Journal of Mathematical Logic Vol. 24, No. 1 (2024) 2250011 (27 pages) © World Scientific Publishing Company DOI: 10.1142/S0219061322500118 ## Maximal models up to the first measurable in ZFC John T. Baldwin University of Illinois at Chicago, USA jbaldwin@uic.edu Saharon Shelah Hebrew University of Jerusalem, Israel Received 26 December 2018 Accepted 19 January 2022 Published 23 May 2023 Theorem: There is a complete sentence ϕ of $L_{\omega_1,\omega}$ such that ϕ has maximal models in a set of cardinals λ that is cofinal in the first measurable μ while ϕ has no maximal models in any $\chi \geq \mu$. Keywords: $L_{\omega_1,\omega}$; Hanf number; measurable cardinal. Mathematics Subject Classification 2020: 03C48, 03C75, 03C52 In this paper, we prove in ZFC the existence of a complete sentence ϕ of $L_{\omega_1,\omega}$ such that ϕ has maximal models (i.e. no $L_{\omega_1,\omega}$ -elementary extension satisfies ϕ) in a set of cardinals λ that is cofinal in the first measurable μ while ϕ has no maximal models in any $\chi \geq \mu$. In [4], we proved a theorem with a similar result; the earlier proof required that $\lambda = \lambda^{<\lambda}$, and extended ZFC by requiring an $S \subseteq S_{\aleph_0}^{\lambda}$, that is stationary non-reflecting, and \diamond_S holds. Here, we show in ZFC that the sentence ϕ defined in [4] has maximal models cofinally in μ . The additional hypotheses in [4] allow one to demand that if N is a submodel with cardinality $<\lambda$ of the P_0 -maximal model, N is K_1 -free (see Remark 4.1); that property fails for the example here. The existence of such a ϕ which is not complete is well known (e.g. [11]). This paper contributes to the study of Hanf numbers for infinitary logics. Works such as [2, 3, 5, 10] study the spectrum of maximal models in the context where the class has a bounded number of models. We list now some properties that are true in every cardinality for first-order logic but are true only eventually for complete sentences of $L_{\omega_1,\omega}$ or, more generally, for abstract elementary classes, and compare the cardinalities (the Hanf number) at which the cofinal behavior must begin. Every infinite model of a first-order theory has a proper elementary extension and so each theory has arbitrarily large models. Morley [12] showed that every sentence of $L_{\omega_1,\omega}$ that has models up to \beth_{ω_1} has arbitrarily large models and provided counterexamples showing that cardinal was minimal. Thus, he showed the Hanf number for existence of $L_{\omega_1,\omega}$ -sentences in a countable vocabulary is \beth_{ω_1} . Hjorth [9], by a much more complicated argument, showed there are *complete* sentences ϕ_{α} for $\alpha < \omega_1$ such that ϕ_{α} has a model in \aleph_{α} and no larger so the Hanf number for complete sentences is \aleph_{ω_1} . The amalgamation property holds for every complete first-order theory. However, paper [1] shows that an upper bound on the Hanf number for amalgamation is the first strongly compact; the actual value remains open. Boney and Unger [6], building on [14], show that the Hanf number 'for all AEC's are tame' is the first strongly compact cardinal. They also show the analogous property for various variants on tameness is equivalent to the existence of almost (weakly) compact, measurable, strongly compact). The result here shows in ZFC that the Hanf number for extendability (every model of a complete sentence has a proper $L_{\omega_1,\omega}$ -elementary extension) is the first measurable cardinal. Section 1 provides some background information on Boolean algebras. Section 2 is a set theoretic argument for the existence of a Boolean algebra with certain specified properties in any cardinal λ of the form $\lambda = 2^{\mu}$ that is less than the first measurable; this construction is completely independent of the model theoretic results. Then we make the connection with model theory. In particular, we link the construction here with the complete sentence ϕ from [4]. Section 3 builds several approximations to the counterexample. Section 3.1 introduces the most basic class of models K_{-1} and explains the connections with [4]. Section 3.2 builds on this result to find a P_0 -maximal model in K_{-1} with cardinality λ satisfying certain further restrictions. We recall in Sec. 3.3 the class K_2 of models of the complete sentence from [4]. In Sec. 4, the P_0 -maximal model from Sec. 3.2 is converted to a P_0 -maximal model in K_2 . From this, it is easy to find a maximal model in K_2 of roughly the same cardinality. The first author acknowledges helpful conversations with Joel Berman, Will Boney, Ioannis Souldatos, and especially Sherwood Hachtman. We are particularly grateful for an extremely helpful referee report. ## 1. Preliminaries This paper depends heavily on [4] which contains a fuller background and essential material on Boolean algebras. In particular, the incomplete sentence with maximal models cofinal in the first measurable and the construction of the desired complete sentence are described there; in this paper we show in ZFC that sentence has maximal models below the first measurable. We repeat in this section the main slightly nonstandard definitions from Boolean algebra that appear in [4] and some immediate consequences. - **Definition 1.1.** (1) A Boolean polynomial $p(v_0, \ldots, v_k)$ is a term formed by the compositions of the $\land, \lor, ^{-1}, 0, 1$ on the variables v_i ; a polynomial over X arises when elements of X are substituted for some of the v_i . - (2) For $X \subseteq B$ and B a Boolean algebra, $\overline{X} = X_B = \langle X \rangle_B$ denotes the subalgebra of B generated by X. - (3) A set Y is independent (or free) over X modulo an ideal \mathcal{I} (with domain I) in a Boolean algebra B if and only if for any Boolean polynomial $p(v_0, \ldots, v_k)$ (that is not identically 0, i.e. nontrivial), and any $a \in \langle X \rangle_B \mathcal{I}$, and distinct $y_i \in Y$, $p(y_0, \ldots, y_k) \land a \notin \mathcal{I}$. - (4) A Y which is independent over X modulo I is called a basis for $\langle X \cup Y \cup I \rangle$ over $\langle X \cup I \rangle$. In this context, 'independent from' may sometimes be written 'independent over'. This notion of independence is distinct from each of (i) a family X of sets is independent if every finite boolean combination of members X is nonempty and (ii) from forking independence. **Observation 1.2.** If \mathcal{I} is the 0 ideal, (i.e. Y is independent over X), - (1) the condition becomes: for any $b \in \langle X \rangle_B \{0\}$, $B \models p(y_0, \dots, y_k) \land b > 0$. That is, every finite Boolean combination of elements of Y has nonempty meet with each nonzero $b \in \langle X \rangle_B$. - (2) or, there is no nontrivial polynomial $q(\mathbf{y}, \mathbf{x})$ and $\mathbf{b} \subseteq X$ such that $q(\mathbf{y}, \mathbf{b}) = 0$. That (2) implies (1) is obvious. For the converse, put a counterexample $q(\mathbf{y}, \mathbf{b}) = 0$ in disjunctive normal form. Then for each disjunct (i.e. each constituent conjunction) $q'(\mathbf{y}, \mathbf{b}) = 0$ (some variables of q may not appear in q'.) We can replace those b's that appear in q' by a single element b of $\langle X \rangle$ to get a $q''(\mathbf{y}, b) = 0$; q'' contradicts condition (1). With Observation 1.2 we obtain an analog for Boolean algebras of the notion of dependence in vector spaces in rings or fields: $\{y_0, \ldots, y_k\}$ are dependent over X if some nontrivial polynomial $p(v_0, \ldots, v_k, w_0, \ldots, w_m)$ and some \mathbf{b} from X, $p(\mathbf{y}, \mathbf{b}) = 0$. This yields that if B_2 is freely generated over B_1 , all atoms in B_1 remain atoms in B_2 . If not, there would be an atom a of B_1 and a term $\sigma(\mathbf{b}_2, \mathbf{b}_1)$ with $0_{B_1} < \sigma(\mathbf{b}_2, \mathbf{b}_1) < a$ and $\sigma(\mathbf{b}_2, \mathbf{b}_1) \in B_1$. But then $B_2 \models \sigma(\mathbf{b}_2, \mathbf{b}_1) \land a = 0$; this contradicts the freeness assumption. This notion of dependence (a depends on X if and only if $a \in \langle X \rangle$) does not satisfy the exchange axiom. See [7, Chap. 5] for the strong consequences if this dependence relation satisfies exchange. There is no requirement that \mathcal{I} be contained in X. Observe the following. **Observation 1.3.** Let \mathcal{I} be an ideal in a Boolean algebra B. (1) Let π map B to B/\mathcal{I} . If 'Y is independent from X over \mathcal{I} ' then the image of Y is free from the image of X (over \emptyset) in B/\mathcal{I} . Conversely, if $\pi(Y)$ is independent over $\pi(X)$ in B/\mathcal{I} , for any Y' mapping by π to $\pi(Y)$, Y' is independent from X over \mathcal{I} . So, if X is empty, the condition 'Y is independent over \mathcal{I} ' implies the image of Y is an independent subset of B/\mathcal{I} . (2) If a set Y is independent (or free) from X over \mathcal{I} in B and Y_0 is a subset of Y, then $Y - Y_0$ is independent (or free) from $X \cup Y_0$ ($\langle X \cup Y_0 \rangle_B$) over the ideal \mathcal{I} in the Boolean algebra B. ## 2. Set Theoretic Construction of a Boolean Algebra We define a property $\boxplus(\lambda)$, which asserts the existence in λ of a Boolean algebra that is 'uniformly \aleph_1 -incomplete'. We then show certain conditions on λ imply $\boxplus(\lambda)$. So this section has no elaborate model theory. The arguments here are similar to those around [8, p. 7]. We connect this construction with our model theoretic approach in Sec. 3. **Definition 2.1** ($\boxplus(\lambda)$). denotes: There are a Boolean algebra $\mathbb{B} \subset \mathcal{P}(\lambda)$ with $|\mathbb{B}| = \lambda$ and a set $\mathcal{A} \subseteq
