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In this paper, we prove in ZFC the existence of a complete sentence φ of Lω1,ω

such that φ has maximal models (i.e. no Lω1,ω-elementary extension satisfies φ) in
a set of cardinals λ that is cofinal in the first measurable μ while φ has no maximal
models in any χ ≥ μ. In [4], we proved a theorem with a similar result; the earlier
proof required that λ = λ<λ, and extended ZFC by requiring an S ⊆ Sλ

ℵ0
, that is

stationary non-reflecting, and �S holds. Here, we show in ZFC that the sentence
φ defined in [4] has maximal models cofinally in μ. The additional hypotheses in
[4] allow one to demand that if N is a submodel with cardinality < λ of the P0-
maximal model, N is K1-free (see Remark 4.1); that property fails for the example
here. The existence of such a φ which is not complete is well known (e.g. [11]).

This paper contributes to the study of Hanf numbers for infinitary logics. Works
such as [2, 3, 5, 10] study the spectrum of maximal models in the context where
the class has a bounded number of models. We list now some properties that are
true in every cardinality for first-order logic but are true only eventually for com-
plete sentences of Lω1,ω or, more generally, for abstract elementary classes, and
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compare the cardinalities (the Hanf number) at which the cofinal behavior must
begin. Every infinite model of a first-order theory has a proper elementary extension
and so each theory has arbitrarily large models. Morley [12] showed that every sen-
tence of Lω1,ω that has models up to �ω1 has arbitrarily large models and provided
counterexamples showing that cardinal was minimal. Thus, he showed the Hanf
number for existence of Lω1,ω-sentences in a countable vocabulary is �ω1 . Hjorth
[9], by a much more complicated argument, showed there are complete sentences
φα for α < ω1 such that φα has a model in ℵα and no larger so the Hanf number
for complete sentences is ℵω1 . The amalgamation property holds for every complete
first-order theory. However, paper [1] shows that an upper bound on the Hanf num-
ber for amalgamation is the first strongly compact; the actual value remains open.
Boney and Unger [6], building on [14], show that the Hanf number ‘for all AEC’s are
tame’ is the first strongly compact cardinal. They also show the analogous property
for various variants on tameness is equivalent to the existence of almost (weakly)
compact, measurable, strongly compact). The result here shows in ZFC that the
Hanf number for extendability (every model of a complete sentence has a proper
Lω1,ω-elementary extension) is the first measurable cardinal.

Section 1 provides some background information on Boolean algebras. Section 2
is a set theoretic argument for the existence of a Boolean algebra with certain
specified properties in any cardinal λ of the form λ = 2μ that is less than the first
measurable; this construction is completely independent of the model theoretic
results. Then we make the connection with model theory. In particular, we link the
construction here with the complete sentence φ from [4]. Section 3 builds several
approximations to the counterexample. Section 3.1 introduces the most basic class
of models K−1 and explains the connections with [4]. Section 3.2 builds on this
result to find a P0-maximal model in K−1 with cardinality λ satisfying certain
further restrictions. We recall in Sec. 3.3 the class K2 of models of the complete
sentence from [4]. In Sec. 4, the P0-maximal model from Sec. 3.2 is converted to a
P0-maximal model in K2. From this, it is easy to find a maximal model in K2 of
roughly the same cardinality.

The first author acknowledges helpful conversations with Joel Berman, Will
Boney, Ioannis Souldatos, and especially Sherwood Hachtman. We are particularly
grateful for an extremely helpful referee report.

1. Preliminaries

This paper depends heavily on [4] which contains a fuller background and essential
material on Boolean algebras. In particular, the incomplete sentence with maximal
models cofinal in the first measurable and the construction of the desired complete
sentence are described there; in this paper we show in ZFC that sentence has
maximal models below the first measurable. We repeat in this section the main
slightly nonstandard definitions from Boolean algebra that appear in [4] and some
immediate consequences.
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Definition 1.1. (1) A Boolean polynomial p(v0, . . . , vk) is a term formed by the
compositions of the ∧,∨,−1 , 0, 1 on the variables vi; a polynomial over X arises
when elements of X are substituted for some of the vi.

(2) For X ⊆ B and B a Boolean algebra, X = XB = 〈X〉B denotes the subalgebra
of B generated by X .

(3) A set Y is independent (or free) over X modulo an ideal I (with domain I) in a
Boolean algebra B if and only if for any Boolean polynomial p(v0, . . . , vk) (that
is not identically 0, i.e. nontrivial), and any a ∈ 〈X〉B −I, and distinct yi ∈ Y ,
p(y0, . . . , yk) ∧ a �∈ I.

(4) A Y which is independent over X modulo I is called a basis for 〈X ∪ Y ∪ I〉
over 〈X ∪ I〉.

In this context, ‘independent from’ may sometimes be written ‘independent
over’. This notion of independence is distinct from each of (i) a family X of sets
is independent if every finite boolean combination of members X is nonempty and
(ii) from forking independence.

Observation 1.2. If I is the 0 ideal, (i.e. Y is independent over X),

(1) the condition becomes: for any b ∈ 〈X〉B −{0}, B |= p(y0, . . . , yk)∧b > 0. That
is, every finite Boolean combination of elements of Y has nonempty meet with
each nonzero b ∈ 〈X〉B.

(2) or, there is no nontrivial polynomial q(y,x) and b ⊆ X such that q(y,b) = 0.

That (2) implies (1) is obvious. For the converse, put a counterexample q(y,b) =
0 in disjunctive normal form. Then for each disjunct (i.e. each constituent conjunc-
tion) q′(y,b) = 0 (some variables of q may not appear in q′.) We can replace those
b’s that appear in q′ by a single element b of 〈X〉 to get a q′′(y, b) = 0; q′′ contradicts
condition (1).

With Observation 1.2 we obtain an analog for Boolean algebras of the notion
of dependence in vector spaces in rings or fields: {y0, . . . , yk} are dependent over
X if some nontrivial polynomial p(v0, . . . , vk, w0, . . . , wm) and some b from X ,
p(y,b) = 0. This yields that if B2 is freely generated over B1, all atoms in B1

remain atoms in B2. If not, there would be an atom a of B1 and a term σ(b2,b1)
with 0B1 < σ(b2,b1) < a and σ(b2,b1) ∈ B1. But then B2 |= σ(b2,b1) ∧ a = 0;
this contradicts the freeness assumption. This notion of dependence (a depends on
X if and only if a ∈ 〈X〉) does not satisfy the exchange axiom. See [7, Chap. 5] for
the strong consequences if this dependence relation satisfies exchange.

There is no requirement that I be contained in X . Observe the following.

Observation 1.3. Let I be an ideal in a Boolean algebra B.

(1) Let π map B to B/I. If ‘Y is independent from X over I’ then the image of Y

is free from the image of X (over ∅) in B/I. Conversely, if π(Y ) is independent
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over π(X) in B/I, for any Y ′ mapping by π to π(Y ), Y ′ is independent from
X over I.

So, if X is empty, the condition ‘Y is independent over I’ implies the image
of Y is an independent subset of B/I.

(2) If a set Y is independent (or free) from X over I in B and Y0 is a subset of Y ,
then Y − Y0 is independent (or free) from X ∪ Y0 (〈X ∪ Y0〉B) over the ideal I
in the Boolean algebra B.

2. Set Theoretic Construction of a Boolean Algebra

We define a property �(λ), which asserts the existence in λ of a Boolean algebra that
is ‘uniformly ℵ1-incomplete’. We then show certain conditions on λ imply �(λ). So
this section has no elaborate model theory. The arguments here are similar to those
around [8, p. 7]. We connect this construction with our model theoretic approach
in Sec. 3.

Definition 2.1 (�(λ)). denotes: There are a Boolean algebra B ⊂ P(λ) with
|B| = λ and a set A ⊆ ωB such that:

(i) A has cardinality λ and if A = {An : n ∈ ω} ∈ A then for α < λ for all but
finitely many n, α �∈ An.

(ii) B includes the finite subsets of λ; but is such that for every non-principal
ultrafilter D of λ (equivalently an ultrafilter of B that is disjoint from λ<ω) for
some sequence 〈An : n ∈ ω〉 ∈ A, there are infinitely many n with An ∈ D.

We may say that (B,A) witness uniform ℵ1-incompleteness.

Theorem 2.2 (ZFC). Assume for some μ, λ = 2μ and λ is less than the first
measurable, then �(λ) from Definition 2.1 holds.

We need the following structure, which depends on μ and λ.

Definition 2.3. (1) Fix the vocabulary τ with unary predicates P, U , a binary
predicate C, and a binary function F .

(2) Let 〈Cα : α < λ〉 list without repetitions P(μ) such that C0 = ∅ and also let
〈fα : μ ≤ α < λ〉 list μω.

(3) Define the τ -structure M by:

(a) The universe of M is λ;
(b) PM = ω; UM = μ;
(c) C(x, y) is a binary relation on U×M defined by C(x, α) if and only x ∈ Cα.

Note that C is extensional. I.e. elements of M uniquely code subsets of UM ;
(d) Let FM

2 (α, β) map M×UM → PM by FM
2 (α, β) = fα(β) for α < λ, β < μ;

(e) FM
2 (α, β) = 0 for α < λ and β ∈ [μ, λ).

We use the following, likely well-known, fact pointed out to us by Sherwood
Hachtman.
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Fact 2.4. Let D ⊆ P(X) and suppose that for each partition Y ⊆ P(X) of X

into at most countably many sets, |D ∩ Y | = 1. Then, D is a countably complete
ultrafilter.

We use the following lemma about M to find a Boolean algebra B in M that
satisfies �. We lay the basis for the notion of P -maximality, a counterexample to
maximality must occur in a given predicate P (Definition 3.2.1).

