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Abstract. We contribute to the study of ℵ1-dense sets of reals, a mainstay

in set theoretic research since Baumgartner’s seminal work in the 70s. In
particular, we show that it is consistent with MA that there exists an ℵ1-dense

set of reals A so that, in any cardinal-preserving generic extension by a forcing

of size ℵ1, A and A∗ do not contain uncountable subsets which are order
isomorphic. This strengthens a result of Avraham and the second author and

yields a different proof of a theorem of Moore and Todorcevic.

§ 0. Introduction

One of the most important early results in forcing theory and its applications
is Baumgartner’s theorem from [Bau73] that consistently all ℵ1-dense sets of reals
are order isomorphic. This statement is now commonly known in the literature as
Baumgartner’s Axiom and denoted BA, see [Swi25] for more on the background.
Here a set of reals is ℵ1-dense if between any two points there are ℵ1-many. Clearly
each such is isomorphic to one which is moreover ℵ1-dense in the reals - i.e. has
intersection size ℵ1 with every nonempty real open interval. The idea behind Baum-
gartner’s proof is to assume CH and show that, given a pair of ℵ1-dense sets of reals
A and B, there is a ccc forcing notion of size ℵ1 which generically adds an isomor-
phism between them. From the modern perspective it is then clear that a careful
bookkeeping suffices to provide a model of BA+2ℵ0 = ℵ2. Baumgartner also showed
later in [Bau84] that BA also follows from PFA.

A natural question is whether Baumgartner’s result actually relies on CH i.e.
given two ℵ1-dense linear orders A and B is there necessarily a ccc forcing notion
which generically adds an isomorphism between them. This was asked by Baum-
gartner in [Bau73]. Similarly one can ask whether BA follows from MA already
and not just PFA. The answer to both these questions is “no”, due to a celebrated
result of Avraham and the second author from [AS81].

Theorem 0.1 ([AS81, Theorem 2]). For any regular κ > ℵ1 it is consistent that
2ℵ0 = κ, MA holds and there is an ℵ1-dense A ⊆ R which is not isomorphic to its
reverse ordering.

Note that were there a ccc forcing notion in this model adding an isomorphism
between A and its reverse ordering then they would have to already be isomorphic
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2 P. MARUN, S. SHELAH, AND C. B. SWITZER

by MA. For this reason, in this model not only does BA fail but it can never be
forced by a ccc forcing. Given this, it is natural to ask the following two questions.

Question 0.2. Given A and B which are ℵ1-dense is there always a proper forcing
notion of size less than the continuum which adds an isomorphism?

Question 0.3. Does PFA(ℵ1-sized posets) suffice to prove BA? What about MM(ℵ1-
sized posets)?

Note that Baumgartner’s proof provides in ZFC a proper forcing of size 2ℵ0

which generically adds isomorphisms. In full generality these questions remain
open however in this paper we provide the following partial answer.

Main Theorem 0.1. For any regular cardinal κ > ℵ1 it is consistent that MA +
2ℵ0 = κ holds and there is an ℵ1-dense A ⊆ R so that any forcing notion of size
ℵ1 which generically adds an isomorphism between A and its reverse ordering must
necessarily collapse ℵ1.

In particular we have the following immediate corollary.

Corollary 0.4. It is consistent with ZFC that there are A and B which are ℵ1-
dense sets of reals so that no proper forcing of size less than continuum can add an
isomorphism between them.

We remark in relation to this that in [MT17] it was shown that forcing MAℵ2 in
the natural way forces that there is an ℵ1-dense linear order that cannot be made
isomorphic to its reverse in any outer model of the universe with the same ω2, which
provides a partial answer to the questions above as well. The results above allow us
to give therefore an alternative proof of the observation made concerning the proof
of [MT17, Theorem 1.4] made in the introduction to that paper.

Corollary 0.5 (Moore-Todorcevic, See [MT17, Theorem 1.4] and related discus-
sions). MA+¬CH is consistent with an ℵ1-dense linear order that cannot be made
isomorphic to its reverse ordering by any ℵ1-sized forcing notion which does not
collapse ω1.

