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ON THE PROBLEM OF STABILITY OF ABSTRACT
ELEMENTARY CLASSES OF MODULES

GIANLUCA PAOLINI AND SAHARON SHELAH

ABSTRACT. It is an open problem of Mazari-Armida whether every abstract
elementary class of R-modules (K, <pure), With <pure the pure submodule rela-
tion, is stable. We answer this question in the negative by constructing unsta-
ble abstract elementary classes (K, <pure) of torsion-free abelian groups. On
the other hand, we prove (in ZFC) that if R is any ring and & = (K, <) is an ab-
stract elementary class of R-modules which is x-local (a.k.a. k-tame) for some
k > LS(R), then (K, x) is almost stable, where almost stability is a new notion
of independent interest that we introduce in this paper, and which is equivalent
to the usual notion of stability under the assumption of amalgamation. As a
consequence, we obtain that if there are sufficiently large cardinals, then every
abstract elementary class (K, <) of R-modules with amalgamation is stable.

1. INTRODUCTION

Following the development of classification theory for first-order logic [11], the
second-named author initiated a program aimed at developing an abstract frame-
work for model theory and classification theory. This led to the area of model
theory known as Abstract Elementary Classes (AECs) [12]. A longstanding chal-
lenge in this theory has been the scarcity of new interesting examples beyond those
arising from first-order logic. A significant breakthrough came through Zilber’s
work on complex exponentiation (cf. [17]). More recently, largely due to the work
of Mazari-Armida (see e.g. [4, 5, 6]), the model theory community has recognized
that module theory provides a rich source of applications for the general theory of
AECs (see also the recent survey [2]). A central open problem in this area of model
theory is the following question, formulated by Mazari-Armida in [6].

Question 1.1. Let R be a ring and let <pure denote the pure submodule relation. If
(K, <puwre) is an abstract elementary class with K C R-Mod, is (K, <pure) stable?
Is this true when R = Z¢2 Under what conditions on R does this hold?

We note that this question is inspired by a classical result from model theory:
for any ring R, every complete first-order theory of R-modules is stable. This
result, together with the well-known elimination of quantifiers down to pp-formulas,
makes the first-order model theory of modules one of the most well-behaved areas
of application of model theory to algebraic structures. For extensive background
on the first-order model theory of modules see e.g. the classical references [7, §8].
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In this paper we answer Question 1.1 in the negative, more precisely, we prove:

Theorem 1.2. There is a class of torsion-free abelian groups K such that (K, <pure)
is an AEC and (K, <;,) is unstable, where <pure denotes the pure subgroup relation.

At this point the reader might be discouraged by our results, but this is only
half of the story. In fact, we will see that despite the failure of stability, AECs of R-
modules are still as well-behaved as possible from the point of view of classification
theory, in an appropriate sense. We first recall the notion of k-locality (a.k.a. k-
tameness) [10, 3, 13]. In first-order logic, if two types p, ¢ € S(A) differ, then they al-
ready differ over a finite set of parameters Ay C A. The notion of k-locality imposes
a similar behavior, where “finite” is now replaced by “<x™”. In recent years, the
notion of k-locality (a.k.a. k-tameness) has been recognized as central in the study
of AECs, and this additional assumption is often made in case studies (cf. [16]).

Now, despite the unstability from Theorem 1.2, under the assumption of k-
locality for some k > LS(R), we establish the next best form of stability possible,
namely what we call almost stability (cf. 2.4(2)(3)). This is a notion that we
introduce in this paper, which is equivalent to the usual notion of stability under
the assumption of amalgamation. In brief, almost stability means that there are
only a few orbital types over M, once we restrict to a specific strong extension NV
of M (that is why stability and almost-stability coincide under the assumption of
amalgamation). We believe that this notion is of independent interest and we hope
that it will inspire future studies and new directions in the theory of AECs.

Theorem 1.3. Let 8 be an AEC of R-modules s.t. & is k-local for some > LS(R).
(1) There is & > Kk such that, for every cardinal p satisfying

p=p=t+ ) {27 o<y,
we have that 8 is almost p-stable (cf. 2.4(2)(3)).
(2) If in addition R has amalgamation and p is as in (1), then R is p-stable.
By known consistency results on locality (see e.g. [1]), we deduce:

Corollary 1.4. If there is a strongly compact cardinal k and K is an AEC of
R-modules with amalgamation such that k > LS(R), then R is stable.