{}^{\omega}\mathbb{B}$ such that: - (i) \mathcal{A} has cardinality λ and if $\overline{A} = \{A_n : n \in \omega\} \in \mathcal{A}$ then for $\alpha < \lambda$ for all but finitely many $n, \alpha \notin A_n$. - (ii) \mathbb{B} includes the finite subsets of λ ; but is such that for every non-principal ultrafilter D of λ (equivalently an ultrafilter of \mathbb{B} that is disjoint from $\lambda^{<\omega}$) for some sequence $\langle A_n : n \in \omega \rangle \in \mathcal{A}$, there are infinitely many n with $A_n \in D$. We may say that $(\mathbb{B}, \mathcal{A})$ witness uniform \aleph_1 -incompleteness. **Theorem 2.2 (ZFC).** Assume for some μ , $\lambda = 2^{\mu}$ and λ is less than the first measurable, then $\mathbb{H}(\lambda)$ from Definition 2.1 holds. We need the following structure, which depends on μ and λ . **Definition 2.3.** (1) Fix the vocabulary τ with unary predicates P, U, a binary predicate C, and a binary function F. - (2) Let $\langle C_{\alpha} : \alpha < \lambda \rangle$ list without repetitions $\mathcal{P}(\mu)$ such that $C_0 = \emptyset$ and also let $\langle f_{\alpha} : \mu \leq \alpha < \lambda \rangle$ list ${}^{\mu}\omega$. - (3) Define the τ -structure M by: - (a) The universe of M is λ ; - (b) $P^{M} = \omega; U^{M} = \mu;$ - (c) C(x,y) is a binary relation on $U \times M$ defined by $C(x,\alpha)$ if and only $x \in C_{\alpha}$. Note that C is extensional. I.e. elements of M uniquely code subsets of U^M ; - (d) Let $F_2^M(\alpha, \beta)$ map $M \times U^M \to P^M$ by $F_2^M(\alpha, \beta) = f_\alpha(\beta)$ for $\alpha < \lambda, \beta < \mu$; - (e) $F_2^M(\alpha, \beta) = 0$ for $\alpha < \lambda$ and $\beta \in [\mu, \lambda)$. We use the following, likely well-known, fact pointed out to us by Sherwood Hachtman. **Fact 2.4.** Let $D \subseteq \mathcal{P}(X)$ and suppose that for each partition $Y \subseteq \mathcal{P}(X)$ of X into at most countably many sets, $|D \cap Y| = 1$. Then, D is a countably complete ultrafilter. We use the following lemma about M to find a Boolean algebra \mathbb{B} in M that satisfies \boxplus . We lay the basis for the notion of P-maximality, a counterexample to maximality must occur in a given predicate P (Definition 3.2.1). **Lemma 2.5.** If λ is less than the first measurable cardinal and $\lambda = 2^{\mu}$ for some μ there is a model M, with $|M| = \lambda$, and a countable vocabulary with P^M denoting the natural numbers such that every first-order proper elementary extension N of M properly extends P^M . **Proof.** Fix M as in Definition 2.3. We first show that any proper elementary extension N of M extends U^M . Suppose for contradiction there exists $\alpha' \in N - M$ but $U^N = U^M$. By the full listing of the C_{α} , there is a $\beta \in M$ with $\{x : N \models C(x,\beta)\} = \{x : N \models C(x,\alpha')\}$. This contradicts extensionality of the relation C in N; but C is extensional in the elementary submodel M. Now we show that if $U^M \subsetneq U^N$ and $P^M = P^N$, then there is a countably complete non-principal ultrafilter on μ , contradicting that μ is not measurable. Note that the sequence $\langle f_\alpha : \mu \leq \alpha < \lambda \rangle$ can be viewed as a list of all nontrivial partitions of μ into at most countably many pieces. Let $\nu^* \in U^N - U^M$. For $\alpha \in N$, denote $F_2^N(\alpha, \nu^*)$ by n_α . Since $P^M = P^N$, $n_\alpha \in M$. By elementarity, for $\alpha \in M$, $\eta \in U^M$, $F_2^N(\alpha, \eta) = F_2^M(\alpha, \eta) = f_\alpha(\eta)$. Now, let $$D = \{x \subseteq U^M : x \neq \emptyset \land (\exists \alpha \in M) x \supseteq f_{\alpha}^{-1}(n_{\alpha})\}.$$ We show D satisfies the conditions from Fact 2.4. Let W be a partition, indexed by f_{α} . Then $f_{\alpha}^{-1}(n_{\alpha}) \neq \emptyset$ and is in D. Suppose for contradiction there are $x_0 \neq x_1$ in W that are both in D. Then, there are $\alpha_i \in M$ such that $x_i \in W \cap D$ contains $f_{\alpha_i}^{-1}(n_{\alpha_i})$ for i = 0, 1. So, $N \models F(\alpha_i, \nu^*) = n_{\alpha_i}$ for i = 1, 2. Since $\alpha_i \in M$ and $M \prec N$, $M \models \exists x(F(\alpha_0, x) = n_{\alpha_0} \land F(\alpha_1, x) = n_{\alpha_1}$. So, by Definition 2.3(d), for any witness a in M for this formula, $a \in x_0 \cap x_1$; but $x_0 \cap x_1 = \emptyset$ since W is a partition. Finally, D is non-principal on U^M since if it were generated by an $a \in U^M$, $$D = \{x \subseteq U : (\exists \alpha)x \supseteq f_{\alpha}^{-1}(n_{\alpha})\} = \{x \subseteq U : a \in x\}.$$ Since $\{a\} \in D$, for some $\alpha_0 \in M$, $\{a\} = f_{\alpha_0}^{-1}(n_{\alpha_0})$. Note that $\alpha_0 \in M$, because the definition of D is about the model M. That is, $M \models \exists! y F(\alpha_0, y) = n_{\alpha_0}$. But $N \models F(\alpha_0, a) = n_{\alpha_0} \land F(\alpha_0, \nu^*) = n_{\alpha_0}$. This contradicts the assumption $M \prec N$ and completes the proof. The following claim completes the proof of Theorem 2.2. Claim 2.6. If \mathbb{B} is the Boolean algebra of definable formulas in the M defined in Definition 2.3, there is an \mathcal{A} such that $(\mathbb{B}, \mathcal{A})$ is uniformly \aleph_1 -incomplete so $\boxplus(\lambda)$ holds. **Proof.** We may assume τ has Skolem functions for M and then define \mathbb{B} and \mathcal{A} as follows to satisfy \boxplus (ii). Let \mathbb{B} be the Boolean algebra of definable subsets of M. I.e. $$\mathbb{B} = \{ X \subseteq M : \text{for some } \tau\text{-formula } \phi(\mathbf{x}, \mathbf{y}) \text{ and } \mathbf{b} \in {}^{\lg(\mathbf{y})}M, \phi(M, \mathbf{b}) = X \}.$$ Note \mathbb{B} is a Boolean algebra of cardinality λ with the normal operations. We define the Skolem functions a little differently than usual: as maps $\sigma_{\phi} = \sigma_{\phi(x,w,\mathbf{y})}$ from M^{n+1} to M for formulas $\phi(x,w,\mathbf{y})$ such that $\phi(\sigma_{\phi}(b,\mathbf{a}),b,\mathbf{a})$. Here $\lg(\mathbf{y})=n$. Then, we specialize the Skolem functions by considering the unary function arising from fixing the \mathbf{y} entry of $\sigma_{\phi}(w,\mathbf{y})$ to obtain $\sigma_{\phi}(w,\mathbf{a})$. $$A_n^{\sigma_\phi(w,\boldsymbol{a})} = \{ \alpha < \lambda : \phi(\sigma_\phi^M(\alpha,\boldsymbol{a}), \alpha, \boldsymbol{a}) \land P(\sigma_\phi^M(\alpha,\boldsymbol{a})) \land \sigma_\phi^M(\alpha,\boldsymbol{a}) \nleq n \}$$ $$\cup \{ \alpha < \lambda : n = 0 \land \neg P(\sigma_\phi^M(\alpha,\boldsymbol{a})) \}.$$ Then let $\overline{A}_{\sigma_\phi(w, {m a})} = \langle A_n^{\sigma_\phi(w, {m a})} : n < \omega \rangle$ and $$\mathcal{A} = \{ \overline{A}_{\sigma_{\phi}(w, \mathbf{a})} : \text{for some } \tau_{M} \text{-term } \sigma_{\phi}(w, \mathbf{y}) \text{ and } \mathbf{a} \in {}^{\lg(\mathbf{y})}M \}.$$ (*) Note $|A| = \lambda = \lambda^{\omega}$ as for each $a \in M$ and each of the countably many terms $\sigma_{\phi}(w, \mathbf{a})$, $\overline{A}_{\sigma_{\phi}(x, w, \mathbf{a})}$ is a map from ω into \mathbb{B} . For each α , for each $0 < m < \omega$ and $\overline{A} = \overline{A}_{\sigma_{\phi}(\alpha, \mathbf{b})}$, the set $\{m : \alpha \in A_m\}$ is finite, bounded by $\sigma_{\phi}(\alpha, \mathbf{a})$. Thus, clause (i) of \square is satisfied. We now show clause (ii) of \boxplus . Let D be an arbitrary non-principal ultrafilter on λ and where $\phi(v, \mathbf{y})$ varies over first-order τ -formulas such that \mathbf{y} and \mathbf{a} have the same length, define the type $p(x) = p_D(x)$ as $$p(x) = \{\phi(x, \boldsymbol{a}) : \{\alpha \in M : M \models \phi(\alpha, \boldsymbol{a})\} \in D\}.$$ Since D is an ultrafilter, p is a complete type over M. So there is an elementary extension N of M where an element d realizes p. Let N be the Skolem hull of $M \cup \{d\}$. Since D is non-principal, so is p; thus, $N \neq M$. By Lemma 2.5, we can choose a witness $c \in P^N - P^M$. Since, N is the Skolem hull of $M \cup \{d\}$ there is a Skolem term $\sigma(w, \mathbf{y}) = \sigma_{\phi}(w, \mathbf{y})$ and $\mathbf{a} \in M$ such that $c = \sigma^N(d, \mathbf{a})$. Since $c \notin M$, for each $n \in P^M$, $N \models \bigwedge_{k < n} c \neq k$ so $N \models \bigwedge_{k < n} \sigma(d, \mathbf{a}) \neq k$ so $\bigwedge_{k < n} \sigma(x, \mathbf{a}) \neq k$ is in p. That is, for each σ_{ϕ} and each n, $A_n^{\sigma_{\phi}(w, \mathbf{a})}$ is in D. ## 3. Three Classes of Models and an Approximate Counterexample In this section, we define the model theoretic classes that produce first an amalgamation class K_{-1} of finitely generated structures (Sec. 3.1), then the class K_2 (Definition 3.3.2) of models of a complete $L_{\omega_1,\omega}$ -sentence. Using Theorem 2.2, we build in Sec. 3.2 a model M_* in K_{-1} with cardinality λ , which is P_0 -maximal. Section 3.3 defines the classes K_1 and K_2 which give us the complete sentence. In Sec. 4 we modify M_* to a P_0 -maximal model in K_2 and then construct the required maximal model in K_2 . ## 3.1. Finitely generated models The class $K_{\langle \aleph_0 \rangle}^{-1}$ and the class of its direct limits, K_{-1} were introduced in [4]. **Definition 3.1.1.** τ is a vocabulary with unary predicates P_0, P_1, P_2, P_4 , binary R, \wedge, \vee, \leq unary functions $^-, G_1$, constants 0,1 and unary functions F_n , for $n < \omega$. \leq is a partial order on P_1^M and the Boolean algebra can be defined from it. We occasionally use the notations $(\forall^{\infty} n)$ and $(\exists^{\infty} n)$ to mean 'for all but finitely many' and 'for infinitely many', respectively. It is easy to see that K_{-1} is $L_{\omega_1,\omega}$ -axiomatizable but far from complete. **Definition 3.1.2** (K_{-1}) . $K_{<\aleph_0}^{-1}$ is the class of *finitely
generated* structures M satisfying the following conditions: - (1) P_0^M, P_1^M, P_2^M partition M. - (2) $(P_1^M, 0, 1, \wedge, \vee, \leq, ^-)$ is a Boolean algebra ($^-$ is complement). We also consider ideals and restrictions to them of the relations/operations except for complement - (3) $R \subset P_0^M \times P_1^M$ with $R(M,b) = \{a : R^M(a,b)\}$ and the set of $\{R(M,b) : b \in P_1^M\}$ is a Boolean algebra. $f^M : P_1^M \mapsto \mathcal{P}(P_0^M)$ by $f^M(b) = R(M,b)$ is a Boolean algebra homomorphism into $\mathcal{P}(P_0^M)$. Note that f is not^a in τ ; it is simply a convenient abbreviation for the relation between the Boolean algebra P_1^M and the set algebra on P_0 by the map $b \mapsto R(M, b)$. (4) $P_{4,n}^M$ is the set containing each join of n distinct atoms from P_1^M ; P_4^M is the union of the $P_{4,n}^M$ and so is an ideal. That is, P_4^M is the set of all finite joins of atoms. There is an element $b^* \in P_1^M$ such that $P_4^M = \{c : c \leq^M b_*\}$. Note that b_* is not a function symbol in τ . - (5) G_1^M is a bijection from P_0^M onto $P_{4,1}^M$ such that $R(M, G_1^M(a)) = \{a\}$. Note that $P_0^M = \emptyset$ is allowed. - (6) P_2^M is finite (and may be empty). Further, for each $c \in P_2^M$ the $F_n^M(c)$ are functions from P_2^M into P_1^M . Note that it is allowed that for all but finitely many n, $F_n^M(c) = 0_{P_1^M}$. - (7) (countable incompleteness) If $a \in P_{4,1}^M$ and $c \in P_2^M$ then $(\forall^{\infty} n)$ $a \nleq_M F_n^M(c)$. Since $a \land F_n^M(c) = 0$ and a is an atom, this implies $\bigwedge_{n \in \omega} \{x : (G_1(x) \in F_n^M(c))\} = 0$. - (8) P_1^M is generated as a Boolean algebra by $P_4^M \cup \{F_n^M(c) : c \in P_2^M, n \in \omega\} \cup X$ where X is a finite subset of P_1^M . **Definition 3.1.3.