Our proofs actually establish quite a bit more. The definition of a good linear
order is given below, see Definition 1.5. For the purposes of the introduction we
note that any set of uncountably many mutually generic Cohen reals is good. We
show that if there are good, ℵ1-dense linear orders, then under MA they necessarily
have this indestructibility property.

Main Theorem 0.2. Assume MAℵ1 . If A ⊆ R is good and ℵ1-dense then it cannot
be made isomorphic to its reverse order by any forcing notion of size ℵ1 which does
not collapse ℵ1.

Already in [AS81] it was shown by the second author and Avraham that MA +
2ℵ0 = κ is consistent with a good ℵ1-dense linear order for any regular κ. This fact
alongside Main Theorem 0.2 implies Main Theorem 0.1.

The rest of this paper is organized as follows. In the next section we introduce
some combinatorial properties of ℵ1-dense linear orders which will be used in the
proof of Main Theorem 0.1. The following section proves that if MA holds alongside
the existence of a linear order satisfying a certain combinatorial property, slicewise
coverable, described in §1, then the conclusion of Main Theorem 0.1 holds. Finally
in §3 we provide a model in which MA holds alongside such a linear order hence
proving Main Theorem 0.1. A final section concludes with some further observations
and open questions.

Throughout, our notation is standard, conforming to that of the monographs
[Jec03] or [Kun11]. We fix some notation for linear orders which is slightly less
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BAUMGARTNER’S AXIOM AND SMALL POSETS 3

standard or well known. First, given a linear order A ⊆ R its reverse ordering is
denoted A∗ = {−r : r ∈ A}. Such an order is reversible if A ∼= A∗. Clearly BA
implies all ℵ1-dense linear orders are reversible. Next we say that two linear orders
A,B ⊆ R are near if there are uncountable subsets A′ ⊆ A and B′ ⊆ B so that
A′ ∼= B′. If A and B are not near then we say they are far. Finally, let us say
that a map f : A → B (for linear orders A and B) is increasing if a < b implies
f(a) < f(b). A map f : A → B is decreasing or order reversing if a < b implies
f(b) < f(a). A map f : A→ B is monotone if it is either increasing or decreasing.

§ 1. Anti-reversibility conditions

The key steps in the proof of Main Theorem 0.1 require the construction of a
linear order which is very far from being reversible. In [AS81] the following concept
was used, though not given a name.

Definition 1.1. Let A ⊆ R be an ℵ1-dense linear order. We say that A is essentially
increasing if every partial, uncountable injection f : A ⇀ A is increasing on some
uncountable subset.

Obviously, if A is essentially increasing then it is far from A∗. Moreover, the
existence of an essentially increasing A implies that no ccc forcing notion can force
A and A∗ to be near, see [AS81, p. 106]. In [AS81] the following was proved.

Theorem 1.2 (Avraham-Shelah, [AS81]). For any regular κ > ℵ1 it is consistent
that 2ℵ0 = κ, MA holds and there is an essentially increasing linear order.

We will need a strengthening of being essentially increasing, which we call being
slicewise coverable. Below we say that a filtration of an ℵ1-dense linear order A is

a ⊆-increasing and continuous sequence ~A = {Aα : α ∈ ω1} so that the following
are satisfied.

(A) A0 = ∅
(B) For all α < ω1 we have that Aα+1 \Aα is a countable, dense subset of A.
(C) A =

⋃
α<ω1

Aα

Note that if ~A is a filtration of A then the set {Aα+1 \ Aα : α ∈ ω1} forms a
partition of A into ω1-many countable, dense sets. In this set up let us refer to each
Aα+1 \Aα as a slice of the the filtration.

We now define slicewise coverability.

Definition 1.3. An ℵ1-dense linear order is said to be slicewise coverable if given

any filtration ~A of A there are countably many partial increasing functions {fn}n<ω
with fn : A ⇀ A so that

⋃
n<ω fn =

⋃
α<ω1

(Aα+1 \Aα)× (Aα+1 \Aα).

