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0. INTRODUCTION

Recall AECs (abstract elementary classes); were introduced in [She87a]; and
their (orbital) types defined in [She87b], see on them [She09b], [Bal09]. It has
seemed to me obvious that even with £ having amalgamation, those types in general
lack some good properties of the classical types in model theory. E.g. “(\ k)-
sequence-locality where

Definition 0.1. 1) We say that an AEC ¢ is a (), k)-sequence-local (for types) when
k is regular and for every <g-increasing continuous sequence (M, : i < k) of models
of cardinality A and p,q € /(M) we have (Vi < k)(p | M; =q | M;) = p =q.
We omit A when we omit “|M;|| = \”.

2) We say an AEC ¢ is (), k)-local when: x > LST(¥) and if M € £, and py1,ps €
(M) and N <¢ M A ||N|| < k= p1[N = po[N then p; = po.

3) We may replace A by < A, < A, [, A] with the obvious meaning (and allow A to
be infinity).

Of course, being sure is not a substitute for a proof; some examples were provided
by Baldwin-Shelah [BS08, §2]. Also note our using: Abelian groups without zero
is similar to e.g., the work [HS90]. There we give an example of the failure of
(A, k)-sequence-locality for ¢-types in ZFC for some A, k, actually k = Rg. This was
done by translating our problems to abelian group problems. While those problems
seem reasonable by themselves, they may hide our real problem.

Here in §1 we get £, an AEC with amalgamation with the class {k : (< oo, k)-
sequence-localness fail for £} being maximal; what seems to me a major missing
point up to it, see Theorem 1.4. Also we deal with “compactness of types”, getting
unsatisfactory results - classes without amalgamation; in [BS08] this was done only
in some universes of set theory, but with amalgamation; see §2.

We rely on [BS08] to get that € has the JEP and amalgamation.

Question 0.2. Can {x : £ is (< kT, k)-local} be “wild”? E.g. can it be all odd
regular alephs? etc?
Similarly for (< oo, k)- sequentially local.

Note that for this, the present translation theorem of [BS08] is not suitable.

In §2 we deal with sequence-compactness of types.

Mostowski [Mos57] initiated the quest to find strengthenings of first-order logic
that still have a “good model theory”. Usually, one may add generalized quantifiers
(e.g., (3=Mz)) and/or allow certain infinitary operations (e.g., A, %a). There
is much to be said on this topic; see the collection [Bar85] and, later, Vaénanen’s
book [V11].

In particular, Lindstréom proved that one cannot expect too much: either the
downward Lowenheim—Skolem property to Xy fails, or Xy-compactness fails.

Now, abstract elementary classes (AECs) continue this, trying to deal directly
at the model theory. E.g. concerining “a theory 7" in logic L(32%1)” | we define the
AEC ¢ = tp, by:

e K is the model of T,

e M <¢ N iff in addition to M =<p(gx) N, which is naturally defined, we
demand that, if M = (I¥1z)y(z,a) then not only N = (I=R0)p(x,a) but
N = ¢b,a] = be M.

Similarly, for e.g. the logic Ly+ yx,-
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This work is part of the attempt to sort out which properties of first-order logic
hold for AECs, particularly when ¢ is an AEC with amalgamation. In a subsequent
paper [ST], we note that this is the case for the £ from §2. This work was submitted
to Jouko Vaananen in October 2009 for a volume in honor of Andrzej Mostowski.

Later and independently, Boney [Bonl4] investigated such things mainly for
compact cardinals, in particular, has results close to 1.8 (and 2.8).

We are grateful to the referees for their helpful comments and to Will Boney for
pointing out a correction.

It is my pleasure to dedicate this to the memory of Andrzej Mostowski, who
contributed so much to mathematical logic and particularly to starting other logics
and generalized quantifiers in [Mos57].

1. AN AEC WITH MAXIMAL FAILURE OF BEING LOCAL
Claim 1.1. Assume

®1 (@) k=cf(k) >0>Ry and o = O
(b)  there is no uniform 0% -complete ultra-filter D on x
(¢) 79 is the vocabulary
(B, El:n€2,w)}U{F.: c€[o]NYU{R.:e €0 U{Rp;: i <o,n<uw},
where R. are two-place predicates, F is an unary function symbol, R, ; is
an n-place predicate and E! | E, are (2n)-place predicates,
(d) 75 iste\{Rni:i<o,n<w}.

Then
B there are I, 7o, Myo (for € =1,2 and a < k), and g, (for a < k) satisfy-

) I, a set of cardinality 0%, is C-increasing continuous with o

) My.o, aTg-model of cardinality < 0%, is increasing continuous with o
(¢) mo,a s a function from My o onto I, increasing continuous with o
(d) ‘ﬂ';;{t” <O fortel,,a<kand{=1,2
(e) ift € Int1\Io then 71'[’;{75} C My a+1\Mp o

)

which means a € My o = T1.4(a) = T2,4(9a(a))
(g9) for a = Kk there is no isomorphism from My o onto M respecting
T

Proof. Follows from 1.2 which is just a fuller version adding to 7y unary function
F, for ¢ € G; anyhow we shall use 1.2. Oy 1

Claim 1.2. Assuming ®1 of 1.1 we have:

B there are 1o, Ao, T, Moo (for £ =1,2,a < k) and go (for a < k) and G
such that:
(a) G is an additive (so abelian) group of cardinality O™
(b) I, is a set, increasing continuous with «,|I,| = 0
(¢) My is a Tp-model, increasing continuous with «, of cardinality 0"
with universe A,
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) T is a function from My onto I, increasing continuous with «
)

My, o
) Ta(a) = ma(Fe™"" (a))
)

f
Mo ( 7Moo My, o
g FCl - (FC2 ‘ (Cl)) = Fcl—f-cl (a)

h) mala) =ma(b) & \/ F2%(a)=b
ceG
(i) for a < K,gq is an isomorphism from M o onto My o which respects
T which means a € My o = mo(a) = 7o (fa(a))
(j) there is no isomorphism from M . | To onto Ma ., | To Tespecting my.
(k) My olty = Ms3 |70, for a < K.