Lemma 2.5. If λ is less than the first measurable cardinal and λ = 2μ for some μ

there is a model M, with |M | = λ, and a countable vocabulary with PM denoting
the natural numbers such that every first-order proper elementary extension N of
M properly extends PM .

Proof. Fix M as in Definition 2.3. We first show that any proper elementary
extension N of M extends UM . Suppose for contradiction there exists α′ ∈ N −M

but UN = UM . By the full listing of the Cα, there is a β ∈ M with {x : N |=
C(x, β)} = {x : N |= C(x, α′)}. This contradicts extensionality of the relation C in
N ; but C is extensional in the elementary submodel M .

Now we show that if UM � UN and PM = PN , then there is a countably
complete non-principal ultrafilter on μ, contradicting that μ is not measurable.
Note that the sequence 〈fα : μ ≤ α < λ〉 can be viewed as a list of all nontrivial
partitions of μ into at most countably many pieces. Let ν∗ ∈ UN − UM . For
α ∈ N , denote FN

2 (α, ν∗) by nα. Since PM = PN , nα ∈ M . By elementarity, for
α ∈ M, η ∈ UM , FN

2 (α, η) = FM
2 (α, η) = fα(η). Now, let

D = {x ⊆ UM : x �= ∅ ∧ (∃α ∈ M)x ⊇ f−1
α (nα)}.

We show D satisfies the conditions from Fact 2.4. Let W be a partition, indexed
by fα. Then f−1

α (nα) �= ∅ and is in D. Suppose for contradiction there are x0 �= x1

in W that are both in D. Then, there are αi ∈ M such that xi ∈ W ∩ D contains
f−1

αi
(nαi) for i = 0, 1. So, N |= F (αi, ν

∗) = nαi for i = 1, 2. Since αi ∈ M and
M ≺ N , M |= ∃x(F (α0, x) = nα0 ∧ F (α1, x) = nα1 . So, by Definition 2.3(d), for
any witness a in M for this formula, a ∈ x0 ∩ x1; but x0 ∩ x1 = ∅ since W is a
partition.

Finally, D is non-principal on UM since if it were generated by an a ∈ UM ,

D = {x ⊆ U : (∃α)x ⊇ f−1
α (nα)} = {x ⊆ U : a ∈ x}.

Since {a} ∈ D, for some α0 ∈ M , {a} = f−1
α0

(nα0). Note that α0 ∈ M , because
the definition of D is about the model M . That is, M |= ∃!yF (α0, y) = nα0 . But
N |= F (α0, a) = nα0 ∧ F (α0, ν

∗) = nα0 . This contradicts the assumption M ≺ N

and completes the proof.

The following claim completes the proof of Theorem 2.2.

Claim 2.6. If B is the Boolean algebra of definable formulas in the M defined in
Definition 2.3, there is an A such that (B,A) is uniformly ℵ1-incomplete so �(λ)
holds.
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Proof. We may assume τ has Skolem functions for M and then define B and A as
follows to satisfy �(ii). Let B be the Boolean algebra of definable subsets of M . I.e.

B = {X ⊆ M : for some τ -formula φ(x,y) and b ∈ lg(y)M, φ(M,b) = X}.

Note B is a Boolean algebra of cardinality λ with the normal operations. We
define the Skolem functions a little differently than usual: as maps σφ = σφ(x,w,y)

from Mn+1 to M for formulas φ(x, w,y) such that φ(σφ(b, a), b, a). Here lg(y) = n.
Then, we specialize the Skolem functions by considering the unary function arising
from fixing the y entry of σφ(w,y) to obtain σφ(w, a).

A
σφ(w,a)
n = {α < λ :: φ(σM

φ (α, a), α, a) ∧ P (σM
φ (α, a)) ∧ σM

φ (α, a) � n}

∪ {α < λ :: n = 0 ∧ ¬P (σM
φ (α, a)}.

Then let Aσφ(w,a) = 〈Aσφ(w,a)
n : n < ω〉 and

A = {Aσφ(w,a) : for some τM -term σφ(w,y) and a ∈ lg(y)M}. (∗)

Note |A| = λ = λω as for each a ∈ M and each of the countably many terms
σφ(w, a), Aσφ(x,w,a) is a map from ω into B. For each α, for each 0 < m < ω and
A = Aσφ(α,b), the set {m : α ∈ Am} is finite, bounded by σφ(α, a). Thus, clause (i)
of � is satisfied.

We now show clause (ii) of �. Let D be an arbitrary non-principal ultrafilter on
λ and where φ(v,y) varies over first-order τ -formulas such that y and a have the
same length, define the type p(x) = pD(x) as

p(x) = {φ(x, a) : {α ∈ M : M |= φ(α, a)} ∈ D}.

Since D is an ultrafilter, p is a complete type over M . So there is an elementary
extension N of M where an element d realizes p. Let N be the Skolem hull of
M ∪ {d}. Since D is non-principal, so is p; thus, N �= M . By Lemma 2.5, we can
choose a witness c ∈ PN − PM . Since, N is the Skolem hull of M ∪ {d} there is a
Skolem term σ(w,y) = σφ(w,y) and a ∈ M such that c = σN (d, a). Since c �∈ M ,
for each n ∈ PM , N |=

∧
k<n c �= k so N |=

∧
k<n σ(d, a) �= k so

∧
k<n σ(x, a) �= k

is in p. That is, for each σφ and each n, A
σφ(w,a)
n is in D.

3. Three Classes of Models and an Approximate Counterexample

In this section, we define the model theoretic classes that produce first an amal-
gamation class K−1 of finitely generated structures (Sec. 3.1), then the class K2

(Definition 3.3.2) of models of a complete Lω1,ω-sentence. Using Theorem 2.2, we
build in Sec. 3.2 a model M∗ in K−1 with cardinality λ, which is P0-maximal.
Section 3.3 defines the classes K1 and K2 which give us the complete sentence. In
Sec. 4 we modify M∗ to a P0-maximal model in K2 and then construct the required
maximal model in K2.
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3.1. Finitely generated models

The class K−1
<ℵ0

and the class of its direct limits, K−1 were introduced in [4].

Definition 3.1.1. τ is a vocabulary with unary predicates P0, P1, P2, P4, binary
R, ∧,∨, ≤ unary functions −, G1, constants 0,1 and unary functions Fn, for n < ω.
≤ is a partial order on PM

1 and the Boolean algebra can be defined from it.

We occasionally use the notations (∀∞n) and (∃∞n) to mean ‘for all but finitely
many’ and ‘for infinitely many’, respectively. It is easy to see that K−1 is Lω1,ω-
axiomatizable but far from complete.

Definition 3.1.2 (K−1). K−1
<ℵ0

is the class of finitely generated structures M

satisfying the following conditions:

(1) PM
0 , PM

1 , PM
2 partition M .

(2) (PM
1 , 0, 1,∧,∨,≤,− ) is a Boolean algebra (− is complement). We also consider

ideals and restrictions to them of the relations/operations except for comple-
ment.

(3) R ⊂ PM
0 × PM

1 with R(M, b) = {a : RM (a, b)} and the set of {R(M, b) : b ∈
PM

1 } is a Boolean algebra. fM : PM
1 �→ P(PM

0 ) by fM (b) = R(M, b) is a
Boolean algebra homomorphism into P(PM

0 ).
Note that f is nota in τ ; it is simply a convenient abbreviation for the

relation between the Boolean algebra PM
1 and the set algebra on P0 by the

map b �→ R(M, b).
(4) PM

4,n is the set containing each join of n distinct atoms from PM
1 ; PM

4 is the
union of the PM

4,n and so is an ideal. That is, PM
4 is the set of all finite joins of

atoms.
There is an element b∗ ∈ PM

1 such that PM
4 = {c : c ≤M b∗}. Note that b∗

is not a function symbol in τ .
(5) GM

1 is a bijection from PM
0 onto PM

4,1 such that R(M, GM
1 (a)) = {a}. Note that

PM
0 = ∅ is allowed.

(6) PM
2 is finite (and may be empty). Further, for each c ∈ PM

2 the FM
n (c) are

functions from PM
2 into PM

1 . Note that it is allowed that for all but finitely
many n, FM

n (c) = 0P M
1

.
(7) (countable incompleteness) If a ∈ PM

4,1 and c ∈ PM
2 then (∀∞n) a �M FM

n (c).
Since a∧FM

n (c) = 0 and a is an atom, this implies
∧

n∈ω{x : (G1(x) ∈ FM
n (c)} =

0.
(8) PM

1 is generated as a Boolean algebra by PM
4 ∪ {FM

n (c) : c ∈ PM
2 , n ∈ ω} ∪ X

where X is a finite subset of PM
1 .

Definition 3.1.3. (1) K−1 is the class of τ structures M such that every finitely
generated substructure of M is in K−1

<ℵ0
. K−1

μ is the members of K−1 with cardi-
nality μ.

aThe subsets of P M
0 are not elements of M .
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(2) We say M ∈ K−1 is atomic if PM
1 is atomic as a Boolean algebra. That is, PM

4

is dense in BM .

3.2. A P0-maximal model in K−1

In this section, we invoke Theorem 2.2 to show (Theorem 3.2.6) that we can con-
struct P0-maximal structures in the class K−1 of appropriate cardinality below the
first measurable.

Definition 3.2.1. We say M ∈ K−1 is P0-maximal (in K−1) if M ⊆ N and
N ∈ K−1 implies PM

0 = PN
0 .

The notion uf(M) is the crucial link between Sec. 2 and P0-maximality.
Lemma 3.2.4 is central for Theorem 3.2.6 and is applied in Theorem 4.9.

Definition 3.2.2 (uf(M)). For M ∈ K−1, let uf(M) be the set of ultrafilters
D of the Boolean Algebra PM

1 such that D ∩ PM
4,1 = ∅ and for each c ∈ PM

2 only
finitely many of the FM

n (c) are in D.
For applications we rephrase this notion with the following terminology. For any

M ∈ K−1 and d ∈ PM
2 , let SM

d (D) = {n : FM
n (d) ∈ D}. So uf(M) = ∅ if and only

if for every ultrafilter D on PM
1 , there exists a d ∈ PM

2 such that SM
d (D) is infinite.