Note that the above says concretely that for every n < ω and every α ∈ ω1 if
a ∈ dom(fn) ∩ (Aα+1 \ Aα) then fn(a) ∈ (Aα+1 \ Aα) and, moreover every pair
(a, b) ∈ (Aα+1 \ Aα)2 appears in this way for some n < ω. In other words, each
square of a slice is covered by the graphs of the fn’s.

Lemma 1.4. Suppose A ⊆ R is ℵ1-dense. If A is slicewise coverable, then it is
essentially increasing.

Proof. Assume A is a slicewise coverable, ℵ1-dense linear order. Let f : A ⇀ A
be a partial, uncountable function. Take an ∈-increasing and continuous chain
〈Mα : α < ω1〉 of countable elementary submodels of some large Hθ with f,A ∈M0.
Let Aα := Mα∩A. This produces a filtration of A so that each slice if closed under
f , by elementarity.

By assumption there are countably many fn : A ⇀ A, each of which is a partial
increasing function so that

⋃
n<ω fn =

⋃
α<ω1

[(Aα+1 \ Aα) × (Aα+1 \ Aα)] and
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4 P. MARUN, S. SHELAH, AND C. B. SWITZER

therefore in particular we can cover the graph of f by these functions since each
Aα+1 \ Aα was closed under f . Since f is uncountable however that means some
n < ω we have that fn ∩ f is uncountable, which completes the proof. �

We will need a separate combinatorial property of linear orders which will be
useful in constructing slicewise coverable linear orders.

Definition 1.5. Let A be an ℵ1-dense set of reals. We say that A is good if there
is an injective enumeration A = {rξ : ξ < ω1} so that the following holds: for
every n < ω and every 〈aα : α < ω1〉 with aα ∈ [ω1]n, there exist α < β such that
raα(i) ≤ raβ(i) for every i < n.

In what follows, when we write “A = {rξ : ξ < ω1} is good”, we mean that
〈rξ : ξ < ω1〉 is an (injective) enumeration witnessing the goodness of A.

The following is shown on [AS81, p. 164].

Lemma 1.6. Let A = {rα : α < ω1} be a set of mutually generic Cohen reals over
a fixed ground model V . Then A is good in V [A].

Being good can be preserved by finite support iterations. This was explained on
[AS81, p. 166] but we provide a proof to make this presentation more self contained.
First we need to define the class of posets preserving goodness.

Definition 1.7. Let A = {rξ : ξ < ω1} be good. A forcing poset P is said to
be appropriate (for A) iff for all n ∈ ω and 〈(pα, aα) : α < ω1〉 where pα ∈ P and
aα ∈ [ω1]n, there exist α < β such that pα ‖ pβ and raα(i) ≤ raβ(i) for all i < n.

Observe that being appropriate implies ccc by ignoring the aα part. Also, by
[AS81, Lemma 12], if A is good and P is appropriate then P forces that A is still
good. In fact this is an equivalent characterization.

Lemma 1.8. Let P be a partial order and let A be good. The following are equiv-
alent.

(A) P is appropriate for A.
(B) P is ccc and preserves the goodness of A.

Proof. (A) =⇒ (B): See [AS81, Lemma 12].
(B) =⇒ (A): Fix a natural number n < ω and let {(pα, aα) : α ∈ ω1} be a set

of pairs with pα ∈ P and aα ∈ [ω1]n as in the definition of goodness. Let Ż be a

P-name for the set of α < ω1 so that pα ∈ Ġ.

Claim 1.9. There is a p ∈ P which forces that Ż is uncountable.

Proof of Claim. Otherwise 
P“Ż is countable”. By the ccc, there is some countable
ordinal γ so that 
P Ż ⊆ γ̌. But this is not possible since for any pα with α > γ
we have that pα 
 α̌ ∈ Ż. �

Fix now a condition p ∈ P forcing that Ż is uncountable. Let G 3 p be generic
over V and work in V [G]. By assumption, A is still good. Let Z = ŻG. Consider
now the set {(pα, aα) : α ∈ Z}. Since A is good (in V [G]), there are pα and pβ in
G so that raα(i) ≤ raβ(i) for all i < n. Also, since pα and pβ are both in G, they are
compatible. But now, back in V we have that α and β witness compatibility. �

We now sketch the aforementioned preservation result.