Notice that AECs of R-modules which arise from first-order theories are local
and have amalgamation and so our theorem can be seen as the most general form
of stability for R-modules currently known in the literature. Explicitly, we deduce:

Corollary 1.5. Let & = (K, <) be such that K is a complete first-order theory
of R-modules and <X is the relation of elementary first-order substructure. Then
(K, X) is stable in the sense of first-order logic.

The challenge that we leave for future studies are the following questions.

Question 1.6. (1) Is there (consistently) a ring R and an AEC of R-modules &
which is not k-local for unboundedly many k among the cardinals 6 such that
0 is below the first strongly compact cardinal > LS(R).

(2) Isthere (consistently) a ring R and an AEC of R-modules & which is not k-local
for unboundedly many k among the cardinals 6 such that 6 is below :(QLS(R)+ ?

We conjecture that the answer to 1.6(2) is yes.
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2. PRELIMINARIES

Notation 2.1. Given a formula ¢ and ordinals «, 5,7, when we write ¢(Za, 73, Z+)
we mean that Z, = (z; 11 < ), g = (y; : 1 < B) and Z, = (2 : i < ).

Definition 2.2. Let & = (Kg,<s) = (K, <) be an AEC. Given (b, A, N), where
N € K, A C N, and b is a sequence in N, the orbital type (a.k.a. the Galois
type) of b over A in N, denoted by ortpg(b/A; N), is the equivalence class of
(b, A, N) modulo Eg, where Eg is the transitive closure of the relation Ef, where
(517A1,N1)E%(52,A2,N2) if A:= A; = A,, and there exist R-embeddings fo :
Ny =4 N for £ € {1,2} such that fi(b;) = fa(by) and N € K. If M € K and ~y
is an ordinal, let S (M) = {ortpg(b/M;N): M <z N € K and b € N7}. When
v = 1, we may write Sg(M) instead of Sg(M). We let S$*(M) = U, cor Sg(M).

Notation 2.3. Let 8 = (Kg, <) = (K, <) be an AEC. For A € Card, we let
Ky={MecK:|M| =\
Definition 2.4. Let & = (Kg, <g) = (K, <) be an AEC, )\ € Card and v € Ord.
(1) We say that & is (\,7)-stable if for any M € K, we have that |SI(M)| < A
(2) We say that R is almost (A, 7)-stable if for any M, N € K, with M g N and
M € K, we have that |SJ(M;N)| < A, where
Sa(M;N) = {ortp(¢/M,N):ce N"}.

(3) If @ = 1, then we simply say (almost) A-stable.
(4) Ris (almost) stable if it is (almost) p-stable for unboundedly many p € Card.

Remark 2.5. Notice that in some references (e.g. the recent survey [2]), stability
is defined as follows: R is stable if it is p-stable for some p € Card. In some contexts
the definition of stability from 2.4 and the one we just gave are equivalent.

Observation 2.6. Notice that if & has the amalgamation property, then K is
almost (A, )-stable if and only if it is (), 7)-stable. Furthermore, recalling the
definition of E¢ and EYf from Notation 2.2, we have that Eg = Ef.

Definition 2.7. Let £ = (Kg, <g) = (K, %) be an AEC and & an infinite cardinal.

(1) We say that £ is (<k)-local (a.k.a. (<k)-tame) if for any M € K and p # ¢ €
Sa(M), there exists My C M such that |My| < k and p [ My # q | M.

(2) When we say that £ is k-local we mean that R is (<x™)-local.

Remark 2.8. The notion of k-locality was used in [10] under the assumption of
the amalgamation property, and in [13] without this assumption.

Definition 2.9. Let 8 = (Kg,<g) = (K, <) be an AEC, A € Card and v € Ord.

(1) We say that £ has the (A, ~)-order property if there are M € K and (a; : i < \)
inside M with lg(a;) = v, for all ¢« < A, such that for any iy < jo < A and
i1 < j1 <\, ortpg(@iyaj, /0; N) # ortpg(ay, ai, /0; N).

