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ON GROUPS WELL REPRESENTED AS AUTOMORPHISM GROUPS OF
GROUPS

MOHSEN ASGHARZADEH, MOHAMMAD GOLSHANI, DANIEL HERDEN AND SAHARON SHELAH

Dedicated to László Fuchs for his 100th birthday.

Assuming Gödel’s axiom of constructibility V = L, we present a characterization of those groups K for
which there exist arbitrarily large groups H such that Aut(H) ∼= K . In particular, we show that it suffices
to have one such group H such that the size of its center is bigger than 2|K |+ℵ0 .

0. Introduction

The representation problem from group theory asks:

Problem 0.1. For a given group K , is there a group H such that Aut(H) ∼= K ?

There are a lot of interesting research papers in this area. Here, we recall only a short list of them. The
study of automorphism groups of finite abelian groups started with Shoda [11]. Hallett and Hirsch [6]
and Corner [3] classified finite groups which are the automorphism group of some torsion-free group. For
infinite groups, Beaumont and Pierce [2] studied automorphism groups of torsion-free groups of rank
two. May [8] has more results on abelian automorphism groups of torsion-free groups of countable rank.

A related problem is the classical problem of establishing whether two algebraic structures are iso-
morphic when their automorphism groups are isomorphic. Thanks to [7], the answer is yes for abelian
p-groups, when p ̸= 2. Also, by the work of Corner and Goldsmith [4], the answer for reduced torsion-free
modules over the ring Jp of p-adic integers, where p ̸= 2, is affirmative. The question of whether two
abelian 2-groups are isomorphic when their automorphism groups are isomorphic is still an open problem.
For an excellent survey on these and related topics; see Fuchs [5].

Despite lots of work, the study of the automorphism group of groups is not documented very well, and
there is no universal solution to Problem 0.1. There are several examples of groups that can never be the
automorphism group of some abelian group, so that Problem 0.1 reduces to characterizing those groups
K that can be the automorphism group of another group.
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Throughout this paper, we work with arbitrary groups, so they are not required to be abelian. In order
to study Problem 0.1, we study the structure of the automorphism group and inner automorphisms of a
given group. It may be worth noting that Baer [1] studied the normal subgroup structure of Aut(H) for
infinite p-groups H . For more details on this and further achievements; see again the book of Fuchs [5].

We suggest a version of the problem:

Problem 0.2. Characterize the groups K such that for arbitrarily large cardinals λ there is a group H of
cardinal λ such that Aut(H) ∼= K .

We approach Problem 0.2 as follows. Given groups K and H and a monomorphism F : K → Aut(H),
our aim is to find a group H ′

⊇ H and an isomorphism F ′
: K → Aut(H ′) in such a way that for each

k ∈ K , F ′(k) is an automorphism of H ′ which extends F(k). Thus, we have to find H ′ in such a way
that, for each k ∈ K , F(k) extends to an automorphism of H ′, and such that if h ∈ Aut(H) is not in the
range of F , then h cannot be extended to an automorphism of H ′; furthermore, any automorphism of H ′

must result from extending an automorphism of H . We show that, under some extra assumptions on our
initial setup, this is always possible.

Let us recall that the group H in general is not assumed to be abelian. So, we consider its center Z(H),
which leads to the following exact sequence:

N
h∗

��

0 // Z(H) // H h
// N

=

OO

// 0

We also consider a map h∗, which assigns to each b ∈ N := H/Z(H) a preimage under h, but we do not
require it to be a homomorphism. We assume that N is a normal subgroup of K , and that it determines
the inner automorphisms of H in the sense that, for a ∈ H , if we define a∗ as a∗

:= F(h(a)), then
a∗(x) = axa−1 for all x ∈ H , and N ∼= F(N ) = Inn(H) ⊆ Aut(H). Putting all these things together will
lead to the definition of a class Caut of tuples

c := (Kc, Nc, Hc, hc, h∗

c, Fc).

Our main purpose is to furnish c with some additional structures. This leads us to defining various
versions of Caut, which may serve as a framework for solving Problem 0.2. In Section 1, we point out the
right version to use. In fact, the most advanced versions of Caut which appears in this work is denoted by
C6

aut, which consists of elements (c,G). In particular, the nonexplained notion G consists of a family of
certain tuples g which assign some torsion-free abelian groups Gg . For more details, we refer the reader
to see Definition 1.8(4). One version of our main conclusion is:

Theorem 3.6. Assume (c,G) ∈ C6
aut, Hom(Nc, Gg) = 0 for all g ∈ G, and Fc : Kc

∼=−→ Aut(Hc). Let
λ = cf(λ) > 2∥c∥ and suppose ♦λ(S) holds for some S ⊆ Sλ

ℵ0
which is stationary and nonreflecting. Then

there is m ∈ C6
aut such that the following hold:

(a) Hm ⊇ Hc has size λ and Hm/Hc is λ-free.
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(b) If g ∈ Aut(Hm), then for some k ∈ Kc and f ∈ Hom(Nc,Z(Hm)), we have g = Fk
m ◦ g f , where the

automorphism g f of Hm is defined by

g f (x) := f (hm(x)) · x .

Here, Sλ
ℵ0

:= {α < λ | cf(α) = ℵ0}, and ♦λ(S) is the Jensen’s diamond; see Definition 3.5. Also, the
mysterious condition Hom(Nc, Gg)=0 is slightly stronger than the trivial dual condition Hom(Nc, Z)=0;
see Remark 3.4(2). In fact, modulo the consistency of the existence of large cardinals, it is proved in [10]
that consistently ⊠λ may hold for λ = ℵω1·ω, where

(⊠λ) If G ̸= 0 is any λ-free abelian group, then Hom(G, Z) ̸= 0.

According to [9], ⊠ℵk fails for k < ω, and, by [10], ⊠ℵω1·n fails as well for all n < ω. So, we expect that
Theorem 3.6 holds in ZFC for λ < ℵω1·ω, but this result has to wait.

In Section 1, we give a systematic study of the representation framework Caut. We start by defining
C+

aut, the class of tuples (K , H, F) where F : K ∼=−→ Aut(H). We introduce seven other versions and
compare them, as a weak version of C+

aut. Their relation to each other is as follows:

C0
aut ⪯ C1

aut ⪯ C2
aut ⪯ C3

aut ⪯ C4
aut ⪯ C5

aut ⪯ C6
aut,

with the convention that C i
aut ⪯ C i+1

aut means C i+1
aut is constructed from C i

aut. In Section 2, we present a
systematic study of explicit automorphisms in Aut(H). This includes g f and its variations. In Section 3,
we prove Theorem 3.6 via presenting a connection between Problem 0.1 and the trivial dual conjecture,
which searches for the existence of almost free groups with trivial dual; see [9; 10]. Namely, we show that
if m ∈ Mc is auto-rigid, i.e., Fm : Km → Aut(Hm) is an isomorphism, and |Hm| > |Kc|, then Hom(Nc, Z)

is trivial, see Lemma 3.1. We then use Jensen’s diamond principle to complete the proof of Theorem 3.6.
This enables us to present the following solution to Problem 0.2:

Corollary 3.16. Assume Gödel’s axiom of constructibility V = L, and let K be any group. Then the
following are equivalent:

(a) For every cardinal λ = cf(λ) > 2|K |+ℵ0 , there is a group H such that |H | = |Z(H)| = λ and
Aut(H) ∼= K .

(b) There is c ∈ C+

aut such that Kc ∼= K , Aut(Hc) ∼= K and |Z(Hc)| > 2|K |+ℵ0 .

1. Finding the right framework

In this section, we introduce several classes of objects which will serve as a formal framework for realizing
a fixed group K as an automorphism group.

Notation 1.1. For a group K , by eK we mean the unit element. We denote the group operation by ·, so
that for two elements k1, k2 ∈ K , their product is denoted by k1 · k2 or simply k1k2. By k−1 we mean the
inverse of k ∈ K . As usual, if K is abelian we use the additive notation (K , +, −, 0).

By a p-group, where p is a prime number, we mean an abelian p-group, i.e., a group G such that, for
all x ∈ G, there exists some n ≥ 0 with pnx = 0.
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Notation 1.2. Let H be a group which is not necessarily abelian:

(1) By Z(H) we mean the center of H .

(2) Suppose a ∈ H . This induces an inner automorphism a∗
∈ Inn(H) defined by a∗(x) := axa−1 for

all x ∈ H . Thus Inn(H) = {a∗
| a ∈ H} ⊆ Aut(H).

(3) The notation tor(H) stands for the full torsion subgroup of Z(H).

(4) A group G is pure in an abelian group H if G ⊆ H and nG = nH ∩G for every n ∈ Z. The common
notation for this notion is G ⊆∗ H .

We will pay respect to the fact that the center Z(G) of a group G is abelian by giving preference to
the additive notation on this specific subgroup of G.