We use the following standard properties of a Boolean algebra B and ideal I in
proving Lemma 3.2.4 and deducing Claim 3.2.9 from Definition 3.2.8.

Fact 3.2.3. (1) b ∧ c ∈ I implies b/I and c/I are disjoint.
(2) b � c ∈ I implies b/I = c/I.
(3) b − c ∈ I implies b/I ≤ c/I.

For our collection of structures K−1, we can characterize P0-maximality in
terms of ultrafilters.

Lemma 3.2.4. An M ∈ K−1 is P0-maximal if and only if uf(M) = ∅.

Proof. Suppose M is not P0-maximal and M ⊂ N with N ∈ K−1 and d∗ ∈
PN

0 −PM
0 . Then {b ∈ M : RN (d∗, b)} is a non-principal ultrafilter D0 of the Boolean

algebra PM
1 [4, 3.3.11].To see D0 is non-principal suppose there is a b0 ∈ PM

1

such that D0 = {b ∈ M : b0 ≤ b}. Note b0 = GM
1 (a) for some a ∈ PM

0 . But
N |= GN

1 (d∗) � b0, contradicting {d∗} ∈ D0.
For each c ∈ PM

2 , since N ∈ K−1, by countable incompleteness (clause 7 of
Definition 3.1.2), for all a ∈ PN

0 and all but finitely many n, GN
1 (a) �≤ FN

n (c).
Since FN

n (c) = FM
n (c), only finitely many of the FM

n (c) can be in D0, which implies
D0 ∈ uf(M). By contraposition we have the right to left.

Conversely, if D ∈ uf(M), we can construct an extension by adding an element
d ∈ PN

0 satisfying RN(d, b) if and only if b ∈ D. Let PN
1 be the Boolean algebra

generated by PM
1 ∪ {G1(d)} modulo the ideal generated by {GN

1 (d) − b : b ∈ D};
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this implies that in the quotient G1(d) ≤ b. (Compare Fact 3.2.3). Let PN
2 = PM

2

and FN
n (c) = FM

n (c). Since D ∈ uf(M), it is easy to check that N ∈ K−1.

We now introduce the requirement that the Boolean algebras constructed will,
when the atoms are factored out, be free. Moreover, there is a set Y ⊆ PN

2 with
|Y | = λ such that different c ∈ Y generate coinitially disjoint collections of FN

n (c) as
c varies. This strong requirement is used inductively in this section to construct an
approximation to the counterexample. The correction in Sec. 4 loses this disjointness
(and thus freeness).

Definition 3.2.5 (Nicely free). We say M ∈ K−1 is nicely free when |PM
1 | = λ

and there is a sequence b = 〈bα : α < λ〉 such that:

(a) bα ∈ PM
1 − PM

4 ;
(b) 〈bα/PM

4 : α < λ〉 generate PM
1 /PM

4 freely;
(c) there is a set Y ⊂ PM

2 of cardinality λ such that {Fn(c) : n < ω; c ∈ Y } without
repetition is a subset of the basis {bα : α < λ} mod atoms. For c ∈ Y , we write
uc = {FM

n (c) : n < ω}.

Nicely free is quite distinct from the notion K1-free introduced in [4]. There are
maximal nicely free models but there are no maximal K1-free models. Note that
condition Definition 3.2.5(c) asserts that a subset of PM

2 partitions a subset of the
basis.

Here is the main theorem of Sec. 3. The hypotheses λ = 2μ and λ is less than
the first measurable cardinal were used essentially as the hypotheses for proving
�(λ), the existence of a uniformly ℵ1-incomplete Boolean algebra. But here we use
�(λ) and do not rely again on λ being less than the first measurable cardinal. The
argument here does depend on λ = λℵ0 , which follows from λ = 2μ. By constructing
a nicely free model, we introduce at this stage the independence requirements,
needed in Sec. 4 to satisfy Definition 3.3.1(6), on the Fn(c).

Theorem 3.2.6. If for some μ, λ = 2μ and λ is less than the first measurable
cardinal then there is a P0-maximal model M∗ in K−1 such that |PM∗

i | = λ (for
i = 0, 1, 2), PM∗

1 is an atomic Boolean algebra, uf(M∗) = ∅ and M∗ is nicely free.

Proof. We first construct by induction a P0-maximal model in K−1. The property
�(λ) (Definition 2.1) appears in the construction to satisfy specification (f) and is
used in the proof that the construction works in considering possibility 2. We choose
Mε, Dε and other auxiliaries by induction for ε ≤ ω + 1 to satisfy the following
specifications of the construction.

Construction 3.2.7 (Specifications). (a) For ε ≤ ω + 1, Mε is a continuous
increasing chain of members of K−1

λ with each PMε
1 atomic and P

Mω+1
1 = PMω

1 .
(b) For all ε ≤ ω, |PMε

i | = λ and PMω

i = P
Mω+1
i for i = 0, 1.

(c) For all ε ≤ ω + 1, PMε
1 /PMε

4 is a free Boolean algebra.
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(d) (i) If ε < ω, Dε ∈ uf(Mε).
(ii) If ε = 0, then b−1 = 〈b−1,α : α < λ〉 is a free basis of PM0

1 /PM0
4 , listed

without repetition as 〈FM0
n (c) : n < ω, c ∈ PM0

2 〉.
(iii) if ε = ζ + 1 < ω then there is a free basis bζ = 〈bζ,α/P

Mζ

4 : α < λ〉 of
PMε

1 /PMε
4 . Note bζ,α ∈ PMε

1 − P
Mζ

1 .
(e) if ε = ω + 1, for each d ∈ ω(PMω+1

1 − P
Mω+1
4 ) such that for each a ∈ PMω

0

satisfying that all but finitely many n, a �∈ R(Mω, dn), there is a c ∈ P
Mω+1
2 ,

F
Mω+1
n (c) = dn; (We will in fact have that P

Mω+1
1 = PMω

1 and P
Mω+1
4 = PMω

4 .)
(f) ε = ζ + 1 < ω:

Let B and A be as in Definition 2.1. There is a 1-1 function fε from λ onto
PMε

4,1 such that:

(i) for every X ∈ B (from �) there is a b = bX ∈ PMε
1 such that

{α < λ : fε(α) ≤Mε bX} = X,

(ii) for each A = 〈An : n < ω〉 ∈ A there is a c ∈ PMε
2 such that for each n:

An = {α < λ : fε(α) ≤Mε FMε
n (c)}.

Carrying out the construction.

Case 1. When ε = 0, take PM0
1 as the Boolean algebra generated by a set PM0

4,1 of
cardinality λ along with a set {b−1,α : α < λ} of independent subsets of P(λ). Let
G1 be a bijection between a set PM0

0 and PM0
4,1 . Set PM0

4 as the ideal generated by
the image of G1. For a ∈ PM0

0 and b ∈ PM
1 , define RM0(a, b) to hold if G1(a) ≤ b.

Set PM0
2 as a set of cardinality of λ and let 〈FM0

n (c) : n < ω, c ∈ PM0
2 〉 list

〈b−1,α : α < λ〉 without repetition. Thus, any non-principal ultrafilter on PM0
1 is in

uf(M0).

Case 2. For ε = ω, Mω =
⋃

n<ω Mn. Since the set of free generators is extended
at each finite step, the union is also free mod PM

4 .

Case 3. If ε = ζ + 1 < ω, the main effort is to verify clauses (c), (d) and (f) of
Specification 3.2.7. The element bζ,aα is the bAα from Specification 3.2.7(f)(i).

Now, to construct Mε:

(i) Recall that Dζ ∈ uf(Mζ).
(ii) Choose as the new atoms introduced at this stage a set Bε ⊆ P(λ) with

Bε ∩ Mζ = ∅ and |Bε| = λ.
(iii) Let fε be a one-to-one function from λ onto Bε ∪ P

Mζ

4,1 .
(iv) Let 〈Xγ : γ < λ〉 list the elements of B (definable subsets of M 2.6) from �(ii)

with X0 = ∅.
(v) Fix a sequence {bζ,α : α < λ}, which are distinct and not in Mζ ∪ Bε, and let

B′
ζ be the Boolean Algebra generated freely by

P
Mζ

1 ∪ {bζ,α : α < λ} ∪ {fε(α) : α < λ}.
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Using Lemma 3.2.3, we apply the following definition at the successor stage.
Here we take an abstract Boolean algebra B′

ζ and impose relations to embed P
Mζ

1

in a quotient B′′
ζ of B′

ζ .

Definition 3.2.8 (Ideal). Let Iζ be the ideal of B′
ζ generated by:

(i) σ(a0, . . . , am) when σ(x0, . . . , xm) is a Boolean term, a0, . . . , am ∈ P
Mζ

1 and
P

Mζ

1 |= σ(a0, . . . , am) = 0.
The next two clauses aim to show that in Mζ/Iζ , the element bζ,γ is the

bXγ from Specification 3.2.7(f)(i). That is, {α < λ : fε(α) ≤Mε bγ,ζ} = Xγ .
Recall (Definition 2.1) that the Xγ enumerate B and are subsets of λ.

(ii) fε(α) − bζ,γ when α ∈ Xγ and α, γ < λ.
(iii) bζ,γ ∧ fε(α) when α ∈ λ − Xγ and α, γ < λ.

To show the fε(γ) are disjoint atoms we add:
(iv) For any fε(γ) and any b ∈ B′

ζ either (fε(γ) ∧ b) ∈ Iζ or (fε(γ) − b) ∈ Iζ .
(v) fε(γ1) ∧ fε(γ2) when γ1 < γ2 < λ;
(vi) fε(α) − b when α < λ, fε(α) �∈ P

Mζ

4,1 and b ∈ Dζ .
This asserts: Every new atom is below each b ∈ Dζ and is used at the end

of Case 3 of the construction.

