi) : i < i∗},

• if β ∈ dom(p), then

p(β) =
⋃
{pi(β) : i < i∗ satisfying β ∈ dom(pi)}.
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6 S. SHELAH

Proof. Part (2) is crucial but easy to verify. Parts (0), (1), (3), and (4) are also
easy.

(5) For this, define q := lim(q̄) naturally, but we elaborate.

(∗) (a) lg(q) =
⋃
{lg(qi) : i < δ},

(b) if i < δ and α ≤ lg(qi), then (Pq,α,P′q,α) = (Pqi,α,P′qi,α),
(c) if i < δ and β < lg(qi), then (Q

˜
q,β ,aq,β ,bq,β) = (Q

˜
qi,β ,aqi,β ,bqi,β),

(d) (Pq,lg(q),P′q,lg(q)) is (
⋃
{Pqi : i < δ},

⋃
{P′qi : i < δ}) when cf(δ) ≥ λ,

(e) if cf(δ) < λ, then (Pq,lg(q),P′q,lg(q)) are defined as inverse limit. Then,

• P′q := P′q,lg(q) is dense in Pq because by Definition 1.2(3), for

each β < lg(qj) with j < δ, Qb[β,qj ] is closed under increasing
unions of length < λ.

Recalling that in Definition 1.3(1)(c), we use β and not α, “Pq satisfies the λ+-
cc” is not required for proving 1.5 (5), only “if β < lg(q) then Pq,β satisfies the
λ+-cc”, which is clear. Note that even though we formally do not need it here, the
chain condition of Pq will be proved in claim 1.6.

(6) Note that:

(a) If γ ∈ dom(q) then γ ∈ Nu and q(γ) ⊆ Nu,
(b) As dom(q) and q(γ) for γ ∈ dom(q) has cardinality < λ and [Nu]<λ ⊆ Nu

so recalling clause (a) obviously q ∈ Nu.
(c) To prove q is in Pq we need, for γ ∈ dom(q) and ζ1 < ζ2 from q(γ) ⊆ Uγ

to verify the condition in 1.5(2)(c).
(d) But as γ ∈ Nu hence q � (γ + 1) and ζ1, ζ2 belongs to Nu, also Nq,γ,{ζ1},

Nq,γ,{ζ2}, Nq,γ,{ζ1,ζ2} belongs to Nu hence are included in it so we can finish
easily.

(7) Follow by our definitions. �1.5

Still,

Crucial Claim 1.6. If q ∈ Qp then Pq satisfies λ+-cc.

Proof. It suffices, by 1.3(1)(e), to prove that P′q = P′q,lg(q) satisfies the λ+-cc, so
assume:

(∗)1 (a) Let p̄ = 〈pξ : ξ < λ+〉, where pξ ∈ P′q,

(b) it suffice to prove that for some ζ < ξ < λ+, pζ and pξ are compatible.

[Why? By the definitions.]

(∗)2 For some stationary set S ⊆ cof(λ) ∩ λ+, we have:
•1 〈dom(pξ) : ξ ∈ S〉 is a ∆-system with heart w∗ ∈ [lg(q)]<λ, and
•2 if β ∈ w∗ then 〈pξ(β) : ξ ∈ S〉 is a ∆-system.

[Why? By the Delta system lemma, the proof using Fodor’s lemma recalling
λ = λ<λ.]

(∗)3 Without loss of generality, 〈pξ : ξ ∈ S〉 are pairwise isomorphic (see Defini-
tion 1.3(4)).

[Why? Easy because for every a, u the model Na,u has cardinality λ.]

(∗)4 For γ ∈ w∗ we have:
•1 Let Wβ , uβ,γ be as in 1.3(1)(d)•5.
•2 Without loss of generality, uβ,γ is disjoint to Nq,β,{ζ} \Nq,β,∅ ∩ µ for

every ζ ∈ Uβ and is disjoint to Nq,β,{ε,ζ} \Nq,β,∅ ∩ µ for every ε < ζ
from Uβ .

[Why? As for any γ < β from w∗ we have to omit from Uβ at most two
elements and w∗ has cardinality < λ.]