** (1) K_{-1} is the class of τ structures M such that every finitely generated substructure of M is in $K_{<\aleph_0}^{-1}$. K_{μ}^{-1} is the members of K_{-1} with cardinality μ . ^aThe subsets of P_0^M are not elements of M. (2) We say $M \in K_{-1}$ is atomic if P_1^M is atomic as a Boolean algebra. That is, P_4^M is dense in \mathbf{B}_M . ## 3.2. A P_0 -maximal model in K_{-1} In this section, we invoke Theorem 2.2 to show (Theorem 3.2.6) that we can construct P_0 -maximal structures in the class K_{-1} of appropriate cardinality below the first measurable. **Definition 3.2.1.** We say $M \in K_{-1}$ is P_0 -maximal (in K_{-1}) if $M \subseteq N$ and $N \in K_{-1}$ implies $P_0^M = P_0^N$. The notion uf(M) is the crucial link between Sec. 2 and P_0 -maximality. Lemma 3.2.4 is central for Theorem 3.2.6 and is applied in Theorem 4.9. **Definition 3.2.2 (uf(M)).** For $M \in K_{-1}$, let uf(M) be the set of ultrafilters D of the Boolean Algebra P_1^M such that $D \cap P_{4,1}^M = \emptyset$ and for each $c \in P_2^M$ only finitely many of the $F_n^M(c)$ are in D. For applications we rephrase this notion with the following terminology. For any $M \in \mathbf{K}_{-1}$ and $d \in P_2^M$, let $S_d^M(D) = \{n : F_n^M(d) \in D\}$. So uf $(M) = \emptyset$ if and only if for every ultrafilter D on P_1^M , there exists a $d \in P_2^M$ such that $S_d^M(D)$ is infinite. We use the following standard properties of a Boolean algebra B and ideal I in proving Lemma 3.2.4 and deducing Claim 3.2.9 from Definition 3.2.8. Fact 3.2.3. (1) $b \wedge c \in I$ implies b/I and c/I are disjoint. - (2) $b \triangle c \in I$ implies b/I = c/I. - (3) $b-c \in I$ implies $b/I \le c/I$. For our collection of structures K_{-1} , we can characterize P_0 -maximality in terms of ultrafilters. **Lemma 3.2.4.** An $M \in K_{-1}$ is P_0 -maximal if and only if $uf(M) = \emptyset$. **Proof.** Suppose M is not P_0 -maximal and $M \subset N$ with $N \in \mathbf{K}_{-1}$ and $d^* \in P_0^N - P_0^M$. Then $\{b \in M : R^N(d^*, b)\}$ is a non-principal ultrafilter D_0 of the Boolean algebra P_1^M [4, 3.3.11]. To see D_0 is non-principal suppose there is a $b_0 \in P_1^M$ such that $D_0 = \{b \in M : b_0 \leq b\}$. Note $b_0 = G_1^M(a)$ for some $a \in P_0^M$. But $N \models G_1^N(d^*) \ngeq b_0$, contradicting $\{d^*\} \in D_0$. For each $c \in P_2^M$, since $N \in \mathbf{K}_{-1}$, by countable incompleteness (clause 7 of Definition 3.1.2), for all $a \in P_0^N$ and all but finitely many n, $G_1^N(a) \not\leq F_n^N(c)$. Since $F_n^N(c) = F_n^M(c)$, only finitely many of the $F_n^M(c)$ can be in D_0 , which implies $D_0 \in \mathrm{uf}(M)$. By contraposition we have the right to left. Conversely, if $D \in \mathrm{uf}(M)$, we can construct an extension by adding an element $d \in P_0^N$ satisfying $R^N(d,b)$ if and only if $b \in D$. Let P_1^N be the Boolean algebra generated by $P_1^M \cup \{G_1(d)\}$ modulo the ideal generated by $\{G_1^N(d) - b : b \in D\}$; this implies that in the quotient $G_1(d) \leq b$. (Compare Fact 3.2.3). Let $P_2^N = P_2^M$ and $F_n^N(c) = F_n^M(c)$. Since $D \in \text{uf}(M)$, it is easy to check that $N \in \mathbf{K}_{-1}$. We now introduce the requirement that the Boolean algebras constructed will, when the atoms are factored out, be free. Moreover, there is a set $Y \subseteq P_2^N$ with $|Y| = \lambda$ such that different $c \in Y$ generate coinitially disjoint collections of $F_n^N(c)$ as c varies. This strong requirement is used inductively in this section to construct an approximation to the counterexample. The correction in Sec. 4 loses this disjointness (and thus freeness). **Definition 3.2.5 (Nicely free).** We say $M \in K_{-1}$ is nicely free when $|P_1^M| = \lambda$ and there is a sequence $\mathbf{b} = \langle b_{\alpha} : \alpha < \lambda \rangle$ such that: - (a) $b_{\alpha} \in P_{1}^{M} P_{4}^{M}$; - (b) $\langle b_{\alpha}/P_4^M : \alpha < \lambda \rangle$ generate P_1^M/P_4^M freely; (c) there is a set $Y \subset P_2^M$ of cardinality λ such that $\{F_n(c) : n < \omega; c \in Y\}$ without repetition is a subset of the basis $\{b_{\alpha} : \alpha < \lambda\}$ mod atoms. For $c \in Y$, we write $u_c = \{ F_n^M(c) : n < \omega \}.$ Nicely free is quite distinct from the notion K_1 -free introduced in [4]. There are maximal nicely free models but there are no maximal K_1 -free models. Note that condition Definition 3.2.5(c) asserts that a subset of P_2^M partitions a subset of the basis. Here is the main theorem of Sec. 3. The hypotheses $\lambda = 2^{\mu}$ and λ is less than the first measurable cardinal were used essentially as the hypotheses for proving $\boxplus(\lambda)$, the existence of a uniformly \aleph_1 -incomplete Boolean algebra. But here we use $\boxplus(\lambda)$ and do not rely again on λ being less than the first measurable cardinal. The argument here does depend on $\lambda = \lambda^{\aleph_0}$, which follows from $\lambda = 2^{\mu}$. By constructing a nicely free model, we introduce at this stage the independence requirements, needed in Sec. 4 to satisfy Definition 3.3.1(6), on the $F_n(c)$. **Theorem 3.2.6.** If for some μ , $\lambda = 2^{\mu}$ and λ is less than the first measurable cardinal then there is a P_0 -maximal model M_* in K_{-1} such that $|P_i^{M_*}| = \lambda$ (for i = 0, 1, 2, $P_1^{M_*}$ is an atomic Boolean algebra, $\operatorname{uf}(M_*) = \emptyset$ and M_* is nicely free. **Proof.** We first construct by induction a P_0 -maximal model in K^{-1} . The property $\boxplus(\lambda)$ (Definition 2.1) appears in the construction to satisfy specification (f) and is used in the proof that the construction works in considering possibility 2. We choose $M_{\epsilon}, D_{\epsilon}$ and other auxiliaries by induction for $\epsilon \leq \omega + 1$ to satisfy the following specifications of the construction. Construction 3.2.7 (Specifications). (a) For $\epsilon \leq \omega + 1$, M_{ϵ} is a continuous increasing chain of members of K_{λ}^{-1} with each $P_{1}^{M_{\epsilon}}$ atomic and $P_{1}^{M_{\omega+1}}=P_{1}^{M_{\omega}}$. (b) For all $\epsilon \leq \omega$, $|P_{i}^{M_{\epsilon}}|=\lambda$ and $P_{i}^{M_{\omega}}=P_{i}^{M_{\omega+1}}$ for i=0,1. (c) For all $\epsilon \leq \omega+1$, $P_{1}^{M_{\epsilon}}/P_{4}^{M_{\epsilon}}$ is a free Boolean algebra. - (d) (i) If $\epsilon < \omega$, $D_{\epsilon} \in uf(M_{\epsilon})$. - (ii) If $\epsilon = 0$, then $\mathbf{b}_{-1} = \langle b_{-1,\alpha} : \alpha < \lambda \rangle$ is a free basis of $P_1^{M_0}/P_4^{M_0}$, listed without repetition as $\langle F_n^{M_0}(c) : n < \omega, c \in P_2^{M_0} \rangle$. - (iii) if $\epsilon = \zeta + 1 < \omega$ then there is a free basis $\mathbf{b}_{\zeta} = \langle b_{\zeta,\alpha}/P_4^{M_{\zeta}} : \alpha < \lambda \rangle$ of $P_1^{M_{\epsilon}}/P_4^{M_{\epsilon}}$. Note $b_{\zeta,\alpha} \in P_1^{M_{\epsilon}} P_1^{M_{\zeta}}$. - $P_1^{M_\epsilon}/P_4^{M_\epsilon}. \text{ Note } b_{\zeta,\alpha} \in P_1^{M_\epsilon} P_1^{M_\zeta}.$ (e) if $\epsilon = \omega + 1$, for each $\overline{d} \in {}^\omega(P_1^{M_{\omega+1}} P_4^{M_{\omega+1}})$ such that for each $a \in P_0^{M_\omega}$ satisfying that all but finitely many $n, a \not\in R(M_\omega, d_n)$, there is a $c \in P_2^{M_{\omega+1}}$, $F_n^{M_{\omega+1}}(c) = d_n$; (We will in fact have that $P_1^{M_{\omega+1}} = P_1^{M_\omega}$ and $P_4^{M_{\omega+1}} = P_4^{M_\omega}$.) - (f) $\epsilon = \zeta + 1 < \omega$: Let $\mathbb B$ and $\mathcal A$ be as in Definition 2.1. There is a 1-1 function f_ϵ from λ onto $P_{4.1}^{M_\epsilon}$ such that: (i) for every $X \in \mathbb{B}$ (from \boxplus) there is a $b = b_X \in P_1^{M_{\epsilon}}$ such that $$\{\alpha < \lambda : f_{\epsilon}(\alpha) \leq_{M_{\epsilon}} b_X\} = X,$$ (ii) for each $\overline{A} = \langle A_n : n < \omega \rangle \in \mathcal{A}$ there is a $c \in P_2^{M_{\epsilon}}$ such that for each n: $$A_n = \{ \alpha < \lambda : f_{\epsilon}(\alpha)
\leq_{M_{\epsilon}} F_n^{M_{\epsilon}}(c) \}.$$ # Carrying out the construction. Case 1. When $\epsilon=0$, take $P_1^{M_0}$ as the Boolean algebra generated by a set $P_{4,1}^{M_0}$ of cardinality λ along with a set $\{b_{-1,\alpha}:\alpha<\lambda\}$ of independent subsets of $\mathcal{P}(\lambda)$. Let G_1 be a bijection between a set $P_0^{M_0}$ and $P_{4,1}^{M_0}$. Set $P_4^{M_0}$ as the ideal generated by the image of G_1 . For $a\in P_0^{M_0}$ and $b\in P_1^M$, define $R^{M_0}(a,b)$ to hold if $G_1(a)\leq b$. Set $P_2^{M_0}$ as a set of cardinality of λ and let $\langle F_n^{M_0}(c):n<\omega,c\in P_2^{M_0}\rangle$ list $\langle b_{-1,\alpha}:\alpha<\lambda\rangle$ without repetition. Thus, any non-principal ultrafilter on $P_1^{M_0}$ is in uf (M_0) . Case 2. For $\epsilon = \omega$, $M_{\omega} = \bigcup_{n < \omega} M_n$. Since the set of free generators is extended at each finite step, the union is also free mod P_4^M . Case 3. If $\epsilon = \zeta + 1 < \omega$, the main effort is to verify clauses (c), (d) and (f) of Specification 3.2.7. The element $b_{\zeta,a_{\alpha}}$ is the $b_{A_{\alpha}}$ from Specification 3.2.7(f)(i). Now, to construct M_{ϵ} : - (i) Recall that $D_{\zeta} \in \text{uf}(M_{\zeta})$. - (ii) Choose as the new atoms introduced at this stage a set $B_{\epsilon} \subseteq \mathcal{P}(\lambda)$ with $B_{\epsilon} \cap M_{\zeta} = \emptyset$ and $|B_{\epsilon}| = \lambda$. - (iii) Let f_{ϵ} be a one-to-one function from λ onto $B_{\epsilon} \cup P_{4,1}^{M_{\zeta}}$. - (iv) Let $\langle X_{\gamma} : \gamma < \lambda \rangle$ list the elements of \mathbb{B} (definable subsets of M 2.6) from \boxplus (ii) with $X_0 = \emptyset$. - (v) Fix a sequence $\{b_{\zeta,\alpha}: \alpha < \lambda\}$, which are distinct and not in $M_{\zeta} \cup B_{\epsilon}$, and let \mathbb{B}'_{ζ} be the Boolean Algebra generated freely by $$P_1^{M_\zeta} \cup \{b_{\zeta,\alpha} : \alpha < \lambda\} \cup \{f_\epsilon(\alpha) : \alpha < \lambda\}.$$ Using Lemma 3.2.3, we apply the following definition at the successor stage. Here we take an abstract Boolean algebra \mathbb{B}'_{ζ} and impose relations to embed $P_1^{M_{\zeta}}$ in a quotient \mathbb{B}''_{ζ} of \mathbb{B}'_{ζ} . **Definition 3.2.8 (Ideal).** Let I_{ζ} be the ideal of \mathbb{B}'_{ζ} generated by: (i) $\sigma(a_0,\ldots,a_m)$ when $\sigma(x_0,\ldots,x_m)$ is a Boolean term, $a_0,\ldots,a_m\in P_1^{M_\zeta}$ and $P_1^{M_\zeta} \models \sigma(a_0, \dots, a_m) = 0.