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On C s
n .�/ and the Juhász–Kunen Question

Mohammad Golshani and Saharon Shelah

Abstract We generalize the combinatorial principles Cn.�/, C s
n.�/, and

P rinc.�/ introduced by various authors, and prove some of their properties
and connections between them. We also answer a question asked by Juhász
and Kunen about the relation between these principles, by showing that Cn.�/

does not imply CnC1.�/ for any n > 2. We also show the consistency of
C.�/ C :C s.�/.

1 Introduction

In this paper we study two types of combinatorial principles which are consequences
of the continuum hypothesis and all hold in the Cohen-real generic extensions. One
type are homogeneity axioms which say that given a long sequence of reals, we can
find many reals from the sequence which look alike. The other type are elementary
submodel axioms which say that for all large enough regular cardinals �, we can find
many elementary submodels N of H.�/ of size @1 such that N \ P .!/ captures
P .!/.

Juhász, Soukup, and Szentmiklossy [5] initiated the study of such principles.
Among other things, in particular they introduced the combinatorial principles
C s.�/, C.�/, and their restrictions C s

m.�/ and Cm.�/, for m < !. They also derived
several combinatorial and topological consequences from these principles.

Juhász and Kunen [4] have continued the work by introducing some extra princi-
ples. In particular they introduced the combinatorial principle SEP , and explored
its connection with the above combinatorial principles by showing that SEP implies
C s

2 .@2/, while the reverse inclusion does not hold and indeed even the stronger prin-
ciple C s.@2/ does not imply SEP . The question of the difference between C s

n.�/

and C s
nC1.�/ remained open by Juhász and Kunen [4], and was asked by Juhász

during the Beer-Sheva 2001 Conference.
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482 Golshani and Shelah

In [7], Shelah introduced a new combinatorial principle P rinc.�/, which is
weaker than SEP , but still enough strong to imply C s.�/.

It turned out that these combinatorial principles are very useful, and have many
applications, in particular in topology and the study of cardinal invariants (see, e.g.,
Brendle and Fuchino [1], Fuchino [3], and Juhász, Soukup, and Szentmiklossy [6]).

In this paper, we present some generalizations of the above principles and prove
some of their properties and the connections between them. We also address the
above-mentioned question of Juhász and Kunen in Section 5, and give a complete
solution to it. In the last section, we discuss the relation between C s.�/ and C.�/,
and show the consistency of C.�/ C :C s.�/.

2 On Princ.�/ and Its Generalizations

In this section, we consider the combinatorial principle P rin.�/ introduced by She-
lah [7], and present some of its generalizations.

Definition 2.1 Let � be regular uncountable, A � �, and let D be a filter on
ŒA�<� . D is called normal if

(1) for all a 2 ŒA�<� , ¹b 2 ŒA�<� W a � bº 2 D, and
(2) if for x 2 A, Ax 2 D, then 4x2AAx 2 D, where

4x2AAx D
®
a 2 ŒA�<�

W 8x 2 a; a 2 Ax

¯
:

It is easily seen that if D is a normal filter on ŒA�<� ; X ¤ ; mod D, and if F W

X ! A is regressive, that is, for all nonempty a 2 ŒA�<� , F.a/ 2 a, then there
are Y � X , Y ¤ ; mod D, and x 2 A such that for all a 2 Y , F.a/ D x. To
see this, assume on the contrary that for each x 2 A, there exists Yx 2 D such
that Yx \ ¹a 2 X W F.a/ D xº D ;. Let Y D 4x2AYx . Then Y 2 D and
so Y \ X ¤ ; (as X ¤ ; mod D). Let a 2 Y \ X and F.a/ D x. Then
a 2 Yx \ ¹a 2 X W F.a/ D xº, a contradiction.

Definition 2.2 Let � be regular uncountable. D is a �-definition of normal fil-
ters if

(1) for each A � �, D.A/ is a normal filter on ŒA�<� , and
(2) if � � A1 � A2, then D.A1/ D ¹¹a \ A1 W a 2 Xº W X 2 D.A2/º.

Definition 2.3 Let � be regular uncountable, � < � � �, and let � > � be large
enough regular. Then

(a) N1
�;�;�

consists of those N � .H.�/; 2/ such that:
(1) jN j � N \ � 2 �, and
(2) for all a 2 P.!/, there exists P 2 N , such that P � P.!/, jP j <

min¹jN jC; �º, and for all b 2 P.!/ \ N , a � b ) 9c 2 P , a � c � b

(such a P is called an N -witness for a).
(b) N2

�;�;�;�
consists of those N 2 N1

�;�;�
such that for any � -sequence ha� W � <

�i of subsets of !, there is some P 2 N , P � P.!/, jP j < min¹jN jC; �º,
such that P is an N -witness for all a� ; � < � simultaneously, namely, for any
b� 2 P.!/ \ N , � < � , such that a� � b� , there are c� 2 P , � < � , such
that a� � c� � b� for all � < � .
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(c) N3
�;�;�;�

consists of those N 2 N1
�;�;�

such that for each Y 2 ŒN �� , there
exists some Z 2 N , jZj < min¹jN jC; �º such that Y � Z.

We now state our generalization of P rinc.�/.

Definition 2.4 Let � < � � � and D be as above.
(a) P rinc1.�; �; D/ states: for all large enough � > �,

N1
�;�;� ¤ ; mod D

�
H.�/

�
:

(b) P rincl;� .�; �; D/ (for l D 2; 3) states: for all large enough � > �,

Nl
�;�;�;� ¤ ; mod D

�
H.�/

�
:

Remark 2.5

(a) Let � be regular uncountable, and for A � �, let D.A/ be the club filter on
ŒA�<� . Then our P rinc1.�; �; D/ is just P rinc.�; �/ from [1]. Also note
that Shelah’s P rinc.�/ is P rinc.�; �/.

(b) If � < � � �0 � �, then P rinc1.�; �; D/ ) P rinc1.�; �0; D/ and
P rincl;� .�; �; D/ ) P rincl;� .�; �0; D/ (for l D 2; 3).

(c) If � � � 0 < � � �, then P rincl;� 0.�; �; D/ ) P rincl;� .�; �; D/ (for
l D 2; 3).

(d) If � D �C is a successor cardinal, then we can replace min¹jN jC; �º by �.

The next lemma follows from the definition, and the fact that we can code an !-
sequence of subsets of ! into a subset of !.

Lemma 2.6 Let � < � � � and D be as above. Then
(a) P rinc3;� .�; �; D/ ) P rinc2;� .�; �; D/ ) P rinc1.�; �; D/.
(b) P rinc2;!.�; �; D/ , P rinc1.�; �; D/.

Proof (a) is by definition; let’s prove (b). It suffices to show that

N2
�;�;!;� D N1

�;�;�:

Let � W ! � ! ! ! be the Godel pairing function. Let N 2 N1
�;�;�

, and suppose
that han W n < !i is a sequence of subsets of !. Let

a�
D

®
�.i; n/ W n < !; i 2 an

¯
:

Let P � 2 N be an N -witness for a�. Let

P D
®®

i W �.i; n/ 2 b
¯

W n < !; b 2 P �
¯
:

We show that P is an N -witness for all an; n < !, simultaneously. Clearly P 2 N ,
P � P.!/ \ N , and jP j < min¹jN jC; �º. Now let n < !, b 2 P.!/ \ N and
assume an � b. Let bŒn� D ¹�.i; m/ W i; m < ! and m D n ) i 2 bº. Clearly
bŒn� 2 P.!/ \ N and a� � bŒn�. Hence by the choice of P �, there is c 2 P � such
that a� � c � bŒn�. Let cŒn� D ¹i W �.i; n/ 2 cº. Then cŒn� 2 P , and we can easily
see that an � cŒn� � b. We are done.
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3 On C s.�/ and Its Generalizations

Recall that for a filter D on a set I , DC is defined by

DC
D ¹X � I W I n X … Dº:

It is clear that D � DC.

