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Abstract. In [9] we proved that the space of countable torsion-free abelian
groups is Borel complete. In this paper we show that our construction from

[9] satisfies several additional properties of interest. We deduce from this that
countable torsion-free abelian groups are faithfully Borel complete, in fact,

more strongly, we can Lω1,ω-interpret countable graphs in them. Secondly, we

show that the relation of pure embeddability (equiv., elementary embeddabil-

ity) among countable models of Th(Z(ω)) is a complete analytic quasi-order.

1. Introduction

In [9] we showed that the Borel space of countable torsion-free abelian groups
(TFABω) is as complex as possible in terms of classification up to isomorphism,
resolving a major conjecture of Friedman and Stanley from 1989 (cf. [3]). The aim
of this paper is to show that our construction from [9] satisfies several additional
properties of interest, which imply stronger anti-classification results for the space
TFABω. In particular, we will prove the following (see what follows for a discussion):

Theorem 1.1. TFABω is a faithfully Borel complete class of structures. Further-
more, we can Lω1,ω-interpret the space Graphsω (graphs with domain ω) into the
space TFABω (torsion-free abelian groups with domain ω).

Theorem 1.2. The pure embeddability relation on TFABω is a complete analytic
quasi-order. In fact, more strongly, elementary embeddability (equiv., pure embed-
dability) between countable models of Th(Z(ω)) is a complete analytic quasi-order.

The property of Borel completeness for the space of countable models of a theory
in Lω1,ω is probably the most well-known anti-classification property in terms of
classification up to isomorphism, as it literally says that the isomorphism relation on
such a class reduces in a Borel way the isomorphism relation on countable models of
any theory in Lω1,ω. But, actually, stronger forms of anti-classification are known
in the literature, for example, the fact that countable graphs can be first-order
interpreted in countable groups (cf. e.g. [7]) is widely agreed to be a much stronger
result than the Borel completeness of the space of countable groups. This line of
thought was already addressed by Friedman and Stanley in their seminal paper
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on Borel reducibility [3], in fact, abstracting from the model theoretic notion of
interpretability, they1 introduced the following strengthening of Borel completeness:

Definition 1.3. Let Kω be the Borel space of models with domain ω of a Lω1,ω-
theory. The space Kω is said to be faithfully Borel complete if there is a Borel
reduction F from Graphω (graphs with domain ω) into Kω such that for any in-
variant Borel subset X of Graphω the closure under isomorphism of the image of
X under F is Borel.

It is well-known that countable groups are faithfully Borel complete and that
furthermore there is a first-order interpretation of countable graphs into countable
groups. On the other hand, any first-order theory of abelian groups is known to
be stable and so we cannot expect to have a first-order interpretation of countable
graphs in countable abelian groups. Our Theorem 1.1 is then the next best possible
result in this respect; additionally the interpretation can also be taken to be with
respect to very simple formulas, see Notation 3.1 for details. In [3] one of the main
motivations for the introduction of the notion of faithful Borel completeness was
that whenever this property holds for T , then the full Vaught’s conjecture reduces
to the Vaught’s conjecture for Lω1,ω-theories extending T , in particular we deduce:

Corollary 1.4. Vaught’s conjecture is equivalent to Vaught’s conjecture for Lω1,ω-
theories of torsion-free abelian groups of infinite rank, or, more suggestively, Vaught’s
conjecture can be considered to be a problem in countable abelian group theory.