Lemma 1.10. Finite support iterations of appropriate posets are appropriate.

Proof. Let 〈Pα, Q̇α : α < δ〉 be a finite support iteration of some ordinal length δ

so that for each α < δ we have that 
α“Q̇α is appropriate”. We want to show by
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BAUMGARTNER’S AXIOM AND SMALL POSETS 5

induction on δ that Pδ is appropriate. Note that since appropriate forcing notions
are ccc we know that Pδ is ccc.

The successor stage follow from Lemma 1.8 above since clearly being good is
preserved by two-step iterations. Let us therefore assume that δ is a limit ordinal
and for all α < δ we have Pα is appropriate. Let {(pα, aα) : α ∈ ω1} be a sequence
of pairs consisting of a condition pα and a sequence aα of countable ordinals of some
fixed size n < ω. By thinning out, we can find an uncountable set X ∈ [ω1]ω1 so
that the set {supp(pα) : α ∈ X} forms a ∆-system. Let γ < δ be an ordinal above
the maximum of the root. Consider now the set {(pα�γ, aα). Since Pγ is assumed
to be appropriate we can find α < β ∈ X so that pα�γ ‖ pβ�γ and raα(i) ≤ raβ(i) for
all i < n. Now however it follows that pα and pβ are compatible which completes
the proof of this case. �

§ 2. A Sufficient Condition

In this section we prove a sufficient condition for the existence of a linear order
satisfying the conclusion of Main Theorem 0.1.

Theorem 2.1. Suppose that there exists A ⊆ R such that the following hold:

(A) A is dense in R and ℵ1-dense and;
(B) A is slicewise coverable.

Let Q be an ℵ1-preserving forcing of size ℵ1. Then Q forces that A and A∗ are far.

Proof. Fix A as in the statement of the theorem and enumerate its elements as
{aα : α ∈ ω1}. Suppose towards a contradiction that Q is a forcing notion of size
ℵ1 forcing that A and A∗ are near. Let 〈qξ : ξ < ω1〉 be an injective enumeration of
Q. Let π̇ be a Q-name so that 
Q“ π̇ is an order isomorphism between uncountable
subsets of A and A∗”. Without loss of generality we can assume that the lower
cone of every element of Q is uncountable.

Let π̇∗ denote the name for the uncountable, partial function from ω1 to ω1

defined in the extension by π̇∗(α) = β if and only if π̇(aα) = aβ . For each p ∈ Q
and α ∈ ω1 we can choose a triple (qp,α, βp,α, γp,α) so that the following are satisfied:

(A) qp,α ≤ p and, if ξ < ω1 is such that qp,α = pξ, then ξ > α;
(B) βp,α, γp,α ∈ (α, ω1) (that is they are countable ordinals above α);

(C) qp,α 
 π̇∗(β̌p,α) = γ̌p,α

Note that these exist since π̇ is assumed to be uncountable (so there are βp,α, γp,α >
α) and every lower cone is uncountable so we can always strengthen to such a q
should the original index of a condition forcing the above statement be too small.

By considering a chain of elementary submodels, we can find a club E ⊆ ω1 with
the following properties.

(A) If δ ∈ E then for every η, ξ < δ we have that βpξ,η, γpξ,η < δ and, if
qpξ,η = pζ , then ζ < δ as well.

(B) For every δ ∈ E, if δ′ := min(E \ (δ + 1)), then {ai : δ ≤ i < δ′} is dense in
A.

(C) 0 ∈ E.

Fix now such a club E and enumerate its elements as E = {δα : α < ω1} in order.
Observe that condition (B) ensures that Aα := {ai : i < δα} forms a filtration.
Choose functions fn which are increasing and witness slicewise coverability of A
with respect to this filtration.