Definition 1.3. Let C+

aut be the class of all tuples c = (Kc, Hc, Fc) such that Kc, Hc are groups and
Fc : Kc → Aut(Hc) is an isomorphism. Let also ∥c∥ := |Kc| + |Hc|.

Given a suitable group K , we are going to find when suitable arbitrarily large groups H exist such that
for some isomorphism F : K → Aut(H), the triple (K , H, F) is in C+

aut. For this reason, we define several
new classes of objects, which in a sense weaken the above notion of C+

aut and will be better understood in
the sequel. The main object in the following definition is the class C2

aut.

Definition 1.4. (1) Let C0
aut be the class of all triples c = (Kc, Hc, Fc) such that

(a) Kc, Hc are groups, and
(b) Fc : Kc → Aut(Hc) is a group embedding.
We set Fk

c := Fc(k) for k ∈ Kc and Nc := Hc/Z(Hc).

(2) Let C1
aut be the class of all tuples c = (Kc, Nc, Hc, hc, Fc, Q s̄

c) with (Kc, Hc, Fc) ∈ C0
aut such that:

(a) Nc is a normal subgroup of Kc.
(b) hc : Hc → Nc is an epimorphism with Ker(hc) = Z(Hc).
(c) If a ∈ Hc, then Fc(hc(a)) = a∗ is the inner automorphism of Hc defined by a∗(x) = axa−1 for

all x ∈ Hc, thus Nc ∼= Fc(Nc) = Inn(Hc) ⊆ Aut(Hc).
(d) For all n > 0, s̄ = (s1, . . . , sn) ∈ Zn , Q s̄

c is an n-ary relation on Kc.
(e) For s̄ ∈ Zn , we have (b1, . . . , bn) ∈ Q s̄

c if and only if
∑n

ℓ=1 sℓFbℓ
c ↾Z(Hc) = 0.

(3) Let C2
aut be the class of all tuples c=(Kc, Nc, Hc,hc,h∗

c, Fc, Q s̄
c) such that (Kc, Nc, Hc,hc, Fc, Q s̄

c)∈

C1
aut and h∗

c : Nc → Hc is a map with hc ◦ h∗
c = id.1

Definition 1.5. (1) For c ∈ C1
aut ∪ C2

aut, let res0(c) := (Kc, Hc, Fc) ∈ C0
aut.

(2) For c ∈ C2
aut, let res1(c) := (Kc, Nc, Hc, hc, Fc, Q s̄

c) ∈ C1
aut. In other words, C0

aut ⊆ C1
aut ⊆ C2

aut.

Notation 1.6. (1) The m-power torsion subgroup of G is

Torm(G) := {g ∈ Z(G) | ∃n ≥ 0 such that mng = 0}.

With the convenience that Torm(G) =
⊕

{Torp(G) | p is a prime factor of m}.

(2) Let P denote the set of all prime numbers and let p ∈ P. Recall that Jp := Ẑp, the ring of p-adic
integers, is the completion of Z in the p-adic topology.

1So, the map h∗
c assigns to each b ∈ Nc a preimage under hc but may not be a homomorphism.
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Definition 1.7. (1) Let ℓ ∈ {0, 1, 2} and H be a group. We define Primeℓ(H) as the following subset of
the set of prime numbers:

(a) We say p ∈ Prime1(H) if and only if Torp(H) ̸= 0.
(b) We say p ∈ Prime2(H) if and only if there is an embedding (Jp, +) ↪→ Z(H).
(c) Prime0(H) := Prime1(H) ∪ Prime2(H).

(2) We say H is P∗-divisible, where P∗ is a set of prime numbers, if Z(H) is p-divisible, for all p /∈ P∗.

Definition 1.8. (1) Let C3
aut be the class of all c = (Kc, Nc, Hc, hc, h∗

c, Fc, Q s̄
c, H∗

c , Pc) such that the
following properties hold:

(a) res2(c) := (Kc, Nc, Hc, hc, h∗
c, Fc, Q s̄

c) ∈ C2
aut.

(b) Z(Hc) is reduced.
(c) H∗

c ⊆ Hc is a subgroup, Hc =
⋃

{H∗
c x | x ∈ Z(Hc)}, and Z(H∗

c ) = Z(Hc)∩ H∗
c , hence H∗

c is a
normal subgroup of Hc.

(d) Pc := Prime0(Hc), and we have:
(d1) If p ∈ Prime1(Hc), then Torp(H∗

c ) ̸= 0, and
(d2) if p ∈ Prime2(Hc), then (Jp, +) embeds into Z(H∗

c ).

(2) Let C4
aut be the class of all tuples c ∈ C3

aut such that Hc/H∗
c =Z(Hc)/Z(H∗

c ) is a torsion-free abelian
group which is Pc-divisible.

(3) Let C5
aut be the class of all tuples (c, g) such that c ∈ C4

aut, and g := (Gg, Fk
g )k∈Kc is defined by the

following:

(a) Gg is a reduced torsion-free abelian group.
(b) Fℓ

g ∈ Aut(Gg) such that for all n > 0, s̄ ∈ Zn and (b1, . . . , bn) ∈ (Kc)
n: if (b1, . . . , bn) ∈ Q s̄

c,
then

∑n
ℓ=1 sℓFbℓ

g ↾Gg = 0.
(c) For all primes p, Jp does not embed into Gg .

(4) Let C6
aut be the class of all tuples (c,G) with c ∈ C4

aut such that:

(a) G is a nonempty set, and each member g ∈ G is such that (c, g) ∈ C5
aut.

(b) If g ∈ G and x ∈ Gg , then g↾ cl{x} ∈ G, where cl{x} is the smallest pure subgroup of Gg
containing x that is closed under all Fk

g ’s for k ∈ Kc.
(c) If (c, g) ∈ C5

aut, g is embeddable into (Z(Hc), Fk
c )k∈Kc , and there is some x ∈ Gg so that

g = g↾ cl{x}, then g is isomorphic to some member of G.

(5) Let ∥(c,G)∥ := |Kc| + |Hc| +ℵ0 + 6{∥g∥ | g ∈ G}.

Lemma 1.9. The following assertions are valid:

(1) If (c, g) := (c, (Gg, Fk
g )k∈Kc) ∈ C5

aut, then n := (c ⊕ (Gg, Fk
g )k∈Kc) ∈ C4

aut, where Z(Hn) =

Z(Hc) ⊕ Gg , and Fk
n is the unique extension to an automorphism of Hn extending Fk

c ∪ Fk
g .

(2) Similarly, if (c,G) ∈ C6
aut, then n := (c ⊕

⊕
g∈G(Gg, Fk

g )k∈Kc)) ∈ C4
aut, where Z(Hn) = Z(Hc) ⊕⊕

g∈G Gg , and Fk
n is the unique extension to an automorphism of Hn extending Fk

c ∪
⋃

g∈G Fk
g .

(3) If d ∈ C+

aut, then there is c ∈ C4
aut with res0(c) = d and |H∗

c | ≤ (|Kc| +ℵ0)
ℵ0 .
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Proof. (1) It is enough to set Fk
n (a, b) := (Fk

c (a), Fk
g (b)). This fits in the following commutative diagram:

Hc
⊆
// Hn Gg

⊆
oo

Hc

Fk
c

OO

⊆
// Hn

Fk
n

OO

Gg,

Fk
g

OO

⊇
oo

and the desired claims follow easily.

(2)+(3) These are easy. □

Definition 1.10. (1) Let j ∈ {2, 3, 4, 5, 6}. For any c ∈ C j
aut, let Mc ⊆ C j

aut be the class of all m ∈ C j
aut

such that the following hold:

(a) Km = Kc and Nm = Nc.

(b) Hc ⊆ Hm and hc ⊆ hm.

(c) h∗
m = h∗

c.

(d) Fk
c ⊆ Fk

m for all k ∈ Kc. Let us depict things:

Hm
hm
// Nm

h∗
m
// Hm

Fk
m
// Hm

Hc
hc
//

⊆

OO

Nc

=

OO

h∗
c
// Hc

⊆

OO

Fk
c
// Hc

⊆

OO

(e) Q s̄
m = Q s̄

c for all s̄ ∈
⋃

n>0 Zn .

(f) The group Hm is generated by the set Z(Hm) ∪ Hc.

(g) Z(Hc) = Z(Hm) ∩ Hc.

(h) If j ≥ 3 then Pm = Pc and H∗
m = H∗

c .

(i) If j = 5, then gm = gc.

(j) If j = 6, then Gm = Gc.

(2) Let c ∈ C j
aut and m ∈ Mc. We call m auto-rigid, if Im(Fm) = Aut(Hm).

Definition 1.11. Let j ∈ {2, 3, 4, 5, 6}. For c ∈ C j
aut let relation ≤c on Mc be defined by m1 ≤c m2 if and

only if Hm1 ⊆ Hm2 , hm1 ⊆ hm2 , and Fk
m1

⊆ Fk
m2

for all k ∈ Kc.

We have the following easy observations.