We now comment on Theorem 1.2. In recent years, descriptive set theorists have
been paying attention to other equivalence relations or quasi-orders among classes
of countable structures. In particular, among many other interesting results, in [6]
it was shown that the embeddability relation between countable graphs is a com-
plete analytic quasi-order, and so the relation of bi-embeddability among countable
graphs is a complete analytic equivalence relation. Despite this, not much seems
to be known in terms of analysis of the relation of elementary embeddability, apart
from reference [10], where it is shown that this relation when considered between
countable graphs is a complete analytic quasi-order. In particular, a careful analysis
of the complexity of the relation of elementary embeddability between the count-
able models of familiar complete first-order theories does not seem to be addressed
in the literature (notice that on the other hand in terms of complexity of isomor-
phism the situation is much different, as e.g. for any complete first-order theory T
of Boolean algebras we know the exact complexity of the relation of isomorphism
between the countable models of T , see [2]). In this respect our Theorem 1.2 seems
to be particularly relevant, and we hope that it will inspire further research on the
topic. Finally, we want to mention that in [1] it was proved that the embeddability
relation between countable abelian groups is also a complete analytic quasi-order.

Some words of explanations on the structure of the paper are in order. In Section
2 we overview the construction from [9] referring to [9] for details. In Sections 3
and 4 we prove Theorems 1.1 and 1.2. We follow the same notation of [9], so we
invite the reader to refer to [9] for unexplained notation. We only recall:

Definition 1.5. Let H 6 G be groups, we say that H is pure in G, denoted by H 6∗
G, when if h ∈ H, 0 < n < ω, g ∈ G and (in additive notation) G |= ng = h, then

1The use of the term faithful to denote this property was introduced only later, cf. [4, pg. 300].
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TORSION-FREE ABELIAN GROUPS ARE FAITHFULLY BOREL COMPLETE 3

there is h′ ∈ H s.t. H |= nh′ = h. Given S ⊆ G we denote by 〈S〉∗S the pure sub-
group generated by S (the intersection of all the pure subgroups of G containing S).

2. Overview of the construction from [9]

The construction from [9] consists of two parts, one combinatorial and one group
theoretic. We now overview both. First of all, in order to define the combinatorial
part of the construction (referred to as the combinatorial frame in [9]) we need:

• Keq is the class of models N in a vocabulary {E0,E1,E2} such that each
EN
i is an equivalence relation and EN

2 is the equality relation. We use the
symbol Ei to avoid confusions, as the symbol Ei also appears elsewhere.
• M is the countable homogeneous universal model in Keq.

Practically, structures in Keq are models of the theory of two equivalence rela-
tions, naming equality with EM

2 is just a useful technical convenience which helps in
some passages from [9], that will also be used at the end of the proof of Theorem 1.2.

Now, a combinatorial frame is an object m(M) = m = (Xm, X̄m, f̄m, Ēm) =
(X, X̄, f̄, Ē) subject to several technical conditions, in particular Ēm = Ē = (En :
0 < n < ω) = (Em

n : 0 < n < ω), and, for 0 < n < ω, En is an equivalence relation
defined on injective n-sequences from X (denoted as seqn(X)). Although not made
explicit here, all depends on M , as it depends on partial maps acting on X given
by f̄ = (fḡ : ḡ ∈ G∗), where G∗ is made of sequences of partial isomorphisms of the
universal model M . Furthermore, the set X on which the partial maps fḡ’s act is
partitioned into infinite pieces as X̄ = (X ′s : s ∈ M). This allow us to define for
every U ⊆M the set XU =

⋃
{X ′s : s ∈ U}. These are the essential pieces of m.

Now, given a combinatorial frame m as above, we define a group G1 = G1[m].
This group will be some sort of universal model for our Borel reduction of Keq

ω

into TFABω. Crucially, our group G1 will have as basis (in the sense of abelian
group theory) the set X from the combinatorial frame m = (X, X̄, f̄, Ē). The group
G1 encodes the combinatorial frame m in a sophisticated manner, via divisibility
conditions on elements of G1. Now, given a set U ⊆M we can consider the subset
XU of the basis X and with it the group (recall the notation from 1.5):

G(1,U)[m] = G(1,U)[m(M)] = G(1,U) = 〈y : y ∈ Xu, u ∈ U〉∗G1
= 〈XU 〉∗G1

.