Let B′′
ζ = B′

ζ/Iζ . Applying Fact 3.2.3, we see from Definition 3.2.8.

Claim 3.2.9. The structure P
Mζ

1 is embedded as a Boolean algebra into B′′
ζ by the

map b �→ b/Iζ and

(1) For γ < λ, fζ(γ)/Iζ is an atom of B′′
ζ ;

(2) If b ∈ P
Mζ

1 is nonzero, then b/Iζ ≥B
′′
ζ

fε(γ) for some γ < λ. (Since f−1
ε induces

an isomorphism of B′′
ζ into P(λ).)

We take a further quotient of B′
ζ . Let

Jζ = {b ∈ B′
ζ : b/Iζ ∧B′′

ζ
fε(γ) = 0 for every γ < λ}.

Then Jζ is an ideal of B′
ζ extending Iζ so b �→ b/Jζ is a homomorphism. Further,

fε(γ) is an atom of B′
ζ/Jζ for γ < λ. These atoms are distinct and dense in B′

ζ/Jζ .
That is, Bε is an atomic Boolean algebra.

Notation 3.2.10. Let Bε be B′
ζ/Jζ with quotient map, jε(b) = b/Jζ.

Now we define Mε by setting PMε
1 = Bε which contains P

Mζ

1 ; PMε
4,1 is the injective

image in PMε
1 of P

Mζ

4,1 ∪ Bε. For a ∈ PMε
4,1 and b ∈ PMε

1 , set RMε(a, b) if for some
γ, a = fε(γ)/Jζ and fε(γ)/Jζ ≤Bε b/Jζ. Finally, let Dε be the ultrafilter on PMε

1

generated by

Dζ ∪ {jε(−bζ,γ) : γ < λ} ∪ {jε(−fε(γ)) : γ < λ}.

We verify Mε ∈ K−1 below. By Claim 3.2.9, we have the cardinality and atomic-
ity conditions of Specifications 3.2.7(a) and 3.2.7(b); the definition of Iζ guarantees,
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(c) and (d)(ii), (d)(iii). The elements bζ,γ along with (our later) definition of FMε
n (c)

show d.i), Dε ∈ uf(Mε), (as no new Fn(c) is in Dε); the elements of Bε show Dε

is non-principal as each complement of an atom is in the ultrafilter. Note that
Specification 3.2.7(e) does not apply except in the ω+1st stage of the construction.

For Specification 3.2.7(f)(i), let X ∈ B be a set of atoms of Mε and note that
we can choose bX by conditions (ii) and (iii) in Definition 3.2.8 of Iζ .

We can choose PMε
2 and FMε

n to satisfy Specification 3.2.7(f)(ii). Fix an A ∈ A
(as given by �). Fix a c = cA and define, using the last paragraph, the FMε

n (c) as
bAn , so that for each n, An = {α < λ : fε(α) ≤P Mε

1
FMε

n (c)}. These are the only

new c ∈ PMε
2 .

Thus, it remains only to show that Mε ∈ K−1. Most of the cases are obvious.
E.g. for Definition 3.1.2(8), just look at where the generators can be and recall
countable free algebras are atomless. Showing Mε satisfies countable incomplete-
ness, Definition 3.1.2(7), is a bit more complex but we do so now.

(�) If a ∈ PMε
4,1 and c ∈ PMε

2 then (∀∞n) a �Mε FMε
n (c).

If c ∈ P
Mζ

2 , FMε
n (c) = F

Mζ
n (c) ∈ P

Mζ

1 and we know by induction that � holds
for a ∈ P

Mζ

4,1 . For a ∈ PMε
4,1 −P

Mζ

4,1 , Definition 3.1.2(5), and condition (vi) on Iζ (from

Definition 3.2.8) imply a ≤Mε b for every b ∈ Dζ . As c ∈ P
Mζ

2 and Dζ ∈ uf(Mζ),
all but finitely many n, en = F ζ

n(c), are not in Dζ . So for all but finitely many n,
the complement e−n ∈ Dζ . That is, a ≤Mε e−n ; so a ∧Mε en = ∅ as required.

If c ∈ PMε
2 − P

Mζ

2 then by our choice of PMε
2 and the FMε

n , there is an Ac that
is enumerated by the FMε

n (c) and satisfies � by (i) of � (Definition 2.1(i)). This
completes the verification of � at stage ε and so Mε satisfies all the specifications
of the induction.

Case 4. ε = ω + 1:
Only clauses (c) and (e) of Specification 3.2.7 are relevant. Define PMε

2 and FMε
n

to satisfy clause (e). Since PMε

i = PMω

i for i = 0, 1, specification (c) is immediate.
This completes the construction.

The construction suffices.

Having completed the induction, let M = Mω+1. Using specifications (d) and (a)
of 3.2.7, it is straightforward to verify that M ∈ K−1 and the Boolean algebra is
atomic. By (b), PMω

i for i = 0, 1 have cardinality λ. And by (f), the same holds for
P

Mω+1
2 .

We now show M is nicely free. Let b = 〈b′β : β < λ〉 enumerate 〈bn,α : n <

ω, α < λ〉 without repetition and such that {b−1,α : α < λ} = {b′2α : α < λ}. So
this picks out a first level of generators for PM

1 which is enumerated by the FM0
n (c)

for c ∈ PM0
2 and n < ω by Case 1 of the construction.

Now, b satisfies the requirements in Definition 3.2.5 of nicely free. As, by Speci-
fications 3.2.7(c) and 3.2.7(d) and since PM

1 is constructed as the union of the PMn
1 ,
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PM
1 /PM

4 is generated freely by b/PM
4 . Finally, clause (c) of Definition 3.2.5 holds

by clause (d)(ii) of Specification 3.2.7.
The crux is to show M = Mω+1 is P0-maximal. For this, assume for a contra-

diction:

(*) PM
0 is not maximal; by Lemma 3.2.4, there is a D ∈ uf(Mω+1) = uf(Mω).

For every n < ω, is there a d ∈ D such that R(Mω, d) ∩ Mn = ∅?

Ask: Possibility 1: For every n < ω, the answer is yes, exemplified by dn ∈ D. Now
for each a ∈ PMn

0 , a �∈ R(Mω, dm) for all m ≥ n. So the sequence d = 〈dn : n < ω〉
satisfies the hypothesis of Specification 3.2.7(e) and so there is a c ∈ PM

2 such that
for each n < ω, FM

n (c) = dn. Thus, recalling Definition 3.2.2, D �∈ uf(M).

Possibility 2: For some n < ω, there is no such dn; without loss of generality,
assume n > 0. We apply specification f) with ε = n. Recall that fn is a 1-1
map from λ onto PMn

4,1 . Let g1 be the following homomorphism from the Boolean
algebra P

Mω+1
1 = PMω

1 into P(λ): g1(b) = {α < λ : fn(α) ≤BMω
b}. By Specifi-

cation 3.2.7(f)(i), the Boolean algebra B provided by � is contained in the range
of g1.

Let In denote the ideal of PM
1 generated by PM

4,1−PMn
4,1 . Since D is non-principal,

In ∩ D = ∅. Now, g1 maps any b ∈ PMω
1 − PMω

4 (and thus, any b ∈ PMω
1 − In) to

a nonempty subset of λ. Recalling In ∩ D = ∅, D1 = g1(D) is an ultrafilter of the
Boolean Algebra rg(g1) and so D2 = D1 ∩B is an ultrafilter of the Boolean algebra
B. We show D2 is non-principal, i.e. for any α < λ, {α} �∈ D2. As, fn(α) ∈ PMω

4,1

and so fn(α) is not in D. So {α} �∈ D1. Thus, λ − {α} ∈ D1 and so λ − {α} ∈ D2.
So {α} �∈ D2 as promised.

Now we apply the second clause of � to the ultrafilter D2. Since we satisfied
specification (f)(ii) in the construction, we can conclude there is A = 〈An : n < ω〉 ∈
A such that for infinitely many k, Ak is in D2. Thus, u = {k : Ak ∈ D} is infinite.
We will finish the proof by showing there is a c such that u = uc (Definition 3.2.5)
is the set of images of the FM

n (c).
Since we are in possibility (2), if Ak ∈ B then Ak ∈ rg(g1). So we can choose

dk ∈ PMω
1 with g1(dk) = Ak. As Ak ∈ D2, by the choice of D1, D2 we have dk is in

the ultrafilter D from the hypothesis for contradiction: (*).
We show the sequence d = 〈dk : k < ω〉 satisfies the hypothesis of clause e

of Specification 3.2.7. First, dk ∈ PMω
1 − PMω

4 as D is a non-principal ultrafilter
on PMω

1 so the first hypothesis is satisfied. Further, for every a ∈ PMω
0 all but

finitely many k, GMω
1 (a) �Mω dk because A ∈ A, which implies by �(ii) that for

every α < λ, for some kα, we have k ≥ kα implies α �∈ Ak. Now by the definition
of g1, recalling g1(dk) = Ak, we have k ≥ kα implies fk(α) � dk (in PMω

1 ). So by
Specification 3.2.7(f)(ii), there is a c ∈ PMn

2 such that if for all k < ω, FMn

k (c) = dk.
So, for each finite k, dk ∈ D and F

Mω+1
k (c) = dk. This contradicts D ∈ uf(Mω+1)

and we finish.
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3.3. K1 and K2

We now introduce further terminology from [4]. We first describe three subclasses
of K−1 : K1

<ℵ0
, the finitely generated models, their direct limits K1 and then the

subclass K2, the models of the complete sentence.