Definition 3.1 Suppose � is regular uncountable, D is a filter on �, J is an ideal
on !, and T is a subtree of �<! .

(a) The combinatorial principle C D
T .�; J / states: for any .� � �/-matrix NA D

ha˛;� W ˛ < �; � < �i of subsets of !, one of the following holds:
.˛/ : There exists S 2 DC such that for all n 2 !, all t 2 T \ �n, and all

distinct ˛0; : : : ; ˛n�1 2 S;
T

i<n a˛i ;t.i/ ¤ ; mod J .
.ˇ/ : There are t 2 T \ �n, for some 0 < n < !, and S0; : : : ; Sn�1 2 DC

such that for all distinct ˛i 2 Si , i < n, we have
T

i<n a˛i ;t.i/ D ; mod
J .

(b) C D.�; J / is C D
T .�; J / for all trees T � �<! .

(c) For m < !, the combinatorial principles C D
T;m.�; J / and C D

m .�; J / are
defined similarly, where we require T � ��m.

Remark 3.2 Suppose that � is regular uncountable and m < !.
(a) If D is the club filter on �, and J D ¹;º, then C D.�; J /, C D

m .�; J / are
respectively the principles C s.�/, C s

m.�/ from [5].
(b) If D is the filter of co-bounded subsets of �, and J D ¹;º, then C D.�; J /,

C D
m .�; J / are respectively the principles C.�/, Cm.�/ from [5].

Theorem 3.3 Assume � < � � 2@0 ; � is regular, J is an ideal on !, and T is a
subtree of �<! , and suppose that P rin2;� .�; �; D/ holds, where D is a definition
of �-normal filters. Then C D

T .�; J / holds, where D is any filter on � satisfying: for
X 2 D and N 2 N2

�;�;�;�
with D 2 N , X 2 N ) ı.N / D N \ � 2 X .

Remark 3.4 If D is the club filter on � or the filter of co-bounded subsets of �,
then D has the above-mentioned property.

Proof Let NA D ha˛;� W ˛ < �; � < �i be a .� � �/-matrix of subsets of !. Let
� > 2@0 be large enough regular. By our assumption

N2
�;�;�;� ¤ ; mod

�
D

�
H.�/

��C
:

Hence by normality of the filter,

N D ¹N 2 N2
�;�;�;� W D; NA 2 N º 2 D

�
H.�/

�C
:

For N 2 N , set ı.N / D N \ � 2 �. By our assumption, for each N 2 N , we
can find PN 2 N such that PN is an N -witness for each aı.N /;� ; � < � , simultane-
ously. Then the map N 7! PN is regressive on N , so by the normality of the filter
D.H.�//, we can find N� � N and P� such that N� 2 D.H.�//C, and for all
N 2 N�, PN D P�. Let

S D
®
ı.N / W N 2 N�

¯
:

Claim 3.5 S 2 DC.
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Proof Suppose not; so � n S 2 D. But then for all N 2 N�,
� n S 2 N ) ı.N / 2 � n S:

On the other hand, by normality of the filter D.H.�//, we have

N�� D ¹N 2 N� W � n S 2 N º 2 D
�
H.�/

�C
;

in particular N�� ¤ ;. Let N 2 N��. Then we have � n S 2 D, which implies
ı.N / 2 � n S . But on the other hand, N 2 N� (as N�� � N�), which implies
ı.N / 2 S , a contradiction.

If for all t 2 T \ �n and all distinct ˛0; : : : ; ˛n�1 2 S , we have
T

i<n a˛i ;t.i/ ¤ ;

mod J , then case .˛/ of Definition 3.1(a) holds and we are done. Otherwise, we can
find t 2 T \ �n and distinct ˛0; : : : ; ˛n�1 2 S , such that

T
i<n a˛i ;t.i/ D ; mod J .

For each i < n, let Ni 2 N� be such that ˛i D ı.Ni /. We also assume without
loss of generality that ˛0 < � � � < ˛n�1.

Claim 3.6 There are c0; : : : ; cn�1 2 P� such that:
(1)

T
i<n ci D ; mod J ,

(2) i < n ) a˛i ;t.i/ � ci mod J .

Proof We construct the sets ci ; i < n by downward induction on i , so that for all
i < n, \

j <i

a˛j ;t.j / \

\
i�j <n

cj D ; mod J: .�/i

For i D n, there is nothing to prove; thus, suppose that i < n and ciC1 2 P� is
defined, so that .�/iC1 is satisfied. It then follows that

a˛i ;t.i/ � bi D ! n

�\
j <i

a˛j ;t.j / \

\
iC1�j <n

cj

�
mod J:

It is easily seen that bi 2 Ni , so as P� is an Ni -witness for a˛i ;t.i/, we can find
ci 2 P� so that

a˛i ;t.i/ � ci � bi mod J:

It is easily seen that c0; : : : ; cn�1 are as required.

For i < n, set
Si D ¹˛ 2 � W a˛;t.i/ � ci mod J º 2 Ni :

Claim 3.7 For each i < n, Si 2 DC.

Proof Suppose not; then � n Si 2 D. But as � n Si 2 Ni , we have ˛i D ı.Ni / 2

� n Si , which is a contradiction.

Now if ˇi 2 Si are distinct, then\
i<n

aˇi ;t.i/ �

\
i<n

ci D ; mod J;

and hence case .ˇ/ of Definition 3.1(a) holds and we are done. The theorem follows.

Corollary 3.8 Assume � � 2@0 is regular uncountable. Then P rinc.�/ implies
C s.�/.
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4 Forcing Princ1.�; �; D/

In this section we consider the principles P rinc1.�; �; D/ and P rinc2;� .�; �; D/,
where � < � � � D cf .�/ and D is a �-definition of normal filters, and discuss
their consistency. In fact, we will show that in the generic extension by the Cohen
forcing Add.!; �/, the above principles hold. We prove the result for P rinc.�/, as
the other cases can be proved similarly.

Recall that the Cohen forcing Add.!; I / for adding jI j-many new Cohen subsets
of ! is defined as

Add.!; I / D
®
p W ! � I ! 2 W jpj < @0

¯
;

ordered by reverse inclusion.
For a nice name a

�
D

S
n<!¹ Lnº � An, where each An is a maximal antichain in

Add.!; �/, set
supp.a

�
/ D

®
˛ 2 � W 9n < !; 9p 2 An; 9k 2 !; .k; ˛/ 2 dom.p/

¯
:

Note that, by the countable chain condition property of Add.!; �/, supp.a
�

/ is a
countable set, and a

�
can be considered as an Add.!; supp.a

�
//-name. The following

lemma follows easily by an absoluteness argument.

Lemma 4.1 Assume U � �, a
�1; : : : ; a

�n are Add.!; U /-names, '.v1; : : : ; vn/

is a �ZFC
1 -formula, and p 2 Add.!; �/. Then

p 
Add.!;�/ “'.a
�1; : : : ; a

�n/” ” p � ! � U 
Add.!;U / “'.a
�1; : : : ; a

�n/”:

We also need the following simple observation.