$ The next two clauses aim to show that in M_{ζ}/I_{ζ} , the element $b_{\zeta,\gamma}$ is the $b_{X_{\gamma}}$ from Specification 3.2.7(f)(i). That is, $\{\alpha < \lambda : f_{\epsilon}(\alpha) \leq_{M_{\epsilon}} b_{\gamma,\zeta}\} = X_{\gamma}$. Recall (Definition 2.1) that the X_{γ} enumerate \mathbb{B} and are subsets of λ . - (ii) $f_{\epsilon}(\alpha) b_{\zeta,\gamma}$ when $\alpha \in X_{\gamma}$ and $\alpha, \gamma < \lambda$. - (iii) $b_{\zeta,\gamma} \wedge f_{\epsilon}(\alpha)$ when $\alpha \in \lambda X_{\gamma}$ and $\alpha, \gamma < \lambda$. To show the $f_{\epsilon}(\gamma)$ are disjoint atoms we add: - (iv) For any $f_{\epsilon}(\gamma)$ and any $b \in \mathbb{B}'_{\zeta}$ either $(f_{\epsilon}(\gamma) \wedge b) \in I_{\zeta}$ or $(f_{\epsilon}(\gamma) b) \in I_{\zeta}$. - $\begin{array}{ll} \text{(v)} \ \ f_{\epsilon}(\gamma_1) \wedge f_{\epsilon}(\gamma_2) \ \text{when} \ \gamma_1 < \gamma_2 < \lambda; \\ \text{(vi)} \ \ f_{\epsilon}(\alpha) b \ \text{when} \ \alpha < \lambda, \ f_{\epsilon}(\alpha) \not \in P_{4,1}^{M_{\zeta}} \ \text{and} \ b \in D_{\zeta}. \end{array}$ This asserts: Every new atom is below each $b \in D_{\zeta}$ and is used at the end of Case 3 of the construction. Let $\mathbb{B}''_{\zeta} = \mathbb{B}'_{\zeta}/I_{\zeta}$. Applying Fact 3.2.3, we see from Definition 3.2.8. Claim 3.2.9. The structure $P_1^{M_{\zeta}}$ is embedded as a Boolean algebra into \mathbb{B}''_{ζ} by the $map \ b \mapsto b/I_{\zeta} \ and$ - (1) For $\gamma < \lambda$, $f_{\zeta}(\gamma)/I_{\zeta}$ is an atom of \mathbb{B}''_{ζ} ; - (2) If $b \in P_1^{M_{\zeta}}$ is nonzero, then $b/I_{\zeta} \geq_{\mathbb{B}''_{\epsilon}} f_{\epsilon}(\gamma)$ for some $\gamma < \lambda$. (Since f_{ϵ}^{-1} induces an isomorphism of \mathbb{B}''_{c} into $\mathcal{P}(\lambda)$.) We take a further quotient of $\mathbb{B}'_{\mathcal{L}}$. Let $$J_{\zeta} = \{ b \in \mathbb{B}'_{\zeta} : b/I_{\zeta} \wedge_{\mathbb{B}''_{\varepsilon}} f_{\epsilon}(\gamma) = 0 \text{ for every } \gamma < \lambda \}.$$ Then J_{ζ} is an ideal of \mathbb{B}'_{ζ} extending I_{ζ} so $b \mapsto b/J_{\zeta}$ is a homomorphism. Further, $f_{\epsilon}(\gamma)$ is an atom of $\mathbb{B}'_{\zeta}/J_{\zeta}$ for $\gamma < \lambda$. These atoms are distinct and dense in $\mathbb{B}'_{\zeta}/J_{\zeta}$. That is, \mathbb{B}_{ϵ} is an atomic Boolean algebra. Notation 3.2.10. Let \mathbb{B}_{ϵ} be $\mathbb{B}'_{\zeta}/J_{\zeta}$ with quotient map, $j_{\epsilon}(b) = b/J_{\zeta}$. Now we define M_{ϵ} by setting $P_1^{M_{\epsilon}} = \mathbb{B}_{\epsilon}$ which contains $P_1^{M_{\zeta}}$; $P_{4,1}^{M_{\epsilon}}$ is the injective image in $P_1^{M_{\epsilon}}$ of $P_{4,1}^{M_{\zeta}} \cup B_{\epsilon}$. For $a \in P_{4,1}^{M_{\epsilon}}$ and $b \in P_1^{M_{\epsilon}}$, set $R^{M_{\epsilon}}(a,b)$ if for some γ , $a = f_{\epsilon}(\gamma)/J_{\zeta}$ and $f_{\epsilon}(\gamma)/J_{\zeta} \leq_{\mathbb{B}_{\epsilon}} b/J_{\zeta}$. Finally, let D_{ϵ} be the ultrafilter on $P_1^{M_{\epsilon}}$ generated by $$D_{\zeta} \cup \{j_{\epsilon}(-b_{\zeta,\gamma}) : \gamma < \lambda\} \cup \{j_{\epsilon}(-f_{\epsilon}(\gamma)) : \gamma < \lambda\}.$$ We verify $M_{\epsilon} \in K_{-1}$ below. By Claim 3.2.9, we have the cardinality and atomicity conditions of Specifications 3.2.7(a) and 3.2.7(b); the definition of I_{ζ} guarantees, (c) and (d)(ii), (d)(iii). The elements $b_{\zeta,\gamma}$ along with (our later) definition of $F_n^{M_{\epsilon}}(c)$ show d.i), $D_{\epsilon} \in \text{uf}(M_{\epsilon})$, (as no new $F_n(c)$ is in D_{ϵ}); the elements of B_{ϵ} show D_{ϵ} is non-principal as each complement of an atom is in the ultrafilter. Note that Specification 3.2.7(e) does not apply except in the $\omega + 1$ st stage of the construction. For Specification 3.2.7(f)(i), let $X \in \mathbb{B}$ be a set of atoms of M_{ϵ} and note that we can choose b_X by conditions (ii) and (iii) in Definition 3.2.8 of I_{ζ} . We can choose $P_2^{M_{\epsilon}}$ and $F_n^{M_{\epsilon}}$ to satisfy Specification 3.2.7(f)(ii). Fix an $\overline{A} \in \mathcal{A}$ (as given by \boxplus). Fix a $c = c_{\overline{A}}$ and define, using the last paragraph, the $F_n^{M_{\epsilon}}(c)$ as b_{A_n} , so that for each n, $A_n = \{\alpha < \lambda : f_{\epsilon}(\alpha) \leq_{P_1^{M_{\epsilon}}} F_n^{M_{\epsilon}}(c)\}$. These are the only new $c \in P_2^{M_{\epsilon}}$. Thus, it remains only to show that $M_{\epsilon} \in \mathbf{K}_{-1}$. Most of the cases are obvious. E.g. for Definition 3.1.2(8), just look at where the generators can be and recall countable free algebras are atomless. Showing M_{ϵ} satisfies countable incompleteness, Definition 3.1.2(7), is a bit more complex but we do so now. $(\spadesuit) \text{ If } a \in P_{4,1}^{M_{\epsilon}} \text{ and } c \in P_2^{M_{\epsilon}} \text{ then } (\forall^{\infty} n) \text{ } a \nleq_{M_{\epsilon}} F_n^{M_{\epsilon}}(c).$ If $c \in P_2^{M_\zeta}$, $F_n^{M_\epsilon}(c) = F_n^{M_\zeta}(c) \in P_1^{M_\zeta}$ and we know by induction that \blacklozenge holds for $a \in P_{4,1}^{M_\zeta}$. For $a \in P_{4,1}^{M_\epsilon} - P_{4,1}^{M_\zeta}$, Definition 3.1.2(5), and condition (vi) on I_ζ (from Definition 3.2.8) imply $a \leq_{M_\epsilon} b$ for every $b \in D_\zeta$. As $c \in P_2^{M_\zeta}$ and $D_\zeta \in \text{uf}(M_\zeta)$, all but finitely many n, $e_n = F_n^\zeta(c)$, are not in D_ζ . So for all but finitely many n, the complement $e_n^- \in D_\zeta$. That is, $a \leq_{M_\epsilon} e_n^-$; so $a \wedge_{M_\epsilon} e_n = \emptyset$ as required. If $c \in P_2^{M_{\epsilon}} - P_2^{M_{\zeta}}$ then by our choice of $P_2^{M_{\epsilon}}$ and the $F_n^{M_{\epsilon}}$, there is an \overline{A}_c that is enumerated by the $F_n^{M_{\epsilon}}(c)$ and satisfies \blacklozenge by (i) of \boxplus (Definition 2.1(i)). This completes the verification of \blacklozenge at stage ϵ and so M_{ϵ} satisfies all the specifications of the induction. # Case 4. $\epsilon = \omega + 1$: Only clauses (c) and (e) of Specification 3.2.7 are relevant. Define $P_2^{M_{\epsilon}}$ and $F_n^{M_{\epsilon}}$ to satisfy clause (e). Since $P_i^{M_{\epsilon}} = P_i^{M_{\omega}}$ for i = 0, 1, specification (c) is immediate. This completes the construction. ## The construction suffices. Having completed the induction, let $M = M_{\omega+1}$. Using specifications (d) and (a) of 3.2.7, it is straightforward to verify that $M \in \mathbf{K}_{-1}$ and the Boolean algebra is atomic. By (b), $P_i^{M_{\omega}}$ for i = 0, 1 have cardinality λ . And by (f), the same holds for $P_2^{M_{\omega+1}}$. We now show M is nicely free. Let $\mathbf{b} = \langle b'_{\beta} : \beta < \lambda \rangle$ enumerate $\langle b_{n,\alpha} : n < \omega, \alpha < \lambda \rangle$ without repetition and such that $\{b_{-1,\alpha} : \alpha < \lambda\} = \{b'_{2\alpha} : \alpha < \lambda\}$. So this picks out a first level of generators for P_1^M which is enumerated by the $F_n^{M_0}(c)$ for $c \in P_2^{M_0}$ and $n < \omega$ by Case 1 of the construction. Now, **b** satisfies the requirements in Definition 3.2.5 of nicely free. As, by Specifications 3.2.7(c) and 3.2.7(d) and since P_1^M is constructed as the union of the
$P_1^{M_n}$, P_1^M/P_4^M is generated freely by \mathbf{b}/P_4^M . Finally, clause (c) of Definition 3.2.5 holds by clause (d)(ii) of Specification 3.2.7. The crux is to show $M=M_{\omega+1}$ is P_0 -maximal. For this, assume for a contradiction: (*) P_0^M is not maximal; by Lemma 3.2.4, there is a $D \in \mathrm{uf}(M_{\omega+1}) = \mathrm{uf}(M_{\omega})$. For every $n < \omega$, is there a $d \in D$ such that $R(M_{\omega}, d) \cap M_n = \emptyset$? Ask: **Possibility 1:** For every $n < \omega$, the answer is yes, exemplified by $d_n \in D$. Now for each $a \in P_0^{M_n}$, $a \notin R(M_\omega, d_m)$ for all $m \ge n$. So the sequence $\overline{d} = \langle d_n : n < \omega \rangle$ satisfies the hypothesis of Specification 3.2.7(e) and so there is a $c \in P_2^M$ such that for each $n < \omega$, $F_n^M(c) = d_n$. Thus, recalling Definition 3.2.2, $D \notin \text{uf}(M)$. **Possibility 2:** For some $n < \omega$, there is no such d_n ; without loss of generality, assume n > 0. We apply specification f) with $\epsilon = n$. Recall that f_n is a 1-1 map from λ onto $P_{4,1}^{M_n}$. Let g_1 be the following homomorphism from the Boolean algebra $P_1^{M_{\omega+1}} = P_1^{M_{\omega}}$ into $\mathcal{P}(\lambda)$: $g_1(b) = \{\alpha < \lambda : f_n(\alpha) \leq_{\mathbb{B}_{M_{\omega}}} b\}$. By Specification 3.2.7(f)(i), the Boolean algebra \mathbb{B} provided by \mathbb{H} is contained in the range of g_1 . Let \mathcal{I}_n denote the ideal of P_1^M generated by $P_{4,1}^M - P_{4,1}^{M_n}$. Since D is non-principal, $\mathcal{I}_n \cap D = \emptyset$. Now, g_1 maps any $b \in P_1^{M_\omega} - P_4^{M_\omega}$ (and thus, any $b \in P_1^{M_\omega} - \mathcal{I}_n$) to a nonempty subset of λ . Recalling $\mathcal{I}_n \cap D = \emptyset$, $D_1 = g_1(D)$ is an ultrafilter of the Boolean Algebra $\operatorname{rg}(g_1)$ and so $D_2 = D_1 \cap \mathbb{B}$ is an ultrafilter of the Boolean algebra \mathbb{B} . We show D_2 is non-principal, i.e. for any $\alpha < \lambda$, $\{\alpha\} \not\in D_2$. As, $f_n(\alpha) \in P_{4,1}^{M_\omega}$ and so $f_n(\alpha)$ is not in D. So $\{\alpha\} \not\in D_1$. Thus, $\lambda - \{\alpha\} \in D_1$ and so $\lambda - \{\alpha\} \in D_2$. So $\{\alpha\} \not\in D_2$ as promised. Now we apply the second clause of \boxplus to the ultrafilter D_2 . Since we satisfied specification (f)(ii) in the construction, we can conclude there is $\overline{A} = \langle A_n : n < \omega \rangle \in \mathcal{A}$ such that for infinitely many k, A_k is in D_2 . Thus, $u = \{k : A_k \in D\}$ is infinite. We will finish the proof by showing there is a c such that $u = u_c$ (Definition 3.2.5) is the set of images of the $F_n^M(c)$. Since we are in possibility (2), if $A_k \in \mathbb{B}$ then $A_k \in \operatorname{rg}(g_1)$. So we can choose $d_k \in P_1^{M_\omega}$ with $g_1(d_k) = A_k$. As $A_k \in D_2$, by the choice of D_1, D_2 we have d_k is in the ultrafilter D from the hypothesis for contradiction: (*). We show the sequence $\overline{d} = \langle d_k : k < \omega \rangle$ satisfies the hypothesis of clause e of Specification 3.2.7. First, $d_k \in P_1^{M_\omega} - P_4^{M_\omega}$ as D is a non-principal ultrafilter on $P_1^{M_\omega}$ so the first hypothesis is satisfied. Further, for every $a \in P_0^{M_\omega}$ all but finitely many k, $G_1^{M_\omega}(a) \nleq_{M_\omega} d_k$ because $\overline{A} \in \mathcal{A}$, which implies by $\mathbb{H}(ii)$ that for every $\alpha < \lambda$, for some k_α , we have $k \geq k_\alpha$ implies $\alpha \not\in A_k$. Now by the definition of g_1 , recalling $g_1(d_k) = A_k$, we have $k \geq k_\alpha$ implies $f_k(\alpha) \not\leqslant d_k$ (in $P_1^{M_\omega}$). So by Specification 