Definition 3.3.1 (K1
<ℵ0

defined). M is in the class of structures K1
<ℵ0

if M ∈
K−1

<ℵ0
and there is a witness 〈n∗, B, b∗〉 such that:

(1) b∗ ∈ PM
1 is the supremum of the finite joins of atoms in PM

1 . Further, for some
k,

⋃
j≤k PM

4,j = {c : c ≤ b∗} and for all n > k, PM
4,n = ∅.

(2) B = 〈Bn : n ≥ n∗〉 is an increasing sequence of finite Boolean subalgebras of
PM

1 .
(3) Bn∗ � {a ∈ PM

1 : a ≤ b∗} = PM
4 ; the subset

PM
4 ∪ {FM

n (c) : n < n∗, c ∈ PM
2 }

generates Bn∗ .
Moreover, the Boolean algebra Bn∗ is free over the ideal PM

4 (equivalently,
Bn∗/PM

4 is a free Boolean algebrab).
(4)

⋃
n≥n∗ Bn = PM

1 .
(5) PM

2 is finite and not empty. Further, for each c ∈ PM
2 the FM

n (c) for n < ω are
independent over PM

4 .
(6) The set {FM

m (c) : m ≥ n∗, c ∈ PM
2 } (the enumeration is without repetition) is

free from Bn∗ over PM
4 , Bn∗ � PM

4 and FM
m (c) ∧ b∗ = 0 for m ≥ n∗. (In this

definition, 0 = 0P M
1 .)

In detail, let σ(. . . xci . . .) be a Boolean algebra term in the variables xci

(where the ci are in PM
2 ) which is not identically 0. Then, for finitely many

ni ≥ n∗ and a finite sequence of ci ∈ PM
2 :

σ(. . . FM
ni

(ci) . . .) > 0.

Further, for any nonzero d ∈ Bn∗ with d ∧ b∗ = 0, (i.e. d ∈ Bn − P 4
M ),

σ(. . . FM
ni

(ci) . . .) ∧ d > 0.

(7) For every n ≥ n∗, Bn is generated by Bn∗ ∪ {FM
m (c) : n > m ≥ n∗, c ∈ PM

2 }.
Thus, PM

1 and so M is generated by Bn∗ ∪ PM
2 .

Recall some terminology from [4].

Definition 3.3.2 (K1, K2 defined). (1) K1 denotes the collection of all direct
limits of models in K1

<ℵ0
.

(2) We say a model M in K1 is rich if for any N1, N2 ∈ K1
<ℵ0

with N1 ⊆ N2 and
N1 ⊆ M , there is an embedding of N2 into M over N1.

(3) K2 ⊆ K1 is the class of rich models.

bA further equivalence: |Atom(Bn∗ )|/|P M
4,1| is a power of two.
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Note that the free generation in item 6 of Definition 3.3.1 is not preserved by
arbitrary direct limits and so is not a property of each model in K1. In particular, as
M∗ is corrected to a model of K1, we check the freeness only for finitely generated
submodels as it will be false in general.

Since K1
<ℵ0

has joint embedding, amalgamation and only countably many
finitely generated models, we construct in the usual way a generic model; thus
K2 is not empty.

Fact 3.3.3. There is a countable generic model M for K1 [4, Corollary 3.2.18].
We denote its Scott sentence by φ. K2 is the class of models of this φ.

4. Correcting M∗ to a Model of K2

We now ‘correct’ the P0-maximal model of K−1, M∗, constructed in Sec. 3, to obtain
a P0-maximal model M (Definition 3.2.1) of the complete sentence constructed in
[4], i.e. M ∈ K2. In Theorem 4.18 we modify M∗, to construct a model M ∈ K2

with PM
2 ⊆ PM∗ by redefining the Fn, but retaining M�(PM

0 ∪PM
1 ) = M∗�(PM∗

0 ∪
PM∗

1 ). The old values of FM∗
n will be used to divide the work of ensuring each

ultrafilter D is not in uf(M) by for each D, attending one by one to only those c

with infinitely many FM∗
n (c) in D.

We now describe some of the salient properties of the model M obtained by
‘correcting’ the M∗ of Sec. 3.

Remark 4.1 (The corrections). (1) The domains of the structures constructed
in this section are subsets of M∗; the Fn are redefined so the new structures
are substructures only of the reduct of M∗ to τ − {Fn : n < ω}.

(2) In particular, for all the M considered in Sec. 4, PM
1 = PM∗

1 and these Boolean
algebras have the same set of ultrafilters. However, uf(M) �= uf(M∗) as the
definition of uf depends on properties of the Fn.

(3) The set {FM
n (c) : c ∈ PM

2 } is not required to be an independent subset to put
M ∈ K−1.

(4) Lemma 4.13 demands a sequence of finite Boolean algebras Bn to witness
finitely generated substructures belong to K1 (not required for K−1). The
stronger class of K1-free structures [4, Definition 3.2.11], which is closed under
extension by members of K1 and so has no maximal models plays no active
role in this paper. In particular, the final counterexample, Theorem 4.18, is in
K1 but is not K1-free.

(5) The proof is in ZFC. The proof in [4] that a non-maximal model in λ makes λ

measurable depends on �.

The main task of this section is to prove the following:

Theorem 4.2. If λ is less than the first measurable cardinal, 2ℵ0 < λ, and for
some μ, 2μ = λ (whence λω = λ), then there is a P0-maximal model in K2 of
cardinality λ.
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Conclusion 4.3, summarizes the results of the construction in Theorem 3.2.6,
specifically to fix our assumptions for this section.

Conclusion 4.3. If λ is as in Theorem 4.2 then there is a model M∗ with |M∗| = λ

satisfying:

(1) PM∗
1 is an atomic Boolean algebra and M∗ is P0-maximal. Further, |PM∗

i | = λ

for i = 0, 1.
(2) PM∗

4,1 is the set of atoms of PM∗
1 .

(3) M∗ is nicely free (Definition 3.2.5); in particular, PM∗
1 /PM∗

4 is a free Boolean
algebra of cardinality λ.

In order to ‘correct’ M∗ to a model in K2, we lay out some notation for the
indexing of the tasks performed in the construction, the generating set of PM∗

1 , and
the free basis of the Boolean algebra PM∗

1 /PM∗
4 .

Notation 4.4. We define a family of trees of sequences:

(1) For α < λ, let Tα = {〈〉} ∪ {α̂ η; η ∈ <ω3} and T =
⋃

α<λ Tα.
(2) lim(Tα) is the collection of paths through Tα.

Combining the requirements for constructing M∗ (Specification 3.2.7) and the
Definition 3.2.5 of nicely free, we have

Claim 4.5 (Fixing notation). Since M∗ is nicely free, without loss of generality,
we may assume:

(1) The universe of M∗ is λ and the 0 of PM∗
1 is the ordinal 0.

(2) We can choose sequences of elements of PM∗
1 , b = 〈bη : η ∈ T 〉 so that

their images in the natural projection of PM∗
1 on PM∗

1 /PM∗
4 freely generate

PM∗
1 /PM∗

4 .
(3) For every a ∈ PM∗

4,1 and the even ordinals α < λ, there is an n such that for
any ν ∈ Tα, lg(ν) ≥ n implies a ∧ bν = 0.

Proof. The only difficulty is deducing from (c) of Definition 3.2.5 (nicely free)
that (3) holds. For that, we can insist that for each even α, for some c ∈ PM∗

2 ,
{b′ωα+n : n < ω} enumerates uc = {FM∗

n (c) : n < ω} (from Definition 3.2.5(c).
Now for α > 0, let 〈bη : η ∈ Tα\{〈〉}〉 list {b′ωα+n : n < ω} without repetition and
〈bη : η ∈ T0〉 list {b′n : n < ω}. By Definition 3.1.2(7) (K−1) we have: for every
a ∈ PM∗

4,1 for all but finitely many n, a ∧ b′ωα+n = 0P M∗
1

; whence for even α all but
finitely many of the ν ∈ Tα satisfy a ∧ bν = 0P M∗

1
.

Note that Claim 4.5 provides a 1-1 map from PM∗
2 to ordinals less than λ.

We introduce the collection of models that is the starting point for the following
construction.

Definition 4.6 (M1 defined). Let M1 = M1(λ) be the set of M ∈ K−1 such that
the universe of M is contained in λ, which is the universe of M∗, and for i < 2, (or
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i = 4 or (4, 1)) PM
i = PM∗

i , M�(PM
0 ∪PM

1 ) = M∗�(PM∗
0 ∪PM∗

1 ) while PM
2 will not

equal PM∗
2 .

The posited M∗ differs from any M ∈ M1 only in that PM
2 is a proper subset

of PM∗
2 and the newly defined FM

n (c) (usually) do not equal the FM∗
n (c). We now

spell out the tasks which must be completed to correct M∗ to the required member
of K2. The FM∗

n (c) are used as oracles.

Definition 4.7 (Tasks). (1) Let T 1, the set of 1-tasks, be the set of pairs (N1, N2)
such that:

(a) N1 ⊆ N2 ⊆ λ,
(b) N1, N2 ∈ K1

<ℵ0
,

(c) N1 ⊂ M for some M ∈ M1. More explicitly, PM
2 ⊆ PM∗

2 and N1�(PM
0 ∪PM

1 ) ⊆
M∗ and (FM

n �PN1
2 ) = FN1

n for each n.

(2) Let T 2, the set of 2-tasks, be the set of c ∈ PM∗
2 .

(3) T = T 1 ∪ T 2.
(4) Let 〈tα : α < λ〉 enumerate T .

Note |T 1| = |T 2| = |T |.