Remark 1.12. Let j ∈ {2, 3, 4, 5, 6} and c ∈ C j
aut:

(1) The pair (Mc, ≤c) is a poset, c ∈ Mc and c ≤c m for all m ∈ Mc.

(2) If m1, m2 ∈ Mc with m1 ≤c m2, then Z(Hm1) = Z(Hm2) ∩ Hm1 .

(3) Suppose δ is a limit ordinal and (mα | α < δ) is a ≤c-increasing sequence from Mc. Then there
exists m =

⋃
α<δ mα ∈ Mc which is the ≤c-least upper bound of the sequence (mα | α < δ).
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2. Some explicit automorphisms

Let j ∈ {2, 3, 4, 5, 6}, c ∈ C j
aut, and take m ∈ Mc. Also, let f ∈ Hom(Nc,Z(Hm)). In this section we

study the induced map g f (x) and its variations. This map plays a crucial role in our main theorem.

Definition 2.1. Let j ∈ {2, 3, 4, 5, 6}, c ∈ C j
aut, and m ∈ Mc:

(1) Let Am be the set of all homomorphisms g ∈ Aut(Hm) such that g↾Z(Hm) = id and g(x) ∈ x ·Z(Hm)

for all x ∈ Hm.

(2) Set Fm := Hom(Nc,Z(Hm)).

(3) Let x ∈ Hm and f ∈ Fm. The assignment x 7→ x f (hm(x)) defines a map g f : Hm → Hm.

Proposition 2.2. We have Am = {g f | f ∈ Fm} for all c ∈ C j
aut and m ∈ Mc.

Proof. First suppose that f ∈ Fm. We show that g f is in Am. Clearly, the map g f is a homomorphism, as
f (hm(x)) ∈ Z(Hm) and the equalities

g f (x)g f (y) = x f (hm(x))y f (hm(y)) = xy f (hm(x)) f (hm(y)) = xy f (hm(xy)) = g f (xy)

hold for all x, y ∈ Hm. Furthermore, for all x ∈Z(Hm), we have hm(x)=eNc , thus g f (x)= x f (hm(x))= x ,
and hence g f ↾Z(Hm) = id. Finally, we note that g f is an automorphism. To show this, we claim that its
inverse is g− f :

g− f (g f (x))=g− f (x f (hm(x))=g− f (x)g− f ( f (hm(x)))=g− f (x) f (hm(x))=x f (hm(x))−1 f (hm(x))=x .

Similarly, g f (g− f (x)) = x for all x ∈ Hm. This proves g f ∈ Am. To see the reverse inclusion, we
assume g ∈ Am. We must show that g = g f for some f ∈ Fm. Define the map f : Nc → Z(Hm)

by f (a) := x−1g(x), where a = h∗
m(x). But, this may depend to the choice of x . To show this is a

well-defined map, assume that hm(y) = a for any y ∈ Hm, and we need to check f (a) = y−1g(y). Indeed,
[hm(x) = hm(y)] implies that xy−1

∈ Ker(hm) = Z(Hm). Thus, in view of Definition 2.1(1) we observe
that g(xy−1) = xy−1. In other words, x−1g(x) = y−1g(y), i.e., the map f is well-define. In order to
show f is a morphism, let a, b ∈ Nc and choose x, y ∈ Hm so that hm(x) = a and hm(y) = b. Then
hm(xy) = ab, x−1g(x) ∈ Z(Hm) and also

f (ab) = (xy)−1g(xy) = y−1
· x−1g(x) · g(y) = x−1g(x) · y−1g(y) = f (a) f (b).

Consequently, f ∈ Fm. Clearly, g = g f . The proof is now complete. □

Notation 2.3. The notation ⊠d := ⊠(c,m,s̄,b̄,π) stands for the following hypotheses:

(1) c ∈ C j
aut for some j ∈ {2, 3, 4, 5, 6} and m ∈ Mc.

(2) s̄ = (s1, . . . , sn) ∈ Zn and b̄ = (b1, . . . , bn) ∈ (Kc)
n for some n > 0.

(3) π ∈ End(Nc).
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Definition 2.4. Let d := (c, m, s̄, b̄, π) and assume ⊠d .

(0) We define h′∗
c,π := h∗

c ◦ π .

(1) Let As̄,b̄
m,π be the set of all homomorphisms g ∈ End(Hm) such that

g↾Z(Hm) = F s̄,b̄
m :=

n∑
ℓ=1

sℓ(Fbℓ
m ↾Z(Hm)), and g(x) ∈ h′∗

c,π (hm(x)) ·Z(Hm)

for all x ∈ Hm.

(2) Let F s̄,b̄
m,π be the set of all functions f : Nc →Z(Hm) such that for all a, b ∈ Nc we have f (a) f (b) =

F s̄,b̄
m (t ′) · (t ′′)−1

· f (ab), where t ′, t ′′
∈ Z(Hc) ⊆ Z(Hm) are uniquely determined by t ′h∗

c(ab) =

h∗
c(a)h∗

c(b), and t ′′h′∗
c,π (ab) = h′∗

c,π (a)h′∗
c,π (b).

(3) For any f ∈ F s̄,b̄
m,π let gs̄,b̄

π, f (x) : Hm → Hm be the map defined by the assignment x 7→ F s̄,b̄
m (t) ·

f (hm(x)) ·h′∗
c,π (hm(x)) for all x ∈ Hm, where t ∈Z(Hm) is uniquely determined by x = th∗

c(hm(x)).

Proposition 2.5. For d := (c, m, s̄, b̄, π) let ⊠d . Then As̄,b̄
m,π = {gs̄,b̄

π, f | f ∈ F s̄,b̄
m,π }.

Proof. First, assume f ∈F s̄,b̄
m,π . We shall prove that gs̄,b̄

π, f ∈As̄,b̄
m,π . Let x1, x2 ∈ Hm and choose ti ∈Z(Hm)

for i ∈ {1, 2} such that xi = ti h∗
c(hm(xi )). We observe that hm(xi ) ∈ Nc, and in view of Definition 2.4(2),

there are t ′, t ′′
∈ Z(Hc) such that

h∗

c(hm(x1))h∗

c(hm(x2)) = t ′h∗

c(hm(x1x2)),(2-1)

h′∗

c,π (hm(x1))h′∗

c,π (hm(x2)) = t ′′h′∗

c,π (hm(x1x2))(2-2)

f (hm(x1)) f (hm(x2)) = F s̄,b̄
m (t ′)(t ′′)−1 f (hm(x1x2)).(2-3)

x1x2
(2-1)
= t ′t1t2h∗

c(hm(x1x2)).(2-4)

Keeping in mind that

(2-5) Rang(F s̄,b̄
m ) + Rang( f ) ⊆ Z(Hm)

We deduce the following identities

gs̄,b̄
π, f (x1)g

s̄,b̄
π, f (x2)

= F s̄,b̄
m (t1) f (hm(x1))h′∗

c,π (hm(x1))·F s̄,b̄
m (t2) f (hm(x2))h′∗

c,π (hm(x2)) Definition 2.4(3)

= F s̄,b̄
m (t1)F s̄,b̄

m (t2)· f (hm(x1)) f (hm(x2))·h′∗

c,π (hm(x1))h′∗

c,π (hm(x2)) (2-5)

= F s̄,b̄
m (t1t2)·F s̄,b̄

m (t ′)(t ′′)−1 f (hm(x1x2))·t ′′h′∗

c,π (hm(x1x2)) (2-3)

= F s̄,b̄
m (t ′)F s̄,b̄

m (t1t2)·(t ′′)−1t ′′
· f (hm(x1x2))·h′∗

c,π (hm(x1x2)) (2-5)

= F s̄,b̄
m (t ′t1t2) f (hm(x1x2))h′∗

c,π (hm(x1x2))

= gs̄,b̄
π, f (x1x2). (2-4) and Definition 2.4(3)
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This shows that gs̄,b̄
π, f is a homomorphism. Next, observe that for any x ∈ Hm, we have h∗

c(hm(x)) =

eHm · h∗
c(hm(h∗

c(hm(x)))) and

(2-6) gs̄,b̄
π, f (h

∗

c(hm(x))) = F s̄,b̄
m (eHm) · f (hm(h∗

c(hm(x)))) · h′∗

c,π (hm(h∗

c(hm(x))))

= f (hm(x))h′∗

c,π (hm(x)).

Let us plugging x := th∗
c(hm(x)). This implies that

gs̄,b̄
π, f (t)g

s̄,b̄
π, f (h

∗

c(hm(x))) = gs̄,b̄
π, f (th

∗

c(hm(x))) = gs̄,b̄
π, f (x) = F s̄,b̄

m (t) f (hm(x))h′∗

c,π (hm(x))

(2-6)
= F s̄,b̄

m (t)gs̄,b̄
π, f (h

∗

c(hm(x))).