Me,o . . . ) . .
F."%(c € G) is a permutation of My o, increasing continuous with o

(e

(d
(
(
(

Discussion 1.3. We try to shed some light on the proof of 1.2 on how we shall to
use it, see Claim 1.8. The models M; o, M> o are almost the same.
Proof. Let

(¥)o 0= 0% s0 0 = oMo

()1 (a) let G = ([o]<M0,A), i.e., the family of finite subsets of o with the
operation of symmetric difference. This is an abelian group satisfying
Vz(z+2 = 0), but we may identify e < o with {e}, so treating ordinals
as above

let (afau: f€"0o,a < k,u€ G) be asequence without repetitions
for B < klet Ag ={asau:f € 0,a<1l+panduecG}
for B < klet Ip = ("o) x (14 f)
7 be the function with domain Ag such that, we let mg(afa,.) =
(f,a) when a <1+ 8 <k
(f) for each 8 < k we define a permutation gg (of order 2) of Ag by
95(af,0,u) = Ap0utals(e) bence a € Ag = ms(gs(a)) = ms(a).
Note that
()2 (a) |G| =0

(b) (Ap: B < k) is a C-increasing continuous, each Ag a set of cardinality

=0
(c¢) (Ig: B < k) is C-increasing continuous, each I3 of cardinality o = 6"

(d
(e
(f
(g

mg is a mapping from Ag onto Ig

ift € I, C Ig then Wﬂ_l{t} = 7, {t} has cardinality |G| = o

if t € Iny1\lo then 711 {t} C Aat1\Aa

if « < B <k then gg maps A, onto itself and gg o gg is the identity.

)
)
)
)

For each n € [2,w) and 8 < k we define equivalence relations E;ﬁ’ E, g on"(Ag):

()3 dE;L,/BB iff 75(a) = mp(b) where of course mg({ay : £ < n)) = (ms(as) : £ < n)

(%)4 &En7513 iff c_LE;lﬁB and there are k£ < w and ay, ..., ar such that
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(i
(ii

(iii

) ar € (Ap)

) a=a

)
(iv) for each £ < k for some a1, < & we have g5} (ga, (a¢)) is well defined
and equal to Gg41 OF ga, (95, (ar)) is well defined and equal to Gg1.

Note:

(x)21 (a) the two possibilities in (x)4(iv) are one as g, ! = g, so the first one is

equal to the second;

(b) go does not preserve a/E, g!, in fact, a, g.(a) are never E, g equiva-
lent;

(c) clearly in (x)4(iv) for £ < k, the terms are well defined iff a, €
"(Amin{ai,as}) because if a < 3 then gg maps Ag onto itself,

(d) if @ < B,a € A,, then gg maps a/E, g onto itself

(e) if o, B < K, then g4, g3 commute (on the intersection of their domains,
Amin{a,ﬁ}‘

[Why? Easy, e.g.

Clause b: Why? Let a = af, v,u,, b = Qfyv0,u,- Now, on the one hand, of
Jga(a) = b then f1 = fo, 1 = 72 and uy +¢ ua = u3Aug has cardinality 1. On the
other hand, if (a)E,, g(b) then (by induction on % in the definition), we can prove
fi = fa, 11 =72 and u; +¢ us = u1Aus is a set of even cardinality.

Clause (e): Just recalling that G is a commutative group.]

Note

()5 For n € [2,w), we have:
(a) Ej, 5, En,p are indeed equivalence relations on "(Ag)

) Ey,p refine £} 5
c) if a € "(Ap) then a/E’ ; has exactly o members
B n,s
) if a < B < kthen E) 5 | "(Aa) = B, , and By [ "(4a) = Ena

(read (x)4(iv) carefully!)

e) ifa<pB<k,ac™Ay) and b€ a/E’ ; then b e ™(A,

n,pB

(f) if go(@e) = by for £ = 1,2 then: (LlE;ﬁ@ iff ElE;Lﬁi?}
Now we choose a vocabulary 7, of cardinality 27 and for o < k we choose a 7;-
model M; , such that:

(¥)s (a) Mo increasing with o and has universe A,

(b) assume that a@,b are EJ, ,-equivalent (so a,b € "(Aq) and mq(a) =

7o (b)); then @, b realize the same quantifier-free type in M o iff dEn7a5

(c) 7p is defined in ®;(c) from 1.1
(d) for every function e € %o

M o
R = {(afl,ﬁl,uma’fzﬁmug) € Ao X Apt fi = €0 fr and
if i <o thenie€wu

iff (|{j € uz : e(j) = i}| is odd)}
recalling f, € "o
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(e) Erjlwl‘“ = E,  and FCMI’“ = F, is defined by F, : A, — A, satisfies

Fc(af,a,u) = Af outge
(f) ifa < By < K for £ =1,2 then ggzlggl [A, is an automorphism of M
(8) gao is almost an automorphism of M ,, it miss preserving R, ;

[Why is this possible? For Clauses (a)-(e), just define the M ,-s, except concerning
being increasing with «, see (a) and the choice of the R, ; which should guarantee
(b). Also, we have to prove clauses (f) and (g). Of course, every g, (hence g[;; °gga,)
is a permutation of A, the universe of M; ,. Of course, every g, (hence gﬁ_1 ©gs,)
is a permutation of A,, the universe of M; o. First, we shall show that for each

o4

a < K, o Maps RY* onto itself.
Assume we are given a pair (af, g, ussQfy, Bs,us) from Ag X Ay 50 B1, 82 < 1+«
and f; =eo f3 s0