Lemma 4.2 Let D be defined by D.A/ D the club filter on ŒA�<� . The following
are equivalent:

(a) P rinc.�/.
(b) For all large enough � > � and x 2 H.�/, there exists N 2 N 1

�;�;� such that
x 2 N .

Proof It is clear that .a/ H) .b/. To show that (b) implies (a), let � > � be large
enough regular, x 2 H.�/ and let C � ŒH.�/�<� be a club set. We need to show
that N 1

�;�;� \ C ¤ ;. We assume jM j � M \ � for all M 2 C . Take �0 > � large
enough regular. By the assumption, we can find N 0 2 N 1

�;�;�0 such that x; C 2 N 0.
Let N D N 0 \ H.�/. Then by elementarity, N 2 N 1

�;�;� and N D
S

.N 0 \ C /.
Since C is closed, N 2 C and so N 2 N 1

�;�;� \ C , as required.

We are now ready to show that P rinc.�/ holds in the generic extension by Cohen
forcing. We follow the proof in Fuchino [2].

Theorem 4.3 Assume � � � D cf .�/ > 2@0 . Then 
Add.!;�/“P rinc.�/”.

Proof Let � > � and p 2 Add.!; �/ be such that
p 
Add.!;�/ “X

�
has transitive closure of cardinality < �”:

Let hNi W i < ıi be a sequence of elementary submodels of .H.�/; 2/ such that:
(1) ı < �, cf .ı/ > @0,
(2) hNi W i < ıi is increasing continuous,
(3) Ni \ � 2 �,
(4) hNj W j � ii 2 NiC1,
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(5) each NiC1; i < ı, is closed under countable sequences,
(6) jNi j < �,
(7) p; �; X

�
2 N0, and

(8) jNi \ �j is constant, for i < ı.
Let N D

S
i<ı Ni . As cf .ı/ > @0, it follows from clause .5/ that N is closed under

countable sequences.
We show that p 
“

S
i<ı Ni Œ PG� 2 N 1

�;�;�”. Let G be Add.!; �/-generic over V

with p 2 G, N �
i D Ni ŒG�, i < ı, and N � D

S
i<ı N �

i . Note that N � is closed
under countable sequences and X

�
ŒG� 2 N �. We show that N � 2 .N 1

�;�;�/V ŒG�. This
will complete the proof by the previous lemma.

Thus assume that a 2 P.!/V ŒG� and let a
�

be a nice name for a. Let U D

supp.a
�

/.
Set U1 D U \ N and U2 D U n N . Then U1 2 N . Let i < ı be sufficiently large

such that U1 � Ni and jN \ �j D jNi \ �j1 and set M D NiC1. It follows from .5/

that U1 2 M .
Let � W � ' � be a bijection such that �ŒU � � M , � � U1 D id � U1,

and �Œ� \ N � � M . Using the homogeneity of the forcing Add.!; �/, extend �

to an isomorphism � W Add.!; �/ ' Add.!; �/. Note that this also induces an
isomorphism of the class of all Add.!; �/-names, V Add.!;�/, that we still denote it
by � . Note that �ŒU �; �.a

�
/ 2 M , as M is closed under countable sequences. Let

P D
®

c
�r ŒG� W r 2 Add.!; � \ M n U /

¯
;

where for r 2 Add.!; � \ M n U /,


P “ c
�r D ! n

®
n 2 ! W 9q 2 PG \ Add.!; U1/; r [ q 
 “n … �.a

�
/”

¯
”:

Note that � \ M n U D � \ M n U \ M 2 N , so Add.!; � \ M n U / 2 N . Also
U1 2 N so Add.!; U1/ 2 N . It easily follows that P 2 N �. It is also clear that
P � P.!/V ŒG� and jP j � jAdd.!; � \ M n U /j D jM j < �.

To show that P is an N �-witness for a, let b 2 P.!/V ŒG� \ N � and b � a.
Let b

�
2 N be a nice name for b and let W D supp.b

�
/. Let p� � p be such that

p� 
“b
�

� a
�

”. By Lemma 4.1, we may suppose that p� 2 Add.!; U [ W /. Let

r D �
�
p� � ! � .� n U1/

�
:

Then r 2 Add.!; � \ M n U /. We complete the proof by showing that a �

c
�r ŒG� � b.

a � c
�r ŒG�: assume by contradiction that n 2 a n c

�r ŒG�. Let q 2 G, q � p� and

q 
 “n 2 a
�

”:

Again we can suppose that q 2 Add.!; U [ W /. As n … c
�r ŒG�, we can find

q� 2 G \ Add.!; U1/ such that

r [ q� 
 “n … �.a
�

/”:

This implies
��1.r/ [ ��1.q�/ 
 “n … a

�
”:

Note that ��1.r/ [ ��1.q�/ D p� � ! � .� n U1/ [ q�. As q�; q � ! � U1 2

G \ Add.!; U1/, they are compatible, and we can easily conclude that q and p� �
!�.�nU1/[q� are compatible, which is a contradiction, as they decide the statement
“n 2 a

�
” in different ways.
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c
�r ŒG� � b: suppose by contradiction that there is some n 2 c

�r ŒG� n b. Let
q 2 G, q � p� be such that q 
“n … b

�
”. We can suppose that q 2 Add.!; U [W /

and q � U2 D p� � U2. As p� 
“b
�

� a
�

”, we have q 
“n … a
�

”, and hence
q � U 
“n … a

�
”. Applying � , we have

�.q � U / 
 “n … �.a
�

/”:

Hence
q � U1 [ �.q � U2/ 
 “n … �.a

�
/”;

which implies
q � U1 [ �.p� � U2/ 
 “n … �.a

�
/”:

Now observe that r � �.p� � U2/ and r is compatible with q � U1, so
r [ q � U1 
 “n … �.a

�
/”:

Thus, r [ q � U1 witnesses n … c
�r ŒG�, which is a contradiction.

The theorem follows.

The next theorem can be proved as in Theorem 4.3.

Theorem 4.4 Assume � < � � � D cf .�/ and D is a �-definition of normal
filters. Then 
Add.!;�/“P rinc1.�; �; D/ C P rinc2;� .�; �; D/”.

Remark 4.5 In V ŒG�, D is defined as follows: for any large enough � >

�; D.H V ŒG�.�// is the filter generated by ¹N ŒG� W N 2 Xº, where X 2 D.H.�//.
Note that N � H.�/ ) N ŒG� � H.�/ŒG� D H.�/V ŒG�, and so the above
definition is well defined.

5 On a Question of Juhász and Kunen

In this section we answer a question of Juhász and Kunen [4] by showing that for
n � 2, Cn.@2/ » CnC1.@2/. In fact we prove the following stronger result.

Remark 5.1 The results of this section are stated and proved for the ideal J D

Œ!�<! , but all of them are valid if we also assume J D ¹;º.

Theorem 5.2 Assume:
(1) @0 < � D �<� < � D cf .�/ < � and 8˛ < �.j˛j<� < �/,
(2) D is the filter of co-bounded subsets of �, or D D ¹S � � W S [ ¹cf .ı/ < �º

contains a clubº,
(3) J D Œ!�<! , and
(4) 2 < n.�/ < !.

Then there is a cofinality preserving generic extension of the universe in which
C D

n .�; J / holds if n < n.�/, and fails if n D n.�/.2

The rest of this section is devoted to the proof of the above theorem. The forcing
notion we define is of the form P� � Q

�
�;A, where P� is a suitable iteration of length

�, which adds a set A � Œ��<@0 , which has nice enough properties. Then we use this
added set A to define the forcing notion Q�;A.