Claim 2.2. For each p ∈ Q and each α < ω1, there exists n ∈ ω such that
fn(aβp,α) = aγp,α .
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6 P. MARUN, S. SHELAH, AND C. B. SWITZER

Proof. Fix p ∈ Q and α < ω1. There is a unique i < ω1 such that δi ≤ α < δi+1.
By (A) in the definition of E, βp,α, γp,α < δi+1. On the other hand, by (B) in the
definition of (qp,α, βp,α, γp,α), we have that βp,α > α ≥ δi and similarly for γp,α.
Therefore, (aβp,α , aγp,α) ∈ (Ai+1 \Ai)× (Ai+1 \Ai), and so, by the definition of the
fm’s, there is some n ∈ ω with fn(aβp,α) = aγp,α . �

Consider the set

Sn :=
{
q ∈ Q : ∃α < ω1∃p ∈ Q[q = qp,α ∧ fn(aβp,α) = aγp,α ]

}
.

Claim 2.3. For every n < ω, the set Sn is an antichain.

Proof of Claim. Fix n < ω. If qp0,α0 , qp1,α1 ∈ Sn then we have that fn(aβpi,αi ) =

aγpi,αi for i < 2 and hence {(aβp0,α0
, aγp0,α0

), (aβp1,α1
, aγp1,α1

)} is an increasing
function so qp0,α0

and qp1,α1
cannot be in the same generic as π̇ was forced to be

order reversing. �

For each n < ω extend Sn to some maximal antichain In. Let ξ̇n denote the
unique countable ordinal so that pξ̇n ∈ Ġ ∩ Ǐn. Let ξ̇ be a name for supn∈ω ẋin.

Since ω1 is not collapsed, it follows that 
 ξ̇ < ωV1 . Pick ε < ω1 and ξ < ω1 so that

p = pε 
 ξ̇ = ξ̌. Let α ∈ E be larger than ε and ξ and finally consider the triple
(qp,α, βp,α, γp,α). If ζ < ω1 is such that qp,α = pζ , then ζ > α > ξ by (B) in the
definition of qp,α. Moreover, there is an n < ω so that fn(aβp,α) = aγp,α and hence

qp,α ∈ Sn. Thus, qp,α forces that ξ̇n = ζ, contradicting that p, which was a weaker

condition, forced that ξ̇n < ξ̇ < ζ. �

§ 3. Constructing a Model of MA with a slicewise coverable linear
order

We now complete the proof of Main Theorem 0.1 by constructing a model of
MA + 2ℵ0 = κ in which there is a slicewise coverable, ℵ1-dense linear order. By
Theorem 2.1 this suffices.

Theorem 3.1. Assume GCH and let κ be a regular cardinal greater than ℵ1. There
is a ccc forcing notion P so that in any generic extension by P there is an ℵ1-dense
A ⊆ R so that the following hold.

(A) 2ℵ0 = κ and MA holds and;
(B) A is slicewise coverable.

Towards proving this theorem we need a forcing notion which will allow us to
cover the slices of a given filtration.

Definition 3.2. Let A = {rξ : ξ < ω1} be ℵ1-dense and good. Given a filtration ~A
of A, let Q ~A be the set of finite, order-preserving partial functions q : A ⇀ A such
that

∀ξ, η < ω1[q(rξ) = rη → ∃α < ω1(rξ, rη ∈ Aα+1 \Aα)].

Order Q ~A by (reverse) inclusion.

Lemma 3.3. Let A be ℵ1-dense and good, and let ~A = 〈Aα : α ∈ ω1〉 be a filtration.
The following hold.

(A) Q ~A is ccc.
(B) Q ~A generically adds a function f : A→ A which is defined on an uncount-

able set, is increasing and has the property that for every α < ω1 we have
a ∈ Aα+1 \Aα if and only if f(a) ∈ Aα+1 \Aα for every a ∈ dom(p).

(C) Q ~A is appropriate.
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BAUMGARTNER’S AXIOM AND SMALL POSETS 7

Proof. To establish (A), we argue by contradiction. We can then let n be the
smallest positive integer so that there exists an uncountable antichain all of whose
elements have size n. Let W be an uncountable antichain of Q ~A with |q| = n for
all q ∈W .

Claim 3.4. We may assume, shrinking W if necessary, that for all p, q ∈ W with
p 6= q, dom(p) ∩ dom(q) = ∅ and ran(p) ∩ ran(q) = ∅.