(∗)5 We fix ξ(1) 6= ξ(2) from S and we shall prove that pξ(1) and pξ(2) have a
common upper bound; this suffices for proving Crucial Claim 1.6.
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CONSISTENCY OF SQUARE BRACKET PARTITION RELATION 7

(∗)6 For β ∈ w∗:
(a) for ` ∈ {1, 2}, consider the sequence 〈αβξ(`),ε : ε < εβ〉 listing the set

pξ(`)(β) in increasing order
(b) Why εβ and not εβ,`? as the two sequences have the same length

because pξ(1), pξ(2) are isomorphic, see Definition 1.3(4) •1.

(c) Let Sβ := {ε < εβ : αβξ(1),ε 6= αβξ(2),ε},
(d) so by Definition 1.3 (4) •2 the sets {αβξ(1),ε : ε ∈ Sβ}, {αβξ(2),ε : ε ∈ Sβ}

are disjoint and disjoint to {αβξ(1),ε : ε ∈ εβ \ Sβ} = {αβξ(2),ε : ε ∈
εβ \Sβ}.

Let β̄ = 〈βi : i ≤ i∗〉 list the closure of {α, α+1: α ∈ w∗}∪{0, lg(q)} in increasing
order, so necessarily i∗ < λ and clearly it suffice:

(∗)7 To choose qi ∈ P′q,βi a common upper bound of {pξ(1) �βi, pξ(2) �βi} in-
creasing with i ≤ i∗ by induction on i ≤ i∗ such that:
(∗) If β ∈ w∗ \ {βj : j < i} and ζ(1), ζ(2) are from Sβ then:

•1 dom(qj) ∩Nβ,{αξ(1),ζ(1),αξ(2),ζ(2)} is a subset of

Nβ,{αξ(1),ζ(1)} ∪Nβ,{αξ(2),ζ(2)} ∪Nβ,∅,

•2 if ` = 1, 2 and γ ∈ dom(qj) ∩Nβ,{αξ(`),ζ(`)} then qi(γ) = pξ(`)(γ)
or γ ∈ Nβ,∅

Let us carry the induction.
Case 1: i = 0. Clearly, this case is trivial, letting q0 = ∅.
Case 2: i is a limit ordinal.

In this case, let qi := lim〈qj : j < i〉, so by Claim 1.5(1), qi is well-defined and is
as required by the definition of the order and satisfies • of (∗)7.
Case 3: i = j + 1 and βj /∈ w∗.

In this case, dom(pξ(1)) ∩ dom(pξ(2)) ∩ βi ⊆ βj , hence the condition

qi := qj ∪
(
pξ(1) � [βj , βi]) ∪ (pξ(2) � [βj , βi])

)
is as promised.
Case 4: i = j + 1 and βj ∈ w∗.

By the choice of β̄, clearly βi = βj + 1 and let S = Sβ .
Recalling 1.3(1)(d) and 0.7(b)(•8), we have:

(∗)8 aβj = aq,βj determine:

(a) π̄βj = 〈πu,v : u, v ∈ [Uβj ]
≤2 and |u| = |v|〉,

(b) N̄βj = 〈Nu : u ∈ [Uβj ]
≤2〉,

(c) for ε(1), ε(2) ∈ S , let:
• v[ε(1), ε(2)] = {αξ(1),ε(1), αξ(1),ε(2)}, and
• u[ε(1), ε(2)] = {αξ(1),ε(1), αξ(2),ε(2)}.

(d) for ε ∈ S , let v[ε] = {αξ(1),ε} and u[ε] = {αξ(2),ε},
(e) ῑ = ῑ∗βj , see 1.3 (1) (d) •1.

(f) γj = ξq(βj); see 1.3(1)(d) •3.

We shall now define pε(1),ε(2) for ε(1), ε(2) ∈ S such that:

(∗)9 (a) pε(1),ε(2) ∈ Pγj ∩Nu[ε(1),ε(2)], hence dom(pε(1),ε(2)) ⊆ γj ∩Nu[ε(1),ε(2)],
(b) if ε(1) = ε(2), then pε(1),ε(2) � (γj ∩ Nv[ε(1)]), pξ(1) � Nv[ε(1)] are es-

sentially comparable; see 1.5(7)(A)(c), moreover the first is ≤Pq-above
the second,

(c) if ε(1) = ε(2), then pε(1),ε(2) � (γj ∩ Nu[ε(2)]), pξ(2) � Nu[ε(2)] are
essentially comparable, moreover the first is ≤Pq -above the second,

(d) pε(1),ε(2) satisfies 1.3(1)(e)• with (γj , ε(1), ε(2)) here standing for (β, ζ1, ζ2)
there,
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(e) {qj � N∅} ∪ {pε(1),ε(2) � N∅ : ε(1), ε(2) ∈ S } are pairwise essentially
comparable,

(f) if ε(1) 6= ε(2) then pε(1),ε(2) � N{αε(`)} ≤ pξ(`) � N{αε(`)} for ` = 1, 2.