Definition 4.8 (Task satisfaction). The task t is relevant to the structure M if
M ∈ M1 and (i) if t is a 1-task (N1, N2) and N1 ⊆ M or (ii) if t is a 2-task c and
c ∈ PM

2 .
We say M ∈ M1 satisfies the task t if either:

(A) t = (N1, N2) ∈ T 1 (so N1 ⊂ M) and there exists an embedding of N2 into M

over N1.
(B) t = c, where c ∈ PM∗

2 , is in T 2 and for every ultrafilter D on PM
1 , such that

for infinitely many n, FM∗
n (c) ∈ D, there is a d ∈ PM

2 such that for infinitely
many n, FM

n (d) ∈ D.

Recall Definition 3.2.2 of uf(M) and Lemma 3.2.4 connecting uf(M) with P0-
maximality of M .

Claim 4.9. If M ∈ M1 satisfies all tasks in T and is in K1 then from satisfying
the T 2 tasks, M is P0-maximal and satisfying the tasks in T 1 guarantees it is in
K2.

Proof. For P0-maximality of M , it suffices, by Lemma 3.2.4 (since M1 ⊆ K−1),
to show uf(M) = ∅. But, since uf(M∗) = ∅, for every ultrafilter D on PM∗

1 there
is c ∈ PM∗

2 with SM∗
c (D) infinite (Definition 3.2.2); satisfying task c means there

is d ∈ PM
2 such that SM

d (D) is infinite and so D is not in uf(M). Since M and
M∗ have the same ultrafilters, this implies uf(M) = ∅, as required. Since we have
assumed M ∈ K1, the second assertion follows by realizing that satisfying all the
tasks in T 1 establishes the model is rich, which suffices by Fact 3.3.3.
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Definition 4.11 lays out the use of the generating elements bη in correcting
the FM∗

n to require independence while maintaining that infinite intersections of
members of the ultrafilter under consideration are empty. The infinite sequence ηd

will guide the choice of FM
n (d).

The following facts about the relation of symmetric difference and ultrafilters
are central for calculations below.

Remark 4.10. Recall that the operation of symmetric difference is associative.

(1) Suppose B1 ⊆ B2 are Boolean algebras with a ∈ B1 and b1 �= c1 are in B2 and
{b1, c1} is independent over B1 in B2.

The element (b1 � c1) � a ∈ B2 is independent over B1. More generally, if
{bi, ci : i < ω} are independent over B1, {ai : i < ω} ⊆ B1, ei = bi � ci � ai,
and fi = bi � ci then each of {ei : i < ω} and {fi : i < ω} are independent over
B1.

(2) Let D be an ultrafilter on a Boolean algebra B.

(a) For a0, a1 ∈ D,
(a0 ∈ D if and only if a1 ∈ D) if and only if a0 � a1 �∈ D.

(b) If a0, a1, a2 ∈ B are distinct then at least one of ai � aj �∈ D.
(c) More importantly for our use later, it is easy to check:

(a0 ∈ D if and only if a1 ∈ D)
if and only if

(a0 � a1 � a2) ∈ D ↔ a2 ∈ D.

(3) If a is an atom, a ∧ b0 = 0 and a ∧ b1 = 0, then a ∧ (b0 � b1) = 0.

Proof. (1) If the element (b � c) � a ∈ B2 is not independent over B1 there is
a polynomial p over B1 with p((b � c) � a) ∈ B1. But then, by Observation 1.2,
p(x, y) = p((x � y) � a) is also a polynomial over B1 witnessing {b, c} is dependent
over B1. In the more general case any polynomial witnessing dependence in n of
the ei (fi) gives a polynomial in 2n of the ai, bi, ci witnessing dependence of the
original set.

(2) For (a), if, say a0 ∈ D and a1 �∈ D, then a0 − a1 and hence a0 � a1 ∈ D so
we have ‘left to right’ by contraposition. If both are in D, so is their meet which is
disjoint from a0 � a1 so a0 � a1 �∈ D. Since a−

0 � a−
1 = a0 � a1, we have the result

if neither is in D.
(b) holds since the intersection over all pairs i, j < 3 of the ai � aj is empty.

And (c) is propositional logic from (a) and (b).
(3) a ≤ (b−0 ∧ b−1 ) ≤ (b−0 � b−1 ) ≤ (b0 � b1)−. As a is an atom, a ∧ (b0

� b1) = 0.

We define a class M2 ⊆ M1 such that for each d ∈ PM
2 ∈ M2 there is an ordinal

αd, a tree of elements of PM
1 , indexed by sequences in (Tαd

) ⊆ <ω3, a target path
ηd through that tree and a sequence ad,n, whose indices are not in Tαd

, but which
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satisfy that each a ∈ PM∗
4,1 = PM

4,1 is in at most finitely many ad,n. In the construction
(Theorem 4.18) of a model in M2, ηd guides definition of the sequence FM

k (bηd
).

The ad,n are introduced to make Definition 4.11(B) uniform. In Cases 2 and 3 of
Theorem 4.18 ad,n is always 0. In Case 4, where the FM

n (d) are defined as M is
corrected from M∗, ad,n = FM∗

n (d). The result is the values of the FM
n (d) are both

independent over a finite initial segment and satisfy
∧

n<ω FM
n (d) = ∅. The next

definition abstracts from this construction to identify the key ideas of the proof
that if M ∈ M2 then M ∈ K1 (Lemma 4.13) and further that there are M ∈ M2

that are in K2. The notation 〈Z〉 denotes the Boolean subalgebra of PM
1 generated

by Z.

Definition 4.11 (M2 defined). Let M2 be the set of M ∈ M1 such that there is
a sequence w = 〈(αd, ηd, ad,n) : d ∈ PM

2 , n < ω〉 witnessing the membership, which
means:

(A) (a) For each d ∈ PM
2 , αd < λ is even and d1 �= d2 implies ηd1 �= ηd2 . (In Case

4 of Lemma 4.18, many distinct dη have the same αdη .)
(b) 〈αd〉 � ηd ∈ lim(Tαd

).
(B) For each n < ω, there arec ad,n in PM∗

1 = PM
1 such that for each d ∈ PM

2 ,
there are distinctd ν1[d, n] and ν2[d, n] that extend ηd�n, νi(0) = αd, and have
length n + 1 such that:

(a) For every n,

FM
n (d) = (bν1[d,n] � bν2[d,n]) � ad,n.

(b) For each a ∈ PM∗
4,1 and each d ∈ PM

2 , there are only finitely many n with
a ≤P M∗

1
ad,n.

(C) (k1
Y ) For each finite Y ⊆ PM

2 there is a list 〈d
 : � < |Y |〉 of Y such that:

(a) The d
 list Y without repetition and α
 = αd	
.

(b) If i1 < i2 < i3 < |Y | = n and αi1 = αi3 then αi2 = αi1 .
(c) Let ηi abbreviate ηdi . There ise a k1 = kY

1 such that:

(i) For i �= j, both less than |Y |, ηi�kY
1 �= ηj�kY

1 .
(ii) Set W ⊆ PM∗

1 as

W = {adk,n : k < |Y | ∧ n < ω}

∪ {FM
i (dk) : k < |Y |, i < kY

1 }. (1)

Then W is included in the subalgebra B0
Y of PM

1 generated by⎧⎨⎩bν :
∧

i<|Y |
(ηi�kY

1 ) � ν

⎫⎬⎭ ∪ {b〈〉} ∪ PM
4,1.

cIn applications, the ad,n are either 0 or F M∗
n (c) (for an appropriate c ∈ P M∗

2 ).
dI.e. ν1[d, n] depends on d and n.
eSee proof of goal in Lemma 4.18.
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Note that the B0
Y is a cocountable subset of PM

1 (the countable complement is
generated by bν where ν ∈

⋃
i<|Y |{ν : ν ≥ ηi�kY

1 }).
We will apply the following lemma three times to show that for M ∈ M2, for each

the set {FM
n (c) : n < ω} is countably incomplete (witnessing Definition 3.1.2(7)).

It is a straightforward application of Remark 4.10 to Definition 4.11(2).

Lemma 4.12. Let M ∈ M1. For any 〈αd, ηd, ad,n〉 as in Definition 4.11 (in par-
ticular αd is even) and any atom a ∈ PM∗

4,1 , for all but finitely many n,

a ∧ (bν � bρ � ad,n) = 0.

Proof. Recall from 4.5(3), that for every a ∈ PM∗
4,1 and the even ordinals α < λ,

there is an n, such that for any ν, ρ ∈ Tα with lg(ν) ≥ n and lg(ρ) ≥ n, a ∧ bν = 0
and a ∧ bρ = 0. Definition 4.11(B)(b) asserts each d and for sufficiently large n,
a ∧ ad,n = 0. Apply Remark 4.10(3) twice.

We will show in Lemma 4.13 that all members of M2 are in K1 and then in
Theorem 4.18 that there are structures in M2 that are in K2. Two main features
distinguish K1 from K−1. The Fn(d) retain the ‘countable incompleteness’ prop-
erty from K−1 but also must be independent; M ∈ K1 when M is a direct limit
of members of K1

<ℵ0
.

Lemma 4.13. If M ∈ M2, then M ∈ K1.

Proof. Suppose M ∈ M2. Let Y ⊂ PM
2 and X ⊂ PM

1 be finite; we shall find
N = NXY ∈ K1

<ℵ0
such that Y ∪ X ⊆ N ⊆ M ; this suffices. As, K1 is defined to

be the collection of direct limits of finitely generated structuresf in K1
<ℵ0

.
Our two main jobs in proving Lemma 4.13 are to find an N, n∗, b∗ in which

Job (1) the FM
k �N satisfy property 6 (independence) of Definition 3.3.1 over a Bn∗

and property 7 of Definition 3.1.2 and then
Job (2) construct N =

⋃
n<ω Bn for finite Boolean algebras 〈Bn : n ≥ n∗〉 that

witness 2 and 3 of Definition 3.3.1.

The finite k1 = kY
1 specified in Definition 4.11 depends only on Y ; in the next

definition we increase k1 to a kX
1 = kXY

1 and using the definition of M2 show
the FM

k (d) are independent over X for k ≥ kXY
1 . We need kXY

1 only to prove
Lemma 4.13.