(*)6»1 (afl»ﬁ1-,ul’af2,527u2) € Ré%lﬁa iff Uy = {6(]) ] € ug and (ElOddL € u2)(e(L) =
e(4))-

[Why? Read (x)g(d) carefully, in particular note that if ¢ ¢ {e(j) : j € ua} then
7 ¢ Ul.}

My o .
(*)6»2 (ga(afhﬁlaul)?ga(af21ﬁ2,u2)) € Re " iff

(afl’ﬁl’ul"'{fl(a)}’afz;ﬁz,uz-i-c{fz(a)}) € Ré\/h,a iff
ugﬂ;ﬁ{f1(a)} ={e(j) : j € ust{fo(a)} and (39, € (us+¢ fo())(e(t) =
e(1)}.

[Why? Inside (x)go the first “iff” holds by the definition of g, the second “iff”
holds as in (%)g.1.]
But f; = eo f5 hence

(¥)e.3 fi(a) = e(f2(a))

(x).4 letting x = fo(a) < o we have u; = {e(j) : j € uz and (3°% € uy)(e(r) =
e} ff w1 +¢ {e(@)} = {e(4) : j € uz +¢ {z} and I € (uy +¢
{z})(e(t) = e(h))}-

[Why? Check by cases according to whether x € us and whether e(x) € uy. Le., by
“G is of order two,” it suffices to prove the “only if” so assume the first equality in
(%)g.2- If e(x) ¢ wuy, then just add e(x) to both sides. Similarly if e(x) € uyNX ¢ ugy
and if e(z) € ug Az € ug.]

So together we get equivalence, so the “first” holds.

Second, for defining the Rg{il’“’s
(%)6.5 (a) for each n € [2,w) let E! be the following equivalence relation on

"G : a1 Ellug iff for some v € G, |v| is even and A u1 4G v =uay
L<n
(b) let (X, :4 < o) list the E!/-equivalence classes

(c) let RN = (G € "(Ay): ifa = (af, apme : £ <m), then (up: € <nye

n,s

Xnit
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This completed the choice of M; . Third, g, preserves “a,b are Ey o-equivalent”,
“a,b are E,, ,-equivalent” and their negations. That is, a,gq(a) are not E, -
equivalent, but as (V3)(gg = gﬁ_l),&,g being E, ,-equivalent means that there is
an even length pass from a to b, in the graph {(¢, gg(¢)) : 5 € [7,k) and ¢ € "(A4,)}
where v = min{vy : a,b € "(A,)}. This proves part of clause (g) of (x)g.

Fourth, no problem in the M; ,’s are increasing by (x)s5(d), just check that.

Fifth, g, commutes with Fch fo for ¢ € G because G is an Abelian group; thus
completing the proof of (x)g(g).

Sixth, we should check clause (x)g(f). Now 9521951 [Ay = (98,1 4a) (g8, [Au) by
(¥)2(g) and it has order 2 because G is of order 2 and it maps BN to itself by
the “third”, commute with F"** by the fifth, maps Rh * to itself by the “first”.

Lastly, it maps RMte to itself by (*)g.4. So we are done proving (*)g.

()7 for a < Kk let My o be the 75-model with universe A, such that g, is an
isomorphism from M; , onto M 4.

Now we note
(¥)s for a < B < K, My o C Mspg.

Why? By the definitions of M ., g, E’ ., E, ., in particular, the “first” and
0 Gy et

n,y?

“third”, in “why (%)g”, fourth, i.e. (%)5(d) .]

(¥)g let My, := U{Ms, : a < K},
(*)10 Mz, well defined by ()s,

(¥)11 7q is well defined by (x)1(f),
(%)12 except clause (j) the demands in the conclusion of B of 1.2 were proved.

[Why? Just check.]
Note

(¥)13 if (af,0,u1s0f,a,us) 18 Fag-equivalent to (af.a vy, 0fa,0,) then G = “u; —
U = V1 — 1}2”.

[Why? By induction on the & from (x)4.]
So, to finish, we assume toward contradiction

X h is an isomorphism from M; ,, onto M, ,, which respects 7, for a < &, i.e.
hIMj o respect my, see clause H(i) of Claim 1.2.

So trivially

®1 if & < k, then h(af~u) € {afy0:v € G} for vy <1+ a,and a e ™(Ay) =
ha) € a/Epo C a/Ey, 4.

[Why? As h[M; o respect 7, see ()1(e) and ()19 clearly h(a) € a/E,, ,. But h is
an isomorphism from M , onto My, hence by (x)s(b) we have h(a) € (a/E, o).]

®y for f € "o and a < k let uy,, € G be the u € G such that h(asa,p) = afa,u

®3 for f € "o,a < kand v € G we have h(af.av) = CGfavtcur. -
fia, fravt+guyg o
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[Why? By ®; clearly h maps any finite sequence b € "(A; ) to an E, ,-equivalent
sequence for each a < k. Now apply this to the pair (af 4,9, afa,u) recalling (*)3.

Alternatively use the FCML””—S.]