(g) if S∗ ⊆ S ×S then the lub qS∗ of {qj [Nu[ε(1),ε(2)] : ε(1), ε(2) ∈ S∗}
satisfies the condition in (∗)7.

We have to show two things: �1 and �2. The first saying we can choose them
(the pε(1),ε(2)-s), the second that this is enough.

�1 we can choose pε(1),ε(2) for ε(1), ε(2) ∈ S as required in (∗)7.

We consider two possible cases:
Case 4.1: ε(1) 6= ε(2).

Let pε(1),ε(2) = π(pξ(1) � Nv[ε(1),ε(2)]), where π = πu[ε(1),ε(2)],v[ε(1),ε(2)].
Why is (∗)9 preserved? Most clauses are obvious, but (∗)9(g) deserve elaboration,

recalling that we have to satisfy (∗)7.
So let β ∈ W∗ \ {βι : ι < i}, hence for some j(∗) < i∗, we have β = βj(∗), hence

we have βj(∗) ≥ βi hence βj(∗) > βj and we have S∗ ⊆ S ×S and deal with qS∗ .
For this, it is enough to consider the cases:

⊕1 S∗ = {ζ(1), ζ(2)}, where ζ(1) = ε(1) and ζ(2) = ε(2) hence from S , so
ζ(1) 6= ζ(2),

⊕2 S∗ = {ζ(1), ζ(2)} where ζ(1) 6= ζ(2) are from S but (ζ(1), ζ(2)) 6= (ε(1), ε(2)).

Easy to check.
Case 4.2: ε(1) = ε(2).

In this case, we pick some sequence 〈pε,ε : ε ∈ S 〉 by choosing pε,ε by induction
on ε ∈ S . Now, pε,ε ∈ P′β ∩Nu[ε(1),ε(2)] is such that:

(∗) (a) pε,ε is ≤P′q,β -above pξ(1) �Nv[ε] and above the restriction pξ(2) � Nu[ε],
(b) 〈pζ,ζ � N∅ : ζ ∈ (ε+ 1) ∩S 〉 is ≤Pβ[j]-increasing, and

(c) there are q1, q2, r1, r2 as in Definition 1.3(2)(c) (•1)-(•5) with bq,β

standing here for (a, p, ῑ) there such that:

2∨
`=1

(∀γ ∈ dom(r`)) [γ ∈ dom(pε,ε) ∧ r`(γ) ⊆ pε,ε(γ)] .

We can choose pε,ε by the properties of bβj
Having defined all the pε(1),ε(2)-s we can proceed.

�2 The following set of members of Pβi has a common upper bound q∗:
• pξ(1), pξ(2), and
• pε(1),ε(2) for ε(1), ε(2) ∈ S .

[Why? Recall Claim 1.5(2) and 1.2(1)(c)(•1) by 1.5(7), clause (A) there holds,
in particular sub-clause (A)(c). The main point is that:

(∗) 〈Nv[ε(1),ε(2)] ∩ γj \ (Nv[ε(1)] ∪ Nu[ε(1)]) : ε(1), ε(2) ∈ S 〉 is a sequence of
pairwise disjoint sets.

Why? As “Nu ∩Nv ⊆ Nu∩v for u, v ∈ [Uβj ]
<∂ by 0.7•7.

So q∗ from �2 is a common upper bound of pξ(1), pξ(2), as promised. �1.6

Remark 1.7. 1) No need so far, but we may add in (∗)4 of the proof of
Crucial Claim 1.6 the following item:
(d) if β ∈ w∗ and 〈αζ,β,i : i < ιζ,β〉 list in increasing order the members of

pζ(β) for ζ ∈ S, then:
• 〈ιζ,β : ζ ∈ S〉 is constant called iβ ,
• for i < iβ , the sequence 〈αζ,β,i : ζ ∈ S〉 is constant or increasing,
• if i, j < iβ the sequence of truth values

〈Truth value(αζ,β,i < αξ,β,j) : ζ < ξ are from S〉
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is constant, and
• if i, j < iβ , ζ 6= ξ are from S and αζ,β,i = αξ,β,j then i = j.