In Section 5.1 we define the notion of having the �-system � -property for a filter
D, and show that under suitable conditions, some filters have this property. In Sec-
tion 5.2 we define the forcing notion P� and prove its basic properties. Section 5.3
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is devoted to the definition of the forcing notion Q�;A. Finally in Section 5.4 we
complete the proof of the above theorem.

5.1 Filters with the �-system �-property In this subsection we prove a generalized
version of �-system lemma that will be used several times later.

Definition 5.3 Let D be a filter on �, and let � < � be a cardinal. D has the
�-system � -property if for any Y � �, Y ¤ ; mod D, and any sequence hB˛ W

˛ 2 Y i of sets of cardinality < � , there exists Z � Y , Z ¤ ; mod D such that
hB˛ W ˛ 2 Zi forms a �-system, that is, there is B� such that for all ˛ ¤ ˇ, both in
Z, B˛ \ Bˇ D B�.

The following is essentially due to Erdos and Rado; we will present a proof for
completeness.

Lemma 5.4 Suppose � is regular uncountable and 8˛ < �.j˛j<� < �/.
(a) If D is a normal filter on � and ¹ı < � W cf .ı/ � �º 2 D, then D has the

the �-system � -property.
(b) If D is the filter of co-bounded subsets of �, then D has the �-system � -

property.
(c) If D D ¹S � � W S [¹cf .ı/ < �º contains a clubº, then D has the �-system

� -property.

Proof (a) Let Y � �, Y ¤ ; mod D, and suppose that hB˛ W ˛ 2 Y i is a
sequence of sets of cardinality < � . As j

S
˛2Y B˛j � �, we can assume that all

B˛’s, ˛ 2 Y , are subsets of �. Also as ¹ı < � W cf .ı/ � �º 2 D, we can assume
that Y � ¹ı < � W cf .ı/ � �º. Define the function g on Y by g.˛/ D sup.B˛ \ ˛/.
Then for all ˛ 2 Y , g.˛/ < ˛ (as jB˛j < � and cf .˛/ � � ), so by normality of D,
we can find Y1 � Y , Y1 ¤ ; mod D, and � < � such that for all ˛ 2 Y1, g.˛/ D � .
Then

˛ 2 Y1 ) B˛ \ ˛ D B˛ \ �:

As there are only j�j<� < � many subset of � of cardinality < � , and since D is
normal, there are Y2 � Y1, Y2 ¤ ; mod D and a set B� such that for all ˛ 2 Y2,
B˛ \ ˛ D B˛ \ � D B�. Let

X D
®
˛ < � W 8� 2 Y2 \ ˛

�
sup.B�/ < ˛

�¯
:

X is a club of �, and hence X 2 D (as D contains the club filter by its normality).
Set Z D X \Y2. Then Z � Y , Z ¤ ; mod D, and hB˛ W ˛ 2 Zi forms a �-system
with root B�.

(b) and (c) follow from (a).

The following lemma will be used in the proof of Theorem 5.2.

Lemma 5.5 Let D be the filter of co-bounded subsets of �, or D D ¹S � � W

S [ ¹cf .ı/ < �º contains a clubº. Then “D has the �-system � -property” is
preserved under � -closed �C-c.c. forcing notions in the following sense:

Suppose P is a � -closed �C-c.c. forcing notion and G is P-generic over V ,
and let D 2 V be a filter on � > � which has the �-system � -property. Let
QD be the filter generated by D in V ŒG�. Then in V ŒG�, QD has the �-system

� -property.
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Proof This is trivial using Lemma 5.4 and the fact that QD will be of the same kind
of filter in V ŒG�.

5.2 On the forcing notion P� Fix n.�/, � , �, �, and D as in Theorem 5.2. We
describe a cofinality preserving forcing notion P� which adds a set A � Œ��<@0

which has some nice properties.

Definition 5.6 P� D hhPi W i � �i; hQ
�

i W i < �ii is defined as a .< �/-support
iteration of forcing notions such that:

(1) .Q0; �/ is defined by:
(1-1) p 2 Q0 iff p D .wp; Ap/, where wp 2 Œ��<� and A � Œw�n.�/.
(1-2) p � q , wq � wp and Aq D Ap \ Œwq�n.�/.
Also let A

�
D

S
¹Ap W p 2 PGQ0

º.
(2) Assume 0 < i < �, and Pi is defined. Then for some Pi -names Y

�i and
hw
�

�
i ; hw

�
i
˛ W ˛ 2 Y

�i ii we have:
(2-1) 
Pi

“Y
�i is a subset of �; Y

�i ¤ ; mod D.”
(2-2) 
Pi

“hw
�

i
˛ W ˛ 2 Y

�i i is a �-system of subsets of � with root w
�

�
i , each

of cardinality � @0.”
(2-3) 
Pi

“Q
�

i D ¹u � Y
�i W juj < � and if m < n.�/; ˛0; : : : ; ˛m�1 2 u are

distinct, then for all y 2 A
�

, y �
S

l<m w
�

i
˛l

) 9l < m, y � w
�

i
˛l

º.”
(2-4) 
Pi

“�Q
�i

D�.”
(3) If Y

�
and hw

�
�; hw

�˛ W ˛ 2 Y
�

ii are Pi -names of objects as above, then for some
j 2 .i; �/, they are of the form Y

�j and hw
�

�
j ; hw

�

j
˛ W ˛ 2 Y

�j ii.

Remark 5.7 (a) .3/ can be achieved by a bookkeeping argument, and using the
fact that the forcing P� satisfies the �C-c.c. (see below).

(b) It also follows from the �C-chain condition of the forcing that under the same
assumptions as .3/, 
Pj

“Y
�

¤ ; mod D”, so Qj is well defined.

Lemma 5.8 Let ˛ � �.
(a) P�

˛ is a dense subset of P˛ , where P�
˛ consists of those p 2 P˛ such that:

(1) i 2 dom.p/ ) p.i/ is an object (and not just a Pi -name),
(2) 0 2 dom.p/ and for some w, we have wp.0/ D w, and
(3) if i 2 dom.p/, then for all j 2 p.i/; p � i decides w

�
�
i , w

�
i
j .

(b) If ˛ < �, then 
P˛
“Q
�

˛ is �C-Knaster.”
(c) Each P˛ satisfies the �C-c.c.

Proof (a) follows easily by induction on ˛, and using the fact that 
Pi
“Qi

�
is � -

closed.” Let’s present a proof for completeness.
Case 1. ˛ D 0: there is noting to prove.
Case 2. ˛ C 1 is a successor ordinal: thus assume that P�

˛ is a dense subset of
P˛ , and let p 2 P˛C1. Then p � ˛ 2 P˛ , so for some p1 2 P�

˛ , p1 �P˛

p � ˛. Since 
P˛
“Q˛

�
is � -closed and jp.˛/j < � ,” we can find q1 such

that p1 
“p.˛/ D q1.” As jq1j < � , and again using 
P˛
“Q˛

�
is � -

closed,” we can find p2 �P˛
p1, p2 2 P�

˛ , q2 �Q˛
q1, and w�

˛ , w˛
j for

j 2 q2 such that for all j 2 q2; p2 
“w
�

�
˛ D w�

˛ and w
�

˛
j D w˛

j .” Then
.p2; q2/ 2 P�

˛C1 and .p2; q2/ �P˛C1
p.
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Case 3. ˛ is a limit ordinal, cf .˛/ � � : let p 2 P˛ . Then as j dom.p/j < � ,
we can find ˇ < ˛ such that dom.p/ � ˇ, so p 2 Pˇ , and the induction
applies.