Essentially, the Borel reduction from [9] is the map U 7→ G(1,U). In order to
prove our results, we need a final piece of notation. Recall that the equivalence
relations Ei (for i ∈ {0, 1, 2}) are defined on the universal model M , while the
group G1 has as basis elements from X =

⋃
{Xs : s ∈ M}. We “translate” the

equivalence relations EM
i on M to equivalence relations Ei on X as follows:

Definition 2.1. For i < 3, let:

Ei = {(x, y) : for some (a, b) ∈ EM
i , x ∈ X ′a and y ∈ X ′b}.

This ends our overview of the construction from [9]. Evidently, a proper under-
standing of the details of the construction require the reader to refer to [9], but we
see no other way to explain the details of the construction without essentially repro-
ducing the first sections of [9] (as was done in a previous version of this paper).
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3. Faithfulness

By an interpretation Γ we mean as in [5, pg. 212], so in particular we require
the existence of objects ∂Γ, φΓ’s, and fΓ as there. In particular, the formula ∂Γ is
referred to as the domain of the interpretation Γ. If all the formulas involved in the
interpretation are Lℵ1,ℵ0 -formulas, then we talk of an Lℵ1,ℵ0-interpretation. By an
interpretation of a class of structures into another we mean as in [5, Sec. 5.4(b)].

Notation 3.1. (1) By Lpure
ℵ1,ℵ0(τAB)-interpretation we mean an Lℵ1,ℵ0-interpretation

in the language of abelian groups τAB = {0,+,−} which uses formulas in the
closure of the following formulas by negation and countable conjunctions:

{pm |x, pm | (x− y), nx = ky, x = y : p ∈ P, m, n, k < ω}.

(2) Below by “definable” we mean definable by a formula as in 3.1(1).

Fact 3.2. If ϕ(x̄) ∈ Lpure
ℵ1,ℵ0(τAB) and G 6∗ H ∈ AB, for ā ∈ Glg(x̄) we have that:

G |= ϕ(ā) ⇔ H |= ϕ(ā).

Definition 3.3. Let X and G1 be as in Section 2. For a ∈ G1 we let:

Pa = {p ∈ P : p∞| a}.

Claim 3.4. Let B : Keq
ω → TFABω be as in Proof of Main Theorem of [9].

(1) There is an Lpure
ℵ1,ℵ0(τAB)-interpretation of Keq

ω into {B(N) : N ∈ Keq
ω }.

(2) There is ψ∗ ∈ Lℵ1,ℵ0(τAB) such that for every countable abelian group G we
have that G |= ψ∗ if and only if there is N ∈ Keq

ω such that G ∼= B(N).

Proof. We prove (1). Let M , m, X and G1 be as in Section 2, and G = GU = G(1,U),
for U ⊆M . Notice that, although we fix U ⊆M and G for almost all the proof, all
the formulas that we define below do not depend on U .

(?1) Let E? = {(a, b) ∈ G1 : a 6= 0 6= b ∧ma = nb, for some m,n ∈ Z+}.
(?2) E? is a definable equivalence relation.

(?3) From here until (?7), fix x̂ ∈ X.

(?4) We define a formula ψx̂(v) (so v is a free variable) saying the following:
(a) v is p∞-divisible for every prime p ∈ Px̂.
(b) v is not p∞-divisible for every p ∈ P∑

`<k q`x`
, where:

(i) k > 2;
(ii) (x` : ` < k) ∈ seqk(X);
(iii) q̄ ∈ (Z+)k.

(c) v 6= 0 (this actually follows from (b)).

(?5) If a ∈ G, y ∈ x̂/Em
1 ∩XU and a ∈ y/E?, then G |= ψx̂(a).

The fact that (?5) holds is easy to see, recalling that G 6∗ G1.

(?6) (a) If a ∈ G and |supp(a)| > 2, then G |= ¬ψx̂(a);
(b) If y ∈ XU , a = qy ∈ G and y /∈ x̂/Em

1 , then G |= ¬ψx̂(a).

Clauses (a) and (b) can be proved arguing as in the proof of [9, Lemma 4.8], in
particular concerning clause (b) cf. the argument given in (∗0) from the proof of
[9, Lemma 4.8].

