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BAUMGARTNER’S AXIOM AND SMALL POSETS

PEDRO MARUN, SAHARON SHELAH, AND COREY BACAL SWITZER

ABSTRACT. We contribute to the study of Nj-dense sets of reals, a mainstay
in set theoretic research since Baumgartner’s seminal work in the 70s. In
particular, we show that it is consistent with MA that there exists an X;-dense
set of reals A so that, in any cardinal-preserving generic extension by a forcing
of size N1, A and A* do not contain uncountable subsets which are order
isomorphic. This strengthens a result of Avraham and the second author and
yields a different proof of a theorem of Moore and Todorcevic.

§ 0. INTRODUCTION

One of the most important early results in forcing theory and its applications
is Baumgartner’s theorem from [Bau73] that consistently all N;-dense sets of reals
are order isomorphic. This statement is now commonly known in the literature as
Baumgartner’s Aziom and denoted BA, see [Swi25] for more on the background.
Here a set of reals is Ny -dense if between any two points there are Ny-many. Clearly
each such is isomorphic to one which is moreover Ni-dense in the reals - i.e. has
intersection size N1 with every nonempty real open interval. The idea behind Baum-
gartner’s proof is to assume CH and show that, given a pair of N;-dense sets of reals
A and B, there is a ccc forcing notion of size 8; which generically adds an isomor-
phism between them. From the modern perspective it is then clear that a careful
bookkeeping suffices to provide a model of BA+2%0 = R,. Baumgartner also showed
later in [Bau84] that BA also follows from PFA.

A natural question is whether Baumgartner’s result actually relies on CH i.e.
given two Nj-dense linear orders A and B is there necessarily a ccc forcing notion
which generically adds an isomorphism between them. This was asked by Baum-
gartner in [Bau73]. Similarly one can ask whether BA follows from MA already
and not just PFA. The answer to both these questions is “no”, due to a celebrated
result of Avraham and the second author from [AS81].

Theorem 0.1 ([AS81, Theorem 2]). For any regular k > Wy it is consistent that
2% — k, MA holds and there is an N-dense A C R which is not isomorphic to its
reverse ordering.

Note that were there a ccc forcing notion in this model adding an isomorphism
between A and its reverse ordering then they would have to already be isomorphic
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by MA. For this reason, in this model not only does BA fail but it can never be
forced by a ccc forcing. Given this, it is natural to ask the following two questions.

Question 0.2. Given A and B which are Nj-dense is there always a proper forcing
notion of size less than the continuum which adds an isomorphism?

Question 0.3. Does PFA(R;-sized posets) suffice to prove BA? What about MM(R;-
sized posets)?

Note that Baumgartner’s proof provides in ZFC a proper forcing of size 2%
which generically adds isomorphisms. In full generality these questions remain
open however in this paper we provide the following partial answer.

Main Theorem 0.1. For any reqular cardinal k > Ry it is consistent that MA +
2% = Kk holds and there is an Ny-dense A C R so that any forcing notion of size
N1 which generically adds an isomorphism between A and its reverse ordering must
necessarily collapse Ny.

In particular we have the following immediate corollary.

Corollary 0.4. It is consistent with ZFC that there are A and B which are Nq-
dense sets of reals so that no proper forcing of size less than continuum can add an
isomorphism between them.

We remark in relation to this that in [MT17] it was shown that forcing MAy, in
the natural way forces that there is an Ni-dense linear order that cannot be made
isomorphic to its reverse in any outer model of the universe with the same wy, which
provides a partial answer to the questions above as well. The results above allow us
to give therefore an alternative proof of the observation made concerning the proof
of [MT17, Theorem 1.4] made in the introduction to that paper.

Corollary 0.5 (Moore-Todorcevic, See [MT17, Theorem 1.4] and related discus-
sions). MA + —CH s consistent with an R;-dense linear order that cannot be made
isomorphic to its reverse ordering by any Wi-sized forcing notion which does not
collapse wy .

Our proofs actually establish quite a bit more. The definition of a good linear
order is given below, see Definition 1.5. For the purposes of the introduction we
note that any set of uncountably many mutually generic Cohen reals is good. We
show that if there are good, N;-dense linear orders, then under MA they necessarily
have this indestructibility property.