®4 we define a partial order < on "o as follows:
f1 < fo iff there is a function e € o witnessing it; which means f; =
eo fo
@5 if a1, <k and f1 < fo (are from o) then |us, o, ] < [Ufy,a,]-
[Why? This follows from ®¢ below.]
®g if e € %0, fo € "0 and f; = eo fy € "o and a1, s < k then
Uty 01 C {6(2) S uf2,0t2}'

[Why? Choose a < k such that o > a1, a0 > a2 80 af, 0,.0,0f5.0,,0 € Mo for

¢ =1,2. Recall that h maps Ré\/ll"’ onto Ré\b’“ by X and RMz.e _ Ré\/ll’“ because g,
maps R onto itself (see the proof of (x)g above, the “first” in that proof). Now

see (#)g(d), i.e. the definition of R, i.c. obviously (Of) 00,0:0f5,00,0) € R

so as h is an isomorphism from M; . onto Ms , we have (h(ayf, a,,0), h(af, .a,.0)) €
M2 30 by the previous sentence and the definitions of Ufpap( = 1,2) in @y
we have (af, ay,up, oy @fasansigy ay) € R which by the definitions of Rt in

(*¥)6(d) implies uy, o, C {e(i) : % € up,,a,} as promised.|
®7 (a) |ufa,| = |Uufa,| for ai,as <k, f €0
(b) n(f) =|uyq| is well defined
(C) if f1 < fg then Il(fl) < Il(fg).

[Why? For clause (a) use ®¢ twice for the function e = id, and f; = fo = f.
Clause (b) follows. Clause (c) holds by ®¢ equivalently by ®s5.]

®g there are f, € “o and a, < K such that:
(i) if fo < f € "o and o < K then |uy, o, | = |Uf,a
(#7) moreover if f, = eo f where e € o and f € "o, < k then e [ usq
is one-to-one from uys o onto uy, o so n(fy) =n(f)

(’L”) if a < fﬁfl = €Of27f* = €1 thf* = €2 of2 SO e,eq,eq € 007 thﬂ
eluf, o is one-to-one onto uy, q.

[Why? First note that clause (ii), (iii) follows from clause (i). Second, if clause (i)
fails, then we can find a sequence ((f,, an,en) : n < w) such that

() ap <K, fr € o forn<w

(B) fn < foy18ay fn=eno foy1 and e, € %0
(v) (en, fnt1, @nt1) witness that (f,,a,) does not satisfy the demand (i) on
(f*va*) hence n(fn) < n(fn-‘rl)'

Let wy, = ujf, a0, for n <w. Forn <w and i < o let 4, ; = (a < k : fpo(a) = 19),
so (A, 11 < o) is a partition of x and o € Apy15 = « € A, ;). So letting
Ay ={An ) 1 n < w} for n € o clearly (A, : 1 € “o) is a partition of &.

As we have o = o™ by (x)o, there is a sequence (" : n < w) satisfying e” € o
and f € "o such that f, = e" o f for each n < w. Son < w = f, < f which
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by ®7(c) implies n(f,) < n(f). As (n(f,) : n < w) is increasing, easily we get a
contradiction. ]

®9 n(fy) >0, ie. a<k=uys o#0.

[Why? If (Vf € "o)(Va < k)(ufo = 0) then (by ®3) we deduce h is the identity,
a contradiction. Otherwise assume uy  7# () hence as in the proof of ®g there is f’
such that f. < f'Af < f' so by ®; and ®g we have 0 < |ufo| < [up ol = Uy, a. ]

@10 if fefo,a<kand i€ us, then k =sup{f < k:a < f and f(B) =i}.

[Why? If not, let (%) < k be >sup{f < k:a <, f(f) =i} and > w and > a.
Let Y = {(af,au: afp(x)u) : v € G,i ¢ u}. Now for every 8 € (B(*), x) the function
gp maps the set Y onto itself (see Y-s definition and gg-s definition in (*); (f)) hence
by the definition of Fy g(,y41 (in (x)4) it follows that @ € Y = a/E5 g(xy41 € Y and
as h respects mg(,)41, it follows that h(a) C EL/EQ)B(*)Jrl andsok >y > f(x)+1=
95 (h(a)) € a/E) g1

Now for a € Y, the two pairs a, h(a) realize the same quantifier free type in
M g(x)+1, M2 g(+)41 respectively, hence by the choice of Mj g(,)41 the two pairs

d,gﬁ_(l*)wh(&)) realize the same quantifier free type in M. By ®] + (x)6(b)

recalling gg(l*)w(h(d)) € c’z/Eé,B(*)Jrl this implies that a, gg(l*)w(h(a)) are Es g(x)41-
equivalent. By the definition of Ej g(.)41, g/;(l*) 42(h(a)) belongs to the closure of

{a} under {g' : v € (B(x); )} hence h(a) belongs to it. But by an earlier sentence
Y is closed under those functions so h(a) € Y. Similarly h=*(a) € Y, hence h
maps Y onto itself, recalling ®, and the definition of Y, this implies i ¢ uy,q,
contradicting an assumption of ®1¢, so ®1¢ holds.]

®11 Now fix f,, a, as in ®g for the rest of the proof, without loss of generality
f« is onto o and let uy, o, = {3} : 4 < £(*)} with (i} : £ < £(x)) increasing
for simplicity. Now for every f € "o such that f, < f and a < & by
®g (i), (14) we know that if e € 70 A f, = eo f then e is a one-to-one
mapping from uy . onto uy, o,.; but so e [ uyq is uniquely determined by
(fu, o, fya) solet ifq ¢ € us o be the unique ¢ € uy such that e(i) = ¢}
(equivalently (a)(f(e) =i A fu(a) =13)).

Now if f, < f € "o and a3,a2 < Kk and we choose e = id, so necessarily
flufa, =eof ] ufa,, then e | Rang(f | ufa,) map ufq, onto usq, but e is
the identity, so we can write uy instead of uy o let ipy =iy a0 for £ < (x), o < k.

Let

A={ACk: forsome f, f, < f and a < k we have f ' {i;o}\a C A}

0, A C P(r)\[K]<".

[Why? As k is regular, this means A € A = A C xk A sup(A) = k which holds by
®10-]

E’Q KZGA.
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[Why? By the definition of A.]
[z if Ae Aand A C B C k then B € k.
[Why? By the definition of A.]
Cly if Ay, As € A then A =: A1 N Ay belongs to A.