Consequently, gs̄,b̄
π, f (t) = F s̄,b̄

m (t). Letting t range over all of Z(Hm), we have gs̄,b̄
π, f (t) = F s̄,b̄

m (t) for all
t ∈ Z(Hm). This proves gs̄,b̄

π, f ∈ As̄,b̄
m,π . For the reverse inclusion, assume g ∈ As̄,b̄

m,π . We must show
that g = gs̄,b̄

π, f for some f ∈ F s̄,b̄
m,π . To this end, we define a map f : Nc → Z(Hm) as follows. For any

a ∈ Nc set f (a) := g(h∗
c(a))h′∗

c,π (a)−1. With Definition 2.4(1) we have f (a) ∈ Z(Hm). Let a, b ∈ Nc
and t ′, t ′′

∈ Z(Hc) be chosen as in Definition 2.4(2). We then have

f (a) f (b) = g(h∗

c(a))h′∗

c,π (a)−1g(h∗

c(b))h′∗

c,π (b)−1
= g(h∗

c(a))g(h∗

c(b))h′∗

c,π (b)−1h′∗

c,π (a)−1

= g(h∗

c(a)h∗

c(b))(h′∗

c,π (a)h′∗

c,π (b))−1
= g(t ′h∗

c(ab))(t ′′h′∗

c,π (ab))−1

= g(t ′)g(h∗

c(ab)) · h′∗

c,π (ab)−1(t ′′)−1
= g(t ′)(t ′′)−1

· g(h∗

c(ab))h′∗

c,π (ab)−1

= F s̄,b̄
m (t ′)(t ′′)−1

· f (ab).

Thanks to the definition, f ∈ F s̄,b̄
m,π follows. Next, let x ∈ Hm and t ∈ Z(Hm) be chosen as in

Definition 2.4(3). We then have

g(x) = g(th∗

c(hm(x))) = g(t)g(h∗

c(hm(x))) = F s̄,b̄
m (t) · g(h∗

c(hm(x)))h′∗

c,π (hm(x))−1
· h′∗

c,π (hm(x))

= F s̄,b̄
m (t) · f (hm(x)) · h′∗

c,π (hm(x)) = gs̄,b̄
π, f (x),

which shows g = gs̄,b̄
π, f . This ends the proof. □

Proposition 2.6. The following assertions are valid:

(1) Let f ∈ Hom(Hm,Z(Hm)) with Im( f ) ⊆ Ker( f ), and take x ∈ Hm. The assignment x 7→ g1
f (x) :=

x · f (x) defines an automorphism g1
f : Hm → Hm.

(2) Assume ⊠d holds with g ∈ As̄,b̄
m,π . Then h ∈ As̄,b̄

m,π if and only if h(x) = g(x) · f (x) for all x ∈ Hm
and for some f ∈ Hom(Hm,Z(Hm)) with Z(Hm) ⊆ Ker( f ).

Proof. (1) The map g1
f is a homomorphism as f (x) ∈ Z(Hm) and

g1
f (x)g1

f (y) = x f (x)y f (y) = xy f (x) f (y) = xy f (xy) = g1
f (xy)
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holds for all x, y ∈ Hm. Since Im( f ) ⊆ Ker( f ) we have f ( f (−)) = eHm . Furthermore, g1
f is an

automorphism with inverse g1
− f :

g1
f (g

1
− f (x)) = g1

f (x f (x)−1) = x f (x)−1 f (x) f ( f (x−1)) = x f (x)−1 f (x f (x)−1)

= x f (x)−1 f (x) f ( f (x−1)) = x f (x)−1 f (x)eHm = x .

Similarly, g1
− f (g

1
f (x)) = x for all x ∈ Hm.

(2) This is easy as well. □

We close this section by presenting situations for which As̄,b̄
m,π is nonempty.

Definition 2.7. An abelian group G is called ℵ1-free if every subgroup of G of cardinality < ℵ1, i.e.,
every countable subgroup, is free. More generally, an abelian group G is called λ-free if every subgroup
of G of cardinality < λ is free.

Remark 2.8. Let d := (c, m, s̄, b̄, π), assume ⊠d , and let m1, m2 ∈ Mc be such that m1 ≤c m2. Then
the following assertions hold:

(1) F s̄,b̄
m1,π

⊆ F s̄,b̄
m2,π

.

(2) Let f ∈ F s̄,b̄
m1,π

be given and define the following groups:

(a) I1 := ⟨t ′, F s̄,b̄
c (t ′) | t ′

= h∗
c(a1)h∗

c(a2)h∗
c(a1a2)

−1 for some a1, a2 ∈ Nc⟩Z(Hc).
(b) I2 := ⟨I1, Im( f )⟩ ⊆ Z(Hm1).

Also, let ϕ ∈ Hom(I2,Z(Hm2)) be such that ϕ ↾ I1 = id. Then ϕ ◦ f ∈ F s̄,b̄
m2,π

.

(3) If As̄,b̄
m1,π

̸= ∅, then As̄,b̄
m2,π

̸= ∅.

(4) Suppose As̄,b̄
m2,π

̸=∅ and let Z(Hm2)/Z(Hm1) be an (ℵ1 ·|Nc|
+)-free abelian group. Then As̄,b̄

m1,π
̸=∅.

Proof. (1) This follows from Definition 2.4(2) and Remark 1.12(2).

(2) We just need to check Definition 2.4(2), keeping in mind that F s̄,b̄
m (t ′) = F s̄,b̄

c (t ′) and F s̄,b̄
c (t ′), t ′′

∈ I1.

(3) This is a consequence of (1) and Proposition 2.5.

(4) Let f ∈ F s̄,b̄
m2,π

. Then

|⟨Z(Hm1), Im( f )⟩/Z(Hm1)| ≤ ℵ0 · |Nc| < ℵ1 · |Nc|
+.

Thus ⟨Z(Hm1), Im( f )⟩/Z(Hm1) is a free abelian group, and we define ϕ to be the projection onto the
direct summand Z(Hm1) ⊆ ⟨Z(Hm1), Im( f )⟩. We have ϕ ◦ f ∈ F s̄,b̄

m2,π
with (2), and even ϕ ◦ f ∈ F s̄,b̄

m1,π

as Im(ϕ) ⊆ Z(Hm1). This implies that As̄,b̄
m1,π

̸= ∅. In view of Proposition 2.5 As̄,b̄
m1,π

̸= ∅. □

3. The structure of large auto-rigid representations

In this section we present the proof of Theorem 3.6 and Corollary 3.16. The next lemma gives conditions
under which Hom(Nc, Z) is trivial.

Lemma 3.1. Let j ∈ {2, 3, 4, 5, 6}. Let c ∈ C j
aut, and suppose that there is some auto-rigid m ∈ Mc with

∥m∥ > ∥c∥, or just |Z(Hm)| > |Kc|. Then Hom(Nc, Z) = 0.
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Proof. Suppose for the sake of contradiction that there is a nonzero f∗ ∈ Hom(Nc, Z). For each
x ∈ Z(Hm), the assignment a 7→ fx(a) := x f∗(a) defines a map fx ∈ Hom(Nc,Z(Hm)). It then follows
that by Proposition 2.6, the map g fx : Hm → Hm defined by g fx (t) = t · fx(hm(t)) is in Aut(Hm). Now, by
the auto-rigidity, we have Kc ∼= Im(Fm) = Aut(Hm), hence |Kc| = |Aut(Hm)| ≥ |Z(Hm)| = |Hm| > |Kc|,
which is impossible. This contradiction shows that Hom(Nc, Z) is trivial, which gives the desired
conclusion. □

Definition 3.2. Suppose G is an abelian group and k = (G, (Fk
G | k ∈ Kc)) is an expansion of G, where

each Fk
G is an automorphism of G. Let c ∈ C1

aut and m ∈ Mc:

(1) We say k is c-correct if for all n <ω, s̄ ∈ Zn and b̄ ∈ (Kc)
n with b̄ ∈ Q s̄

c holds
∑n

ℓ=1 Fℓ
G = 0 ∈ End(G).

(2) If k is c-correct, we define n = m ⊕ k ∈ Mc so that Z(Hn) = Z(Hm) ⊕ G, and Fk
n is the unique

extension of Fk
m ∪ Fk

G to an automorphism of Hn.

(3) Suppose (c, g) ∈ C5
aut and m ∈ Mc.

(a) We say m is free over (c, g), if we can find ( fξ |ξ <ζ) such that Z(Hm)=
⊕

ξ<ζ fξ (Gg)⊕Z(Hc),
where fξ : (Gg, (Fk

g )k∈Kc) ↪→ (Hc, (Fk
m)k∈Kc) is an embedding. We assume that the embedding

respects structures, which means fξ Fk
g = Fk

m fξ .
(b) We say m is λ-free over c, if for any subgroup G ′ of Z(Hm)/Z(Hc) of size <λ, there is m′

∈ Mc,
m′

≤c m which is free over c such that G ′
⊆ Hm′ .