(2) We say that & has the syntactic (), k, 7, A)-order property if there are M € K
and (@; : ¢ < A) inside M with lg(a;) = v, for all i« < A, and contradictory
S"l(j"/’gv)ﬂ@@wgv) EAC Lokt (78) (e.g. S"l(ngw) is ﬁ‘PZ(@/’gw)) s.t.:

1< ] <A=M ': 301((_7,1',(_1]') AN QDQ((_lj,(_Li).

(3) If k = LS(R) we simply say syntactic (A,~, A)-order property. Furthermore, if
~v =1, then we simply say (syntactic) A-order ((A, A)-order) property.
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(4) We say that & does not have the ~-order property (resp. syntactic (A, A)-
order property) if it does not have the (u,~y)-order property (resp. syntactic
(1,7, A)-order property) for some pu € Card.

(5) We define almost (<x)-local and almost k-local similarly.

Fact 2.10 ([1, Theorem 1.3]). If & is an AEC with LS(8) < & and k is strongly
compact, then K is k-local.

Definition 2.11. Let & = (Kg,<g) = (K, <) be an AEC, A C £ ,.+(7s) and
v < kT
(1) We say that R is syntactically (A, &, 7, A)-stable when for every M € K, we

have that |S?A_ﬁ)(M)| < A, where:

Sa0(M) = {tpa(e/M;N)} : N €K, M <4 N, c€ N}

(2) We say that £ is syntactically almost (X, x, v, A)-stable when for every M, N €
K, with M <z N and M € K, we have that |SEYA ﬁ)(M;N)| < A, where:
S’Y

s (M3 N) = {tpa(¢/M; N)} 2 € N7},
(3) If x is minimal such that £ > LS(R) and A C £ .+ (7x), then we may omit &.

(4) If A = £ ,.+(7g), then we simply say syntactically (almost) (X, x,)-stable.

Observation 2.12. Notice that if K has the amalgamation property, then:

(a) R is syntactically almost (A,~y)-stable iff it is syntactically (A, y)-stable.
(b) R is syntactically almost (A, x,y,A)-stable iff it is syntactically (A, &,7, A)-
stable.

We need the following crucial fact from [15]. Notice that despite the following
fact is not explicitly stated in journal version of [15], it follows from the proof of
the second main theorem (the “Tarski-Vaught” criterion for AECs); furthermore,
this fact is explicitly stated in the latest arXiv version of the paper [15].

Fact 2.13 ([15]). Let R = (Kg, <) = (K,=<) be an AEC and let (A, ko) be
as in [15], i.e., ko = LS(R) + |7g| and A, = Ja(ko)*t". More generally, for k >
LS(R) + |7gl, let A\w = Ja(ko)™F. Then there is ¢} (Z,) € L+ 4+ (7x) such that:
(x) f NeK,ae N*and N | ais a substructure of N, then we have:

NlaxN & NEg(a)

3. ALMOST STABILITY FOR AECS OF R-MODULES

Hypothesis 3.1. (1) & = (Kg,<g) = (K, <) is a fived AEC.
(2) k= LS(R) + || and A = Da(k) .
(3) v < k is an ordinal.

Notation 3.2. (1) Let (psmall = W(S%nzll,y) be the class of quintuples of the form

w= (My, Ny, au, by, &) = (M, N, a,b,¢)
such that:
(a) M <a N, |[M| <|N| < & (we write “small” since we ask |N| < & here);
(b) a lists M and b lists N;
(c) €€ N7;
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(2) Let w'aree = W(lzri?y) be the class of quadruples of the form

u= (MIUNLUaquu) = (M,N,d,é)
such that:
(a) M <g N, |M| < K;
(b) a lists M,
(c) €€ N7.