3.2.7(f)(ii), there is a $c \in P_2^{M_n}$ such that if for all $k < \omega$, $F_k^{M_n}(c) = d_k$. So, for each finite k, $d_k \in D$ and $F_k^{M_\omega+1}(c) = d_k$. This contradicts $D \in \text{uf}(M_{\omega+1})$ and we finish. ## 3.3. K_1 and K_2 We now introduce further terminology from [4]. We first describe three subclasses of $K_{-1}: K^1_{<\aleph_0}$, the finitely generated models, their direct limits K_1 and then the subclass K_2 , the models of the complete sentence. **Definition 3.3.1** ($K^1_{\leq\aleph_0}$ defined). M is in the class of structures $K^1_{\leq\aleph_0}$ if $M\in K^{-1}_{\leq\aleph_0}$ and there is a witness $\langle n_*, B, b_* \rangle$ such that: - (1) $b_* \in P_1^M$ is the supremum of the finite joins of atoms in P_1^M . Further, for some k, $\bigcup_{j < k} P_{4,j}^M = \{c : c \le b_*\}$ and for all n > k, $P_{4,n}^M = \emptyset$. - (2) $B = \overline{\langle B_n : n \geq n_* \rangle}$ is an increasing sequence of finite Boolean subalgebras of P_1^M . - (3) $B_{n_*} \supseteq \{a \in P_1^M : a \le b_*\} = P_4^M$; the subset $$P_4^M \cup \{F_n^M(c) : n < n_*, c \in P_2^M\}$$ generates B_{n_*} . Moreover, the Boolean algebra B_{n_*} is free over the ideal P_4^M (equivalently, B_{n_*}/P_4^M is a free Boolean algebra^b). - (4) $\bigcup_{n>n_*} B_n = P_1^M$. - (5) P_2^M is finite and not empty. Further, for each $c \in P_2^M$ the $F_n^M(c)$ for $n < \omega$ are independent over P_4^M . - (6) The set $\{F_m^M(c): m \geq n_*, c \in P_2^M\}$ (the enumeration is without repetition) is free from B_{n_*} over P_4^M , $B_{n_*} \supseteq P_4^M$ and $F_m^M(c) \wedge b_* = 0$ for $m \geq n_*$. (In this definition, $0 = 0^{P_1^M}$.) In detail, let $\sigma(\dots x_{c_i}\dots)$ be a Boolean algebra term in the variables x_{c_i} (where the c_i are in P_2^M) which is not identically 0. Then, for finitely many $n_i \geq n_*$ and a finite sequence of $c_i \in P_2^M$: $$\sigma(\dots F_{n_i}^M(c_i)\dots) > 0.$$ Further, for any nonzero $d \in B_{n_*}$ with $d \wedge b_* = 0$, (i.e. $d \in B_n - P_M^4$), $$\sigma(\ldots F_{n_i}^M(c_i)\ldots) \wedge d > 0.$$ (7) For every $n \geq n_*$, B_n is generated by $B_{n_*} \cup \{F_m^M(c) : n > m \geq n_*, c \in P_2^M\}$. Thus, P_1^M and so M is generated by $B_{n_*} \cup P_2^M$. Recall some terminology from [4]. **Definition 3.3.2** (K_1 , K_2 defined). (1) K_1 denotes the collection of all direct limits of models in $K_{<\aleph_0}^1$. - (2) We say a model M in K_1 is rich if for any $N_1, N_2 \in K^1_{\langle \aleph_0 \rangle}$ with $N_1 \subseteq N_2$ and $N_1 \subseteq M$, there is an embedding of N_2 into M over N_1 . - (3) $K_2 \subseteq K_1$ is the class of rich models. ^bA further equivalence: $|Atom(B_{n_*})|/|P_{4,1}^M|$ is a power of two. Note that the free generation in item 6 of Definition 3.3.1 is not preserved by arbitrary direct limits and so is not a property of each model in K_1 . In particular, as M_* is corrected to a model of K_1 , we check the freeness only for finitely generated submodels as it will be false in general. Since $K^1_{<\aleph_0}$ has joint embedding, amalgamation and only countably many finitely generated models, we construct in the usual way a generic model; thus K_2 is not empty. Fact 3.3.3. There is a countable generic model M for K_1 [4, Corollary 3.2.18]. We denote its Scott sentence by ϕ . K_2 is the class of models of this ϕ . # 4. Correcting M_* to a Model of K_2 We now 'correct' the P_0 -maximal model of K_{-1} , M_* , constructed in Sec. 3, to obtain a P_0 -maximal model M (Definition 3.2.1) of the complete sentence constructed in [4], i.e. $M \in K_2$. In Theorem 4.18 we modify M_* , to construct a model $M \in K_2$ with $P_2^M \subseteq P^{M_*}$ by redefining the F_n , but retaining $M \upharpoonright (P_0^M \cup P_1^M) = M_* \upharpoonright (P_0^{M_*} \cup P_1^{M_*})$. The old values of $F_n^{M_*}$ will be used to divide the work of ensuring each ultrafilter D is not in $\mathrm{uf}(M)$ by for each D, attending one by one to only those c with infinitely many $F_n^{M_*}(c)$ in D. We now describe some of the salient properties of the model M obtained by 'correcting' the M_{\ast} of Sec. 3. - Remark 4.1 (The corrections). (1) The domains of the structures constructed in this section are subsets of M_* ; the F_n are redefined so the new structures are substructures only of the reduct of M_* to $\tau \{F_n : n < \omega\}$. - (2) In particular, for all the M considered in Sec. 4, $P_1^M = P_1^{M_*}$ and these Boolean algebras have the same set of ultrafilters. However, $\operatorname{uf}(M) \neq \operatorname{uf}(M_*)$ as the definition of uf depends on properties of the F_n . - (3) The set $\{F_n^M(c): c \in P_2^M\}$ is not required to be an independent subset to put $M \in \mathbf{K}_{-1}$. - (4) Lemma 4.13 demands a sequence of finite Boolean algebras B_n to witness finitely generated substructures belong to K_1 (not required for K_{-1}). The stronger class of K_1 -free structures [4, Definition 3.2.11], which is closed under extension by members of K_1 and so has no maximal models plays no active role in this paper. In particular, the final counterexample, Theorem 4.18, is in K_1 but is not K_1 -free. - (5) The proof is in ZFC. The proof in [4] that a non-maximal model in λ makes λ measurable depends on \diamond . The main task of this section is to prove the following: **Theorem 4.2.** If λ is less than the first measurable cardinal, $2^{\aleph_0} < \lambda$, and for some μ , $2^{\mu} = \lambda$ (whence $\lambda^{\omega} = \lambda$), then there is a P_0 -maximal model in K_2 of cardinality λ . Conclusion 4.3, summarizes the results of the construction in Theorem 3.2.6, specifically to fix our assumptions for this section. Conclusion 4.3. If λ is as in Theorem 4.2 then there is a model M_* with $|M_*| = \lambda$ satisfying: - (1) $P_1^{M_*}$ is an atomic Boolean algebra and M_* is P_0 -maximal. Further, $|P_i^{M_*}| = \lambda$ for i = 0, 1. - (2) $P_{4,1}^{M_*}$ is the set of atoms of
$P_1^{M_*}$. - (3) M_* is nicely free (Definition 3.2.5); in particular, $P_1^{M_*}/P_4^{M_*}$ is a free Boolean algebra of cardinality λ . In order to 'correct' M_* to a model in K_2 , we lay out some notation for the indexing of the tasks performed in the construction, the generating set of $P_1^{M_*}$, and the free basis of the Boolean algebra $P_1^{M_*}/P_4^{M_*}$. Notation 4.4. We define a family of trees of sequences: - (1) For $\alpha < \lambda$, let $\mathcal{T}_{\alpha} = \{\langle \rangle \} \cup \{\alpha \hat{\eta}; \eta \in {}^{<\omega} 3\}$ and $\mathcal{T} = \bigcup_{\alpha < \lambda} \mathcal{T}_{\alpha}$. - (2) $\lim(\mathcal{T}_{\alpha})$ is the collection of paths through \mathcal{T}_{α} . Combining the requirements for constructing M_* (Specification 3.2.7) and the Definition 3.2.5 of nicely free, we have Claim 4.5 (Fixing notation). Since M_* is nicely free, without loss of generality, we may assume: - (1) The universe of M_* is λ and the 0 of $P_1^{M_*}$ is the ordinal 0. - (2) We can choose sequences of elements of $P_1^{M_*}$, $\mathbf{b} = \langle b_{\eta} : \eta \in \mathcal{T} \rangle$ so that their images in the natural projection of $P_1^{M_*}$ on $P_1^{M_*}/P_4^{M_*}$ freely generate $P_1^{M_*}/P_4^{M_*}$. - (3) For every $a \in P_{4,1}^{M_*}$ and the even ordinals $\alpha < \lambda$, there is an n such that for any $\nu \in \mathcal{T}_{\alpha}$, $\lg(\nu) \geq n$ implies $a \wedge b_{\nu} = 0$. **Proof.** The only difficulty is deducing from (c) of Definition 3.2.5 (nicely free) that (3) holds. For that, we can insist that for each even α , for some $c \in P_2^{M_*}$, $\{b'_{\omega\alpha+n}: n<\omega\}$ enumerates $u_c=\{F_n^{M_*}(c): n<\omega\}$ (from Definition 3.2.5(c). Now for $\alpha>0$, let $\langle b_\eta: \eta\in\mathcal{T}_\alpha\backslash\{\langle\rangle\}\rangle$ list $\{b'_{\omega\alpha+n}: n<\omega\}$ without repetition and $\langle b_\eta: \eta\in\mathcal{T}_0\rangle$ list $\{b'_n: n<\omega\}$. By Definition 3.1.2(7) (\mathbf{K}_{-1}) we have: for every $a\in P_{4,1}^{M_*}$ for all but finitely many $n, a\wedge b'_{\omega\alpha+n}=0_{P_1^{M_*}}$; whence for even α all but finitely many of the $\nu\in\mathcal{T}_\alpha$ satisfy $a\wedge b_\nu=0_{P_1^{M_*}}$. Note that Claim 4.5 provides a 1-1 map from $P_2^{M_*}$ to ordinals less than λ . We introduce the collection of models that is the starting point for the following construction. **Definition 4.6** (\mathbb{M}_1 defined). Let $\mathbb{M}_1 = \mathbb{M}_1(\lambda)$ be the set of $M \in K_{-1}$ such that the universe of M is contained in λ , which is the universe of M_* , and for i < 2, (or $i=4 \text{ or } (4,1)) \ P_i^M=P_i^{M_*}, \ M {\restriction} (P_0^M \cup P_1^M)=M_* {\restriction} (P_0^{M_*} \cup P_1^{M_*}) \text{ while } P_2^M \text{ will not equal } P_2^{M_*}.$ The posited M_* differs from any $M \in \mathbb{M}_1$ only in that P_2^M is a proper subset of P_2^{M*} and the newly defined $F_n^M(c)$ (usually) do not equal the $F_n^{M*}(c)$. We now spell out the tasks which must be completed to correct M_* to the required member of K_2 . The $F_n^{M*}(c)$ are used as oracles. **Definition 4.7 (Tasks).** (1) Let T_1 , the set of 1-tasks, be the set of pairs (N_1, N_2) such that: - (a) $N_1 \subseteq N_2 \subseteq \lambda$, - (b) $N_1, N_2 \in \mathbf{K}^1_{<\aleph_0}$, - (c) $N_1 \subset M$ for some $M \in \mathbb{M}_1$. More explicitly, $P_2^M \subseteq P_2^{M_*}$ and $N_1 \upharpoonright (P_0^M \cup P_1^M) \subseteq M_*$ and $(F_n^M \upharpoonright P_2^{N_1}) = F_n^{N_1}$ for each n. - (2) Let T_2 , the set of 2-tasks, be the set of $c \in P_2^{M_*}$. - $(3) \ \boldsymbol{T} = \boldsymbol{T}_1 \cup \boldsymbol{T}_2.$ - (4) Let $\langle \mathbf{t}_{\alpha} : \alpha < \lambda \rangle$ enumerate T. Note $$|T_1| = |T_2| = |T|$$. **Definition 4.8 (Task satisfaction).** The task **t** is *relevant* to the structure M if $M \in \mathbb{M}_1$ and (i) if **t** is a 1-task (N_1, N_2) and $N_1 \subseteq M$ or (ii) if **t** is a 2-task c and $c \in P_2^M$. We say $M \in \mathbb{M}_1$ satisfies the task **t** if either: - (A) $\mathbf{t} = (N_1, N_2) \in \mathbf{T}_1$ (so $N_1 \subset M$) and there exists an embedding of N_2 into M over N_1 . - (B) $\mathbf{t} = c$, where $c \in P_2^{M_*}$, is in T_2 and for every ultrafilter D on P_1^M , such that for infinitely many n, $F_n^{M_*}(c) \in D$, there is a $d \in P_2^M$ such that for infinitely many n, $F_n^M(d) \in D$. Recall Definition 3.2.2 of $\mathrm{uf}(M)$ and Lemma 3.2.4 connecting $\mathrm{uf}(M)$ with P_0 -maximality of M. Claim 4.9. If $M \in \mathbb{M}_1$ satisfies all tasks in T and is in K_1 then from satisfying the T_2 tasks, M is P_0 -maximal and satisfying the tasks in T_1 guarantees it is in K_2 . **Proof.