Case 4. ˛ is a limit ordinal, cf .˛/ < � : let h˛� W � < cf .˛/i be a normal
sequence cofinal in ˛. Let p 2 P˛ . By induction and the � -closure of
forcings, we can find a decreasing sequence hq� W � < cf .˛/i of conditions
such that: q� 2 P�

˛�
and q� �P˛�

p � ˛� . Let p1 D
S

�<cf .˛/ q� . Then
p1 2 P�

˛ and p1 �P˛
p.

(b) can be proved easily by a �-system argument. To prove (c), it suffices, by (a),
to show that P�

˛ satisfies the �C-c.c. Let ¹pˇ W ˇ < �Cº � P�
˛ . We can assume that

(1) hdom.pˇ / W ˇ < �Ci forms a �-system with root �, and
(2) for each i 2 �, hpˇ .i/ W ˇ < �Ci are pairwise compatible in Qi (using the

fact that 
Pi
“Qi

�
is �C-Knaster”).

Now let ˇ1 < ˇ2 < �C. Let q be defined as follows:
� dom.q/ D dom.pˇ1

/ [ dom.pˇ2
/,

� q.0/ D hwpˇ1 [ wpˇ2 ; Apˇ1 [ Apˇ2 i, and
� for all i 2 dom.q/, q.i/ D pˇ1

.i/ [ pˇ2
.i/ (where we assume pˇk

.i/ D ;,
if i … dom.pˇk

/).
Clearly q 2 P�

˛ , and it extends both pˇ1
, pˇ2

. So ¹pˇ W ˇ < �Cº is not an antichain.

5.3 On the forcing notion Q�;A In this subsection we describe a forcing notion
Q�;A, which depends on a parameter A � Œ��<@0 . For A � Œ��<@0 , set

AC
D

®
u 2 Œ��<@0 W u includes some member of A

¯
:

Definition 5.9 Assume � is a cardinal and A � Œ��<@0 . We define the forcing
notion .Q�;A; �/ as follows:

(a) p 2 Q�;A iff p is a finite partial function from � to 2n.p/, for some n.p/ < !.
(b) For p; q 2 Q�;A, p � q (p is stronger than q) if and only if:

(b-1) dom.q/ � dom.p/,
(b-2) ˛ 2 dom.q/ ) q.˛/ E p.˛/, and
(b-3) if u 2 A, u � dom.q/ and n.q/ � k < n.p/, then for some ˛ 2 u,

p.˛/.k/ D 0.
We also define the following Q�;A-names:

.˛/ �
�

˛ D
S

¹p.˛/ W ˛ 2 dom.p/ and p 2 PGQ�;A
º,

.ˇ/ a
�˛ D ¹k < ! W �

�
˛.k/ D 1º, and

.
/ a
�˛;n D a

�!�˛Cn.
Remark 5.10 Given any w � �, let A � w D ¹u 2 A W u � wº. Then we
define Q�;A � w to be Q�;A�w which is defined in the natural way. Then for disjoint
w; v � � if

8u 2 A.u � w [ v ) u � w or u � v/;

then we have a forcing isomorphism Q�;A � .w [ v/ � ¹.p; q/ 2 .Q�;A �
w/ � .Q�;A � v/ W n.p/ D n.q/º. But in general the above forcing isomorphism
may not be true, if w, v do not satisfy the above requirement, as (b-3) may fail.
We have the following easy lemma.
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Lemma 5.11 Let Q D Q�;A. Then
(a) Q is a c:c:c. forcing notion,
(b) 
Q“�

�
˛ 2 2! and a

�˛;n � !,” and

(c) 
Q“
T

i<n a
�˛i ;m is finite” if and only if ¹! � ˛i C m W i < nº 2 AC.

Proof (a) follows by a simple �-system argument and (b) is clear. Let us prove
(c). First assume that ¹! � ˛i C m W i < nº 2 AC. Then for some u 2 A,
u � ¹! � ˛i C m W i < nº, and since 
Q“

T
i<n a

�˛i ;m �
T

˛2u a
�˛;m”, we can

assume without loss of generality that ¹! � ˛i C m W i < nº 2 A. Now let p 2 Q. By
extending p, if necessary, we can assume that ¹!:˛i C m W i < nº � dom.p/. But
then by clause (b-3), any q � p forces “

T
i<n a

�˛i ;m � n.p/”. The result follows
immediately.

Conversely suppose that ¹! � ˛i C m W i < nº … AC. Let p 2 Q and k < !. We
find q � p and k0 > k such that q 
“k0 2

T
i<n a

�˛i ;m”. By extending p we may
assume that dom.p/ � ¹! � ˛i C m W i < nº and n.p/ > k. Now define q � p as
follows:

� dom.q/ D dom.p/.
� n.q/ D n.p/ C 1.
� If ˛ 2 dom.p/ n ¹! � ˛i C m W i < nº, then q.˛/ D p.˛/_h.n.p/; 0/i.
� If i < n, then q.! � ˛i C m/ D p.! � ˛i C m/_h.n.p/; 1/i.

q is easily seen to be well defined and clearly

q 
 “k < k0
2

\
i<n

a
�˛i ;m”;

where k0 D n.p/. Let us show that q � p. It suffices to show that it satisfies clause
(b-3) of Definition 5.9. Thus let u 2 A be such that u � dom.p/. We are going
to find some ˛ 2 u such that q.˛/.np/ D 0. As ¹! � ˛i C m W i < nº … AC,
u n ¹! � ˛i C m W i < nº ¤ ;. Let ˛ 2 u n ¹! � ˛i C m W i < nº. Then by our
definition, q.˛/.np/ D 0, as requested.

We now consider the combinatorial principle C D
T .�; J / in the forcing extensions by

Q�;A, and show that the truth or falsity of it depends on the choice of D and A. For
the rest of this subsection, let J D Œ!�<! , the ideal of bounded subsets of !. In
the next lemma we discuss conditions on D and A which imply :C D

T .�; J / in the
forcing extensions by Q�;A.

Lemma 5.12 Assume:
(1) @0 < � D cf .�/ � �;
(2) D is a filter on � with the �-system @0-property;
(3) A � Œ��<@0 and T is a subtree of !<!;
(4) there exists some Y � 2 DC such that:

(a) If Y � Y �, Y ¤ ; mod D, then there are t 2 T \ !n and distinct
˛0; : : : ; ˛n�1 2 Y such that ¹!:˛i C t .i/ W i < nº 2 A.

(b) If t 2 T \ !n and for i < n, Yi � Y �, Yi ¤ ; mod D, then there are
˛i 2 Yi , for i < n such that ¹!:˛i C t .i/ W i < nº … A.