Major Claim 3.3. In the context of 3.2.
(A) Forvw = (M,, Ny, @y, by,¢,) € Wemall - there is

(Rk,7)7
9(5, Yk jn) = O (27 Yrs :Z'/i) € 2)#,5* (Tﬁ)
such that:
(a) if w1 g € W(ng:{{y) are isomorphic (where this means what you expect),
then eml (277 Yro jn) = emg (277 Yro j.‘i);
(b) if o € Wepall ). then Ny [ O (Cro, bro, o ) ;

(¢) if oy, 109 € W(Sg‘znw and My, = My, , then

ortp(Croy /Mroy; New, ) = Ortp(Croy /Moy ; Nrwy) & Oroy = bro,-
(B) For w = (M, Ny,ay,¢,) € W(lzriev), there is

1/}(277 jn) = wm (Zya 9_35) S 2/\+,n+ (TR)
such that:
(a) if to; 1oy € Wg;riev) are isomorphic (where this means what you expect),
then 1/1m1 (Z% jﬁ,) = 1/)m2 (Z'ya i‘m);
(b) if to € W then Ny = thw (Cros o)

(Rr7)7
(¢c) if 1,109 € W(lgrie,y) and My, = My,, then

Ortp(éml/Mml;le) = Ortp(émz/Mmz;N\U2> g wml = '(/)mz'

Proof. We prove clause (A). Given m = (My, Ny, Gm, b, Cm) € W(Séninv), Let 69,
be the conjunction of formulas ¢(Z, | us, g | u2, Tk [ u1), where us,uq are finite
subsets of k, ug is a finite subset of v, ¢ is an atomic formula or the negation of
an atomic formula and Ny, = @(€, | us, bs | ua, @y | u1). Now, 09 satisfies clauses
(A)(a)(b) but not necessarily clause (A)(c). We define an equivalence relation
E(S;gil}w on W(bg‘;”w by requiring that mlE(sgl’il’lv)mg if and only there is a mapping
m such that:

(1) m(am,,i) = Gm,,; is an isomorphism from My, onto My, such that Gm, — Gm,;
('2) Ortp(amz /Mm2 ) Nm2) = ﬂ'(ortp(Eml /Mml ) le))'

Notice that for m € W(S;inzuw the family of formulas

0 . 1l
P = {0, : mlE(SE",‘w)m}
is a set with < 2" members. Lastly, the formula 6, = \/ ®,, is as required.

We prove clause (B). For every w € W(lzrieﬂ/) we define nb(w) as follows:
rge

() u e nb(m) it u e W(l;’,gﬁ)v M, = My, Gy = Gw, Cy = Cn, Ny g Nu and

|Ny| < K, that is, letting b enumerate N,, we have (M,, Ny, @y, b, &) € W(ngu,y).
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Finally, recalling the formula ¢}(Z,) from 2.13, and noticing that by assumption
we have that k > ko = LS(R) + |7, we define ¢ (Z,, Z,) as the following formula:

/{300 (05 () A Ou(Zy, T, T)) £ 11 € by},

where 0,(Z., Ux, Zx) is as in clause (B) of this claim. Then vy, (Z,, Z,) is as desired.
[

Claim 3.4. Suppose that k = LS(RK) + || and that 8 is k-local and let

lar
A= A(R,N,’Y) = {’(pm SIS w(;7i?7)}7

where 1y, is as in 3.3(B). Then the following are equivalent:

(1) 8 is almost (u,~)-stable;
(2) R is syntactically almost (u,~y, A)-stable.

Proof. Assume that M € K, and M <g N.
(*1) It suffices to prove (a) < (b), where:
(a) {ortp(b/M;N) :b € N7} has cardinality < p;
(b) {tpa(b/M;N);b € N7} has cardinality < p.
In fact we shall prove more. First we observe the following.
(x2) It suffices to prove that, for ¢1,¢ € N7, (¢)z,,z,) < (d)(z,,2,), Where:
(c>(51,52) Ortp(él/M; N) = Ortp(é2/M; N)7
(d)(e1,e) tPal(C1/M;N) = tpa(ca/M;N).
So we proceed to the proof that for ¢1,¢; € N7 we have that (c) @, z,) < (d) (s a)-
To prove the “left-to-right” implication, first of all observe that all the formulas

in A are formulas in the logic £+ ,.+(7) and so it suffices to show that for every
M’ gg M with |M’| < k we have that:

(d)e1,e0) tPA(CL/M'; N) = tpa(E2/M'; N).