** For P_0 -maximality of M, it suffices, by Lemma 3.2.4 (since $\mathbb{M}_1 \subseteq K_{-1}$), to show $\mathrm{uf}(M) = \emptyset$. But, since $\mathrm{uf}(M_*) = \emptyset$, for every ultrafilter D on $P_1^{M_*}$ there is $c \in P_2^{M_*}$ with $S_c^{M_*}(D)$ infinite (Definition 3.2.2); satisfying task c means there is $d \in P_2^M$ such that $S_d^M(D)$ is infinite and so D is not in $\mathrm{uf}(M)$. Since M and M^* have the same ultrafilters, this implies $\mathrm{uf}(M) = \emptyset$, as required. Since we have assumed $M \in K_1$, the second assertion follows by realizing that satisfying all the tasks in T_1 establishes the model is rich, which suffices by Fact 3.3.3. Definition 4.11 lays out the use of the generating elements b_{η} in correcting the F_n^{M*} to require independence while maintaining that infinite intersections of members of the ultrafilter under consideration are empty. The infinite sequence η_d will guide the choice of $F_n^M(d)$. The following facts about the relation of symmetric difference and ultrafilters are central for calculations below. Remark 4.10. Recall that the operation of symmetric difference is associative. (1) Suppose $\mathbb{B}_1 \subseteq \mathbb{B}_2$ are Boolean algebras with $a \in \mathbb{B}_1$ and $b_1 \neq c_1$ are in \mathbb{B}_2 and $\{b_1, c_1\}$ is independent over \mathbb{B}_1 in \mathbb{B}_2 . The element $(b_1 \triangle c_1) \triangle a \in \mathbb{B}_2$ is independent over \mathbb{B}_1 . More generally, if $\{b_i, c_i : i < \omega\}$ are independent over \mathbb{B}_1 , $\{a_i : i < \omega\} \subseteq \mathbb{B}_1$, $e_i = b_i \triangle c_i \triangle a_i$, and $f_i = b_i \triangle c_i$ then each of $\{e_i : i < \omega\}$ and $\{f_i : i < \omega\}$ are independent over \mathbb{B}_1 . - (2) Let D be an ultrafilter on a Boolean algebra \mathbb{B} . - (a) For $a_0, a_1 \in D$, $(a_0 \in D \text{ if and only if } a_1 \in D) \text{ if and only if } a_0 \triangle a_1 \notin D$. - (b) If $a_0, a_1, a_2 \in \mathbb{B}$ are distinct then at least one of $a_i \triangle a_j \notin D$. - (c) More importantly for our use later, it is easy to check: $(a_0 \in D \text{ if and only if } a_1 \in D)$ if and only if $$(a_0 \triangle a_1 \triangle a_2) \in D \leftrightarrow a_2 \in D.$$ (3) If a is an atom, $a \wedge b_0 = 0$ and $a \wedge b_1 = 0$, then $a \wedge (b_0 \triangle b_1) = 0$. **Proof.** (1) If the element $(b \triangle c) \triangle a \in \mathbb{B}_2$ is not independent over \mathbb{B}_1 there is a polynomial p over \mathbb{B}_1 with $p((b \triangle c) \triangle a) \in \mathbb{B}_1$. But then, by Observation 1.2, $p(x,y) = p((x \triangle y) \triangle a)$ is also a polynomial over \mathbb{B}_1 witnessing $\{b,c\}$ is dependent over \mathbb{B}_1 . In the more general case any polynomial witnessing dependence in n of the e_i (f_i) gives a polynomial in 2n of the a_i, b_i, c_i witnessing dependence of the original set. - (2) For (a), if, say $a_0 \in D$ and $a_1 \notin D$, then $a_0 a_1$ and hence $a_0 \triangle a_1 \in D$ so we have 'left to right' by contraposition. If both are in D, so is their meet which is disjoint from $a_0 \triangle a_1$ so $a_0 \triangle a_1 \notin D$. Since $a_0^- \triangle a_1^- = a_0 \triangle a_1$, we have the result if neither is in D. - (b) holds since the intersection over all pairs i, j < 3 of the $a_i \triangle a_j$ is empty. And (c) is propositional logic from (a) and (b). - (3) $a \leq (b_0^- \wedge b_1^-) \leq (b_0^- \triangle b_1^-) \leq (b_0 \triangle b_1)^-$. As a is an atom, $a \wedge (b_0 \triangle b_1) = 0$. We define a class $\mathbb{M}_2 \subseteq \mathbb{M}_1$ such that for each $d \in P_2^M \in \mathbb{M}_2$ there is an ordinal α_d , a tree of elements of P_1^M , indexed by sequences in $(\mathcal{T}_{\alpha_d}) \subseteq {}^{<\omega} 3$, a target path η_d through that tree and a sequence $a_{d,n}$, whose indices are not in \mathcal{T}_{α_d} , but which satisfy that each $a \in P_{4,1}^{M_*} = P_{4,1}^{M}$ is in at most finitely many $a_{d,n}$. In the construction (Theorem 4.18) of a model in \mathbb{M}_2 , η_d guides definition of the sequence $F_k^M(b_{\eta_d})$. The $a_{d,n}$ are introduced to make Definition 4.11(B) uniform. In Cases 2 and 3 of Theorem 4.18 $a_{d,n}$ is always 0. In Case 4, where the $F_n^M(d)$ are defined as M is corrected from M_* , $a_{d,n} = F_n^{M_*}(d)$. The result is the values of the $F_n^M(d)$ are both independent over a finite initial segment and satisfy $\bigwedge_{n<\omega} F_n^M(d) = \emptyset$. The next definition abstracts from this construction to identify the key ideas of the proof that if $M \in \mathbb{M}_2$ then $M \in K_1$ (Lemma 4.13) and further that there are $M \in \mathbb{M}_2$ that are in K_2 . The notation $\langle Z \rangle$ denotes the Boolean subalgebra of P_1^M generated by Z. **Definition 4.11 (M₂ defined).** Let M₂ be the set of $M \in M_1$ such that there is a sequence $\mathbf{w} = \langle (\alpha_d, \eta_d, a_{d,n}) : d \in P_2^M, n < \omega \rangle$ witnessing the
membership, which means: - (A) (a) For each $d \in P_2^M$, $\alpha_d < \lambda$ is even and $d_1 \neq d_2$ implies $\eta_{d_1} \neq \eta_{d_2}$. (In Case 4 of Lemma 4.18, many distinct d_η have the same α_{d_η} .) - (b) $\langle \alpha_d \rangle \triangleleft \eta_d \in \lim(\mathcal{T}_{\alpha_d})$. - (B) For each $n < \omega$, there are $a_{d,n}$ in $P_1^{M_*} = P_1^M$ such that for each $d \in P_2^M$, there are distinct $\nu_1[d,n]$ and $\nu_2[d,n]$ that extend $\eta_d \upharpoonright n$, $\nu_i(0) = \alpha_d$, and have length n+1 such that: - (a) For every n, $$F_n^M(d) = (b_{\nu_1[d,n]} \triangle b_{\nu_2[d,n]}) \triangle a_{d,n}.$$ - (b) For each $a \in P_{4,1}^{M_*}$ and each $d \in P_2^M$, there are only finitely many n with $a \leq_{P_2^{M_*}} a_{d,n}$. - (C) (k_Y^1) For each finite $Y \subseteq P_2^M$ there is a list $\langle d_\ell : \ell < |Y| \rangle$ of Y such that: - (a) The d_{ℓ} list Y without repetition and $\alpha_{\ell} = \alpha_{d_{\ell}}$. - (b) If $i_1 < i_2 < i_3 < |Y| = n$ and $\alpha_{i_1} = \alpha_{i_3}$ then $\alpha_{i_2} = \alpha_{i_1}$. - (c) Let η_i abbreviate η_{d_i} . There is a $k_1 = k_1^Y$ such that: - (i) For $i \neq j$, both less than |Y|, $\eta_i \upharpoonright k_1^Y \neq \eta_j \upharpoonright k_1^Y$. - (ii) Set $W \subseteq P_1^{M_*}$ as $$W = \{a_{d_k,n} : k < |Y| \land n < \omega\}$$ $$\cup \{F_i^M(d_k) : k < |Y|, i < k_1^Y\}. \tag{1}$$ Then W is included in the subalgebra \mathbb{B}^0_Y of P^M_1 generated by $$\left\{b_{\nu}: \bigwedge_{i < |Y|} (\eta_i \upharpoonright k_1^Y) \not \leq \nu\right\} \cup \{b_{\langle \rangle}\} \cup P_{4,1}^M.$$ ^cIn applications, the $a_{d,n}$ are either 0 or $F_n^{M_*}(c)$ (for an appropriate $c \in P_2^{M_*}$). ^dI.e. $\nu_1[d, n]$ depends on d and n. ^eSee proof of *goal* in Lemma 4.18. Note that the B_Y^0 is a cocountable subset of P_1^M (the countable complement is generated by b_{ν} where $\nu \in \bigcup_{i < |Y|} \{\nu : \nu \ge \eta_i \upharpoonright k_1^Y \}$). We will apply the following lemma three times to show that for $M \in \mathbb{M}_2$, for each the set $\{F_n^M(c) : n < \omega\}$ is countably incomplete (witnessing Definition 3.1.2(7)). It is a straightforward application of Remark 4.10 to Definition 4.11(2). **Lemma 4.12.** Let $M \in \mathbb{M}_1$. For any $\langle \alpha_d, \eta_d, a_{d,n} \rangle$ as in Definition 4.11 (in particular α_d is even) and any atom $a \in P_{4,1}^{M_*}$, for all but finitely many n, $$a \wedge (b_{\nu} \triangle b_{\rho} \triangle a_{d,n}) = 0.$$ **Proof.** Recall from 4.5(3), that for every $a \in P_{4,1}^{M_*}$ and the even ordinals $\alpha < \lambda$, there is an n, such that for any $\nu, \rho \in \mathcal{T}_{\alpha}$ with $\lg(\nu) \geq n$ and $\lg(\rho) \geq n$, $a \wedge b_{\nu} = 0$ and $a \wedge b_{\rho} = 0$. Definition 4.11(B)(b) asserts each d and for sufficiently large n, $a \wedge a_{d,n} = 0$. Apply Remark 4.10(3) twice. We will show in Lemma 4.13 that all members of \mathbb{M}_2 are in K_1 and then in Theorem 4.18 that there are structures in \mathbb{M}_2 that are in K_2 . Two main features distinguish K_1 from K_{-1} . The $F_n(d)$ retain the 'countable incompleteness' property from K_{-1} but also must be independent; $M \in K_1$ when M is a direct limit of members of $K_{\leq\aleph_0}^1$. **Lemma 4.13.** If $M \in \mathbb{M}_2$, then $M \in \mathbf{K}_1$. **Proof.** Suppose $M \in \mathbb{M}_2$. Let $Y \subset P_2^M$ and $X \subset P_1^M$ be finite; we shall find $N = N_{XY} \in \mathbf{K}^1_{<\aleph_0}$ such that $Y \cup X \subseteq N \subseteq M$; this suffices. As, \mathbf{K}_1 is defined to be the collection of direct limits of finitely generated structures f in $\mathbf{K}^1_{<\aleph_0}$. Our two main jobs in proving Lemma 4.13 are to find an N, n_*, b_* in which - Job (1) the $F_k^M \upharpoonright N$ satisfy property 6 (independence) of Definition 3.3.1 over a B_{n_*} and property 7 of Definition 3.1.2 and then - Job (2) construct $N = \bigcup_{n < \omega} B_n$ for finite Boolean algebras $\langle B_n : n \geq n_* \rangle$ that witness 2 and 3 of Definition 3.3.1. The finite $k_1 = k_1^Y$ specified in Definition 4.11 depends only on Y; in the next definition we increase k_1 to a $k_1^X = k_1^{XY}$ and using the definition of \mathbb{M}_2 show the $F_k^M(d)$ are independent over X for $k \geq k_1^{XY}$. We need k_1^{XY} only to prove Lemma 4.13. We build two increasing chains of length |Y| of subsets of boolean algebras satisfying the conditions described in Definition 4.14. The \mathbb{B}_{XY}^{ℓ} will be cocountable, while the \mathbb{F}_{ℓ} will be countable. The existence of k_1^{XY} satisfying the conditions of Definition 4.14 is proved in Fact 4.15. ^fThe proof of Lemma 4.13 shows there is a common substructure of M containing any finite collection of finitely generated (as in this argument) substructures of M. **Definition 4.14** (k_{XY}^1) . Let the sequence $\langle (\alpha_d, \eta_d, a_{d,k}) : d \in P_2^M, k < \omega \rangle$ witness $M \in \mathbb{M}_2$ as in Definition 4.11. Let $X \subset P_1^M$ (as in proof of Lemma 4.13) and $\langle d_i : i < n \rangle$ enumerate $Y \subset P_2^M$ without repetition and denote, for $i < n, \eta_{d_i}$ by η_i and α_{d_i} by α_i . Without loss, the $\langle \eta_i(0) : i < n \rangle$ are non-decreasing; - (A) Fix $k_1 = k_1^{XY}$ such that: - (a) $k_1^{XY} \ge k_1^Y$ (see Definition 4.11(B)); - (b) $\langle \eta_i | k_1^{XY} : i < n \rangle$ are distinct for i < n; - (c) $k_1^{XY} \ge \max\{\lg(\nu) : b_{\nu} \in \langle X \cup \{F_k^M(d_i) : i < |Y|\} \rangle, k < k_1^Y\}.