Main Theorem 0.2. Assume MAy,. If A C R is good and X;-dense then it cannot
be made isomorphic to its reverse order by any forcing notion of size ¥y which does
not collapse N1.

Already in [AS81] it was shown by the second author and Avraham that MA +
280 — k is consistent with a good X;-dense linear order for any regular . This fact
alongside Main Theorem 0.2 implies Main Theorem 0.1.

The rest of this paper is organized as follows. In the next section we introduce
some combinatorial properties of X;-dense linear orders which will be used in the
proof of Main Theorem 0.1. The following section proves that if MA holds alongside
the existence of a linear order satisfying a certain combinatorial property, slicewise
coverable, described in §1, then the conclusion of Main Theorem 0.1 holds. Finally
in §3 we provide a model in which MA holds alongside such a linear order hence
proving Main Theorem 0.1. A final section concludes with some further observations
and open questions.

Throughout, our notation is standard, conforming to that of the monographs
[Jec03] or [Kunll]. We fix some notation for linear orders which is slightly less
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standard or well known. First, given a linear order A C R its reverse ordering is
denoted A* = {—r : r € A}. Such an order is reversible if A = A*. Clearly BA
implies all N;-dense linear orders are reversible. Next we say that two linear orders
A, B C R are near if there are uncountable subsets A’ C A and B’ C B so that
A’ = B’. If A and B are not near then we say they are far. Finally, let us say
that a map f : A — B (for linear orders A and B) is increasing if a < b implies
f(a) < f(b). A map f: A — B is decreasing or order reversing if a < b implies
f(b) < f(a). A map f: A— B is monotone if it is either increasing or decreasing.

§ 1. ANTI-REVERSIBILITY CONDITIONS

The key steps in the proof of Main Theorem 0.1 require the construction of a
linear order which is very far from being reversible. In [AS81] the following concept
was used, though not given a name.

Definition 1.1. Let A C R be an N;-dense linear order. We say that A is essentially
increasing if every partial, uncountable injection f : A — A is increasing on some
uncountable subset.

Obviously, if A is essentially increasing then it is far from A*. Moreover, the
existence of an essentially increasing A implies that no ccc forcing notion can force
A and A* to be near, see [AS81, p. 106]. In [AS81] the following was proved.

Theorem 1.2 (Avraham-Shelah, [AS81]). For any reqular £ > Ny it is consistent
that 2% =k, MA holds and there is an essentially increasing linear order.

We will need a strengthening of being essentially increasing, which we call being
slicewise coverable. Below we say that a filtration of an N;-dense linear order A is
a C-increasing and continuous sequence A= {A, : @ € w1} so that the following
are satisfied.

(A) Ag=10

(B) For all & < w; we have that A,41 \ A, is a countable, dense subset of A.
(C) A=Uscw, 4a

Note that if A is a filtration of A then the set {Aa+1 \ As + @ € w1} forms a
partition of A into wi-many countable, dense sets. In this set up let us refer to each
Anit1 \ Ao as a slice of the the filtration.

We now define slicewise coverability.

Definition 1.3. An N;-dense linear order is said to be slicewise coverable if given
any filtration A of A there are countably many partial increasing functions { f,, }n<w

with f, : A = A so that U, _, fo = Unew, (Aatt \ Aa) X (Aats \ Aa).

Note that the above says concretely that for every n < w and every a € wq if
a € dom(f,) N (Aas1 \ An) then f,(a) € (Aat1 \ A) and, moreover every pair
(a,b) € (Aas1 \ An)? appears in this way for some n < w. In other words, each
square of a slice is covered by the graphs of the f,’s.

Lemma 1.4. Suppose A C R is Ry-dense. If A is slicewise coverable, then it is
essentially increasing.

Proof. Assume A is a slicewise coverable, N;-dense linear order. Let f: A — A
be a partial, uncountable function. Take an €-increasing and continuous chain
(M, : @ < wy) of countable elementary submodels of some large Hy with f, A € M.
Let A, := M, N A. This produces a filtration of A so that each slice if closed under
f, by elementarity.

By assumption there are countably many f, : A — A, each of which is a partial
increasing function so that (U, fn = Uscw, [(Aat1 \ Aa) X (Aat1 \ Aa)] and
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therefore in particular we can cover the graph of f by these functions since each
Aas1 \ Ay was closed under f. Since f is uncountable however that means some
n < w we have that f,, N f is uncountable, which completes the proof. O

We will need a separate combinatorial property of linear orders which will be
useful in constructing slicewise coverable linear orders.