Now, to show (d')(z, z,), it suffices to first define appropriate 1y, wy € W(lgr’i;) S0
that ¢m, = €1, Cm, = Co, My, = M’ = M}, Gm, = @ = G, and Ny, = N = Ny,
and second to show that if (c)(s,,z,) holds, then N |= o (¢1,a) & N | 9(c,a),
and the latter double implication holds by 3.3(B). Concerning the “right-to-left”
implication, since by assumption we have that K is x-local it suffices to show that
for every M’ g M with |M’| = k we have that:

()(e1,2) ortp(cr/M’'; N) = ortp(ca/M'; N).

Let a € (M")* list M’ and let, for £ = 1,2, my = (M’, N,a,¢;). The obviously, for

0=1,2, my € W(lgriev) and thus using 3.3(B) we conclude. [

Claim 3.5. If the conditions (1)-(5) below are met, then R is syntactically almost
(147, A(g,0,y))-stable (recall Definition 2.11), where:

(1) LS(R) < v, v <v't and v« = v+ v+ (notice that v« < v");

(2) A= A(ﬁ7V7’Y) = {d)m(zfy,fu) o € W(I;l:lg/’e’y)};

(3) & is such that cf(€) > |A[;

(4) p=p~+3{2" 10 <&};

(5) & fails the syntactic (€, 7., AT)-order property, for AT defined as in (B) below

() AT = {5 4 =1,2, and Ym,, Ym, € A(g,u,4) are contradictory},

(m1,mz)

where for my, my € A(g ) we define
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(a) 5(1m17m2)(g§*,g§*) is the formula
Yoy (Yo 2 @ <), (U540 1 @ <) Aty (a2 @ <), (W40 s @ <))
(b) 6(2m17m2)(g;*,g3*) is the formula
Wy (Yo 2 @ <9); (W40 2 @ <))V g (Yo 2 @ <) (U 40 1 <V)).

Remark 3.6. (A) The proof of 3.5 is similar to [9, Chapter I, Th. 1.10, pg. 277].
(B) If we want to use A instead of AT in 3.5, then we have to change item (5) to:
(47) R fails the syntactic (£1,7«, A)-order property, for some &; such that

§— (fl)\QA\~
Proof. So we are given M € K, and M <g N € K and we want to prove that
{tpa(e/M;N)}:ce N} < p.
Toward contradiction, for « < u*, let &, € N7 be such that the types (tpa (¢a/M; N) :
a < pt) are pairwise distinct. Recall that M and N are fixed, but first we observe:
(x1) W.Lo.g. we can assume that if o < pt and p(z,) C tpa(ca/M;N) has
cardinality < &, then p(Z,) is realized in M.
[Why? As by assumption u = u<¢, v < &, |A| < 2%, and so clearly J{tp (¢o/M; N) :
a < pt} (which is simply a set of formulas) has size < p. Notice that of course we
can replace M by M’ if M g M’ g N and |M'| = p.]
(x2) For each a < p™, we try to choose (d‘()‘i’l), a; 2 G5 MGG 1y MG 0y, V(1) w&m),
by induction on i < £, such that the following happens:
(a) ag ) € MY, for £ =1,2;
(b) for £=1,2, ¥¢; ;) (Zy,T0) = Yme

(i,€)

_ _ — lar,
m o = (M [ af; ), N,a(; ), 6) € WG

(Zy,%,), where

)
) w&l) and 1/}3',2) are contradictory;
) & € N7,
)if£=1,2and j <i <&, then
N =9 0 (e, ad50)
(g) f £=1,2 and j < i< &, then we have that
N E9G0(5ain) € ¥(.0(CFat2).

(x3) Let i(«) be the minimal ¢ < £ such that the induction from (x2) stops, so

i(a) < &€ (recall that the induction from (x2) is on i < &).
(x4) If for some a < pt we have that i(a) = &, then we get a contradiction to the

assumption (4) which says that £ fails the syntactic (£, 7., AT )-order property.
Why (%4)? Suppose that the assumption of (%4) holds, i.e., i(a) = & As by
assumption we have that cf(§) > |A|, then, for some v, 12, the order type of U is
equal to &, where:

U={i<&:(P1,92) = (7/1(02,1)#/1372))}'
Thus, letting, for i € U, b = (Zz‘()‘i 1))A(d‘é’2))ﬁéf‘, which has length v, = v+v+7,

we have (b¢ : i € U) exemplifies the syntactic (&,7., AT)-order property. To see
this, let 11 = ¥m, and 12 = ¥n,. Notice now that
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(%41) fj<iand i, jeU, thenN|:6
[Why? Note now the following.