(c) We say m is strongly λ-free over c, if free wins the following game for which a play lasts ω

moves: in the n-th move, nonfree chooses Xn ∈ [Hm]
<λ, free chooses ξn < λ and ( fn,ξ | ξ <

ξn), where each fn,ξ : Gg → Z(Hm) is an embedding, and
∑

m≤n,ξ<ξn
fm,ξ (Gg) +Z(Hm) =⊕

m≤n,ξ<ξn
fm,ξ (Gg) ⊕Z(Hm), and it includes Xn . The free player wins if he always has a

legal move.

(4) Similarly, if (c,G) ∈ C6
aut and m ∈ Mc, we say m is strongly λ-free over (c,G), if free wins the

following game for which a play lasts ω moves: in the n-th move, nonfree chooses Xn ∈ [Hm]
<λ,

free chooses ξn < λ and ( fn,ξ | ξ < ξn), where each fn,ξ : gn,ξ → Z(Hm) is an embedding,
and

∑
m≤n,ξ<ξn

fm,ξ (gm,ξ )+Z(Hm) =
⊕

m≤n,ξ<ξn
fm,ξ (gm,ξ )⊕Z(Hm) for some gm,ξ ∈ G, and it

includes Xn . The player free wins if he always has a legal move.

Lemma 3.3. Suppose (c, g) ∈ C5
aut, Hom(Nc, Gg) = 0, and m is |Nc|

+-free over (c, g). Then

Hom(Nc,Z(Hm)) ⊆ Hom(Nc, Hc).

Proof. Let f ∈ Hom(Nc,Z(Hm)). Suppose for the sake of contradiction that f /∈ Hom(Nc, Hc). This
means that Im( f ) ⊈ Hc. In other words, the following compositions map

f̄ := Nc
f

−→ Z(Hm)
⊆

−→ Hm
↠

−→ Hm/Hc

is nonzero and Im( f̄ ) ⊆ Hm/Hc is of size at most |Nc|. Thus, by our assumption, we can find ( fξ | ξ < ζ)

such that fξ : Gg → Z(Hc) is an embedding and Im( f̄ ) ⊆
⊕

ξ<ζ fξ (Gg). Hence, for some ξ < ζ , the
natural projection πξ :

⊕
ξ<ζ fξ (Gg) → fξ (Gg) satisfies that πξ ◦ f̄ ∈ Hom(Nc, fξ (Gg)) is nonzero. We

proved that fξ ◦ πξ ◦ f̄ : Nc → Gg is nonzero, a contradiction. □
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Remark 3.4. The above proof shows that:

(1) Suppose (c, g) ∈ C5
aut, m is λ-free over (c, g), and Gg is λ-free. Then Hm/Hc is λ-free.

(2) Let (c,G) ∈ C6
aut. Then Hom(Nc, Gg) = 0 for some g ∈ G if and only if Hom(Nc, Z) = 0.

Definition 3.5. Suppose λ > ℵ0 is regular and S ⊆ λ is stationary:

(1) Jensen’s diamond ♦λ(S) asserts the existence of a sequence (Sα | α ∈ S) such that for every X ⊆ λ

the set {α ∈ S | X ∩ α = Sα} is stationary.

(2) We use the following consequence of ♦λ(S): let A =
⋃

α<λ Aα and B =
⋃

α<λ Bα be two λ-filtrations.
Then there are {gα | Aα → Bα |α <λ} such that, for any function g : A → B, the set {α ∈ S | g↾Aα

= gα}

is stationary in λ.

(3) S is nonreflecting if for any limit ordinal δ < λ of uncountably cofinality, the set S∩δ is nonstationary
in δ.

(4) We set Sλ
ℵ0

= {α < λ | cf(α) = ℵ0}.

Recall that g f (x) := x · f (hm(x)). The following is the main result of this section:

Theorem 3.6. Let (c,G) ∈ C6
aut, λ = cf(λ) > 2∥c∥ and assume that:

(1) Hom(Nc, Gg) = 0 for all g ∈ G, and Fc : Kc → Aut(Hc) is an isomorphism.

(2) S ⊆ Sλ
ℵ0

is stationary nonreflecting such that ♦λ(S) holds.

Then there is some m ∈ C6
aut ∩ Mc of size λ such that the following holds:

(α) m is λ-free over c.

(β) Hom(Nc,Z(Hm)) ⊆ Hom(Nc, Hc).

(γ ) If g ∈ Aut(Hm), then for some k ∈ Kc and f ∈ Hom(Nc,Z(Hm)), we have g = Fk
m ◦ g f .

Proof. Without loss of generality, G consists of pairwise disjoint elements. Let ḡ := (gα | α ∈ S) be
such that gα : α → α and it is a diamond sequence for S, in the sense that for each g : λ → λ, the set
{α ∈ S | g ↾ α = gα} is stationary in λ. Without loss of generality, we assume in addition that the set
of elements of Hc is an ordinal, which, by our assumption, is < λ. For γ ≤ λ, we define the set 3γ ,
consisting of sequences m̄ = (mα | α < γ ) of length γ and a set U0(m̄) ⊆ γ such that:

(∗)1 (a) mα ∈ Mc has universe an ordinal less than λ.
(b) m0 = c.
(c) mα is free over c, in particular, Hmα

/Hc is free.
(d) The sequence (mα | α < γ ) is increasing and continuous at limit ordinals, i.e., mα =

⋃
β<α mβ ,

for all limit ordinals α < γ .
(e) If β < α and β /∈ S, then mα is free over mβ .
(f) U0(m̄) ⊆ γ is defined by δ ∈ U0(m̄) if and only if:

(f1) δ ∈ S, the set of elements of Hmδ
is δ, and gδ ∈ Aut(Hmδ

).
(f2) gδ ̸= (Fb

mδ
◦ g f ) ↾Hmδ

, for any b ∈ Kc and f ∈ Hom(Nc,Z(Hc)).
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(g) If α = β + 1, where β ∈ γ \ U0(m̄), then Hmα
is defined such that

Z(Hmα
) = Z(Hmβ

) ⊕

⊕
g∈G

fα,g(Gg),

where fα,g embeds (Gg, (Fb
g )b∈Kc) into (Hmα

, (Fb
mα

)b∈Kc), so that Lemma 1.9(2) holds.
(h) If α = β + 1, and β ∈ U0(m̄), then for any n < ω and g ∈ G we have the embeddings

f g
β,n : Gg → Hmα

such that:

(h1) Hmα
/Hmβ

=
⊕

{ f g
β,n(Gg)/Hmβ

| g ∈ G}.
(h2) n! f g

β,n+1(y) − f g
β,n(y) ∈ Hmβ

⊆ Hmα
for any y ∈ Gg .

(h3) the following diagram commutes:

0 // Gg
f g
β,n
// Hmα

0 // Gg

Fk
g

OO

f g
β,n
// Hmα

Fk
mα

OO

(i) Suppose Fb
c ◦ g f = Fd

c for some b, d ∈ Kc and f ∈ Hom(Nc,Z(Hc)). Then Fb
mα

◦ g f = Fd
mα

,
where g f (x) = x · f (hm(x)).

(∗)2 Suppose m̄ ∈3γ . Let U (m̄)⊆γ be the set of all δ ∈ S∩γ such that there are n̄ := (nα |α <λ), χ, h,B
such that:
(a) n̄ ∈ 3λ, set also nλ =

⋃
α<λ nα, so that nλ ∈ Mc and its universe is λ.

(b) n̄ ↾ δ = m̄ ↾ δ.
(c) h ∈ Aut(Hnλ

).
(d) h ↾ δ ̸= (Fb

nδ
◦ g f ) ↾ Hnδ

, for any b ∈ Kc and f ∈ Hom(Nc,Z(Hc)).
(e) χ > 2λ is regular so that n̄, h, (c,G) ∈ H (χ).
(f) B ≺ (H (χ), ∈), ∥B∥ < λ, and B∩ λ = δ.
(g) n̄, h, (c,G) ∈ B and h ↾ δ = gδ.

We shall prove the theorem in a sequence of claims; see Claims 3.7–3.13.

Claim 3.7. Suppose γ ≤ λ is an ordinal. Then the following assertions hold:

(a) If γ is a limit ordinal, m̄α ∈ 3α for α < γ , and (m̄α | α < γ ) is ◁-increasing, then m̄γ =
⋃

α<γ m̄α ∈

3γ , and it end extends all m̄α’s, α < γ .

(b) If m̄ ∈ 3γ and γ ′
∈ [γ, λ), then there is n̄ ∈ 3γ ′ such that m̄ ⊴ n̄.

Proof. (a) It is enough to show that mγ is free over mc. To this end, let C be a club of γ which is disjoint
to S, which exists as S is nonreflecting. By clause (∗)1(c), mα is free over c, for all α in C , and by clause
(∗)1(e), mα is free over mβ , for all β < α in C . So clearly mγ is free over mc.