Definition 1.5. Let A be an N;-dense set of reals. We say that A is good if there
is an injective enumeration A = {r¢ : £ < w;} so that the following holds: for
every n < w and every (a, : & < wy) with a, € [w1]™, there exist a < § such that

Tao (i) < Tag(i) for every i < n.

In what follows, when we write “A = {re : £ < wi} is good”, we mean that

(re : £ <wq) is an (injective) enumeration witnessing the goodness of A.
The following is shown on [AS81, p. 164].

Lemma 1.6. Let A= {r, : a <w} be a set of mutually generic Cohen reals over
a fized ground model V.. Then A is good in V[A].

Being good can be preserved by finite support iterations. This was explained on
[AS81, p. 166] but we provide a proof to make this presentation more self contained.
First we need to define the class of posets preserving goodness.

Definition 1.7. Let A = {r¢ : £ < w1} be good. A forcing poset P is said to
be appropriate (for A) iff for all n € w and ((Pa, @) : @ < w1) where p, € P and
o € [w1]™, there exist o < B such that p, || ps and 74, (i) < Tay() for all i < n.

Observe that being appropriate implies ccc by ignoring the a, part. Also, by
[AS81, Lemma 12], if A is good and P is appropriate then P forces that A is still
good. In fact this is an equivalent characterization.

Lemma 1.8. Let P be a partial order and let A be good. The following are equiv-
alent.

(A) P is appropriate for A.

(B) P is ccc and preserves the goodness of A.

Proof. (A) = (B): See [AS81, Lemma 12].

(B) = (A): Fix a natural number n < w and let {(pa,aa) : @ € w1} be a set
of pairs with p, € P and a, € [wi]™ as in the definition of goodness. Let Z be a
P-name for the set of @ < wy so that p, € G.

Claim 1.9. There is a p € P which forces that Z is uncountable.

Proof of Claim. Otherwise I-p “Z is countable”. By the ccc, there is some countable
ordinal v so that IFp Z C 4. But this is not possible since for any p, with o >
we have that p, IF & € Z. 0

Fix now a condition p € P forcing that Z is uncountable. Let G 5 p be generic
over V and work in V[G]. By assumption, A is still good. Let Z = Z%. Consider
now the set {(pa,aq) : @ € Z}. Since A is good (in V[G]), there are p, and pg in
G so that ry, () < g, for all i <n. Also, since p, and pg are both in G, they are
compatible. But now, back in V' we have that o and S witness compatibility. [

We now sketch the aforementioned preservation result.
Lemma 1.10. Finite support iterations of appropriate posets are appropriate.

Proof. Let (P, Q,:a< d) be a finite support iteration of some ordinal length §
so that for each o < & we have that |-, “Q,, is appropriate”. We want to show by
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induction on § that Ps is appropriate. Note that since appropriate forcing notions
are ccc we know that Ps is ccc.

The successor stage follow from Lemma 1.8 above since clearly being good is
preserved by two-step iterations. Let us therefore assume that § is a limit ordinal
and for all & < § we have P, is appropriate. Let {(pa, @) : @ € w1} be a sequence
of pairs consisting of a condition p, and a sequence a,, of countable ordinals of some
fixed size n < w. By thinning out, we can find an uncountable set X € [w1]“? so
that the set {supp(pa) : @ € X} forms a A-system. Let v < § be an ordinal above
the maximum of the root. Consider now the set {(pa[7,aq). Since P, is assumed
to be appropriate we can find o < 8 € X so that pa [ || psly and 4, (i) < 74, for
all ¢ < n. Now however it follows that p, and pg are compatible which completes
the proof of this case. O

§ 2. A SUFFICIENT CONDITION

In this section we prove a sufficient condition for the existence of a linear order
satisfying the conclusion of Main Theorem 0.1.

Theorem 2.1. Suppose that there exists A C R such that the following hold:

(A) A is dense in R and X;-dense and;
(B) A is slicewise coverable.

Let Q be an Xy -preserving forcing of size X1. Then Q forces that A and A* are far.