Proof. If n = 1, then the elements of W are all singletons, and the conclusion is easy.
Suppose therefore that n > 1 and let W ′ ∈ [W ]ℵ1 be such that {dom(q) : q ∈ W ′}
forms a ∆-system with root R. For each r ∈ R, q(r) can take values in a countable
set (by the definition of Q ~A), so, by the finiteness of R, we may find W ′′ ∈ [W ′]ℵ1 so
that, if p, q ∈W ′, then p∪q is a function. Now note that {q�(dom(q)\R) : q ∈W ′′}
is a family of conditions of size n−|R|, which moreover forms an antichain. By the
minimality of n, |R| = 0, so the first half of the conclusion follows upon replacing
W by W ′′.

To get pairwise disjoint ranges, simply apply the previous paragraph to the
family {q−1 : q ∈W}. �

Set, for every q ∈W ,

uq := {ξ < ω1 : rξ ∈ dom(q)}
and

vq := {ξ < ω1 : rξ ∈ ran(q)}.
We identify uq with its increasing enumeration, so that, for example, uq(i) denotes
the ith element (in the ordinal ordering) of dom(q) whenever i < n.

For each q ∈W and i, j < n with i 6= j, fix rational numbers dqij and eqij so that
the following hold:

• dqij is between ruq(i) and ruq(j);

• eqij is between rvq(i) and rvq(j);

Also, fix for every q ∈ W a permutation σq in1 Sn so that, for every i < n,
q(ruq(i)) = rv(σq(i)).

Shrinking W if necessary, we may assume that, for each i 6= j, the map q 7→
(dqij , e

q
ij) is constant, say with value (dij , eij). Similarly, we may assume that the

map q 7→ σq is constant, say with value σ.
We now apply the goodness of A to the family of 2n-tuples 〈(uq, vq) : q ∈W 〉 to

find p, q ∈W with p 6= q and

∀i < n
[
rup(i) ≤ ruq(i) ∧ rvp(i) ≤ rvq(i)

]
.

We will show that p and q are compatible, which will contradict that W forms an
antichain. To see this, fix x ∈ dom(p) and y ∈ dom(q) with x < y we need to see that
p∪q is order-preserving on {x, y}. Fix i, j < n so that x = rup(i) and yuq(j). We now
distinguish two cases. Suppose first that i 6= j. Suppose that rup(i) < rup(j), the
other case being symmetric. We have that x = rup(i) < dij < rup(j) by the choice
of dij , and therefore ruq(i) < dij < ruq(j) = y by the same reason. In particular,
x < y. On the other hand, since p is order-preserving and rup(i) < rup(j), we infer
that p(rup(i)) < p(rup(j)), hence

p(x) = rvp(σ(i)) < eσ(i)σ(j) < rvp(σ(j))

and so
rvq(σ(i)) < eσ(i)σ(j) < rvq(σ(j)) = q(y).

Putting everything together, p(x) < q(y), as desired.

1Sn is the symmetric group with n-elements
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8 P. MARUN, S. SHELAH, AND C. B. SWITZER

We are now left with the case i = j. We have that p(x) = rvp(σ(i)) and q(y) =
rvq(σ(i)). By the choice of p and q, rup(i) ≤ ruq(i) and rvp(σ(i)) ≤ rvq(σ(i)), which
immediately yields that x < y and p(x) < q(y).

Item (B) is clear from the way the poset is constructed.
The proof of (C) is a straightforward modification of that of (A), so we point out

the only difference and leave the details to the interested reader. Given {(pα, aα) :
α < ω1} with |pα| = n and |aα| = m for every α < ω1, apply goodness to the
sequence of 2n+m tuples (upα , vpα , aα) rather than just (upα , vpα). The argument
is then as before, mutatis mutandis. �

Lemma 3.5. Let A be good and ~A be a filtration. The finite-support product∏fin
n<ω Q ~A is ccc, appropriate and generically adds a family {fn}n<ω of partial,

strictly increasing functions A → A which respect the slices of the filtration and⋃
n<ω fn =

⋃
α<ω1

(Aα+1 \Aα)× (Aα+1 \Aα)

Proof. Since Q ~A is ccc when A is good it follows that Q ~A forces itself to remain
ccc by the fact that it is appropriate. It follows therefore that the finite-support
product is itself ccc and in fact appropriate since finite support iterations of ccc,
appropriate forcing notions are themselves appropriate. By a density argument,
the union of the generic functions cover

⋃
α<ω1

(Aα+1 \Aα)× (Aα+1 \Aα), and we
are done. �

Let us now finish the proof of Theorem 3.1. This is similar to the proof of [AS81,
Theorem 2].