(b) We prove something stronger in the following. For γ ≤ λ we define �γ as the class of all m̄ ∈ 3γ

such that:

(∗)3 If α = δ + 1 < γ and δ ∈ U (m̄), then gδ is unextendable, which means if m̄ ↾ α + 1 ≤c n̄ ∈ 3β with
β ∈ [γ, λ], then gδ cannot be extended to an automorphism of Hn̄.

(∗)4 It is enough to prove that �λ ̸= ∅.
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In order to argue these, suppose �λ is nonempty and drive the theorem. To this end, we take m̄ ∈ �λ and
let m =

⋃
α<λ mα. We show that m is as required. It is clear that m ∈ Mc and ∥m∥ = λ. Furthermore,

any subgroup of Hm/Hc of size less than λ is included in some Hmα
/Hc, for some α < λ and Hmα

/Hc is
free, hence m ∈ Mc is λ-free over c. Since Hom(Nc, Gg) is trivial for all g ∈ G, by Lemma 3.3, clause
(β) of the theorem holds. Here, we show the clause (γ ) of the theorem holds as well. If b ∈ Kc and
f ∈ Hom(Nc,Z(Hm)), then Fb

m is an automorphism of Hm, and by Proposition 2.2, g f ∈ Aut(Hm). By
combining these, we deduce that g = Fb

m ◦g f is an automorphism. Now, let g ∈ Aut(Hm). We claim that g
is of the form g = Fb

m ◦g f , for some b ∈ Kc and f ∈ Hom(Nc,Z(Hm)). Suppose not, so in particular, for
all b ∈ Kc and for all f ∈Hom(Nc,Z(Hm)), we have: g ̸= Fb

m◦g f . As Hom(Nc,Z(Hm))⊆Hom(Nc, Hc),
we have |Kc| + |Hom(Nc,Z(Hm))| ≤ |Kc| + |Hom(Nc, Hc)| ≤ 2∥c∥ < λ, so we can find some α∗ < λ

such that for all α > α∗, and all b, f as above, g ↾ mα ̸= (Fb
mα

◦ g f ) ↾ mα. Choose χ large enough
regular and let B = (Bα | α < λ) be an increasing and continuous sequence of elementary submodels
of (H (χ), ∈) such that for each α < λ, Bα has cardinality <λ, m̄, c, g ∈ Bα and (Bγ | γ ≤ α) ∈ Bα+1.
Set C := {δ > α∗ | mδ has universe δ and Bδ ∩ λ = δ}. Then C is a club of λ, hence by the choice of the
sequence (gδ | δ ∈ S), the set S′

= {δ ∈ C ∩ S | g ↾ δ = gδ} is stationary. Let δ ∈ S′. We conclude that
gδ cannot be extended to an isomorphism of Hm. But, this is a contradiction, because g ⊇ gδ is such an
extension. □

In order to prove that �λ ̸= ∅ we define

U+(m̄) :=
{
δ ∈ U (m̄) | there is n̄1 such that m̄ ↾ δ ≤c n̄1 ∈ 3δ+1 and if n̄1 ≤c n̄ ∈ 3β with β ∈ [γ, λ],

then gδ cannot be extended to an automorphism of Hn̄
}
.

We now prove the following, which in particular, implies that �γ ̸= ∅, for all γ ≤ λ.

(∗)5 There exists m̄ of length λ such that, for all γ < λ, m̄ ↾ γ ∈ �γ .

To this end, we define m̄ = (mξ | ξ < λ) ∈ 3λ by defining mξ by induction on ξ . The only nontrivial
case is when ξ = δ +1 < λ and δ ∈ U (m̄ ↾ ξ). Thus suppose that we are given ξ and δ as above and m̄ ↾ δ

is defined. We have to define mξ . For m̄ ∈ 3δ , α ≤ β < δ and g ∈ Gc, let ϒ be the family of all embedding
f : g ↪→ Z(Hmβ

) where mβ is λ-free over mα, f (Gg) ∩ H∗
c = 0 and ( f (Gg) + H∗

c )/H∗
c ⊆∗ Hmβ

/H∗
c .

Now, we define:

(a) F
m̄,g
α := { f | f embeds g into Z(Hmα

)}.

(b) F
m̄,g
α,β := { f | f ∈ ϒ}.

Here, by an embedding of g into Z(Hmβ
) we mean an embedding from the structure g = (Gg, Fk

g )k∈Kc

into the structure (Z(Hmβ
), Fk

mβ
)k∈Kc . To continue the proof, we split the argument into several subcases.

Indeed, we may assume that clause (∗)1( f1) holds and δ ∈ U (m̄ ↾ δ), as otherwise, we do nothing and let
mξ = mδ . We are going to furnish any g ∈ G with three versions of activities with respect to δ ∈ U (m̄ ↾ δ).
First of all, we say g ∈ G is 1-active with respect to (δ, m̄ ↾ δ), when there are n̄, χ, h,B witnessing
δ ∈ U (m̄ ↾ δ) such that for some nonzero x ∈ Gg , for arbitrarily large α < δ, there are β ∈ (α, δ) \ S and
f ∈ F

m̄↾δ,g
α,β such that:

(1) h( f (x)) /∈ Z(Hmα
) + Im( f ).

(2) Z(Hmα
) ∩ Im( f ) = 0.

(3) h maps Hmα
(resp. Hmβ

) into Hmα
(resp. Hmβ

).
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Claim 3.8. If g is 1-active with respect to (δ, m̄ ↾ δ), and ξ = δ + 1, then for some mξ , m̄ ↾ ξ + 1 ∈ 3ξ+1

and δ ∈ U+(m̄ ↾ ξ + 1).

Proof. As cf(δ) = ℵ0, there is an increasing sequence (α0
n | n < ω) ∈

ωδ with limit δ. Let n̄, χ, h,B
witness δ ∈ U (m̄ ↾ δ) and let x ∈ Gg be as guaranteed by definition of 1-activity. Choose (αn, βn, fn) by
induction on n so that:

(†)1
n (a) αn ∈ (α0

n, δ) \ S, and βm < αn < βn for m < n.
(b) If n = m + 1 then Im( fm) ⊆ Z(Hmαn

).
(c) (g, x, αn, βn, fn) := (g, x, α, β, f ), where (g, x, α, β, f ) is taken from the definition of 1-

activity.

We are going to define n̄1 ∈ 3δ+2 and f ∗
n such that:

(†)2 (a) n̄1↾(δ + 1) = m̄↾(δ + 1).
(b) f ∗

n embeds g = (Gg, (Fk
g )k∈Kc) into (H(n1)δ+1, (Fk

(n1)δ+1
)k∈Kc).

(c) If y ∈ Gg then f ∗

n+1(y) − f ∗
n (y) = −n! fn(y).

Let Z(H(m)δ )̂ denote the Z-adic completion of Z(H(m)δ ). Note that in Z(H(m)δ )̂, f ∗
n is defined as

f ∗
n (y) =

∑
∞

m=n m! fm(y). Set ξ =
∑

n<ω n!, and define yn, ỹn ∈ Z(H(m)δ )̂ by yn = f ∗
n (x) and ỹn =

yn + ξ f0(x). Recall that h ↾ δ = gδ extends to an automorphism ĝδ over Z(H(m)δ )̂. We show that either
ĝδ(y0) /∈ ⟨Z(Hmδ

)∪{ym | m < ω}⟩ or ĝδ(ỹ0) /∈ ⟨Z(Hmδ
)∪{ỹm | m < ω}⟩, and then we choose z0 ∈ {y0, ỹ0}

such that ĝδ(z0) /∈ ⟨Z(Hmδ
) ∪ {z̃m | m < ω}⟩ and set

Z(H(n1)δ+1) := ⟨Z(Hmδ
) ∪ {zm | m < ω}⟩ ⊆ Z(H(m)δ )̂.

This easily gives us n̄1 ∈ 3δ+2, and it will be as required. Let us depict things:

Z(Hmδ
)

⊆
// Z(H(n1)δ+1)

⊆
// Z(H(m)δ )̂

Z(Hmδ
)

⊆
//

gδ

OO

Z(H(n1)δ+1)

∄ĝδ↾

OO

⊆
// Z(H(m)δ )̂

ĝδ

OO

So, suppose by way of contradiction that ĝδ(y0) ∈ ⟨Z(Hmδ
) ∪ {ym | m < ω}⟩ and ĝδ(ỹ0) ∈ ⟨Z(Hmδ

) ∪

{ỹm | m < ω}⟩, and we search for a contradiction. As ĝδ(y0) ∈ ⟨Z(Hmδ
) ∪ {ym | m < ω}⟩. There

are z ∈ Z(Hnδ
), n < ω and {ℓi ∈ Z}i<n such that ĝδ(y0) ∈ Z(Hnδ

) +
∑

i<n ℓi yi . It is easily seen that∑
i<n ℓi yi ∈ Z(Hnδ

) + (
∑

i<n ℓi )yn . Set ℓ :=
∑

i<n ℓi . Hence ĝδ(y0) = ℓyn + z where z ∈ Z(Hnδ
). By

definition,
ĝδ(ỹ0) = ĝδ(y0 + ξ f0(x)) = ℓyn + z + ξgδ( f0(x)).