Proof. Fix A as in the statement of the theorem and enumerate its elements as
{an : @ € wi}. Suppose towards a contradiction that Q is a forcing notion of size
R, forcing that A and A* are near. Let (g¢ : £ < wi) be an injective enumeration of
Q. Let 7 be a Q-name so that IFg“ 7 is an order isomorphism between uncountable
subsets of A and A*”. Without loss of generality we can assume that the lower
cone of every element of Q is uncountable.

Let 7, denote the name for the uncountable, partial function from w; to wi
defined in the extension by 7. (a) = § if and only if 7(as) = ag. For each p € Q
and o € wy we can choose a triple (¢p o, Bp,a, Vp,o) S0 that the following are satisfied:

(A) gp,o <pand, if £ <w; is such that ¢, o = pe, then £ > o

(B) Bp,a;>Vp.a € (a,wr) (that is they are countable ordinals above «);

(©) Ip,a I 7.T*(ﬁ]a,oz) = Yp,a

Note that these exist since 7 is assumed to be uncountable (so there are 8, o, ¥p,a >
«) and every lower cone is uncountable so we can always strengthen to such a ¢
should the original index of a condition forcing the above statement be too small.

By considering a chain of elementary submodels, we can find a club F C w; with
the following properties.

(A) If 6 € E then for every 7, < ¢ we have that B, ,,Vp.,n < ¢ and, if
Qpe,n = P, then ¢ < § as well.
(B) For every 6 € E, if ¢’ := min(E \ (§ + 1)), then {a; : 6 <i < ¢’} is dense in
A.
(C) 0eE.
Fix now such a club E and enumerate its elements as E = {0, : @ < w;} in order.
Observe that condition (B) ensures that A, := {a; : i < d,} forms a filtration.
Choose functions f,, which are increasing and witness slicewise coverability of A
with respect to this filtration.

Claim 2.2. For each p € Q and each a < wy, there exists n € w such that
fn(a,@p,a) = Oy, (-
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Proof. Fix p € Q and a < wy. There is a unique ¢ < w; such that §; < a < §;41.
By (A) in the definition of E, 8, o, Vp,a < di+1. On the other hand, by (B) in the
definition of (¢p,a, Bp,a;Vp,a), We have that B, o > a > ¢; and similarly for 7, 4.
Therefore, (ag, . ,a,.) € (Aig1\ Ai) X (Aiz1\ A;), and so, by the definition of the
Jm’s, there is some n € w with fy,(ag, ,) = a,, - O

Consider the set
S, = {q €Q:3a<wiIpeQg=qpaA fulas,.) = a%ﬁ]} .
Claim 2.3. For every n < w, the set S, is an antichain.

Proof of Claim. Fix n < w. If gpy,a0sqp,,a1 € Sn then we have that f,(ag, . )=
Uy for ¢ < 2 and hence {(aﬁpoﬂo’q%’oﬂo)’(aﬁpl:ﬂl’a’iﬁ’lval).} is an increasing
function so gp,,a, and gp, «, cannot be in the same generic as 7 was forced to be
order reversing. O

For each n < w extend S,, to some maximal antichain I,. Let §n denote the
unique countable ordinal so that P, € GNI,. Let f be a name for sup,,c,, Tip.
Since w; is not collapsed, it follows that I+ f < w}. Pick ¢ <w; and &€ < wy so that
p=np.lk&=E Let o € E be larger than € and ¢ and finally consider the triple
(@p,as Bp,as Yp,oo)- I ¢ < wy is such that gp o = p¢, then ¢ > a > £ by (B) in the
definition of g, . Moreover, there is an n < w so that f,(ag, ) = a4, , and hence
dp.o € Syn. Thus, gy o forces that §n = (, contradicting that p, which was a weaker
condition, forced that &, < € < ¢. O

§ 3. CONSTRUCTING A MODEL OF MA WITH A SLICEWISE COVERABLE LINEAR
ORDER

We now complete the proof of Main Theorem 0.1 by constructing a model of
MA + 280 = k in which there is a slicewise coverable, R;-dense linear order. By
Theorem 2.1 this suffices.

Theorem 3.1. Assume GCH and let k be a regular cardinal greater than Wy. There
is a ccc forcing notion P so that in any generic extension by P there is an Ni-dense
A C R so that the following hold.

(A) 2% =k and MA holds and;
(B) A is slicewise coverable.

Towards proving this theorem we need a forcing notion which will allow us to
cover the slices of a given filtration.