2) We can make our choice of q1, q2, r1, r2 canonical, that is
(A) In 1.2(2) we replace (p, ῑ, (a, p, ῑ,F) by (p, ῑ, (a, p, ῑ,F)

•1 Fζ1,ζ2(q) = (q1, q2, r1, r2) = 〈Fζ1,ζ2,`(q) : ` = 1, 2, 3, 4〉
•2 if also ζ3 < ζ4 are from U then πa

ζ3,ζ4,ζ1,ζ2
Fζ1,ζ2.` = Fζ3,ζ4,`,

where if p ≤ q ∈ Pa ∩ Na,{ε[a]} and ζ1 < ζ2 are from U ,
then 〈Fζ1,ζ1,`(p, q) : ` < µ〉 is the quadruple (q1, q2, r2, r2) as in
1.2(1)(c)(•1)-(•5).

(B) In 1.2(3) similarly and in 1.3(1)(d)
(C) In 1.5(1)(d) use Fβ ,
(D) In the proof of 1.6, in (∗)7�1, case 4.2(∗)4.2 we use Fβj ,
(E) Update the proof of 1.8 accordingly.

Claim 1.8. If (A) then (B), where:

(A) (a) q ∈ Gp,
(b) 2 < σ < λ,
(c) c

˜
is a Pq-name of a function from [θ]2 into σ.

(d) p∗ ∈ Pq.
(B) There is some b ∈ A+ such that Pb = P′q and c

˜
b = c

˜
and p∗ ≤Pq pb.

Proof. Recalling Hypothesis 1.1(b), on the one hand, it is clear how to choose a ∈ A
such that Pa = P′q and c

˜
a = c

˜
. On the other hand, the choice of pb and ῑb is similar

to the proof of [She88, 2.1]. We now elaborate.
First, we can find a such that:

(∗)1a (a) a ∈ A,
(b) Pa = Pq,
(c) γ = lg(q),
(d) c

˜
a = c

˜
.

Why can we find? Because we have chosen Pa as in (∗)1a(b), it is λ+-cc by
Claim 1.6; also γ, c

˜
a are as is required in Definition 1.2. Next, it is easy to choose

Ba as required satisfying c
˜
, p∗ are definable; and lastly we can choose (Ua, N̄) as

is required because θ →sq (∂)λ,2λ holds by Hypothesis 1.1 clause (b) and 0.7 in
particular clause (b)•10.

We are left with choosing some appropriate (p, ῑ) and then let b = (a, p, ῑ). Let

Y := {(q1, q2) : q1, q2 ∈ Pa ∩Na,{ε[a]} are above p∗ and,

q1 � (Na,∅ ∩ lg(q)) = q2 � (Na,∅ ∩ lg(q))},

and let ≤Y be the following two place relation on Y :

(∗)2 (p1, p2) ≤Y (q1, q2) iff:
(a) (p1, p2) ∈ Y and (q1, q2) ∈ Y ,
(b) p1 ≤Pq q1 and p2 ≤Pq q2.

Clearly,

(∗)3 (Y,≤Y ) is a (< λ)-complete partial order.

[Why? Recalling 1.5(1).]

(∗)4 For (p1, p2) ∈ Y , let
(a) solv(p1, p2) be the set of pairs (ι0, ι1) such that for any ζ1 < ζ2 from

U , there are r1, r2 such that for ` = 1, 2 clauses •2-•5 of Defini-
tion 1.2(2)(c) hold.

(b) solv+(p1, p2) :=
⋂
{solv(q1, q2) : (p1, p2) ≤Y (q1, q2) ∈ Y }.
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(∗)5 (a) if (p1, p2) ≤Y (q1, q2) then:

solv(p1, p2) ⊇ solv(q1, q2) ⊇ solv+(q1, q2) ⊇ solv+(p1, p2),

(b) if (p1, p2) ∈ Y then solv(p1, p2) 6= ∅.
[Why? The first inclusion in Clause (a) holds because ≤Pq is transitive. The

other inclusions are clear, and Clause (b) is easy too.]