(1) If £= 1,2, then N |= ¢m, (&', af’ ).
[This is by (%2)(f).]

(2) =1, then N = ¢, ((bs(B) : B< ), (bj(v + B) : B <)),
[This is by (1) and the choice of b; and b;.]
b
]

bi, bj).

(ma m2)(

(-3) If £ =2, then N | ¢u,((b:(B) : <), (bj(y +v+ ) : B <v)).
[This is by (-1) and the choice of b; and b;

( ) N I_ 61111 mz)(b“b )
[This is by the definition of 5(m myy and (-2), (:3).]

S0 (*4.1) holds indeed.]
(x4.2) If j <iand i,j € U, thenN':(S(mlmz)(bj,b) ie, N | 5
[Why? Toward contradiction assume that N = 5(m1 mg)(bj7 b;).
(1) for £=1,2, N |= ¢m, (25, 0(; 1)) <> U(; (6 a0, o))-
[This is by (*2)(g).]
(-2) for £ =1,2, we have
N E Y, ((b;(8) : B <), (bi(y + B) : B<v)) &
Yan, (((05(B) : B <), (bi(y+v+B): B<v))

1 (bj, 7).

(my,mz)

[This is by (1) and the choice of b; and b;.]
(3) N E ¥m, ((5(8) : B <), (bi(y + B) : B <))

[This is by our assumption toward contradiction and the definition of 5 (m1,ma)" ]
2

1) NE ¥, ((0;(B) : B <), (bi(y +v+B): B <v))).
[This is by (-2) and (-3).]

5) N 0hm, (((05(B) : B< ), (bi(y + v+ B) : B <v))).
[By (-4) and ©m,, ¥m, being contradictory.]

But (-5) contradicts our assumption toward contradiction, so (x4.2) holds indeed.]

(%4.3) (5(m1 my) and 52 are contradictory.

(m1,m2)
[Why? By thee choice of 5 (m1,mp) 20d (5(m1 ma)" ]
Together (*4.1)-(*4.3) establish (%4), so this ends the proof of (x4).

(x5) Thus we have that for every a < u* we have that i(a) < &.
(x7) For some av, < p™, |V| = pT, where:
V={B<pu":i(B) =i(a.) and Vi < i(c.)V0 € {1,2}, & =& 4 ) = ¥y )
[Why? As the number of possible sequences
(i), (V1) ¥Yiny) 11 < ila)), (@ 1y, a9, 6 ) 2 1 <i(a))
is <KEX|A| X |A] x [M|Y x |[M]¥ x |[M|" < p” = p.]

(xs) (a) The set {tpa(Ca, M, N):a € V} has size <
(b) as [V] = pt and g2t ISl

g2lialvrial

s < p we get a contradiction.
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Why (xg)? It suffices to prove (xg)(a). Let I ={b:b€ M" and M | ran(b) <g M}.
We define

B = {(bi,b) € IxI: if £ =1,2;j < i(as) then N |5 ¢y, (€7, b1) ¢ ¢ (€57, b2)}-

Clearly we have that:

(x7.1) (a) F is an equivalence relation;

) E has < 22xi(ax) equivalence classes;

) 2 xi(a.) < & (recalling the assumptions on §); B B

) if b1 Ebs, ¥(Z,Z,) € A and a € V, then N = 9)(Cq, b1) <> ¥(Ca, b2).
) for each o € ¥, let

(b
(c
(d
(e
Y, ={Y :Y is an E-equivalence class s.t. b€ Y = N |= 9(Cq,b)};

(f) ifa# eV, then Yo # Yg;

(g) {Ya:ae v} <2MIxIAL
We prove (%7.1). The items needing proofs are (d), (f) and (g). Item (g) follows

from (f). We are left with items (d) and (f). Concerning item (d), if not then, we
have that for some « € ¥, 1 € A and by, by € I, which are E-equivalent, we have