(?7) If a ∈ G, then G |= ψx̂(a) iff a ∈
⋃
{y/E? : y ∈ x̂/Em

1 }.
This is by (?5) and (?6).
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(?8) If x̂ ∈ X, then for every U1 ⊆M we have:

x̂ ∈ XU1 ⇔ x̂/E? ⊆ G(1,U1).

(?9) For x̂, ŷ ∈ X, we define a formula ψx̂,ŷ(v) saying the following:
(a) v is p∞-divisible for every prime p ∈ Px̂−ŷ;
(b) v is not p∞-divisible when for some x 6= y ∈ X we have (x, y) /∈ (x̂, ŷ)/Em

2

and p ∈ Px−y.

(?10) If G |= ψx̂(a)∧ψŷ(b)∧ψx̂,ŷ(a− b), then for some x1, y1 and q ∈ Q+ we have:
(a) x1, y1 ∈ XU ;
(b) a = qx1 ∈ G and b = qy1 ∈ G;
(c) (x1, y1)Em

2 (x̂, ŷ), so x1 ∈ x̂/Em
1 ∩XU , y1 ∈ ŷ/Em

1 ∩XU .

We show that (?10) holds. The existence of x1, y1 ∈ XU such that a ∈ x1/E? ∩XU
and b ∈ y1/E?∩XU holds by (?7) and the assumption. Furthermore, as G |= ψx̂(a)∧
ψŷ(b)∧ψx̂,ŷ(a−b), then necessarily x1, y1 ∈ XU . Let now a = q1x1 and b = q2y1, for
q1, q2 ∈ Q+. For the sake of contradiction suppose that q1 6= q2. As G |= ψx̂,ŷ(a−b)
we know that for every p ∈ Px̂−ŷ we have that G |= p∞ | (q1x1 − q2y1). Let q ∈ Z+

be such that qq1, qq2 ∈ Z and let p ∈ Px̂−ŷ be > |qq1| + |qq2|. Now, we can find n
and (q`, x`, y` : ` < n) such that x`, y` ∈ XU , q` ∈ Z+, q`(x` − y`) ∈ G, q ∈ Z+ and
(x`, y`) ∈ (x̂, ŷ)/Em

2 and we have the following:

q(q1x1 − q2y1) =
∑
`<n

q`(x` − y`) mod(QpG0 ∩G1).

But analyzing the equation above we have that the sum of the coefficients on the
LHS is q(q1 − q2) 6= 0 (recall that by assumption q1 6= q2), whereas on the RHS it
is zero, a contradiction. Finally, the fact that (x1, y1)Em

2 (x̂, ŷ) is by (b) of (?9).

(?11) Recalling 2.1, for i = 0, 1, 2, let χ′i(a, b) be the formula:∨
{ψx̂(a) ∧ ψŷ(b) ∧ ψx̂,ŷ(a− b) : x̂, ŷ ∈ X and G1 |= x̂Eiŷ}.

(?12) For i = 0, 1, 2, let χi(a, b) be the formula:

∃a1, b1(aE?a1 ∧ bE?b1 ∧ χ′i(a1, b1)).

(?13) For U ⊆M , a, b ∈ G = G(1,U) and i < 3, we have that TFAE:
(a) G |= χi(a, b);
(b) for some Ei-equivalence class Y ⊆ XU we have a, b ∈

⋃
{x/E? : x ∈ Y }.

We show that (?13) holds. The interesting direction is “(a) implies (b)”. So assume
that G |= χi(a, b), then there are a1 ∈ a/E? and b1 ∈ b/E? such that G |= χ′i(a1, b1).
Hence, for some x̂, ŷ ∈ X we have that:

(i) G |= ψx̂(a1) ∧ ψŷ(b1) ∧ ψx̂,ŷ(a1 − b1);
(ii) x̂Eiŷ.