In other words, ĝδ(ỹ0) − (ℓỹn + z) = ξ(gδ f0(x) − ℓ f0(x)). We now recall that

⟨Z(Hmδ
) ∪ {ỹm | m < ω}⟩ ∩ ξ⟨Z(Hmδ

) ∪ {ỹm | m < ω}⟩ = 0.

Finally, due to our assumption, ĝδ(ỹ0) ∈ ⟨Z(Hmδ
) ∪ {ỹm | m < ω}⟩, thus we have gδ f0(x) − ℓ f0(x) = 0,

but this is absurd by the choice of f0. □

For δ ∈ U (m̄ ↾ δ), we say g ∈ G is 2-active with respect to (δ, m̄ ↾ δ), when there are n̄, χ, h,B
witnessing δ ∈ U (m̄ ↾ δ) such that there are nonzero x ∈ Gg , α < β in δ \ S, f1, f2 ∈ F

m̄↾δ,g
α,β , and y1 ̸= y2

in Gg such that:
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(a) h( fℓ(x)) ∈ Z(Hmα
) + fℓ(yℓ), for ℓ = 1, 2.

(b) h maps Hmα
(resp. Hmβ

) into Hmα
(resp. Hmβ

).

Claim 3.9. If g is 2-active with respect to (δ, m̄ ↾ δ), and ξ = δ+1, then for some mξ , m̄ ↾ (ξ +1) ∈ 3ξ+1

and δ ∈ U+(m̄ ↾ (ξ + 1)).

Proof. Let α, β, f1, f2, y1, y2 be as above. For each α′ with β < α′ < δ, we can find β ′
∈ (α′, δ) \ S and

f3 ∈ F
m̄↾δ,g
α′,β ′ such that Z(Hmα′ ) ∩ Im( f3) = 0 and h( f3(x)) = f3(y3) for some y3 ∈ Gg . Then for some

ℓ ∈ {1, 2}, y3 ̸= yℓ. Let us suppose without loss of generality that y3 ̸= y1. Define f : Gg → Z(Hmβ′ ) as
f (z) = f1(z)− f3(z). Then f ∈ F

m̄↾δ,g
α′,β ′ is such that h( f (x)) /∈ Z(Hmα′ )+ Im( f ), Z(Hmα′ )∩ Im( f ) = 0,

and h maps Hmα′ and Hmβ′ into themselves. It follows that g is 1-active with respect to (δ, m̄ ↾ δ), and
ξ = δ + 1, and we are done by Claim 3.8. □

For δ ∈ U (m̄ ↾ δ), we say g ∈ G is 3-active with respect to (δ, m̄ ↾ δ), when there are n̄, χ, h,B
witnessing δ ∈ U (m̄ ↾ δ) and there exist (y, x, z) ∈ Gg ×Gg ×Z(Hmδ

) with x, z ̸= 0, α < δ, β ∈ [α, δ)\ S
and f ∈ F

m̄↾δ,g
α,β such that h( f (x)) = z + f (y). Also, h maps Hmα

(resp. Hmβ
) into Hmα

(resp. Hmβ
).

Claim 3.10. If g is 3-active with respect to (δ, m̄ ↾ δ), and ξ = δ+1, then for some mξ , m̄ ↾ (ξ +1) ∈ 3ξ+1

and δ ∈ U+(m̄ ↾ (ξ + 1)).

Proof. According to Claim 3.9 it is enough to show that g is 2-active with respect to (δ, m̄ ↾ δ). Let
n̄, χ, h,B witness δ ∈ U (m̄ ↾ δ), and fix y, x, z, α < β and f as in definition of 3-activity. Thanks
to the 3-activity assumption, we have h( f (x)) = z + f (y). First we claim that y ̸= 0. Otherwise,
h( f (x)) = z ∈ Z(Hmα

). Following the choice of h, we have f (x) ∈ Z(Hmα
). But Im( f )∩Z(Hmα

) = 0,
hence f (x) = 0 which implies x = 0, and this contradicts the assumption x ̸= 0. Consequently, y ̸= 0.
Now, we set f1 := f , f2 := 2 f , y1 := y and y2 := 2y. Since y ̸= 0, y1 ̸= y2. This witness g is 2-active
with respect to (δ, m̄ ↾ δ), as claimed. □

We say δ ∈ U (m̄ ↾ δ) is nice if there is no g ∈ G which is ℓ-active with respect to (δ, m̄ ↾ δ), for some
ℓ ∈ {1, 2, 3}.

Claim 3.11. Let δ ∈ U (m̄ ↾ δ) be nice. Then there is a sequence h̄ = (h g | g ∈ G) such that for α < δ large
enough, and for any f ∈

⋃
{F

m̄↾δ,g
α,β | β ∈ [α, δ)}, the following implication is valid:

x ∈ Gg ⇒ gδ( f (x)) = f (h g(x)).

Proof. Let g ∈ G and x ∈ Gg . Since g is not 1-active with respect to (δ, m̄ ↾ δ), and following its definition,
we can find some α < δ such that gδ( f (x)) ∈ Z(Hmα

)+ Im( f ) for all f ∈
⋃

{F
m̄↾δ,g
α,β | β ∈ [α, δ)}. Hence

there is some z ∈ Z(Hmα
) and y ∈ Gg so that gδ( f (x)) = z + f (y). Recall that g is not 3-active. This

forces z = 0. Applying this in the previous formula, gives us gδ( f (x)) = f (y). Since both of gδ and f
are injective, y is uniquely determined via h and g, so let y = h g(x). Then h g is as required. □

Let α∗ < δ be such that Claim 3.11 holds for all α ≥ α∗.

Claim 3.12. If δ ∈ U (m̄ ↾ δ) is nice, then:

(a) For all α < δ and f ∈
⋃

{F
m̄↾δ,g
α,β | β ∈ [α, δ)}, we have gδ( f (x)) = f (h g(x)) for x ∈ Gg .

(b) Let g ∈G and f an embedding from (Gg, Fk
g )k∈Kc into (Z(Hmδ

), Fk
mδ

)k∈Kc and let x ∈Gg . Then there
is a sequence ⟨ki , si | i < n⟩ with ki ∈ Kc and si ∈ Z \ {0} such that gδ( f (x))−

∑n
i=1 si Fki

mδ
( f (x)) ∈

Z(Hmα∗
).
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Proof. (a) Suppose not. Let α < δ and f1 ∈ F
m̄↾δ,g
α,β be a counterexample, where β > α, α∗. Thus for

some x ∈ Gg , we have gδ( f1(x)) ̸= f1(h g(x)). We may further assume that α∗ > α (as Claim 3.11 works
for any ordinal in (α∗, δ) as well). Let f2 ∈ F

m̄↾δ,g
α∗,β

be such that Z(Hmα∗
)∩ Im( f2) = 0. It turns out that

f := f1 + f2 ∈ F
m̄↾δ,g
α∗,β

, thus by Claim 3.11, gδ( f (x)) = f (h g(x)). This means that

gδ( f1(x)) + gδ( f2(x)) = f1(h g(x)) + f2(h g(x)).

Hence as gδ( f2(x)) = f2(h g(x)), we have gδ( f1(x)) = f1(h g(x)), a contradiction.

(b) This is true as gδ( f (x)) ∈ ⟨Z(Hmα∗
) ∪ {Fk

mδ
( f (x)) | k ∈ Kc}⟩. □

Claim 3.13. Let δ ∈ U (m̄ ↾ δ) be nice. Then there is a sequence (b∗

i , s∗

i | i < n) where b∗

i ∈ Kc and
s∗

i ∈ Z \ {0} such that for all g ∈ G, and any embedding f : (Gg, Fk
g )k∈Kc → (Z(Hmδ

), Fk
mδ

)k∈Kc we have

x ∈ Gg ⇒ gδ( f (x)) −

∑
i<n

s∗

i F
b∗

i
mδ

( f (x)) ∈ Z(Hmα∗
).