[Why? Let (fe,ee,a¢) be such that f. = ejo fp and f; € "o,a¢y < Kk and
fo i 0 \ae € Ag for £ = 1,2. Let prio x 0 — o be one-to-one and onto and
define f € "o by f(a) = pr(fi(a), fo(a)). Clearly f, < f for £ = 1,2 hence iy is
well defined and iy = pr(iy, 0,7f,,0). Now for every o < &, f(a) = i50 = fi(a) =
inoNfala)=i=>a€Aihac Ay =acANAy=>acAso f[THifo} CA
hence A € A]

s if AC k then A€ Aor k\A € A
[Why? Define f € “o:

) 2fi(@) ifac A
f(a)_{Qf*(a)Jrl if o € #\A.

Let i =i so by the definition of A we have f~1{i} = f~'{i;o} € A Butifiis
even then f~1{i} C A and i is odd then f~!{i} C k\A so by [3 we are done.]

Ll A is a uniform ultrafilter on x.
[Why? By Ell — Dg,]
7 A is o -complete.

[Why? Assume B, € A for ¢ < o and let B = N{B; : ¢ < o}. Define A. C &

for ¢ < o as follows: Ai4. = () Bc\B¢ (so is k\By if ¢ = 0) for ¢ < o and
(<e

Ag = B. Clearly (A. : € < o) is a partition of k, let f € ®o be such that f [ A is

constantly . Let f' € "6 be such that f < f' A fo < f'. Now (f) iy o} € A

is included in some A.. If ¢ = 0 this exemplifies () B. € A as required. If

e<o
e=1+¢ < o, then (f')"Hipo} C Ac C k\Be, contradiction to [Jg because
B, € A and (f/)_l{if/,o} S A]
So by the assumptions of 1.2, that is, ®;(b) of 1.1 we get a contradiction, coming
from the assumption “toward contradiction (j) of B of 1.2 fails”, so it holds, and
the other clauses were proved so we are done. y2

Theorem 1.4. For every 0 there is an € = &) such that
® (a) tis an AEC with LST(8) =0, |m| =6

(b)

(c)

(d) if K is a regular cardinal and there is no uniform 0T -complete
ultrafilter on Kk, then : ¢ is not (< 2%, k)-sequence-local for types,
i.e., we can find an <g-increasing continuous sequence <Mi 11 < K)
of models and p # q € Se(M,;) such thati < k=p | M; =q | M;
and M, is of cardinality < 2%.

£ has the amalgamation property
¢ admits intersections (see Definition 1.5 below)
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We shall prove 1.4 below. As in [BS08, 1.2,84] the aim of the definition of “admit
intersections” is to ensure types behave reasonably.

Definition 1.5. We say an AEC £ admits intersections when there is a function
cle such that:

(a) cle(A, M) is well defined iff M € K¢ and A C M

(b) cle(A, M) is preserved under isomorphisms and <g-extensions

(c) for every M € Ky and non-empty A C M the set B = cly(A, M) satisfies:
MIBe Ky, MIB<¢Mand AC M, <t NAM <¢ N = B C M,:

(d) we may use clg(A, M) for M [cle(A, M).

Claim 1.6. Assume ¢ is an AEC admitting intersections. Then ortpg(aq, M, N1) =
ortpg(ag, M, Nao) iff letting My = Nolcle(M U {as}), there is an isomorphism from
My onto My over M mapping ay to as.

Proof. 1t should be clear from the definition. s
Remark 1.7. In Theorem 1.4 we can many times demand ||My| = &, e.g., if
(BN (k = 2%).

Note we now show that 1.4 is the best possible.

Claim 1.8. 1) If ¢ satisfies clause (a) of 1.4, (i.e. € is an AEC with LST-number
< 0 and |1e| < 0) and k fails the assumption of clause (d) of 1.4, that is there is a
uniform 0% -complete ultrafilter on k, then the conclusion of clause (d) of 1.4 fails,
that is € is k-sequence local for types.

2) If D is a 0T -complete ultrafilter on k and € is an AEC with LST (&) < 0 then
ultraproducts by D preserve “M € € “M <¢ N”, i.e.

X if M;, N;(i < k) are 7(R)-models and M = [[ M;/D and N = []| N; then:
i<K <K
(a) Me Kif{i<k:M;€tbeD
Proof. Note that if D is #T-complete, then it is cT-complete where o = 0™ (and

much more, it is 6’-complete for the first measurable ' > ).
1) So assume

B (a) (M;:i<k)is <g-increasing
(b) Mn = NO Sg Ne for ¢ = 172
(¢c) pe = ortpe(ae, No, Ny) for £ =1,2
(d) @ <K= pi[M; = p2[M;.
We shall show p; = po, this is enough.
Without loss of generality
(*)1 (a) a1 =ag callita
(b) e CH(O).
By (d) of B we have:

(d)* for each i < k there are n; < w and (N; ,, : n < n;) such that
(Oé) Ni,O = N1
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(8) Nim, = N or just h; is an isomorphism from N; ,,, onto Ny such that
h;[(M; U {a}) is the identity

(’7) a € Ni,g and M; < Ni,g

(0) if m < my; then N; 2m+1 <e Niam, Ni2m+o-

As k = cf(k) > N without loss of generality i < kK = n; = n.. Let x be such that

(M; 21 < K), ((Nin :n <ny) i < k) and Egr(e) all belongs to H(x); concerning
Ers7(¢) this means 7, and LST(¢) belongs to H(x) hence {M € K, : M € H(LST{)}
and < [H(LST{) belongs to H(x); those hold by (*)1(b). Let B be the ultrapower
(H(x),€)"/D and jo the canonical embedding of (H(x), €) into B and let j; be
the Mostowski-Collapse of % to a transitive set H and let j = ji 0 jo. So j is an
elementary embedding of (H(x), €) into (H, €) and even an Ly+ y+-elementary one.
Recall we are assuming without loss of generality 7 C H(#) hence j(7¢) = ¢ hence
by part (2), j preserves “N € K", “N! <; N?”. “h is an isomorphism from N’
onto N”.