Then 
Q�;A
“:C D

T .�; J /”.
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Proof Let Q D Q�;A, and suppose ±Q“:C D
T .�; J /”. By Lemma 5.4,


Q“ha
�˛;n W ˛ 2 Y �; n < !i is a .� � !/-matrix for D (i.e., Y � 2 DC)” so

by our assumption one of the following holds.
Case 1. There are p 2 Q and X

�
such that:

p 
“X
�

� Y �, X
�

¤ ; mod D,”
p 
“For every t 2 T \ !n and distinct ˛0; : : : ; ˛n�1 2 X

�
,
T

i<n a
�˛i ;t.i/ ¤

; mod J .”
Let X� D ¹˛ 2 Y � W p ±“˛ … X

�
”º. Then X� 2 V and p 
“X

�
� X� � Y �,”

so X� ¤ ; mod D. For any ˛ 2 X�, let p˛ � p be such that p˛ 
“˛ 2 X
�

.”
As D has the �-system @0-property, we can find X1 � X�, X1 ¤ ; mod D such
that ¹dom.p˛/ W ˛ 2 X1º forms a �-system with some root, say, �. Let � D

¹ˇ0; : : : ; ˇk���1º, and for each ˛ 2 X1, let

dom.p˛/ D ¹ˇ˛;j W j < k˛º;

where for j < k��, ˇ˛;j D ˇj . By shrinking X1, and using the �-system @0-
property of D, we can further suppose that

(1) there is some k� < ! such that ˛ 2 X1 ) k˛ D k�,
(2) ˛; ˇ 2 X1 ) p˛ � � D pˇ � �, and
(3) ¹p˛.ˇ˛;j / W ˛ 2 X1º is constant, for each j < k�.

Now by (4-a), there are t 2 T \ !n and distinct ˛0; : : : ; ˛n�1 2 X1 such that
¹!:˛i C t .i/ W i < nº 2 A. Let q be a common extension of p˛i

; i < n, which exists
by our above assumptions. Then q 
“˛0; : : : ; ˛n�1 2 X

�
,” and by Lemma 5.11(c),

q 
 “
\
i<n

a
�˛i ;t.i/ is finite”;

which is a contradiction.
Case 2. There are p 2 Q, t 2 T \ !n and X

�
0; : : : ; X

�
n�1 such that

p 
“X
�

i � Y �, X
�

i ¤ ; mod D” for all i < n,
p 
“If ˛i 2 X

�
i are distinct, then

T
i<n a

�˛i ;t.i/ D ; mod J .”
For i < n, set X�

i D ¹˛ 2 Y � W p ±“˛ … X
�

i ”º. Then X�
i 2 V and p 
“X

�
i �

X�
i � Y �,” so X�

i ¤ ; mod D. We now proceed by induction on i < n and find
pi;˛ � p for ˛ 2 X�

i so that
(1) pi;˛ 
“˛ 2 X

�
i ,” and

(2) if ˛ 2 X�
i \ X�

j , for i < j < n, then pi;˛ D pj;˛ .
Now proceed as in case 1, and shrink each X�

i to some Xi;1 so that
(3) Xi;1 ¤ ; mod D.
(4) ¹dom.pi;˛/ W ˛ 2 Xi;1º forms a �-system with root, say, �i D ¹ˇi;0; : : : ;

ˇi;k��
i

�1º.
(5) For some k�

i < !, dom.pi;˛/ D ¹ˇi;˛;j W j < k�
i º, where for j < k��

i ,
ˇi;˛;j D ˇi;j .

(6) ˛; ˇ 2 Xi;1 ) pi;˛ � �i D pi;ˇ � �i .
(7) ¹pi;˛.ˇi;˛;j / W ˛ 2 Xi;1º is constant, for each j < k�

i .
We again use the �-system argument successively on Xi;1’s to shrink them to some
Xi;2; i < n, so that for all i; j < n:

(8) Xi;2 ¤ ; mod D.

Sh:1125



494 Golshani and Shelah

(9) For all ˛ 2 Xi;2, ˇ 2 Xj;2, dom.pi;˛/ \ dom.pj;ˇ / D �i;j , for some fixed
set �i;j .

(10) For all ˛ 2 Xi;2, ˇ 2 Xj;2, pi;˛ � �i;j D pj;ˇ � �i;j .
Now by (4-b), there are ˛i 2 Xi;2, i < n, such that ¹!:˛i C t .i/ W i < nº … A. Let
q be a common extension of pi;˛i

; i < n, which exists by our above assumptions.
Then q 
“˛0; : : : ; ˛n�1 2 X

�
” and by Lemma 5.11(c),

q 
 “
\
i<n

a
�˛i ;t.i/ is infinite”;

which is a contradiction. The lemma follows.

We now discuss conditions on D and A which imply C D
T .�; J / in the forcing exten-

sions by Q�;A.

Lemma 5.13 Assume:
(1) D is a �-complete filter on �, where � D cf .�/ > @0 and 8˛ < �.j˛j@0 <

�/.
(2) T � !<n.�/ is a subtree, where n.�/ < !.
(3) � � � and A � Œ��<@0 .
(4) If Y � �, Y ¤ ; mod D, and if hw˛ W ˛ 2 Y i is such that w˛ 2 Œ���@0 , for

˛ 2 Y , then there exists X � Y , X ¤ ; mod D such that:
(a) hw˛ W ˛ 2 Xi form a �-system with root, say, w� such that for all ˛ ¤ ˇ

in X; w˛ \ wˇ D w�, and for all 
 2 w�, otp.w˛ \ 
/ D otp.wˇ / \ 
 ,
and

(b) if ˛0; : : : ; ˛n.�/�1 2 X are distinct, then

8u
�
u 2 A and u �

[
i<n.�/

w˛i
) 9i < n.�/; u � w˛i

�
:

Then 
Q�;A
“C D

T .�; J /”.

Proof Let Q D Q�;A, and suppose G is Q-generic over V . Assume on the con-
trary that V ŒG� ˆ“:C D

T .�; J /”. Let p 2 G, X
�

and hb
�˛;n W ˛ 2 X

�
; n < !i be such

that
p 
“X

�
� �, X

�
¤ ; mod D” and

p 
“hb
�˛;n W ˛ 2 X

�
; n < !i” is a counterexample to C D

T .�; J /.
Let X1 D ¹˛ < � W p ±“˛ … X

�
”º. Then X1 2 V and p 
“X

�
� X1”, so

X1 ¤ ; mod D. For any ˛ 2 X1, let p˛ � p be such that p˛ 
“˛ 2 X
�

”. We may
further assume that ˛ 2 dom.p/.

For each ˛ 2 X1, we can find hq˛;n;m;k ; t˛;n;m W n; m; k < !i such that:
(1) t˛;n;m W ! ! 2,
(2) ¹q˛;n;m;k W m < !º � Q is a maximal antichain below p, and
(3) q˛;n;m;k 
“k 2 b

�˛;n”, t˛;n;m.k/ D 1.
We may note that then

p 
Q “b
�˛;n D

®
hq˛;n;m;k ; ki W m; k < !; t˛;n;m.k/ D 1

¯
”

and so from now on we assume b
�˛;n is of the form. Let

w˛ D dom.p˛/ [

[®
dom.q˛;n;m;k/ W n; m; k < !