N = §(Cay b1) ¢ =(Ca, o).
By symmetry, w.l.o.g., we have that
N = 9(Cas b1) A =1)(Ca, b2).
Now, as 1 € A there is m; € W(lgff;) such that ¢ = tp,,. Since by € I we can

find my € W(lja;%e,y) such that N = tm,(Ca,b2), and obviously ¥y, and iy, are

contradictory, so we get a contradiction to i(a)) = i(a.). Together we are done. m

Proof of 1.3. This follows from 3.4, 3.5, and [14, 3.3], since it easily follows from
[14, 3.3] that the syntactic order property stated in 3.5 fails for any such AEC. m

We make the following easy observation, which is relevant to the present context.

Claim 3.7. Assume the following conditions:

(1) &= (K, =) is an AEC;

(2) 1> LS(R) is a weakly compact cardinal;

(3) R<p = (Kgpu, < Kgp) has amalgamation, where K¢, = {M € K : |[M| < p}.
Then for every M € K¢, and p,q € Sa_, (M) we have that p = q if and only if for
every N < M of cardinality < p, p| N =q [ N.

Proof. Easy. ]

4. A COUNTEREXAMPLE TO MAZARI-ARMIDA’S QUESTION

Notation 4.1. Let & be a set of primes. We denote by Rgp the sub-ring of the
ring Q generated by {% :p € P}. For @ = {p} we simply write R,.

Definition 4.2. Let @ be a set of primes and G € AB. We say that G is P-torsion
when G is torsion and, for any prime p, if pxr = 0 and x # 0, then p € . We say
that G is P-divisible if p € & implies that pG = 0.

Proof of Theorem 1.2. Let p = (p1,...,p5) be distinct primes.

(*1) We define K = K(p) as the class of G such that:
(a) G € TFAB;
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(b) for £ € {1,...,5}, we define Gp;] = {a € G : p{°| a};

(c) G[p1] is an Ry-free R, -module (recall 4.1);

(d) if G # G[p1], then for some a, we have:
(1) ax € Glp2] \ {0};
(-2) Glp2] = (a+)& = Rp,a4 (where (a,)§, denotes pure closure in G);
(-3) inside G the group C := G[p1] ® G[p2] ® G[ps] is well-defined;
(-a) G/C' is {p4, ps}-torsion;
(-5) for some partial embedding h from G[p;] onto G[ps] we have:

{(z,h(z)) : ® € dom(h)} = {(z,2) : © € G[p1], z € G[ps], P°| (x + 2)}

Glpsa] = {(z,h(x)) : & € dom(h)) };
(«¢) for H; = {z € G[p1] : 3z € G[ps] such that p°| (z + z)} we have:
(i) H; is an Ny-free Ry, -module;
(ii) G[p1]/H;: is an R;-free R, -module;
(-7) for H3 = {z € G[ps] : Iz € G[p1] such that p3°| (x + z)} we have:
(i) Hs is an Ny-free R, -module;
(ii) Glps]/Hs is an R;-free R,,-module;
(-s) G[ps] is equal to A, where:
A={r(z+as+h(x)):r€Ry,,x € H1 })q.

(*2) (Ka gpure) is an AEC

*3) Fix X infinite and let Gy = @{ R,z : @« < A}. Then G, € K.

(
(x4) For every U C X we define G}, € TFAB as follows:
(a) GY, =G\ @ N & H, where:

N=R,,yand H = @{Zza o< Al

(b) G}, = QG & QN & QH;
(c) Gy is the subgroup of G}, generated by:
(i) pf”xa, a <\ n<w;
(i) ps "y, a < A
(iii) Py "Zay 0 <A, < w;
(iv) py " (T + 2a), @ € U, n < w;
(v) p5 "o+ Y+ zq), €U n<w.
(x5) For every U C A, G}, € K and G < G-
[Why? Easy.]
(x6) For U C A, let ty = ortp(y/Gx; G3))-
(*7) For U # 4V C A, ty # ty.
(xs) (K, <pure) is not A-stable, for every A.
[Why? Follows from (%5) and (%7).] |
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