So j((M; : i < k)) has the form (M} : i < j(k)) but j(k) > ke := | j(@) by

<K

the uniformity of D and let j({((Nin : n < n.) i < k) = (N, :n <n*) 10 <j(k))
and j((h; 19 < k) = (h! 19 < Ky).

So
(a) jIM, is a <g-embedding of M, into M hence even into M
(b) M} <¢ Nf, and j(a) € N, for i < r,n <n,
(c) Nf,o =j(N1)
(d) hy, is an isomorphism from N, ,, onto j(Nz)
(€) Ni.om+1 e N o N, omao for 2m +1 <,

(f) j(a) € Nk m-

Together, we are done.
2) By the representation theorem of AEC [She(09a, §1]. Ois

Discussion 1.9. We try to help the reader by pointing out some things in the
proof of Theorem 1.4.

(1) If the reader do not mind having 7¢ to be of cardinality 2(0™2) then we can
replace R by reasonable R, (e € 7o) and omit S and {d;: ¢ < #}. This simplifies
somewhat, so below (in 1.9) we follow it.

(2) We rely on the conclusion in 1.2. There we have two increasing continuous
sequences of models M, = (Me,q : o < K).

Now M, o, Ms , are very similar:

(x) For a < k, they are not just isomorphic but have the same universe, but
the difference is only in the interpretation of the R,, ;-s.

Here we define Mé’a by adding I,, 7, omitting the R, ;-s, and omitting the
Rn’i—s.

Now we shall define M, é,a adding a new element ¢j, which code the R, ;, i.e.

Ry ={a~(t}):a e RyY.

So this translate “M; o € My o <= a <K’ to
otp(t7, My o, M7 o) = otp(ts, Mg o, M ) <= a <k
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where Mj , is obtained from Mj , by omitting #7, so we get the same Mg ,, from
Mj , and Mj .

Proof. Proof of 1.4
Let o0 = 0%, Let G = ([0]<®0, A) and let (c; : i < o) list the members of G, let
(it 1,7 < o) list “6, so with no repetitions. We define 7 = 7¢, by:
B, =71 U{S,A I, m,R} U{H,: n < w}U{d;: 1 < 0}, so of cardinality 0,
where:
(a) 70 =715 \{Re: e € 0}, see 1.1 (sois {E,, El,: n <w}U{F,: c € G}),
(b) R, is an (n + 1)-place predicate,
(c) S, A, I are unary predicates,
(d) = is an unary function,
(e) R is a three place predicate,
(f) H, is an unary function,
(g) d; is an individual constant.
We define K as a class of 7-models by:
Ky M € K iff (up to isomorphism):
(a) (SM M JM AM) is a partition of | M|, (recall that they are unary),
(b) EM is an equivalence relation on "(AM), so a (2n)-place relation for
n € [2,n),
) (E/)M is an equivalence relation on "(AM) refining EM,
) FM is an unary function from A into itself,
) R)is an (n 4 1)-relation C "+ (AM),
) #M is a function from AM into 1M,
) RM C AM x AM x §M|
) {dM: i < 6} are pairwise distinct elements of S
) HM is a function from (S™\ {dM:i < 0}) x {dM: i < 6} into the set
{dM:i <6},

We define <; as being a submodel, in particular M <; N = 7V |M =M FN|M =
FM. Easily
Xs ¢ = (K, <g) is an AEC.
For AC M € K let,
Bs1 (a) clp(A)is the closure of AU{dM: i < 6} under 7™ and FM (c € G).
(b) cl(A, M) =cly(A) =M | clpy(A).
Now this function cf(A, M) shows that ¢ admits intersections (see Definition 1.5)
S0

X, ¢ admits intersections and LST (&) + |7¢| = 6.

Assume & is as in clause (d) of 1.4, we use the My o(¢ = 1,2, < k) as well as I,
7 constructed in 1.2 (the relevant properties are stated in 1.2). They are not in
the right vocabulary and universe, so let MA ., be the following 7-model:

X5 (a) elements: SMee = ¢ U %0, and
° IME‘Q - Ion
o JMia = {t; },t; just a new element,
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hd AMé’a = |M€,oz‘ =A
(we assume disjointness)
(b) (Mol Aa)I7g = MeolTg,
(¢) IMiw =1,,
(d) wNea is m,,
(e) R, Mia is {am(t Drae Ry,
(

f
(g

d; “‘—zforz<a

)
)
)
)
)
)

H,ILV[” “ is a function from (?¢) x 6 into 6, so if ¢ < 4, then the sequence
M, ‘ - o

(Hn “*(e,i): n < w) € “o is equal to n;, j, for some ji,jo < o and

e(j1) = ja,

(h) RMio = {(a,b,e): e € °o and (a,b) € RY"“"}.

Let M, = My, [ (IMy |\ {t;}) for £ =1,2 and o < K (we get the same result
for £ = 1,2).
Note easily

Xe Mj o <e My, (M, a < k) is <g-increasing and continuous for £ = 0, 1, 2,
[Why? Easy to check.]
X7 ortpe(ty, Mg o, Mj ) = ortpe(ts, Mg ,, M3 ,,) for a < k.