We build two increasing chains of length |Y | of subsets of boolean algebras
satisfying the conditions described in Definition 4.14. The B


XY will be cocountable,
while the F
 will be countable. The existence of kXY

1 satisfying the conditions of
Definition 4.14 is proved in Fact 4.15.

fThe proof of Lemma 4.13 shows there is a common substructure of M containing any finite
collection of finitely generated (as in this argument) substructures of M .
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Maximal models up to the first measurable in ZFC

Definition 4.14 (k1
XY ). Let the sequence 〈(αd, ηd, ad,k) : d ∈ PM

2 , k < ω〉 witness
M ∈ M2 as in Definition 4.11. Let X ⊂ PM

1 (as in proof of Lemma 4.13) and
〈di : i < n〉 enumerate Y ⊂ PM

2 without repetition and denote, for i < n, ηdi by ηi

and αdi by αi. Without loss, the 〈ηi(0) : i < n〉 are non-decreasing;

(A) Fix k1 = kXY
1 such that:

(a) kXY
1 ≥ kY

1 (see Definition 4.11(B));
(b) 〈ηi�kXY

1 : i < n〉 are distinct for i < n;
(c) kXY

1 ≥ max{lg(ν) : bν ∈ 〈X ∪ {FM
k (di) : i < |Y |}〉, k < kY

1 }.
(B) We consider the following sets determined by X ∪ Y and the ηi.

(a) F≤0 = F 0 = X ∪ {FM
k (di) : i < |Y |, k ≤ kXY

1 };
(b) For 1 ≤ � < |Y |, F 
 = {FM

k (d
) : k ≥ kXY
1 };

(c) F≤
+1 = F≤
 ∪ F 
;
(d) F
 = 〈F≤
〉M .

(C)

B

XY =

{
bν :

∧

<i<n

(ηi�kXY
1 ) � ν for i < � + 1

}
∪ {b〈〉} ∪ PM

4,1.

For each �, B

XY ⊇ B


Y since kXY
1 ≥ kY

1 and B
+1
XY ⊇ B


XY . In the proof of
Lemma 4.16 Bn∗ will be F0 and N will be Fn.

Since X and Y are finite we first choose kXY
1 to satisfy conditions 1–3 of Defi-

nition 4.14; we now show the other conditions are satisfied.

Fact 4.15. There is a k1 = kXY
1 such that for each �, F 
 is contained in B


XY .

Proof. Recall (Claim 4.5) that M∗ is free on the {bη : η ∈ T } modulo the PM∗
4 .

Choose kXY
1 larger than the length of any ν such that for some x ∈ X , bν is a

generator in a minimal representation of x or ν(0) ∈ α = {α0, . . . , αn−1}. Then

F 0 ⊆ 〈{bν : ν ∈ T , lg(ν) < kXY
1 }〉 ∪ {b〈〉} ∪ PM

4 ⊆ B0
XY .

Recall from Definition 4.11(D), that as � increases FM
k (di) for i < � and all k are

admitted to B

XY and so F 
 ⊆ B


XY .

To establish Job (1) of Lemma 4.13 we need the following claim.

Lemma 4.16. For each 1 ≤ � < n, F 
 is independent over B0
XY mod PM

4 .

Proof. We prove this claim by showing by induction on � ≤ |Y | = n:

(⊕
) F <
 = {FM
k (di) : k ≥ kXY

1 and i < �}

is independent in PM
1 over B
−1

XY mod PM
4 .
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For 1 ≤ � < |Y |, the induction on � shows incrementally, at stage � + 1, the
independence of the bη	�r with r ≥ kXY

1 over B

XY . By Claim 4.5(2) and the choice

of r ≥ kXY
1 , the {bν1[d	,r] : r ≥ kXY

1 } are independent mod PM
4 . Thus (using the

fi from Remark 4.10) the infinite set {bν1[d	,n] � bν2[d	,n]) : i ∈ {0, 1}, n ≥ kXY
1 }

is independent over B
−1
Y . By Definition 4.11(C)) the {ad	,k : k ≥ kY

1 } are in
B0

Y ⊆ B

XY . Further, by Definition 4.11(B) for all n:

FM
n (d
) = (bν1[d	,n] � bν2[d	,n]) � ad	,n.

So, Lemma 4.10(2) (now using the ei) implies F 
 is independent over B

Y . Since

independence is transitive (Lemma 1.3(3)) F 
 is independent over B0
Y .

We continue the proof of Lemma 4.13. By Lemma 4.12, for sufficiently large n,
a � FM

n (d
). So the countable incompleteness condition in the definition of K−1

is satisfied. This completes Job (1). To accomplish Job (2) and finish the proof
of Lemma 4.13 by satisfying conditions 2–4 of Definition 3.3.1, we must define
appropriate PN

i and find a sequence of finite Boolean algebras Bn witnessing that
N ∈ K1

<ℵ0
. Let PN

1 = Fn−1. We have PN
1 is freely generated (modulo the ideal

generated by the atoms of Bn∗) by the countable set F |Y | over Bn∗ = F0. Let b∗
be the supremum of the atoms in Bn∗ and PN

4 the predecessors of b∗.
For m ≥ n∗, let Bm be generated by Bn∗ and the first m elements of this

generating set. Now, PN
1 = Fn−1 is equal to

⋃
n∗≤m<ω Bm and PN

1 /PN
4 is atomless.

Setg PN
2 = Y and PN

0 = {(GM
1 )−1(a) : a ∈ PM

4,1 ∩ PN
1 }; thus PN

4,1 ⊆ Bn∗ . Boolean
algebras are locally finite and we can recognize whether 〈X〉 is free by whether
it has 2|X| atoms. Thus, we can refine the sequence Bm to finite free algebras to
witness that N ∈ K1

<ℵ0
. Since X and Y were arbitrary, M ∈ K1.

This completes the proof of Lemma 4.13. Now we show M2 is nonempty and
at least one member satisfies all the tasks. In Case 4 of this argument we address
the requirement that uf(Mα) = ∅ for each α < λ and so uf(M) = ∅ as well. We
need the following observation because as the construction proceeds, an N1 may
become a substructure of Mβ because some value of an Fn is newly defined on a
point of P

Mβ

2 .

Notation 4.17. We can enumerate T as 〈tα : α < λ〉 such that each task appears
λ times, as we assumed in Hypothesis 4.3 that λ = λℵ0 .

For Theorem 4.18, to realize all the tasks, λ > 2ℵ0 would suffice; the requirement
in Lemma 2.5 that λ = 2μ is used to get maximal models. The object of Case 3
is to ensure that the final model is rich (existentially complete); Case 4 shows
uf(M) = uf(M∗) = ∅. After satisfying each task a final section labeled goal verifies
that each Mα ∈ M2 and so M ∈ M2.

Theorem 4.18. There is an M ∈ M2 and in K1 that satisfies all the tasks, Thus,
by Claim 4.9 M ∈ K2, and is P0-maximal.

gGM
1 is from Definition 3.1.2(5).
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Maximal models up to the first measurable in ZFC

Proof. As we construct M , we show at appropriate stages that tasks from T 1 and
T 2 are satisfied. Further, we show at each stage α the goal: Mα ∈ M2. We choose
Mα by induction on α ≤ λ such that:

(1) wα witnesses Mα ∈ M2 (Definition 4.11). And for β < α, wα extends wβ . That
is, for d ∈ P

Mβ

2 , αd[wα] = αd[wβ ], ηd[wα] = ηd[wβ ] and ad,n[wα] = ad,n[wβ ].
(2) PMα

2 ⊆ PM∗
2 has cardinality at most |α| + 2ℵ0 .

(3) if α = β + 1 and tβ is relevant to Mβ, Mα satisfies task tβ .

Case 1. If α = 0, set M0 = M∗�(PM∗
0 ∪ PM∗

1 ).
This condition will be preserved by the induction for all α.

Case 2. Take unions at limits.
At the successor stage, we now verify task tβ for each of two different types of

task. Then, we will consider the two cases together to show the goal that M =⋃
α<λ Mα ∈ M2.

Case 3. α = β + 1 and say, tβ ∈ T 1 and tβ = (N1, N2). (Definition 4.7)

ChooseMα: If N1 is not a subset of Mβ then the task is irrelevant and let Mα = Mβ

and wα = wβ . If it is, let 〈a
 : � < m〉 enumerate PN2
2 − PN1

2 and 〈a′

 : � < m〉

enumerate the first m elements of PM∗
2 −P

Mβ

2 . Let Mα extend the P
Mβ

2 by adding
〈a′


 : � < m〉 from PM∗
2 to form PMα

2 . It remains to define the wα and FMα

k (a′

).

Let Uα = {δ : (∃bν ∈ Mβ)[ν(0) = δ]}. Clearly, |PMα
2 | ≤ |α|+ 2ℵ0 as required for

the induction. Similarly, |Uα| ≤ |α| + 2ℵ0 and

{ad,k : k < ω, d ∈ P
Mβ

2 } ∪ {bν : (∃d ∈ P
Mβ

2 )ν ∈ Tαd
} ∪ PM∗

4,1 (∗)

is included in the subalgebra of M∗ generated by the

{bρ : ∃β ∈ Uα, ρ(0) = β} ∪ {b〈〉} ∪ PM∗
4,1

so there is room to choose values for the FMα

k (a
).
By induction, since Mβ ∈ M2 there are witnesses wβ = 〈αd, ηd, ad,k〉 (formally

〈αβ
d , ηβ

d , aβ
d,k〉) for each d ∈ P

Mβ

2 . For the new a′

, let wα(�) = 〈γ
, η
, 0M∗〉 be chosen

with the γ
 as the first m even elements of λ − Uα and with η
(wα) = η
 chosenh

so that η
(0) = γ
. We complete the definition of Mα below by choosing the new
values of FMα

k to satisfy the task.