(∗)6 If (p1, p2) ∈ Y then for some (q1, q2) and ῑ, we have:
(a) (p1, p2) ≤Y (q1, q2) ∈ Y ,
(b) if (q1, q2) ≤Y (q′1, q

′
2) then ῑ ∈ solv(q′1, q

′
2), moreover, solv(q1, q2) =

solv(q′2, q
′
2) = solv+(q′1, q

′
2) = solv+(q1, q2).

[Why? Recalling σ < λ, hence |σ × σ| < λ and (Y,≤Y ) is λ-complete by (∗)3.]

(∗)7 For p ∈ Pa ∩ Na,{ε[a]}, let solv(p) be the set of ῑ ∈ σ × σ such that: if
q ∈ Pa ∩Na,{ε[a]} is ≤Pa-above then there is (q1, q2):
•1 q ≤Pq q1, q ≤Pq q2 and
•2 (q1, q2) ∈ Y ,
•3 ῑ ∈ solv+(q1, q2),
•4 solv(q1, q2) = solv+(q1, q2).

(∗)8 (a) if p ∈ Pa ∩Na,{ε[a]} then solv(p) 6= ∅,
(b) if p ≤Pa q are from Pa ∩Na,{ε[a]} then solv(p) ⊇ solv(q),
(c) if p ∈ Pa ∩ Na,{ε[a]} then for some q and ῑ, for every q′, we have

q ≤ Pq ∧ q′ ∈ Pa ∩Na,{ε[a]} ⇒ ῑ ∈ solv(q′).

[Why? Clause (a) follows by (∗)6, Clause (b) by the definitions, and Clause (c)
holds as Pa and even Pa ∩Na,{ε[a]} is λ-complete and |σ × σ| < λ.]

Now, applying (∗)8(c) to p∗ finish the proof of 1.8. �1.8

Claim 1.9. If (A) then (B), where:

(A) (a) q ∈ Qp and q0 <p q,
(b) γ(q) < µ, so lg(q) < µ,
(c) b ∈ Ap and Pb = Pq0 .

(B) There exists some q1 such that:
(a) q ≤p q1,
(b) lg(q1) = lg(q) + 1,
(c) blg(q)[q1] = b.

Proof. Easy. �1.9

Lastly, before arriving at the main conclusion, we have to prove the following.

Claim 1.10.
(1) Assume q ∈ Qp, α < lg(q) and b = bq,α = (aα, pα, ῑα) = (a, p, ῑ), then:

• 
Pq,α+1
“VQ

˜
b
∈ [Uaα ]∂ and for every α 6= β ∈ VQ

˜
b

, c
˜
aα{α, β} ∈ {ι1, ι2}”.

(2) If b = (a, p, ῑ) ∈ A+, cf(∂) > λ, and in VPa , Qb satisfies the λ+-cc, then
for some p ∈ Qb ∩ Pa ∩ Na,{ε[a]} we have4 p 
Q

˜
b

“VQ
˜

b
∈ [Ua]∂ and for every

α 6= β ∈ VQ
˜

b
, ca{α, β} ∈ {ι1, ι2}”.

Proof. (1) The second phrase in both conclusion holds by the definitions of Q
˜

b.

By the proof of “Pq satisfies the λ+-cc”, we can show for ε < ∂, the density of
the set

Iε := {p ∈ P′q : α ∈ dom(p) and there is β ∈ p(α) such that ε < otp(Uaα ∩ β)}.

4We may omit p but it does not matter.

Paper Sh:1258, version 2025-08-10 2. See https://shelah.logic.at/papers/1258/ for possible updates.



CONSISTENCY OF SQUARE BRACKET PARTITION RELATION 11

(2) Easily, for every β ∈ Ua we can choose p0β = {β}, qβ = {(p, p0β)}. Clearly,

qβ ∈ Pα ∗ Q
˜

b for β ∈ Ua. So by the λ+-cc for some β ∈ Ua, qβ 
“{ε ∈ Ua : qε ∈
Q
˜

b} ∈ [Ua]∂ ; well assuming cf(θ) > λ. �1.10

Conclusion 1.11. There exists a forcing notion P satisfying the following condi-
tions:

(a) P is λ+-cc of cardinality µ.
(b) P is (<λ)-complete; hence, it collapses no cardinals, changes no cofinalities,

and preserves cardinal arithmetic outside the interval [λ, µ).
(c) 
P“2λ = µ”.
(d) 
P“θ → [∂]2σ,2” for every σ ∈ (2, λ).