[Why? By the isomorphism g, from M; , onto M; , respecting mq in 1.1.]
|Z’8 OrtpE( Y’ M(/L/w M{,m) 7& Ortpé( ;7 Mé,li’ Mé,n)'

[Why? By the non-isomorphism in 1.1; extension will not help.]
Now, by the“translation theorem” of [BS08, 4.7] we can find ¢ which has all the
needed properties, i.e., also the amalgamation and JEP. Oig

2. COMPACTNESS OF TYPES IN AEC

Baldwin [Bal09] asks “Can we in ZFC prove that some AEC has amalgamation
and JEP but fails compactness of types?”. The background is that in [BS08] we
construct one using diamonds.

To me, the question is to show that this class can be very large (in ZFC).

Here we omit amalgamation and accomplish both by direct translations of prob-
lems of existence of models for theories in L, + .+, first in the propositional logic.
So whereas in [BS08] we have an original group G, here instead we have a set
PM of propositional “variables” and PM | set of such sentences (and relations and
functions explicating this; so really we use coding but are a little sloppy in stating
this obvious translation).

In [BS08] we have I, set of indexes, 0 and H, set of Whitehead cases, H; for
t € I here we have I™ each t € IV representing a theory PM C PM and in JM
we give each t € I'M some models MM : PM — [true,false}. This is set up so that
amalgamation holds.

Notation 2.1. In this section types are denoted by p,q because p,q are used for
propositional variables.

Definition 2.2. 1) We say that an AEC ¢ has (< A, k)-sequence-compactness (for
types) when: if (M; : i < k) is <g-increasing continuous and ¢ < k = ||M;|| < A
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and p; € /<Y(M;) for i < k satisfying i < j < k = p; = p;|M, then there is

Px € <Y (M,) such that i < k = p,|M; = p;.

2) We define “(= A, k)-sequence-compactness” similarly. Let (A, k)-sequence-compactness
mean (< A, K)-compactness.

Question 2.3. Can we find an AEC ¢ with amalgamation and JEP such that {6 : ¢
have (A, #)-compactness of types for every A} is complicated, say:

(a) not an end segment but with “large” members
(b) any {6 : 0 satisfies ¥},1) € L+ ,+ (second order).
Definition 2.4. Let k > R, we define £ = £, as follows:

(A) the vocabulary 7¢ consist of F;(i < k), Re({ =1,2), P,T', I, J,¢; (i < k), F;(i <
k), (pedantically see later),

(B) the universe of M € K is the disjoint union of PM TM M jM o P T I, J
are unary predicates

(C) (a) P aset of propositional variables (i.e. this is how we treat them)
(b) TM is a set of sentences of one of the forms ¢ = (p), o = (r = pA

q),o=(q=-p),e=(q= A pi),sop,q,p; €PM
1<K

but in the last case {p; : i < k} C {eM :i < K} (or code this!) but
we do not require that all of them appear

(¢) for i < k the function FM : T™ — PM are such that for every
i <k and ¢ € '™ we have:

(o) if o= (p) and i < k then F14:(¢) = p, Fo(p) = co

(8) ifo=(r=pAq) then Fi(p)isc; ifi=0,ispifi=1,1is¢q
ifi=2,andisrifi >3

(v) if o= (q=-p) then Fi(p)iscyif i =0,ispifi =1, and is ¢ if

(0) ifo=(g= A pj) then Fi(p)iscs if i =0,
isqifi :]THand ispogjifi=j5+1
(d) I aset of theories, i.e. RM CT x I and for t € I let
M = {4y eTM . pRMt} CTM
(e) Jis aset of models, i.e. R} C (' UP) x J and for s € J we have
MM is the model, i.e. function giving truth values to (some)
p e PM ie.
(@) MM(p) is true if p; R} s; is false if ~pRY s
(B) (p,s) € RM iff computing the truth value of ¢ in MM
we get truth
(f) FM:JM — IM such that s € JM = ML is a model of T'pa (4
(9) (vteIM)(3s e JY)(FY(s)=1)
(D) M <¢ N iff M C N are 7e-models from K.

Claim 2.5. ¢ is an AEC and LST(¥) = k.
Proof. Obvious. Os 5
Claim 2.6. ¢ has the JEP.
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Proof. Just like disjoint unions (also of the relations and functions) except for the
individual constants ¢; (for i < k). Os 6

Claim 2.7. Assume My <¢ My for £ = 0,1 and |My| = PMo yTMo = pMe T Me
for ¢ =1,2 and ap € I** for ¢ = 1,2. Then ortpg(ai, My, M) = ortpe(az, Mo, M)
iff TM = T2
s ay 2 -

Proof. The if direction, <:

Let h be a one to one mapping with domain M; such that h[My = the identity,
h(a1) = ag and h(M;) N My = My U {a2}. Renaming without loss of generality h
is the identity. Now define M3 as M; U Ms, as in 2.6, now a; = ao does not cause
trouble because PMo = pMe Mo — T'Me for ¢ =1, 2.

The only if direction, =:
Obvious. Oo 7

Claim 2.8. Assume A, 0 are such that:

(a) 0 is reqular < X\ and A > k

(b) (T; : i < 0) is C-increasing continuous sequence of sets propositional sen-
tences in L+ x, such that [I'; has a model < i < 6]

() ITo] < X

Then t fail (X, 0)-sequence-compactness (for types).

Remark 2.9. We may wonder but: for § = Xy, compactness holds? Yes, but only
assuming amalgamation.

Proof. Without loss of generality |T'g| = A. Without loss of generality (p% :e < A)
are pairwise distinct propositions variables appearing in I’y (but not necessarily
€ T'p) and each ¢ € T; is of the form (p) or r=pAgorr=-porr= A p;, where
i<K
{pi 1 <k} C{p}:e <k}, hence Kk < A
Let P; be the set of propositional variables appearing in I'; without loss of gen-
erality |P;| = A.
We choose a model M; for ¢ < 8 such that:
B (a) [M;|=P ULy, and 7(M;) = 7
(b) PM =P, and TM: =T,
(¢) FM: (for ¢ < k) are defined naturally
(d) IMi=@=JM hence RM =R} =0 =FM.
By (a) M; € K,
(b) (M;: i < 6) is <g-increasing and continuous

Let M, : P, — {true false} be a model of T’;.
We define a model N; € K¢ for i < 6 (but not for i = 0!)