$ - (B) We consider the following sets determined by $X \cup Y$ and the η_i . - (a) $\mathbf{F}_{\leq 0} = \mathbf{F}_0 = X \cup \{F_k^M(d_i) : i < |Y|, k \leq k_1^{XY}\};$ (b) For $1 \leq \ell < |Y|, \mathbf{F}_\ell = \{F_k^M(d_\ell) : k \geq k_1^{XY}\};$ - (c) $F_{<\ell+1} = F_{<\ell} \cup F_{\ell}$; - (d) $\mathbb{F}^{\ell} = \langle \mathbf{F}_{<\ell} \rangle_{M}$. (C) $$\mathbb{B}_{XY}^{\ell} = \left\{ b_{\nu} : \bigwedge_{\ell < i < n} (\eta_i \upharpoonright k_1^{XY}) \not \preceq \nu \text{ for } i < \ell + 1 \right\} \cup \{b_{\langle \rangle}\} \cup P_{4,1}^M.$$ For each ℓ , $\mathbb{B}_{XY}^{\ell} \supseteq \mathbb{B}_{Y}^{\ell}$ since $k_{1}^{XY} \geq k_{1}^{Y}$ and $\mathbb{B}_{XY}^{\ell+1} \supseteq \mathbb{B}_{XY}^{\ell}$. In the proof of Lemma 4.16 B_{n_*} will be \mathbb{F}^0 and N will be \mathbb{F}^n . Since X and Y are finite we first choose k_1^{XY} to satisfy conditions 1–3 of Definition 4.14; we now show the other conditions are satisfied. Fact 4.15. There is a $k_1 = k_1^{XY}$ such that for each ℓ , \mathbf{F}_{ℓ} is contained in \mathbb{B}_{XY}^{ℓ} . **Proof.** Recall (Claim 4.5) that M_* is free on the $\{b_\eta : \eta \in \mathcal{T}\}$ modulo the $P_4^{M_*}$. Choose k_1^{XY} larger than the length of any ν such that for some $x \in X$, b_{ν} is a generator in a minimal representation of x or $\nu(0) \in \overline{\alpha} = \{\alpha_0, \dots, \alpha_{n-1}\}$. Then $$\mathbf{F}_0 \subseteq \langle \{b_{\nu} : \nu \in \mathcal{T}, \lg(\nu) < k_1^{XY}\} \rangle \cup \{b_{\langle \rangle}\} \cup P_4^M \subseteq \mathbb{B}_{XY}^0.$$ Recall from Definition 4.11(D), that as ℓ increases $F_k^M(d_i)$ for $i < \ell$ and all k are admitted to \mathbb{B}_{XY}^{ℓ} and so $\boldsymbol{F}_{\ell} \subseteq \mathbb{B}_{XY}^{\ell}$. To establish Job (1) of Lemma 4.13 we need the following claim. **Lemma 4.16.** For each $1 \le \ell < n$, \mathbf{F}_{ℓ} is independent over \mathbb{B}^{0}_{XY} mod P_{4}^{M} . **Proof.** We prove this claim by showing by induction on $\ell \leq |Y| = n$: $$(\oplus_{\ell})$$ $\mathbf{F}_{<\ell} = \{F_k^M(d_i) : k \ge k_1^{XY} \text{ and } i < \ell\}$ is independent in P_1^M over $\mathbb{B}_{XY}^{\ell-1} \mod P_4^M$. For $1 \leq \ell < |Y|$, the induction on ℓ shows incrementally, at stage $\ell + 1$, the independence of the $b_{\eta_{\ell} \upharpoonright r}$ with $r \geq k_1^{XY}$ over \mathbb{B}_{XY}^{ℓ} . By Claim 4.5(2) and the choice of $r \geq k_1^{XY}$, the $\{b_{\nu_1[d_{\ell},r]} : r \geq k_1^{XY}\}$ are independent mod P_4^M . Thus (using the f_i from Remark 4.10) the infinite set $\{b_{\nu_1[d_{\ell},n]} \triangle b_{\nu_2[d_{\ell},n]}) : i \in \{0,1\}, n \geq k_1^{XY}\}$ is independent over $\mathbb{B}_Y^{\ell-1}$. By Definition 4.11(C)) the $\{a_{d_{\ell},k} : k \geq k_1^Y\}$ are in $\mathbb{B}_Y^0 \subseteq \mathbb{B}_{XY}^{\ell}$. Further, by Definition 4.11(B) for all n: $$F_n^M(d_\ell) = (b_{\nu_1[d_\ell,n]} \triangle b_{\nu_2[d_\ell,n]}) \triangle a_{d_\ell,n}.$$ So, Lemma 4.10(2) (now using the e_i) implies \mathbf{F}_{ℓ} is independent over \mathbb{B}_Y^{ℓ} . Since independence is transitive (Lemma 1.3(3)) \mathbf{F}_{ℓ} is independent over \mathbb{B}_Y^0 . We continue the proof of Lemma 4.13. By Lemma 4.12, for sufficiently large n, $a \not\leq F_n^M(d_\ell)$. So the countable incompleteness condition in the definition of K_{-1} is satisfied. This completes Job (1). To accomplish Job (2) and finish the proof of Lemma 4.13 by satisfying conditions 2–4 of Definition 3.3.1, we must define appropriate P_i^N and find a sequence of finite Boolean algebras B_n witnessing that $N \in K_{-\aleph_0}^1$. Let $P_1^N = \mathbb{F}^{n-1}$. We have P_1^N is freely generated (modulo the ideal generated by the atoms of B_{n_*}) by the countable set $F_{|Y|}$ over $B_{n_*} = \mathbb{F}^0$. Let b_* be the supremum of the atoms in B_{n_*} and P_4^N the predecessors of b_* . For $m \geq n_*$, let B_m be generated by B_{n_*} and the first m elements of this generating set. Now, $P_1^N = \mathbb{F}^{n-1}$ is equal to $\bigcup_{n_* \leq m < \omega} B_m$ and P_1^N/P_4^N is atomless. Set $P_2^N = Y$ and $P_0^N =
\{(G_1^M)^{-1}(a) : a \in P_{4,1}^M \cap P_1^N\}$; thus $P_{4,1}^N \subseteq B_{n_*}$. Boolean algebras are locally finite and we can recognize whether $\langle X \rangle$ is free by whether it has $2^{|X|}$ atoms. Thus, we can refine the sequence B_m to finite free algebras to witness that $N \in \mathbf{K}^1_{\leq \aleph_0}$. Since X and Y were arbitrary, $M \in \mathbf{K}_1$. This completes the proof of Lemma 4.13. Now we show \mathbb{M}_2 is nonempty and at least one member satisfies all the tasks. In Case 4 of this argument we address the requirement that $\mathrm{uf}(M_\alpha) = \emptyset$ for each $\alpha < \lambda$ and so $\mathrm{uf}(M) = \emptyset$ as well. We need the following observation because as the construction proceeds, an N_1 may become a substructure of M_β because some value of an F_n is newly defined on a point of $P_2^{M_\beta}$. **Notation 4.17.** We can enumerate T as $\langle t_{\alpha} : \alpha < \lambda \rangle$ such that each task appears λ times, as we assumed in Hypothesis 4.3 that $\lambda = \lambda^{\aleph_0}$. For Theorem 4.18, to realize all the tasks, $\lambda > 2^{\aleph_0}$ would suffice; the requirement in Lemma 2.5 that $\lambda = 2^{\mu}$ is used to get maximal models. The object of Case 3 is to ensure that the final model is rich (existentially complete); Case 4 shows $\operatorname{uf}(M) = \operatorname{uf}(M_*) = \emptyset$. After satisfying each task a final section labeled **goal** verifies that each $M_{\alpha} \in \mathbb{M}_2$ and so $M \in \mathbb{M}_2$. **Theorem 4.18.** There is an $M \in \mathbb{M}_2$ and in K_1 that satisfies all the tasks, Thus, by Claim 4.9 $M \in K_2$, and is P_0 -maximal. $^{{}^{\}mathrm{g}}G_1^M$ is from Definition 3.1.2(5). **Proof.** As we construct M, we show at appropriate stages that tasks from T_1 and T_2 are satisfied. Further, we show at each stage α the goal: $M_{\alpha} \in \mathbb{M}_2$. We choose M_{α} by induction on $\alpha \leq \lambda$ such that: - (1) \mathbf{w}_{α} witnesses $M_{\alpha} \in \mathbb{M}_2$ (Definition 4.11). And for $\beta < \alpha$, w_{α} extends w_{β} . That is, for $d \in P_2^{M_{\beta}}$, $\alpha_d[\mathbf{w}_{\alpha}] = \alpha_d[\mathbf{w}_{\beta}]$, $\eta_d[\mathbf{w}_{\alpha}] = \eta_d[\mathbf{w}_{\beta}]$ and $a_{d,n}[\mathbf{w}_{\alpha}] = a_{d,n}[\mathbf{w}_{\beta}]$. - (2) $P_2^{M_{\alpha}} \subseteq P_2^{M_*}$ has cardinality at most $|\alpha| + 2^{\aleph_0}$. - (3) if $\alpha = \beta + 1$ and \mathbf{t}_{β} is relevant to M_{β} , M_{α} satisfies task \mathbf{t}_{β} . Case 1. If $\alpha = 0$, set $M_0 = M_* \upharpoonright (P_0^{M_*} \cup P_1^{M_*})$. This condition will be preserved by the induction for all α . ## Case 2. Take unions at limits. At the successor stage, we now verify task t_{β} for each of two different types of task. Then, we will consider the two cases together to show the goal that $M = \bigcup_{\alpha < \lambda} M_{\alpha} \in \mathbb{M}_2$. Case 3. $\alpha = \beta + 1$ and say, $\mathbf{t}_{\beta} \in T_1$ and $\mathbf{t}_{\beta} = (N_1, N_2)$. (Definition 4.7) Choose M_{α} : If N_1 is not a subset of M_{β} then the task is irrelevant and let $M_{\alpha} = M_{\beta}$ and $\mathbf{w}_{\alpha} = \mathbf{w}_{\beta}$. If it is, let $\langle a_{\ell} : \ell < m \rangle$ enumerate $P_2^{N_2} - P_2^{N_1}$ and $\langle a'_{\ell} : \ell < m \rangle$ enumerate the first m elements of $P_2^{M_*} - P_2^{M_{\beta}}$. Let M_{α} extend the $P_2^{M_{\beta}}$ by adding $\langle a'_{\ell} : \ell < m \rangle$ from $P_2^{M_*}$ to form $P_2^{M_{\alpha}}$. It remains to define the \mathbf{w}_{α} and $F_k^{M_{\alpha}}(a'_{\ell})$. Let $U_{\alpha} = \{\delta : (\exists b_{\nu} \in M_{\beta})[\nu(0) = \delta]\}$. Clearly, $|P_2^{M_{\alpha}}| \leq |\alpha| + 2^{\aleph_0}$ as required for the induction. Similarly, $|U_{\alpha}| \leq |\alpha| + 2^{\aleph_0}$ and $$\{a_{d,k}: k < \omega, d \in P_2^{M_\beta}\} \cup \{b_\nu: (\exists d \in P_2^{M_\beta})\nu \in \mathcal{T}_{\alpha_d}\} \cup P_{4,1}^{M_*}$$ (*) is included in the subalgebra of M_* generated by the $$\{b_{\rho}: \exists \beta \in U_{\alpha}, \rho(0) = \beta\} \cup \{b_{\langle \rangle}\} \cup P_{4,1}^{M_*}$$ so there is room to choose values for the $F_k^{M_\alpha}(a_\ell)$. By induction, since $M_{\beta} \in \mathbb{M}_2$ there are witnesses $w_{\beta} = \langle \alpha_d, \eta_d, a_{d,k} \rangle$ (formally $\langle \alpha_d^{\beta}, \eta_d^{\beta}, a_{d,k}^{\beta} \rangle$) for each $d \in P_2^{M_{\beta}}$. For the new a'_{ℓ} , let $\mathbf{w}_{\alpha}(\ell) = \langle \gamma_{\ell}, \eta_{\ell}, 0^{M_*} \rangle$ be chosen with the γ_{ℓ} as the first m even elements of $\lambda - U_{\alpha}$ and with $\eta_{\ell}(\mathbf{w}_{\alpha}) = \eta_{\ell}$ chosen so that $\eta_{\ell}(0) = \gamma_{\ell}$. We complete the definition of M_{α} below by choosing the new values of $F_k^{M_{\alpha}}$ to satisfy the task. **Task:** We now verify task $\mathbf{t}_{\beta+1}$ by showing in two stages that N_2 can be embedded over N_1 into M_{α} . First we show there is an embedding of the Boolean algebras; then we define the F_k on the image to put M_{α} in $K^1_{\aleph_0}$. Since $N_2 \in \mathbf{K}^1_{<\aleph_0}$, $P_1^{N_2}$ is decomposed as a union of the finite free Boolean algebras $\langle B_i^{N_2} : i \geq n_*^{N_2} \rangle$ where, ^hIn Case 3, we need choose only a single η_ℓ for each $\ell < m$. In Case 4, we choose 2^{\aleph_0} distinct d_η . ⁱWhile the domain of $N_2 \subseteq \lambda$, the N_2 -interpretation of any relation symbols in τ on ordinals not in the domain of N_1 has nothing to with the interpretations in M_* or M_β . ^jTechnically, we are defining $n_*^{M\alpha}$. But the value is set once and for all at stage α so we just call it by the final name. writing n_* for $n_*^{N_2}$, N_2 is freely generated over $B_{n_*}^{N_2} \mod P_4^{N_2}$ by $\{F_k^{N_2}(f): k \geq n_*^{N_2}, f \in P_2^{N_2}\}$. Similarly, we decompose $P_1^{N_1}$ by $\langle B_i^{N_1}: i \geq n_*^{N_1} \rangle$. Since $N_1 \subseteq M_*$ and $N_1 \subseteq N_2$, for each element $e \in P_1^{N_1}$ and any s, $$P_{4,s}^{M_*}(a) \leftrightarrow P_{4,s}^{N_1}(a) \leftrightarrow P_{4,s}^{N_2}(a).