¯
[ ¹!:˛ C n W n < !º:
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Then each w˛ 2 Œ��@0 . As D is �-complete and � > 2@0 , we can find X2, Ng and Nt

such that:
(4) X2 � X1, X2 ¤ ; mod D,
(5) Nt D htn;m W n; m < !i and 8˛ 2 X2, t˛;n;m D tn;m,
(6) For all ˛; ˇ 2 X2, otp.w˛/ D otp.wˇ /,
(7) Ng D hg˛;ˇ W ˛; ˇ 2 X2i,
(8) g˛;ˇ W wˇ Š w˛ is an order-preserving bijection,
(9) g˛;ˇ .ˇ/ D ˛, and

(10) g˛;ˇ “Œqˇ;n;m;k � D q˛;n;m;k .
Consider hw˛ W ˛ 2 X2i. By our assumption, we can find X3 and w� such that:

(11) X3 � X2, X3 ¤ ; mod D,
(12) For all ˛ ¤ ˇ in X3; w˛ \ wˇ D w�, and for all 
 2 w�, otp.w˛ \ 
/ D

otp.wˇ / \ 
 , and
(13) if ˛0; : : : ; ˛n.�/�1 2 X3 are distinct, then

8u
�
u 2 A and u �

[
i<n.�/

w˛i
) 9i < n.�/; u � w˛i

�
:

Note that for ˛ ¤ ˇ in X3; g˛;ˇ � w� D id � w� (by .12/). As the conclusion of
the lemma fails, we can find q � p, q 2 G, t 2 T and ˛0; : : : ; ˛n.�/�1 2 X3 such
that

q 
 “
\

i<n.�/

b
�˛i ;t.i/ D ; mod J ”:

We may suppose that dom.q/ �
S

i<n.�/ w˛i
.3

For ˇ 2 X3 and i < n.�/, set
qi;ˇ D gˇ;˛i

.q � w˛i
/ 2 Q � wˇ :

Let Y
�i be such that


Q “Y
�i D ¹ˇ 2 X3 W qi;ˇ 2 PGQº”:

Claim 5.14 
Q“Y
�i ¤ ; mod D”.

Proof Assume not, so there are r 2 G, r � q, and X 2 DC such that
r 
“X \ Y

�i D ;”. As dom.r/ is finite, we can find ˇ 2 X so that dom.r/ \ wˇ n

w� D ;. But then r , qi;ˇ are compatible, and any common extension of them forces
“ˇ 2 X \ Y

�i ”, which is impossible.

We show that if 
Q“ˇi 2 Y
�i ” for i < n.�/, then 
Q“

T
i<n.�/ b

�ˇi ;t.i/ D ;

mod J ”. So assume V ŒG� ˆ“ˇi 2 Yi D Y
�i ŒG�”. Then g D

S
i<n.�/ g˛i ;ˇi

is an order-preserving bijection from
S

i<n.�/ wˇi
onto

S
i<n.�/ w˛i

, and we can
extend it to an automorphism of �, in the natural way, so that its restriction to
�n .

S
i<n.�/ wˇi

[
S

i<n.�/ w˛i
/ is identity. We denote the resulting function still by

g. g easily extends to an automorphism Og W Q Š Q of Q, which in turn also extends
to an automorphism of nice names of Q.

For i < n.�/, qi;ˇi
2 GQ, so

Og.qi;ˇi
/ D q � w˛i

2 Og“ŒG�:

Hence, q D
S

i<n.�/ q � w˛i
2 Og“ŒG�. But it is easily seen that Og.b

�ˇi ;t.i// D

b
�˛i ;t.i/, and so
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Og�1.q/ 
 “
\

i<n.�/

b
�ˇi ;t.i/ D ; mod J ”:

On the other hand Og�1.q/ 2 G, and the result follows.

Remark 5.15 Condition (4-b) is implicitly used in the argument to guarantee that
the restricted conditions and their union which we defined are well defined. See also
Remark 5.10.

5.4 Proof of Theorem 5.2 Finally in this subsection we present the proof of Theo-
rem 5.2. Thus let n.�/, � , �, �, and D be as above and J D Œ!�<! . Consider the
forcing notion P D P� � Q�;A

�
, where A � Œ��<@0 is the set added by P�. It follows

from Lemmas 5.8 and 5.11 that P is a cofinality-preserving forcing notion.
Firs we show that C D

n .�; J / holds for n < n.�/. It suffices to show that in V P� ,
the pair .n.�/; D/ satisfies the the demands in Lemma 5.12. Conditions (1)–(3)
from the lemma are clear. To prove (4-a), let 
P�

“Y
�

� �, Y
�

¤ ; mod D, and
hw
�˛ W ˛ 2 Y

�
i is a sequence of countable subsets of �.” Let i < � be such that Y

�
and hw

�˛ W ˛ 2 Y
�

i are Pi -names. By the fact that in V Pi , D has has the �-system
� -property (see Lemma 5.5), we can find Pi -names X

�
and w

�
� such that:

(1) 
Pi
“X
�

� Y
�

, X
�

¤ ; mod D” and
(2) 
Pi

“hw
�˛ W ˛ 2 X

�
i forms a �-system with root w�

�
.”

Then for some j 2 .i; �/, X
�

D Y
�j and hw

�
�; hw

�˛ W ˛ 2 Y
�

ii D hw
�

�
j ; hw

�

j
˛ W ˛ 2

Y
�j ii. Now by our definition of Qj , we can find Z

�
2 V Pj C1 such that:

(3) 
Pj C1
“Z
�

� Y
�j , Z

�
¤ ; mod D” and

(4) 
Pj C1
“If ˛0; : : : ˛n.�/�1 2 Z

�
are distinct, then for all u 2 A, u �S

l<n.�/ w
�

j
˛l

) 9l < n.�/, u � w
�

j
˛l

.”
The result follows immediately, as then the above are also forced to be true by P�.

Now we show that C D
n.�/

.�; J / fails. Let T D !n.�/. We show that


P��Q
��;A

“ha
�˛;n W ˛ < �; n < !i exemplify :C D

n.�/.�; J /”;

where the names a
�˛;n are defined just after Definition 5.9. To this end, we check

conditions in Lemma 5.11. Conditions (1)–(3) from the lemma are clear. For (4-a),
assume on the contrary that in V P� ; Y ¤ ;, mode D is given and p 2 P�; p 
“Y

�
is

a counterexample for (4-a).” In V , let X1 D ¹ı < � W p ±“ı … Y
�

”º. Then X1 2 V

and X1 ¤ ; mod D. For any ı 2 X1, let pı � p be such that pı 
“ı 2 Y
�

.”
As in the proof of Lemma 5.8(b), and using the fact that D has the �-system

property, we can find X2 � X1, X2 ¤ ; mod D such that hdom.pı/ W ı 2 X2i

form a �-system with root � and for all ı; 
 2 X2; pı � � k p
 � � (pı � �

is compatible with p
 � �). Now let t 2 !n.�/ and let ı0; : : : ; ın.�/�1 be in X2

such that for each l , ılC1 > sup¹w
pıj

.0/
W j � lº. Let q be an extension of all

pıl
; l < n.�/ such that:

t 2 !n.�/
)

®
!:ıl C t .l/ W l < n.�/

¯
2 Aq.0/;

and

u 2 Aq.0/; k < n.�/; v �

[®
wpıl W l < n.�/; l ¤ k

¯
) .9l/v � wpıl :

For example, we can set
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q.0/ D

D [
l<n.�/

wpıl
.0/

[
®
! � ıl C t .l/ W l < n.�/

¯
;

[
l<n.�/

Apıl
.0/

[
®®

!:ıl C t .l/
¯

W t 2 !n.�/
¯E

:

Then q � p and q 
“Y
�

can not be a counterexample to (4-a),” a contradiction.
For (4-b), again assume for some p 2 P�, t 2 T , and Y

�i ; i < n.�/, we have
p 
“t; hY

�i W i < n.�/i are counterexample to (4-b).” For each i < n.�/, let
X�

i D ¹ı < � W p ±“ı … Y
�i ”º. Then X�

i 2 V and X�
i ¤ ; mod D. For any

ı 2 X�
i , let pi;ı � p be such that pi;ı 
“ı 2 Y

�i .” Now proceed as in the proof of
Lemma 5.11, case 2, to shrink each X�

i to some Xi;2, such that
(5) Xi;2 ¤ ; mod D,
(6) hdom.pi;ı/ W ı 2 Xi;2i form a �-system with root �i ,
(7) ı; 
 2 Xi;2; piı � � k pi;
 � �,
(8) for all ı 2 Xi;2, 
 2 Xj;2, dom.pi;ı/ \ dom.pj;
 / D �i;j , for some fixed set

�i;j , and
(9) for all ı 2 Xi;2, 
 2 Xj;2; pi;ı � �i;j k pj;
 � �i;j .