Proof. Choose a ≤p-increasing continuous sequence 〈qα : α < µ〉 ∈ µ(Qp) such that
lg(qα) = α, Pqα has cardinality ≤ (|α|+ λ)<λ and,

• if α < µ and 
Pqα
“c
˜

: [θ]2 → σ”, then for unboundedly many β ∈ [α, µ),
c
˜
qβ+1,β

= c
˜

.

The existence of bβ [qβ+1] with c
˜

[bβ [qβ+1]] = c
˜

as required hold by Claim 1.8
and Claim 1.9.

Clearly
⋃
{Pqβ : β < µ} is a forcing notion as is required. �1.11

Conclusion 1.11 is meaningful because:

Fact 1.12. Assume that λ = λ<λ < ∂ < θ < µ = µθ, α < µ⇒ |α|λ < µ, θ > i4(∂)
and ∂ = ∂<λ. Then the demands in Hypothesis 1.1 hold.

Remark 1.13. To justify the assumption, notice that:

(A) Omitting ∂ = ∂<λ does not help.

(B) θ →sq (∂)λ,≤2∂ implies θ → (∂)22∂ , hence θ > 22
∂

.

With stronger lower bound on θ, see [She89] and anyhow just θ < ∂+ω and GCH
in [∂, ∂+ω] would suffice for me.

The main point is proving θ →sq (∂)≤λ,2∂ . For this, see [She89], θ = im(∂) for
some small m suffice, we intend to return for better bound, see [S+].

Proof. The point is to prove θ →sq (∂)λ,2∂ . Let B be as in 0.7(a).
For u ⊆ B, let N∗u be the minimal N ≺ B such that u ⊆ N , ∂ + 1 ⊆ N and

[N ]<λ ⊆ N , which exists as <B
∗ is a well-ordering of H (χ).

We define c : [θ]3 → 2∂ such that from c(u) we can compute the isomorphism
type of (Nu, α)α∈u. By Erdös-Rado theorem, i4(∂)+ → ((2θ)+)32∂ , hence there is

U1 ⊆ θ of order type (2∂)+ such that c � [U1]3 is constant and otp(U1) = (2∂)+.
Clearly, if α < β < γ are from U1, then x ∈ N∗{α,β} ∩N

∗
{α,γ} implies β < γ(1) ∈

U1 ⇒ x ∈ N∗{α,β} ∩N
∗
{α,γ(1)}, and

α < β(1) < γ(1) ∧ {β(1), γ(1)} ⊆ U1 ⇒ x ∈ N∗{α,β(1)} ∩N
∗
{α,γ(1)}.

So, for α ∈ U1, we let:

• Xα
0 := {x : for some β, γ from U1, α < β < γ and x ∈ N∗{α,β} ∩ N

∗
{α,γ}}

have cardinality ∂ and it includes N∗{α}.

Similarly, Xα
1 , Xα

2 has cardinality ∂, where:

• Xα
1 := {x : for some β, γ ∈ U1, we have β < α < γ and x ∈ N∗{α,β} ∩

N∗{α,γ}}, and

• Xα
2 := {x : for some β, γ ∈ U1, we have β < γ < α and x ∈ N∗{α,β} ∩

N∗{α,γ}}.
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For α ∈ U1, let Xα :=
⋃2
`=0X

α
` and let N{α} := N∗Xα , so N∗{α} has cardinality

∂.
Now,

(∗)1 The sets 〈N∗{α,β} \ (N{α} ∪ N{β}) : α < β are from U1〉 is a sequence of

pairwise disjoint sets.

(∗)2 If γ ∈ U1 then Λγ := {{α, β} : α < β are from U1 and (N∗{α,β} \ (N{α} ∪
N{β})) ∩N{γ} 6= ∅} has cardinality ≤ ∂.

So for some U2 ⊆ U1 of cardinality (2∂)+, we have:

(∗)3 (a) 〈N{γ} : γ ∈ U2〉 is a ∆-system with heart called N∅,
(b) The N{γ} for γ ∈ U2 are pairwise isomorphic over N∅.

Lastly choose N{α,β} for α 6= β ∈ U2 as N∗{α,β}. Replacing U2 by U ⊆ U2 of

order type ∂, we are done. �1.12
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