$$ So no atom in $N_2 - N_1$ is below any element of N_1 . Let $\mathbf{c} = \langle c_0, \dots, c_{p-1} \rangle$ enumerate the atoms of N_2 with the c_i for i < r enumerating those in $N_2 - N_1$; they are all in $\mathbb{B}_{n_*}^{N_2}$. We set $c_i' = c_i$ if $r \leq i < p$; for the $c_i \in N_2 - N_1$ choose any r atoms c_i' from $M_* - N_1$. By Claim 4.5, we can find a t (depending on all of the c_i') such that for all i if $\nu(0) = \gamma_\ell$ and k > t, $b_{\nu \mid k} \wedge c_i' = 0$. Each $e \in \mathbb{B}_{n_*}^{N_2} - (P_1^{N_1} \cup \mathbf{c})$ is a finite join of c_i . (Note $P_4^{N_2}$ is an alias of $\mathbb{B}_{n_*}^{N_2}$.) Recall $\{F_k^{N_2}(f): k \geq n_*^{N_2}, f \in P_2^{N_2}\}$ is the pre-image of a basis of $P_1^{N_2}/P_4^{N_2}$. For $f \in P_2^{N_2}$, each $F_k^{N_2}(f) \wedge b_*^{N_2} = e \leq b_*^{N_2}$. Now define h_β mapping N_2 into M_α by - (1) $h_{\beta} \upharpoonright P_1^{N_1}$ is the identity. - (2) $h_{\beta}(c_i)$ is c'_i . - (3) For $e \in \mathbb{B}_*^{N_2} P_{4,1}^{N_2}$, $h_{\beta}(e) = e' = \bigvee_{c_i < e} c'_i$. - (4) The $b_{\eta_i} \upharpoonright (t+k)$ for $k \ge n_*$ are independent mod $P_4^{M_*}$; for a_ℓ in $P_2^{N_2} P_1^{N_2}$ set $$h_{\beta}(F_k^{N_2}(a_{\ell})) = b_{\eta_i \upharpoonright (t+k) \cap 0} \triangle b_{\eta_i \upharpoonright (t+k) \cap 1} \vee e' = F^{M_{\alpha}}(a'_{\ell}),$$ where $e' = h_{\beta}(e)$ and $e = F_k^{N_2}(a_{\ell}) \wedge b_*^{N_2}$. (1) Since the $F_k^{N_2}(a_\ell)$ freely generate N_2/N_1 modulo the atoms, h_β extends to an embedding of N_2 into M_α . Check using Claim 4.10(3) that step (4) is a homomorphism. We now show $M_{\alpha} \in \mathbb{M}_2$. To clarify notation, by setting^k $a_{d_{\ell},k} = 0$ for i < m, we declared $$F_k^{M_\alpha}(d_\ell) = (b_{\eta_i \upharpoonright k \widehat{\ } 0} \triangle b_{\eta_i \upharpoonright k \widehat{\ } 1}) \triangle a_{d_\ell, k}.$$ By Lemma 4.12, for some n, for all $k \geq n$, $a \nleq_{P_1^{M_*}} F_k^{M_{\alpha}}(d_i)$ so condition 4.11(B)(2), countable incompleteness, holds. Applying Remark 4.10(1) to $f_i = b_{\eta_i \upharpoonright k \cap 0} \triangle b_{\eta_i \upharpoonright k \cap 1}$ the $\{F_k^{M_\alpha}(d_i) : k_1^Y \le k < \omega\}$ are independent for each i and form a basis for a subalgebra N_2' of $P_1^{M_*}$ over N_1 . Thus, $N_2' \in K_{\leq \aleph_0}^1$ and we have verified that task $\mathbf{t}_{\beta+1}$ is satisfied. Case 4. $\alpha = \beta + 1$ and $\mathbf{t}_{\beta} \in T_2$; say, $\mathbf{t}_{\beta} = c$. We define M_{α} . Define U_{α} as in Case 3, but extending U_{α} to U'_{α} by adding the ordinal c if $c \notin M_{\beta}$. Now for any even ordinal γ in $\lambda - U'_{\alpha}$, $$\langle \{b_{\eta} : \eta(0) = \gamma\} \rangle \cap \{b_{\eta} : \eta(0) \in U_{\alpha}'\} = \emptyset$$ since b_{η} are determined by the choice of η and $\gamma \notin U'_{\alpha}$. Extend $P_2^{M_{\beta}}$ by adding a $d_{\eta} \in P_2^{M_*} - P_2^{M_{\beta}}$ for each η with $\eta(0) = \gamma$ to form $P_2^{M_{\alpha}}$. $^{{}^{\}mathbf{k}}$ The $a_{d,n}$ are dummies in this case to provide uniformity with Case 4 in proving Lemma 4.13. To define $F_k^{M_{\alpha}}(d_{\eta})$, for each $\eta \in \lim \mathcal{T}_{\gamma}$ and $k < \omega$, choose $i_0 < i_1 \le 2$ that are different from $\eta(k)$. Recalling $c = \mathbf{t}_{\beta}$, let $$F_k^{M_{\alpha}}(d_{\eta}) = (b_{\eta \upharpoonright k \widehat{} i_0} \vartriangle b_{\eta
\upharpoonright k \widehat{} i_1}) \vartriangle (F_k^{M_*}(c)).$$ Since $M_* \in \mathbf{K}_{-1}$ for each $a \in P_1^{M_*}$ for all but finitely many $n, a \wedge F_k^{M_*}(c) = 0$. Thus, for the $d \in P_2^{M_{\alpha}} - P_2^{M_{\beta}}$, chosen towards satisfying $\mathbf{t}_{\beta} = c$, we have set $\langle \alpha_d, \eta_d^{\alpha}, a_{d,k} \rangle = \langle \gamma, d_{\eta}, F_k^{M_*}(c) \rangle$. That is, $a_{d,k} = F_k^{M_*}(c)$. Thus, by Lemma 4.12 for any atom a and all but finitely many $n, a \wedge F_k^{M_{\alpha}}(c) = 0$ and the countable incompleteness requirement is satisfied. **Task:** We must show M_{α} satisfies task \mathbf{t}_{β} . Since $\mathrm{uf}(M_*) = \emptyset$, for any non-principal ultrafilter D, there is an $e \in P_2^{M_*}$ such that the set $S_e^{M_*}(D) = \{n : F_n^{M_{\alpha}}(e) \in D\}$ is infinite (Definition 3.2.2). By the definition of the task $\mathbf{t}_{\beta} = c$, there is a D where the given c witnesses for D in $\mathrm{uf}(M_*)$. We show task \mathbf{t}_{β} is satisfied for D by one of the d_n , which thus is a witness to $D \notin \mathrm{uf}(M_{\alpha})$. Define $\eta^D \in \lim(\mathcal{T}_{\gamma})$ by induction¹: $\eta^D(0) = \gamma$. By Remark 4.10(2)(b) one of the three elements $b_{\langle \gamma, i \rangle} \triangle b_{\langle \gamma, j \rangle}$, for $i \neq j$ and i, j < 3, must not be in D. Let $\eta^D(1)$ such an element. For $k \geq 1$, suppose $\nu = \eta^D \upharpoonright k$ has been defined. Again, by Remark 4.10(2) one of the three elements $b_{\nu \widehat{\ }i} \triangle b_{\nu \widehat{\ }j}$, for $i \neq j$ and i, j < 3, must not be in D. Again, let $\eta^D(k+1)$ be such a triple. Now for each k if $\nu = \eta^D \upharpoonright k$ we know there are $i_0, i_1 < 3$ with $b_{\nu \widehat{\ }i_0} \triangle b_{\nu \widehat{\ }i_1} \not\in D$. Now apply Lemmas 4.10(2)(a) and 4.10(2)(c) to conclude that with $a_0 = b_{\nu \widehat{\ }i_0}$, $a_1 = b_{\nu \widehat{\ }i_1}$ and a_2 as $F_k^{M_*}(c)$, $$F^{M_{\alpha}}(d_{n^{D} \upharpoonright k+1}) = b_{\nu \widehat{\ }i_0} \triangle b_{\nu \widehat{\ }i_1} \triangle F_k^{M_{\alpha}}(c) \in D$$ for the infinitely many k with $F_n^{M_\alpha}(c) \in D$. Now we establish the goal for both cases. Goal: $M_{\alpha} \in \mathbb{M}_2$: To show $M \in K_{-1}$ (and so in \mathbb{M}_1 , Definition 4.6). For $M_{\alpha} \in \mathbb{M}_2$, we show M_{α} satisfies Definition 4.11. The descriptive portions of conditions (A) and (B)(i) of Definition 4.11 are clearly satisfied by the construction; condition (B)(ii) was shown in the proof of each case. For Condition 4.11(C) choose any finite $Y \subset P_2^{M_\alpha}$ and partition Y into $Y_1 = Y \cap P_2^{M_\beta}$ and $Y_2 = Y - Y_1$. We show every element of $W = \{a_{d_k,n} : k < |Y| \land n < \omega\} \cup \{F_i^M(d_k) : k < |Y|, i < k_1^Y\}$ is in the $\langle \{b_\nu; \nu(0) \in U_\alpha\} \rangle$ and so in \mathbb{B}_Y^0 . Set $k_1 = k_Y^1$ as the least integer^m such that for all $\eta_d \neq \eta_e$ with $d, e \in Y$, $\eta_d | k^1 \neq \eta_e | k^1$. For those $d \in Y_1$, we set $\mathbf{w}_\alpha = \mathbf{w}_\beta$ and the result follows since $P_1^{M^\beta} \subseteq \mathbb{B}_Y^0$. For $d \in Y_2$, the two casesⁿ differ slightly. For $d \in Y_2$ the $F_n^M(d)$ for i < n and $n < \omega$ are all Boolean combinations of the $a_{d_i,n}$ with elements b_{ν} with $\nu \leq \eta_i \upharpoonright k_1$. In Case 3, we (implicitly) defined ¹This argument is patterned on the simple black box in [13, Lemma 1.5], but even simpler. ^mNaturally this is only relevant when $\alpha_d = \alpha_e$ but than can happen in Case 3 and must happen ⁿNote that in Case 3, $a_{d,n}$ is constant. In Case 4 it depends on n. We do not define the value of $F_n^{M_\alpha}$) at c; the $F_n^{M_*}(c)$ are oracles and $c \notin P_2^{M_\alpha}$. We define $F_n^{M_\alpha}$ on the d_{η_d} . $\mathbf{w}_d(\alpha) = \langle \alpha_d, \eta_d, 0 \rangle$, so the $a_{d_i,n}$ are all 0. In Case 4, the elements of Y_2 are among the 2^{\aleph_0} d_{η} with $\eta(0) = \gamma$. For them, $\mathbf{w}_d(\alpha) = \langle \gamma, \eta_d, F_n^{M_*}(c) \rangle$. If $F_n^{M_*}(c) = b_{\zeta}$ then $\zeta(0) = c \in U'_{\alpha}$ by the definition of U'_{α} . Thus, $\zeta(0) \neq \gamma$ and $b_{\zeta} = a_{d,n} \in \mathbb{B}^0_Y$. Now, let $M = \bigcup_{\alpha < \lambda} M_{\alpha}$. Then, $M \in \mathbb{M}_2$, $|P_2^M| = \lambda$. By Lemma 4.13, $M \in \mathbf{K}_1$ and each task has been satisfied, so by Claim 4.9, $M \in \mathbf{K}_2$. This yields. Conclusion 4.19. The $M \in K_2$ constructed in Theorem 4.18 is P_0 -maximal and all $|P_i^M| = \lambda$. As in [4, Corollary 3.3.14], for all λ less than the first measurable, since $M \in K_2$ implies $|M| \leq 2^{P_0^M}$, there is a maximal model $M \in K_2$ with $2^{\lambda} < |M| < 2^{2^{\lambda}}$. - **Question 4.20.** (1) Is there a $\kappa < \mu$, where μ is the first measurable, such that if a complete sentence has a maximal model in cardinality κ , it has maximal models in cardinalities cofinal in μ ? - (2) Is there a complete sentence that has maximal models cofinally in some κ with $\beth_{\omega_1} < \kappa < \mu$ where μ is the first measurable, but no larger models are maximal. Could the first inaccessible be such a κ ? ## Acknowledgments Research of the first author was partially supported by Simons Travel Grant G5402, G3535. Item 1147 on Shelah's publication list. The second author was partially supported by European Research Council Grant 338821, and by National Science Foundation Grant 136974 and DMS 1833363. ### References - J. T. Baldwin and W. Boney, Hanf numbers and presentation theorems in AEC, in Beyond First Order Model Theory, ed. J. Iovino (Chapman Hall, 2017), pp. 81–106. - [2] J. T. Baldwin, A. Kolesnikov and S. Shelah, The amalgamation spectrum, J. Symb. Log. 74 (2009) 914–928. - [3] J. T. Baldwin, M. Koerwien and I. Souldatos, The joint embedding property and maximal models, Arch. Math. Logic 55 (2016) 545–565. - [4] J. T. Baldwin and S. Shelah, Hanf numbers for extendibility and related phenomena, Arch. Math. Logic 61 (2021) 437–464. - [5] J. T. Baldwin and I. Souldatos, Complete $\mathcal{L}_{\omega_1,\omega}$ sentences with maximal models in multiple cardinalities, *Math. Log. Q.* **65**(4) (2019) 444–452. - [6] W. Boney and S. Unger, Large cardinal axioms from tameness in AECs, Proc. Amer. Math. Soc. 145 (2017) 4517–4532. - [7] G. Grätzer, Universal Algebra (Springer-Verlag, 1979). - [8] R. Göbel and S. Shelah, How rigid are reduced products, J. Pure Appl. Algebra 202 (2005) 230–258. - [9] G. Hjorth, Knight's model, its automorphism group, and characterizing the uncountable cardinals, J. Math. Log. 2 (2002) 113–144. - [10] A. Kolesnikov and C. Lambie-Hanson, The Hanf number for amalgamation of coloring classes, J. Symb. Log. 81 (2016) 570–583. - [11] M. Magidor, Large cardinals and strong logics: CRM tutorial lecture 1, (2016), http://homepages.math.uic.edu/jbaldwin/pub//MagidorBarc.pdf. - [12] M. Morley, Omitting classes of elements, in *The Theory of Models*, eds. Addison, Henkin and Tarski (North-Holland, Amsterdam, 1965), pp. 265–273. - [13] S. Shelah, Black boxes, to appear in Annales Univ. Sci. Budapest Eotvos Nom. Sect. Math., Paper 309, https://arxiv.org/abs/0812.0656. - [14] S. Shelah, Maximal failures of sequence locality in A.E.C, ed. J. Vaananen, Paper 932 preprint (2013), in preparation, https://arxiv.org/abs/0903.3614.