X (a) M; <¢N;

b) PN pM:

¢) TN =TM

d ™= {tji j < Z}
e) JM={s;:j<i}

/\A/—\/—\
~—
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(f) FYi(s;) =t
(9) Ry =U{Ly = {t;}: 5 <}
(h) R is chosen such that Mé\? is M.
Now
(¥)1 pi = ortp(ti, M;, N;) € S (M;).
[Why? Trivial.]
(*)2 Z<] <9—>pz :p]rM]

[Why? Let N;; = N;[(M; U{s;,t;}).]
Easily ortp(tj, M;, N, ;) < p; and ortp(¢;, M;, N; ;) = p; by the claim 2.7 above.]

(¥)3 there is no p € .1(My) such that i < 6 = p;|M; = p;.
Why? We prove more:

(%)4 there is no (N, t) such that
(a) MN Sg N
(b) te IV
(c) (Vp e TM)[oRYt].

[Why? As then 'y = T'™ has a model contradiction to an assumption. | Lo g
So e.g.

Conclusion 2.10. If § > k is regular with no x*-complete uniform ultrafilter on 6
and A\ = 2%, then ¢ is not (), )-sequence-compact.

Remark 2.11. Recall if D is an ultrafilter on 6 then min{c’ : D is not o’-complete}
is Ny or a measurable cardinality.

Proof. (Well known).

Let M be the model with universe 2/, PM = 0, ¢M =i for i < x and RM C 6§ x \
be such that {{a < A : aRMB} : B < A} = P(), and let <M the well ordering of
the ordinal on A. Moreover, the vocabulary of M has cardinality x and elimination
of quantifiers and Skolem functions.

Let I'; = Th(M, B)g<rU{a < c:a < 0}U{(Va)z < c. =\, = = ¢}, where
without loss of generality, ¢ is a new individual constant then (['; : i < 6) is as’
required in 2.12 below hence 2.8 apply. 0210

Conclusion 2.12. In Claim 2.8 if A = A\* then we can allow (I'; : ¢ < ) to be a
sequence of theories in L+ ,+(7), 7 any vocabulary of cardinality < \.

Proof. Without loss of generality, we can add Skolem functions (each with < &k
places) in particular. So I'; becomes universal, and adding propositional variables
for each quantifier-free sentence and writing down the obvious sentences, we get a
set of propositional sentences, and we get I'; as there. Usq2

Note that:

Lor directly as I'; has Skolem functions
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Observation 2.13. If A > k > 0 = cf(0) then the condition in 2.8 holds.
PT’OOf. Just let I'y = {\/i<9 ﬂpi},Fi =ITyU {p] 1y < ’L} Os13

Conclusion 2.14. 1) C,, = {0 : 0 = cf(#) and for every A and AEC ¢ with LST(¢) <
K, |Te] = K have (), 6)-sequence-compactness of type} is the class {6 : 0 = cf(f) > &
and there is a uniform xT-complete ultrafilter on 0}.

2) In C,; we can replace “every \” by A = 2% + k.

Proof. Put together 2.10 and 2.16. Uaas

Of course, a complementary result (showing the main claim is best possible) is:

Claim 2.15. If¥ is an AEC, LST(¥') < k and on 0 there is a uniform x™ -complete
ultrafilter on 6 and 0 is reqular and X\ any cardinality then € has (\, k)-compactness

of types.

Proof. Write down a set of sentences on L+ .+ (1¢") expressing the demands.

Let (M; : i < 0) be <p-increasing continuous, ||M;|| < A, p; = ortpg(a;, M;, N;)
so M; <¢ N; such that i < j < 0 = p; = p;j[M;. Without loss of generality
[Nill < A

Let (N; ¢ : € < n;je),m1 witness p; = p;[M; for i < j <0 (i.e. M; <¢ N,
(without loss of generality ||N; ¢l < A), Nijo = Ni,a; € Nije, N (Nije <e

£<n; je
Nije+1V Nijer1 <e N;je and 7; ; be an isomorphism from N; onto Nj j ., . over
M; mapping a; to a;.

Let 75 = 71U {F., : € < k,n < w}, arity(F.,) = n. Let (M;" : i < 6) be

C-increasing, MZJr a 7T-expansion of M; such that u C Mf = M; [CEM:r (u) <¢ M;.

Similarly (ij‘se : 0 <y je);e = 1,0 such that N‘Z; is a 71-expansion of N, ;. as

(2

above such that (V¢ < n;j¢)(3e € {1, 2})(1\/'{3; C Ni—j_jﬁﬂ % N:j’;H C Njﬁ)

Now write down a translation of the question, “is there p such that...” s 15

Claim 2.16. Assume that D is a uniform k-complete ultrafilter on 0, (M, :i < 0)

is <g-increasing continuous, p; € S (M;) as witnessed by (N;, a;) fori < k,p; =

p;[M; fori < j <k as witnessed by (m;, (N; j¢: ¢ < m; ;) as in the proof above.

1) There is py € L “(Mpy) such that i < 0 = p,[M;.

2) In fact for each i < k let U; € D be such thati < j € U; = n,; = n}. Let

Niwe= 11 Nije/D. So (Nt <nj) are as above. Let M = [[ M;/D,m; , =
JEU; 1<K

H ’/TLJ'/D, etc.

JEU;

Proof. Straightforward. U216
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