Task: We now verify task tβ+1 by showing in two stages that N2 can be embedded
over N1 into Mα. First we show there is an embedding of the Boolean algebras;
then we define the Fk on the image to put Mα in K1

ℵ0
. Since N2 ∈ K1

<ℵ0
, PN2

1 is
decomposed as a union of the finite free Boolean algebrasi 〈BN2

i : i ≥ n∗N2〉 where,j

hIn Case 3, we need choose only a single η� for each � < m. In Case 4, we choose 2ℵ0 distinct dη .
iWhile the domain of N2 ⊆ λ, the N2-interpretation of any relation symbols in τ on ordinals not
in the domain of N1 has nothing to with the interpretations in M∗ or Mβ .
jTechnically, we are defining nMα∗ . But the value is set once and for all at stage α so we just call
it by the final name.
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writing n∗ for nN2∗ , N2 is freely generated over BN2
n∗ mod PN2

4 by {FN2
k (f) : k ≥

nN2∗ , f ∈ PN2
2 }. Similarly, we decompose PN1

1 by 〈BN1
i : i ≥ n∗N1〉.

Since N1 ⊆ M∗ and N1 ⊆ N2, for each element e ∈ PN1
1 and any s,

PM∗
4,s (a) ↔ PN1

4,s (a) ↔ PN2
4,s (a).

So no atom in N2 − N1 is below any element of N1.
Let c = 〈c0, . . . , cp−1〉 enumerate the atoms of N2 with the ci for i < r enumer-

ating those in N2 − N1; they are all in BN2
n∗ . We set c′i = ci if r ≤ i < p; for the

ci ∈ N2 − N1 choose any r atoms c′i from M∗ − N1. By Claim 4.5, we can find a t

(depending on all of the c′i) such that for all i if ν(0) = γ
 and k > t, bν�k ∧ c′i = 0.
Each e ∈ BN2

n∗ − (PN1
1 ∪ c) is a finite join of ci. (Note PN2

4 is an alias of BN2
n∗ .)

Recall {FN2
k (f) : k ≥ nN2∗ , f ∈ PN2

2 } is the pre-image of a basis of PN2
1 /PN2

4 . For
f ∈ PN2

2 , each FN2
k (f) ∧ bN2∗ = e ≤ bN2∗ . Now define hβ mapping N2 into Mα by

(1) hβ�PN1
1 is the identity.

(2) hβ(ci) is c′i.
(3) For e ∈ BN2∗ − PN2

4,1 , hβ(e) = e′ =
∨

ci≤e c′i.
(4) The bηi�(t + k) for k ≥ n∗ are independent mod PM∗

4 ; for a
 in PN2
2 − PN2

1 set

hβ(FN2
k (a
)) = bηi�(t+k)b0 � bηi�(t+kb1) ∨ e′ = FMα(a′


),

where e′ = hβ(e) and e = FN2
k (a
) ∧ bN2∗ .

(1) Since the FN2
k (a
) freely generate N2/N1 modulo the atoms, hβ extends to an

embedding of N2 into Mα.

Check using Claim 4.10(3) that step (4) is a homomorphism.
We now show Mα ∈ M2. To clarify notation, by settingk ad	,k = 0 for i < m,

we declared

FMα

k (d
) = (bηi�kb0 � bηi�kb1) � ad	,k.

By Lemma 4.12, for some n, for all k ≥ n, a �P M∗
1

FMα

k (di) so condition 4.11(B)(2),
countable incompleteness, holds.

Applying Remark 4.10(1) to fi = bηi�kb0 � bηi�kb1 the {FMα

k (di) : kY
1 ≤ k < ω}

are independent for each i and form a basis for a subalgebra N ′
2 of PM∗

1 over N1.
Thus, N ′

2 ∈ K1
<ℵ0

and we have verified that task tβ+1 is satisfied.

Case 4. α = β + 1 and tβ ∈ T 2; say, tβ = c.
We define Mα. Define Uα as in Case 3, but extending Uα to U ′

α by adding the
ordinal c if c �∈ Mβ. Now for any even ordinal γ in λ − U ′

α,

〈{bη : η(0) = γ}〉 ∩ {bη : η(0) ∈ U ′
α} = ∅

since bη are determined by the choice of η and γ �∈ U ′
α. Extend P

Mβ

2 by adding a
dη ∈ PM∗

2 − P
Mβ

2 for each η with η(0) = γ to form PMα
2 .

kThe ad,n are dummies in this case to provide uniformity with Case 4 in proving Lemma 4.13.
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To define FMα

k (dη), for each η ∈ lim Tγ and k < ω, choose i0 < i1 ≤ 2 that are
different from η(k). Recalling c = tβ , let

FMα

k (dη) = (bη�kbi0 � bη�kbi1) � (FM∗
k (c)).

Since M∗ ∈ K−1 for each a ∈ PM∗
1 for all but finitely many n, a ∧ FM∗

k (c) = 0.
Thus, for the d ∈ PMα

2 − P
Mβ

2 , chosen towards satisfying tβ = c, we have set
〈αd, η

α
d , ad,k〉 = 〈γ, dη, FM∗

k (c)〉. That is, ad,k = FM∗
k (c). Thus, by Lemma 4.12

for any atom a and all but finitely many n, a ∧ FMα

k (c) = 0 and the countable
incompleteness requirement is satisfied.

Task: We must show Mα satisfies task tβ . Since uf(M∗) = ∅, for any non-principal
ultrafilter D, there is an e ∈ PM∗

2 such that the set SM∗
e (D) = {n : FMα

n (e) ∈ D} is
infinite (Definition 3.2.2). By the definition of the task tβ = c, there is a D where
the given c witnesses for D in uf(M∗). We show task tβ is satisfied for D by one of
the dη, which thus is a witness to D �∈ uf(Mα).

Define ηD ∈ lim(Tγ) by inductionl: ηD(0) = γ. By Remark 4.10(2)(b) one of
the three elements b〈γ,i〉�b〈γ,j〉, for i �= j and i, j < 3, must not be in D. Let
ηD(1) such an element. For k ≥ 1, suppose ν = ηD�k has been defined. Again, by
Remark 4.10(2) one of the three elements bνbi�bνbj , for i �= j and i, j < 3, must
not be in D. Again, let ηD(k + 1) be such a triple. Now for each k if ν = ηD�k we
know there are i0, i1 < 3 with bνbi0�bνbi1 �∈ D. Now apply Lemmas 4.10(2)(a) and
4.10(2)(c) to conclude that with a0 = bνbi0 , a1 = bνbi1 and a2 as FM∗

k (c),

FMα(dηD�k+1) = bνbi0�bνbi1�FMα

k (c) ∈ D

for the infinitely many k with FMα
n (c) ∈ D.

Now we establish the goal for both cases.

Goal: Mα ∈ M2: To show M ∈ K−1 (and so in M1, Definition 4.6). For Mα ∈ M2,
we show Mα satisfies Definition 4.11. The descriptive portions of conditions (A) and
(B)(i) of Definition 4.11 are clearly satisfied by the construction; condition (B)(ii)
was shown in the proof of each case.

For Condition 4.11(C) choose any finite Y ⊂ PMα
2 and partition Y into Y1 =

Y ∩ P
Mβ

2 and Y2 = Y − Y1. We show every element of W = {adk,n : k < |Y | ∧ n <

ω} ∪ {FM
i (dk) : k < |Y |, i < kY

1 } is in the 〈{bν ; ν(0) ∈ Uα}〉 and so in B0
Y . Set

k1 = k1
Y as the least integerm such that for all ηd �= ηe with d, e ∈ Y , ηd�k1 �= ηe�k1.

For those d ∈ Y1, we set wα = wβ and the result follows since PMβ

1 ⊆ B0
Y . For

d ∈ Y2, the two casesn differ slightly.
For d ∈ Y2 the FM

n (d) for i < n and n < ω are all Boolean combinations of
the adi,n with elements bν with ν � ηi � k1. In Case 3, we (implicitly) defined

lThis argument is patterned on the simple black box in [13, Lemma 1.5], but even simpler.
mNaturally this is only relevant when αd = αe but than can happen in Case 3 and must happen
in Case 4.
nNote that in Case 3, ad,n is constant. In Case 4 it depends on n. We do not define the value of

F Mα
n ) at c; the F M∗

n (c) are oracles and c �∈ P Mα
2 . We define F Mα

n on the dηd .
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wd(α) = 〈αd, ηd, 0〉, so the adi,n are all 0. In Case 4, the elements of Y2 are among
the 2ℵ0 dη with η(0) = γ. For them, wd(α) = 〈γ, ηd, F

M∗
n (c)〉. If FM∗

n (c) = bζ then
ζ(0) = c ∈ U ′

α by the definition of U ′
α. Thus, ζ(0) �= γ and bζ = ad,n ∈ B0

Y .
Now, let M =

⋃
α<λ Mα. Then, M ∈ M2, |PM

2 | = λ. By Lemma 4.13, M ∈ K1

and each task has been satisfied, so by Claim 4.9, M ∈ K2.

This yields.

Conclusion 4.19. The M ∈ K2 constructed in Theorem 4.18 is P0-maximal and
all |PM

i | = λ. As in [4, Corollary 3.3.14], for all λ less than the first measurable,
since M ∈ K2 implies |M | ≤ 2P M

0 , there is a maximal model M ∈ K2 with
2λ ≤ |M | < 22λ

.

Question 4.20. (1) Is there a κ < μ, where μ is the first measurable, such that
if a complete sentence has a maximal model in cardinality κ, it has maximal
models in cardinalities cofinal in μ?

(2) Is there a complete sentence that has maximal models cofinally in some κ with
�ω1 < κ < μ where μ is the first measurable, but no larger models are maximal.
Could the first inaccessible be such a κ?
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