Proof of Theorem 3.1. Assume GCH and first add ℵ1-many Cohen reals. Call this
set A. Again by [AS81], this is a good set. By a finite support iteration of length κ
we can, using some bookkeeping, force with every ccc, appropriate partial order of
size <κ. By standard arguments we get that in the final model 2ℵ0 = κ and Martin’s
axiom holds for appropriate posets. By Lemma 1.10 A is still good. Also, as
previously remarked (and observed in [AS81]), in fact there are no ccc inappropriate

posets so full MA holds. Moreover, we can now apply the forcing notion
∏fin
n<ω Q ~A to

any filtration of ~A to obtain a sequence of functions witnessing slicewise-coverability
for that filtration. This completes the proof. �

§ 4. Discussion and Open Questions

We conclude the paper with some final observations and questions for further
research. We first note that proof of Theorem 3.1 actually shows the following.

Theorem 4.1. Let A ⊆ R be good and ℵ1-dense. If MAℵ1 holds then A is slicewise
coverable and hence cannot be made isomorphic to its reverse by any forcing notion
of size ℵ1 which preserves ℵ1.

In fact, it is easy to see that the above results have nothing to do with ℵ1. There-
fore we get the following, where the notions of “good” and “slicewise coverable” are
generalized above ℵ1 in the obvious way. Note that if A is a κ-dense set of mutually
generic Cohen reals it will good.

Theorem 4.2. Let κ be a cardinal and let A ⊆ R be good and κ-dense. If MAκ
holds then A is slicewise coverable.

As mentioned in the introduction, a corollary of Theorem 4.1 is an alternative
proof of a related (though different) fact shown in [MT17]. This theorem can also
be understood in the context of rigidity of ℵ1-sized structures under MA. Under
MA, often structures of size ℵ1 retain some strong “incompactness” property by
forcing notions preserving ℵ1 or at least ccc forcing. For example this is true for
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Aronszajn trees, all of which are special (and hence indestructibly Aronszajn) under
MA but not in general. If A is ℵ1-dense, then for every countable and dense (in
itself) subset B ⊆ A, we have that B ∼= B∗ by Cantor’s Theorem, but A need not
be isomorphic (or even near) to its reverse.

We note that the implication “good→ slicewise coverable” can fail in the absence
of MA:

Lemma 4.3. It is consistent for any cardinal κ that κ < 2ℵ0 and there is a good,
κ-dense A ⊆ R which is not slicewise coverable.

We remark that if κ = ℵ1 then adding ℵ1-many Cohen reals over a model of CH
will witness the lemma as CH will hold again in V [A] and hence by the main result
of [Bau73], there will be a ccc forcing notion of size ℵ1 which adds an isomorphism
between A and A∗.

Proof. Fix a cardinal κ and let A be a κ-dense set of mutually generic Cohen reals.
Work in V [A], where we know that A is good. We note the following two facts.
First, as is well known, see e.g. [Bla, p. 473], in V [A] the set of Cohen reals is
not meager. However observe that any slicewise coverable set B ⊆ R must in fact

be meager. To see this, fix any filtration ~B = {Bα : α ∈ κ} and any family of
countably many increasing functions fn : B → B as in the definition of slicewise
coverability. Note that every x ∈ B there will be an n < ω so that fn(x) = x. Now,
note that for any given n < ω we have that the graph of fn is nowhere dense in R2.
The result now follows. �

In fact there is another way as well to see this which gives more information.

Lemma 4.4. MA(σ-linked) is consistent with a good linear order which is not
slicewise coverable.