Proof. Fix g∗ ∈ Gg and x∗ ∈ Gg . Due to Claim 3.12(b) applied to g∗↾cl{x∗}
, we can find a sequence (b∗

i , s∗

i |

i < n) as there. Let g ∈ G and suppose f is an embedding from (Gg, Fk
g )k∈Kc into (Z(Hmδ

), Fk
mδ

)k∈Kc

and x ∈ Gg . By replacing g by g↾cl{x}, we may assume that Gg = cl{x} is one-generated (see
Definition 1.8(4)(b)). Let φ : cl{x∗} → cl{x} be such that φ(x∗) = x , and set f̃ := f ◦ φ. Note
that φ is an embedding from the structure (Gg∗↾cl{x∗}

, Fk
g∗↾cl{x∗}

)k∈Kc into (Gg↾cl{x}
, Fk

g↾cl{x}
)k∈Kc and f̃ is an

embedding from the structure (Gg∗↾cl{x∗}
, Fk

g∗↾cl{x∗}
)k∈Kc into (Z(Hmδ

), Fk
mδ

)k∈Kc and x ∈ Gg . Following

our assumption, it implies that gδ( f̃ (ze)) −
∑n

i=1 s∗

i F
b∗

i
mδ

( f̃ (ze)) ∈ Z(Hmα∗
). Recall that f, f̃ and φ are

embeddings that respect the structures. So,

F
b∗

i
mδ

( f̃ (ze)) = f̃ (F
b∗

i
g∗↾cl{x∗}

(ze)) = f (φ(F
b∗

i
g∗↾cl{x∗}

(ze))) = f (F
b∗

i
g↾cl{x}

(x)) = F
b∗

i
g↾cl{x}

( f (x)).

But note that F
b∗

i
g↾cl{x}

( f (x)) = F
b∗

i
g ( f (x)), hence

gδ( f (x)) −

n∑
i=1

s∗

i F
b∗

i
mδ

( f (x)) = gδ( f̃ (ze)) −

n∑
i=1

s∗

i F
b∗

i
mδ

( f̃ (ze)) ∈ Z(Hmα∗
),

as claimed. □

Now, we proceed the proof of Theorem 3.6. Let us derive the desired presentation in the above nice case.
Recall that each element of Z(Hmδ

) is of the form f (x) for some f ∈ F
m̄↾δ,g
α,β and x ∈ Gg , and also recall

that hc : Hc → Nc is an epimorphism with Ker(hc) = Z(Hc). These yield an automorphism π ∈ Aut(Nc)

via the assignment hc( f (x)) 7→ hc(gδ( f (x))). In view of Claim 3.13 we set F s̄∗,k̄∗

c =
∑n

i=1 s∗

i F
k∗

i
c . Thanks

to clause (1) from our assumption, for some k ∈ Kc one has Fk
mδ
↾Hc = F s̄∗,k̄∗

c . By the way we extended
the functions, Fk

mδ
= F s̄∗,k̄∗

mδ
, and following its definition, we have π(hc( f (x))) = hc(Fk

mδ
( f (x))) for all

f and x as above. Let g1 := (Fk
mδ

)−1
◦ gδ, and recall that g1↾Z(Hmδ

) = id and g1(t) ∈ t ·Z(Hmδ
) for all

t ∈ Hmδ
. According to Proposition 2.2, there is some f ∈ Hom(Nc,Z(Hmδ

)) so that g1 = g f . Due to
clause (1) of the theorem and in the light of Lemma 3.3 we observe that f ∈ Hom(Nc,Z(Hc)). It follows
that h ↾ δ = gδ = Fb

mδ
◦ g1 = Fb

mδ
◦ g f . This is a contradiction to (∗)2(d + g). In sum, we have proved

that �γ ̸= ∅, completing the proof of in the nice case. Recall from clause (∗)4 that this completes the
proof of the theorem. □
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Lemma 3.14. Assume c ∈ C4
aut is such that |Hc| > 2|Kc|+ℵ0 . Then we can extend c to some (c,G) ∈ C6

aut.

Proof. It suffices to define G. First, we say g is one-generated, provided there is some x ∈ Z(Hc) so that
Gg/(H∗

c ∩Z(Hc)) is the smallest pure subgroup of Z(Hc)/(H∗
c ∩Z(Hc)) to which x belongs and that is

closed under Fk
g ’s for k ∈ Kc. Let G consist of all g such that:

(1) g = (Gg, (Fk
g )k∈Kc), where Gg ⊆ Z(Hc).

(2) Gg is a torsion-free subgroup such that Gg ∩ H∗
c = 0.

(3) g is one-generated.

(4) |Gg| ≤ |Kc| +ℵ0.

(∗)1 Denoting the isomorphic structures equivalence relation with ∼=, we have:

(a) |G/ ∼=| ≤ 2|Kc|+ℵ0 .
(b) If G ̸= ∅, then (c,G) ∈ C6

aut.
(c) If g ∈ G, then Hom(Nc, Gg) = 0.

(∗)2 Assume |Hc| > 2|Kc|+ℵ0 . Then G ̸= ∅.

Indeed, first, we note that |Z(Hc)| ≥ 2|Kc|+ℵ0 . From this, we can find a sequence (xα | α < 2|Kc|+ℵ0) of
distinct elements of Z(Hc) \ H∗

c . For each α, let Gα be minimal such that:

(a) {xα} ∪ (H∗
c ∩Z(Hc)) ⊆ Gα,

(b) Gα is closed under the action of Fk
c , for k ∈ Kc,

(c) Gα/(H∗
c ∩Z(Hc)) is a pure subgroup of Z(Hc)/(H∗

c ∩Z(Hc)),

(d) |Gα| ≤ |Kc| +ℵ0.

For each α let (xα,ℓ | ℓ < |Gα|) enumerate Gα so that the elements of H∗
c ∩Z(Hc) are enumerated first.

Then for some α < β < 2|Kc|+ℵ0 we have |Gα| = |Gβ | and {(xα,ℓ, xβ,ℓ) | ℓ < |Gα|} is an isomorphism
from Gα onto Gβ which is identity on H∗

c ∩Z(Hc) and commutes under Fk
c , for all k ∈ Kc. In order

to define g, we set Gg = {xα,ℓ − xβ,ℓ | ℓ < |Gα|} and define Fk
g := Fk

c ↾Gg . It turns out that g ∈ G. The
lemma follows. □

Corollary 3.15. Assume Gödel’s axiom of constructibility V = L, and let K be a group. Then the
following are equivalent:

(a) For every cardinal λ > 2|K |+ℵ0 as in Theorem 3.6, there is a group H such that |H | = |Z(H)| = λ

and Aut(H) ∼= K .

(b) There is some c ∈ C+

aut such that Kc ∼= K , Aut(Hc) ∼= K and |Z(Hc)| > 2|K |+ℵ0 .

Proof. (a) ⇒ (b) This is clear, as we can define c ∈ C+

aut by c = (Kc, Hc, Fc) = (K , H, F), where
F : K ∼= Aut(H) is an isomorphism.

(b)⇒ (a) Let c∈ C+

aut be such that Kc ∼= K and |Hc|> 2|K |+ℵ0 . Let also λ> 2|K |+ℵ0 be as in Theorem 3.6.
We combine Lemma 1.9(3) along with Lemma 3.14, and extend c to some (c,G) ∈ C6

aut. We are going
to show that Hom(Nc, Z) = 0. Indeed, this follows from the fact that the c we construct is auto-rigid
and the center of Hc has size bigger than the size of K . Thanks to Lemma 3.1, with m = c, we see
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Hom(Nc, Z) = 0. In fact, following the previous proof, Hom(Nc, Gg) = 0, for all g ∈ G. Theorem 3.6
gives us an m so that |Hm| = λ and

Aut(Hm) = {Fk
m ◦ g f | k ∈ Kc, f ∈ Hom(Nc,Z(Hm))}.

We note that for any b, f as above, (Fb
m◦g f )↾Hc ∈Aut(Hc), hence for some d ∈ Kc, we have (Fb

m◦g f )↾Hc =

Fd
c . Then Fb

m ◦ g f = Fd
m. Thus Aut(Hm) ⊆ {Fk

m | k ∈ Kc} ⊆ Aut(Hm), so Aut(Hm) ∼= Kc ∼= K . □

Similarly, we can prove the following.

Corollary 3.16. Assume Gödel’s axiom of constructibility V = L, and let K be a group. Then the
following are equivalent:

(a) For every λ > 2|K |+ℵ0 as in Theorem 3.6, there is a group H of cardinality λ such that Aut(H) ∼= K ,
and for some H∗ ⊆ Z(H) of cardinality <λ, Z(H)/H∗ is a λ-free abelian group.

(b) There is c ∈ C+

aut such that Kc ∼= K , Aut(Hc) ∼= K and |Z(Hc)| > 2|K |+ℵ0 , and there is g ∈ G such
that Gg is an abelian group.

Corollary 3.17. Assume Gödel’s axiom of constructibility V = L, and let K be an abelian group such
that F : K ∼=−→ Aut(H) for some abelian group H and some isomorphism F. Then for every cardinal
λ > 2|K |+ℵ0 , there is an abelian group Hλ of size λ and some Fλ such that:

(1) Fλ : K ∼=−→ Aut(Hλ).

(2) For every k ∈ K , Fλ(k) is an automorphism of Hλ such that (Fλ(k) ↾ H) = F(k) ∈ Aut(H).

Proof. Define c ∈ C+

aut by c = (K , H, F). Since H is abelian, Nc = 0. This shows the hypotheses of
Theorem 3.6 are satisfied. The result follows immediately. □

Note that the above results give a negative answer to the natural question of whether the automorphism
group of a group H can determine the group H .
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