Now, by (?10), for some x ∈ x̂/Em
1 ∩ XU , y ∈ ŷ/Em

1 ∩ XU and q ∈ Q+ we have
that a1 = qx, b1 = qy ∈ G1 and (x, y)Em

2 (x̂, ŷ). But by [9, Claim4.11(1)] we have
that (xEiy) iff (x̂Eiŷ), and so by (ii) above we are done. This is enough for our
purposes as we can now interpret a model isomorphic to M � U in G(1,U) = G in
the following manner:

(?14) (a) the domain of the interpretation is {a ∈ G : G |= χ2(a, a)} (cf. what was
said in the beginning of the present section, so this correspond to the ∂Γ

from [5, pg. 212]);
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(b) equality is interpreted as χ2(a, b) (recall that E2 is = on M , cf. the
beginning of Section 2);

(c) we interpret Ei as χi(a, b).

This concludes the proof of (1). We now prove (2).

(∗1) For s ∈M and x̂ ∈ X ′s, let ϕ∗(s,x̂)(v) ∈ Lℵ1,ℵ0(τAB) say:

(a) χ2(a, a);
(b) for p ∈ Px̂, p∞|a.

(∗2) For s ∈ M and x̂ ∈ X ′s, let ψ∗(s,x)(v) ∈ Lℵ1,ℵ0(τAB) be such that, for every

abelian group C and a ∈ C, C |= ψ∗(s,x̂)(a) if and only if:

(a) C ∈ TFAB;
(b) C |= ϕ∗(s,x̂)(a);

(c) C is the pure closure of the subgroup generated by:

A = {b ∈ C : C |= χ∗(b, a)},
where χ∗(b, a) is the formula:∨

{ψx̂(a) ∧ ψŷ(b) ∧ ψx̂,ŷ(a− b) : ŷ ∈ X};

(d) the set A is (linearly) independent;
(e) if b ∈ A and C |= ψx̂(a) ∧ ψŷ(b) ∧ ψx̂,ŷ(a − b), then for every b′ ∈ C we

have that C |= ψx̂(a) ∧ ψŷ(b′) ∧ ψx̂,ŷ(a− b′) implies that b = b′;
(f) moreover, if C |= ψx̂(a) ∧ ψŷ(b) ∧ ψx̂,ŷ(a − b), then b and x̂ determine ŷ

uniquely;
(g) For i = 0, 1, 2, χi(u, v) is an equivalence relation on A with infinitely many

equivalence classes, and, for i = 0, 1, each equivalence class is infinite;
(h) if k < ω, (b` : ` < k) ∈ Ak is without repetitions and, q` ∈ Z+, for ` < k,

and p is a prime such that p does not divide q` for some ` < k, then,
letting ŷ` ∈ X be such that ψx̂,ŷ(a− b`), the following are equivalent:
(·1) p ∈ P∑

`<k q`y`
;

(·2) p |
∑
{q`b` : ` < k};

(·3) p∞ | {q`b` : ` < k};
(i) if t ∈M and ẑ1, ẑ2 ∈ X ′t, then (·1) ⇔ (·2), where:

(·1) C |= ψx̂(a) ∧ ψẑ1(b1) ∧ ψx̂,ẑ1(a− b1), for some b1 ∈ C;
(·2) C |= ψx̂(a) ∧ ψẑ2(b2) ∧ ψx̂,ẑ2(a− b2), for some b2 ∈ C;

(j) A is a maximal independent subset of C.

(∗3) If s ∈M , x̂ ∈ X ′s and s ∈ U ⊆M with U infinite, then GU |= ψ∗(s,x̂)(x̂).

[Why? By construction.]

(∗4) For any countable abelian group C, s ∈ M and x̂ ∈ X ′s we have that: C |=
∃uψ∗(s,x̂)(u) if and only if, for some infinite U ⊆M with s ∈ U , C ∼= B(M � U).