Proof. As one can force MA(σ-linked) by a σ-linked forcing over a model of CH, it
suffices to show that σ-linked forcing cannot add a countable family of increasing
functions covering a filtration that was not already covered by such a family of

functions. Therefore let A ⊆ R be a set which is not slicewise coverable and let ~A be
such a filtration with no family of functions. Suppose towards a contradiction that
P is σ-linked and let {ḟn : n < ω} be forced to be a family of increasing functions

covering ~A as in the definition of slicewise coverability. Let P =
⋃
n<ω Pn be the

partition into countably many linked pieces. If n,m ∈ ω then let f̂n,m : A → A

be the partial, increasing function defined by f̂n,m(x) = y if and only if some

p ∈ Pm forces that ḟn(x̌) = y̌. It is easy to verify that by linked-ness each f̂n,m is
a monotone increasing function and collectively they will cover the square of the
filtration. This is a contradiction however, which completes the proof. �

Note that the above implies that the forcing notions of the form Q ~A are not in
general σ-linked. It is not clear what the relationship is between good, essentially
increasing and slicewise coverable in ZFC.

Question 4.5. What is the ZFC-provable behavior of the classes of good, essentially
increasing and slicewise coverable ℵ1-dense suborders of R in ZFC?

It would be particularly interesting to know whether examples like this are at
the heart of the failure of BA under MA. One way to phrase this is the following.

Question 4.6. Does MA imply that every ℵ1-dense linear order is either reversible
or good?
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As we mentioned in the introduction, the original motivation for this work was
to determine whether PFA for ℵ1-sized posets (or even MM for ℵ1-sized posets)
suffices to prove BA. While the results presented above hint at a negative answer,
we cannot yet rule this out completely.

Question 4.7. Do either PFA or MM for ℵ1-sized posets prove BA?

By what we have shown it would be enough to answer the following in the
affirmative, though this is not clear.

Question 4.8. If A ⊆ R is a good, ℵ1-dense linear order, is the property that A is
good preserved by countable support iterations of proper forcing notions?

Observe finally that by the proof PFA implies BA in [Bau84], there is always a
proper poset P of size continuum adding an isomorphism from between two given
ℵ1-dense A and B. By the results above there may not always be one of size ℵ1. This
suggests a cardinal characteristic which might give some interesting information.

Question 4.9. Suppose A,B ⊆ R are ℵ1-dense. What can be said about the least
size of a P which is proper and adds an isomorphism between them? Can it be
strictly between ℵ1 and 2ℵ0?

References

[AS81] Uri Abraham and Saharon Shelah, Martin’s axiom does not imply that every two
ℵ1-dense sets of reals are isomorphic, Israel J. Math. 38 (1981), no. 1-2, 161–176.

MR 599485

[Bau73] James E. Baumgartner, All ℵ1-dense sets of reals can be isomorphic, Fund. Math. 79
(1973), no. 2, 101–106. MR 317934

[Bau84] , Applications of the proper forcing axiom, Handbook of set-theoretic topology,

North-Holland, Amsterdam, 1984, pp. 913–959. MR 776640
[Bla] Andreas Blass, Combinatorial cardinal characteristics of the continuum, Handbook of

Set Theory (Matthew Foreman and Akihiro Kanamori, eds.), vol. 1, Springer, pp. 395–
490.

[Jec03] Thomas Jech, Set theory, Springer monographs in mathematics, Springer-Verlag, Berlin,

2003. MR 1940513
[Kun11] Kenneth Kunen, Set theory, Studies in Logic (London), vol. 34, College Publications,

London, 2011. MR 2905394

[MT17] Justin Tatch Moore and Stevo Todorcevic, Baumgartner’s isomorphism problem for ℵ2-
dense suborders of R, Arch. Math. Logic 56 (2017), no. 7-8, 1105–1114. MR 3696077

[Swi25] Corey Bacal Switzer, Weak Baumgartner axioms and universal spaces, Topology Appl.

373 (2025), Paper No. 109530, 18. MR 4939512

(P. Marun) Institute of Mathematics, Czech Academy of Sciences, Žitná 25, Prague
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