Let ıl 2 Xl;2, l < n.�/. Let q be an extension of all pl;ıl
; l < n.�/, such that

q.0/ D

D [
l<n.�/

wpıl [
®
! � ıl C n W n < !; l < n.�/

¯
;

[
l<n.�/

Apıl º

E
:

Then q � p and ¹!:ıl C t .l/ W l < n.�/º … Aq , so

q 
 “
®
!:ıl C t .l/ W l < n.�/

¯
… A

�
”:

So q 
“t; hY
�i W i < n.�/i can not be counterexamples to (4-b),” a contradiction.

6 On C s.�/ v.s. C.�/

In this section, we consider the difference between the combinatorial principles
C s.�/ and C.�/, and prove the consistency of “C.�/ holds but C s

T .�/ fails for all
nontrivial T .”

Lemma 6.1 Assume that:
(1) � D cf .�/ > @0;
(2) S� � � is a stationary subset of �;
(3) NC D hCı W ı 2 S�i is such that:

(a) each Cı is a club of ı, and
(b) for every club E of �, the set ¹ı 2 S� W sup.Cı n E/ D ıº is not

stationary;
(4) 2 � n.�/ < !.
Then there is A � Œ��n.�/ such that:
.˛/ If Sl � S� is stationary for l < n.�/, then we can find ˛l ; ˇl 2 Sl , for

l < n.�/ such that ˛0 < � � � < ˛n.�/�1 < ˇ0 < � � � < ˇn.�/�1 and ¹˛l W l <

n.�/º 2 A, ¹ˇl W l < n.�/º … A.
.ˇ/ If Y � � is unbounded, then for some unbounded subset Z � Y we have

ŒZ�n.�/ \ A 2 ¹;; ŒZ�n.�/º.
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Proof Let

A D
®
¹˛0; : : : ; ˛n.�/�1º W ˛n.�/�1 2 S�

and l < n.�/ � 1 ) otp.˛l \ C˛n.�/�1
/ is odd

¯
:

Let’s show that A is as required:
(˛) should be clear; let’s prove (ˇ). So assume Y � � is unbounded. So there

is Z1 � Y of size � such that Z1 � S� or Z1 \ S� D ;. If Z1 \ S� D ;, then
obviously ŒZ1�n.�/ \ A D ; and we are done; so assume Z1 � S�. Define the
sequence h˛i W i < �i, by induction on i < �, such that

(1) ˛i 2 Z1, ˛i > sup¹˛j W j < iº, and
(2) sup.C˛i

\
S

j <i ˛j / is minimal.
Let E D ¹ı < � W ı D supj <ı ˛j is a limit ordinalº so that E is a club of �. Set

W1 D
®
ı 2 E \ S�

W ı < sup.C˛ı
\ ı/

¯
� S�:

Then W1 is a stationary subset of �, as otherwise we can find a club C � E which
is disjoint from W1 and we get a contradiction with (3-b). It follows from Fodor’s
lemma that for some ˛� < �, the set

W2 D
®
ı 2 W1 W sup.C˛ı

\ ı/ D ˛� < ı
¯

is stationary. Again by Fodor’s lemma, there exists ı� < � such that the set

W3 D
®
ı 2 W2 W sup.C˛ı

\ ˛�/ D ı�
¯

is stationary. Let Z D ¹˛ı W ı 2 W3º. Clearly Z is an unbounded subset of Y . We
show that ŒZ�n.�/ \ A 2 ¹;; ŒZ�n.�/º. Thus suppose that ŒZ�n.�/ \ A ¤ ;. Let
ı0 < � � � < ın.�/�1 2 W3. Then ˛ın.�/�1

2 S� and for l < n.�/ � 1 we have

otp.C˛ın.�/�1
\ ˛ıl

/ D otp.C˛ın.�/�1
\ ˛�/ C otp

�
.C˛ın.�/�1

n ˛�/ \ ˛ıl

�
D ı�

C otp
�
.C˛ın.�/�1

n ın.�/�1/ \ ˛ıl

�
D ı�

C 1
�
as C˛ın.�/�1

n ın.�/�1/ \ ˛ıl
D ¹˛�

º
�
;

which is odd. So ¹˛0; : : : ; ˛n.�/�1º 2 A, as required.

Remark 6.2 We can replace (3-b) with .˛/ & .ˇ/, where
.˛/ For every club E1 of �, there exists a club E2 � E1 of �, such that for every

ı 2 S� \ E2, we have ı D sup¹˛ < ı W otp.Cı \ ˛/ is evenº D sup¹˛ < ı W

otp.Cı \ ˛/ is oddº.
.ˇ/ There is no increasing continuous sequence h˛i W i < �i of ordinals < � such

that C˛2iC1
� ¹˛2j W j < iº (note that this holds if sup¹Cı W ı 2 S�º < �).

Remark 6.3 We can force the existence of such an S� and NC by forcing.

Theorem 6.4 Assume � D cf .�/ > @0, 8˛ < �.j˛j@0 < �/, and let A � Œ��n.�/

be as in the conclusion of Lemma 6.1. Then for any nontrivial tree T � !�n.�/, we
have V Q�;A ˆ“CT;n.�/.�/ C :C s

T;n.�/
.�/”.

Proof That C s
T;n.�/

.�/ fails in V Q�;A follows from Lemmas 5.11 and 6.1.˛/. Also,
CT;n.�/.�/ holds in V Q�;A by Lemmas 5.12 and 6.1.ˇ/.

The following lemma can be proved similar to the proof of Lemma 6.1.
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Lemma 6.5 Let S� and NC be as in Lemma 6.1, and assume any ı 2 S� has
uncountable cofinality. Then there is A � Œ��<! such that:

.˛/ If n.�/ < ! and Sl � S� is stationary for l < n.�/, then we can find
˛l ; ˇl 2 Sl , for l < n.�/ such that ˛0 < � � � < ˛n.�/�1 < ˇ0 < � � � < ˇn.�/�1

and ¹˛l W l < n.�/º 2 A, ¹ˇl W l < n.�/º … A.
.ˇ/ If Y � � is unbounded, then for some unbounded subset Z � Y we have

ŒZ�<! \ A 2 ¹;; ŒZ�<!º.

Finally, we have the following, whose proof is the same as the proof of Theorem 6.4,
using Lemma 6.5, instead of Lemma 6.1.

Theorem 6.6 Assume � D cf .�/ > @0, 8˛ < �.j˛j@0 < �/, and let A � Œ��<!

be as in the conclusion of Lemma 6.5. Then V Q�;A ˆ“C.�/C For any nontrivial
tree T � !<! ; :C s

T .�/.”

Notes

1. Such an i exists as U D supp.a
�

/ is a countable set and cf .ı/ > @0.

2. When working in a forcing extension, we use D to denote the filter generated by D in
that extension.

3. This is because, by our representation of b
�˛i ;t.i/, we can imagine each b

�˛i ;t.i/ as a
Q � w˛i

-name.
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