We prove (∗4). The right-to-left implication is by (∗3). Concerning the other
implication, suppose that C |= ∃uψ∗(s,x̂)(u) and let a∗ ∈ C be such that C |=
ψ∗(s,x̂)(a∗). Now, recalling the definition of ψ∗(s,x̂)(u) from (∗2), for b ∈ A, let:

Yb = {ŷ ∈ X : ψx̂(a∗) ∧ ψŷ(b) ∧ ψx̂,ŷ(a∗ − b)}
(∗4.1) If b ∈ A, then |Yb| = 1.

[Why? By (∗2).]

(∗4.2) Let g0 be the function with domain A such that g0(b) ∈ Yb, for b ∈ A.
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[Why g0 exists? By (∗4.1).]

(∗4.3) (a) Let Y = ran(g);
(b) U = {t ∈M : Y ∩X ′t 6= ∅}.

(∗4.4) Y =
⋃
{X ′t : t ∈ U}.

[Why (∗4.4)? The inclusion ⊆ holds by (∗4.3)(b). The other inclusion is by (∗2)(i).]

(∗4.5) Y = XU .

[Why? By (∗4.4) and the choice of XU .]

(∗4.6) There is an isomorphism g0 ⊆ g1 : 〈A〉C ∼= G(0,U) =
∑
{Zy : y ∈ Y = XU}.

[Why? As A is independent by (∗2)(d).]

(∗4.7) There is an isomorphism g1 ⊆ g2 : 〈A〉∗C ∼= G(1,U) = 〈Y 〉∗G(1,U)
.

[Why? By (∗2)(h) and (∗4.5).]
Hence, (∗4) holds indeed.

(∗5) For any countable abelian group C, we have that

C |=
∨
{∃uψ∗(s,x̂)(u) : s ∈M, x̂ ∈ X ′s} := ψ∗

if and only if, for some infinite U ⊆M , C ∼= B(M � U).

Proof of Theorem 1.1. This follows from 3.4 together with the well-known fact that
Keq

ω is faithfully Borel complete (folklore, see also the proof of Fact 4.1).

4. Pure embeddability is a complete analytic quasi-order

Fact 4.1. There is a Borel map B from Graphω into Keq
ω such that we have:

H1 embeds into H2 ⇔ B(H1) embeds into B(H2).

Proof. This is folklore but we add details for the benefit of the reader. For a graph
H = (H,RH) with domain ⊆ ω we define a model M = B(H) of the theory of two
equivalence relations with set of elements ω ∪ ω × ω defining EM

1 , EM
2 as follows:

(1) EM
1 partitions M into the sets Xn = {n} ∪ {(n,m) : m < ω}, for n < ω;

(2) EM
2 = {(n,m) : n,m < ω} ∪ {((n,m), (m,n)) : nRHm}∪ =M .

It is easy to see that EM
1 and EM

2 define equivalence relations on M and so M =
B(H) ∈ Keq

ω . Notice now that H is first-order interpretable in B(H) as follows:

(A) the domain of the interpretation is the set of elements ϕ0(x) such that x/E2

has at least three elements and equality is interpreted as equality;
(B) the edge relation on ϕ0(M) is defined as ϕR(x, y) iff there are x1 and y1 s.t.:

xE1x1 ∧ x1E2y1 ∧ y1E1y.

It is then easy to see that the Borel map H 7→ B(H) is as wanted.

Proof of Theorem 1.2. First of all, notice that with a slight abuse of notation (but
not a problematic one) we consider models with domain ⊆ ω instead of simply ω.
Notice now that the Borel map B from the proof of the Main Theorem from [9] is
such that for H1, H2 ∈ Keq

ω we have that:

H1 embeds into H2 ⇔ B(H1) embeds purely into B(H2),

and so by Fact 4.1 we are done as it was proved in [6] that embeddability between
countable graphs is a complete analytic quasi-order. Finally, it is easy to see that all
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8 GIANLUCA PAOLINI AND SAHARON SHELAH

the torsion-free abelian groups in our construction are elementary equivalent to Z(ω)

and it is well-known that elementary embeddability among models of a complete
theory of TFAB corresponds to pure embeddability, see e.g. [5, Appendix 6.2].
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