Definition 3.2. Let A = {re : € < w;} be R;-dense and good. Given a filtration A
of A, let Q7 be the set of finite, order-preserving partial functions ¢ : A — A such
that

V& <wilq(re) =my = Ja <wi(re, ) € Aoy \ Aa)l-

Order Q ; by (reverse) inclusion.

Lemma 3.3. Let A be Xy-dense and good, and let A= (Aq : @ € wy) be a filtration.
The following hold.
(A) Qjy is ccc.
(B) Qx generically adds a function f: A — A which is defined on an uncount-
able set, is increasing and has the property that for every o < wy we have
a € Aat1 \ Ao if and only if f(a) € Aqt1 \ Aa for every a € dom(p).
(C) Q is appropriate.
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Proof. To establish (A), we argue by contradiction. We can then let n be the
smallest positive integer so that there exists an uncountable antichain all of whose
elements have size n. Let W be an uncountable antichain of Q 4 with |¢| = n for
all g e W.

Claim 3.4. We may assume, shrinking W if necessary, that for all p,q € W with
p # ¢, dom(p) Ndom(q) = @ and ran(p) Nran(q) = 0.

Proof. If n = 1, then the elements of W are all singletons, and the conclusion is easy.
Suppose therefore that n > 1 and let W’ € [W]™ be such that {dom(q) : ¢ € W’}
forms a A-system with root R. For each r € R, ¢(r) can take values in a countable
set (by the definition of Q z), so, by the finiteness of R, we may find W € (W' so
that, if p, ¢ € W', then pUgq is a function. Now note that {¢[(dom(¢)\R) : ¢ € W"}
is a family of conditions of size n — | R|, which moreover forms an antichain. By the
minimality of n, |R| = 0, so the first half of the conclusion follows upon replacing

W by W”.
To get pairwise disjoint ranges, simply apply the previous paragraph to the
family {¢7':q € W}. O

Set, for every ¢ € W,
ug :={§ <wp :r¢ € dom(q)}
and
vg = {§ <wq :1e €ran(q)}.
We identify u, with its increasing enumeration, so that, for example, u4(i) denotes
the ith element (in the ordinal ordering) of dom(g) whenever i < n.

For each ¢ € W and i, j < n with i # j, fix rational numbers dgj and egj so that
the following hold:

. dfj is between 7, ;) and 7y, (;);

. egj is between r,,_(;) and 7y, (j);

Also, fix for every ¢ € W a permutation oy in* S, so that, for every i < n,
4(Tuy(i)) = oo, (i))-

Shrinking W if necessary, we may assume that, for each i # j, the map ¢ —
(d;, ef;) is constant, say with value (djj,e;;). Similarly, we may assume that the
map ¢ — oy is constant, say with value o.

We now apply the goodness of A to the family of 2n-tuples ((uq,vq) : ¢ € W) to

find p,q € W with p # ¢ and
Vi < [Fuy (i) < Tug) Ao, ) < Tog()]

We will show that p and ¢ are compatible, which will contradict that W forms an
antichain. To see this, fix z € dom(p) and y € dom(q) with 2 < y we need to see that
pUq is order-preserving on {z,y}. Fixi,j < nso that z = T, (i) and Yy, ;). We now
distinguish two cases. Suppose first that i # j. Suppose that r,, ) < ry, (), the
other case being symmetric. We have that z = r, ;) < dij < 7y,(;) by the choice
of d;;, and therefore r, ;) < dij < ry,(j) = y by the same reason. In particular,
z < y. On the other hand, since p is order-preserving and 7, (;) < u,(;), We infer
that p(ry,(i)) < p(ry,(;)), hence

P(T) = To,(0(i)) < €o(i)ols) < Top(o()))
and so

Tug(a() < €o(i)o(i) < Tvg(a()) = 4(¥)-
Putting everything together, p(z) < q(y), as desired.

15, is the symmetric group with n-elements
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We are now left with the case i = j. We have that p(z) = r, (o(:)) and q(y) =
T, (o(i))- BY the choice of p and g, 7y, i) < Ty, i) and Ty (o)) < Tw,(o(i)), Which
immediately yields that z < y and p(x) < ¢(y).

Item (B) is clear from the way the poset is constructed.

The proof of (C) is a straightforward modification of that of (A), so we point out
the only difference and leave the details to the interested reader. Given {(pqa,aq) :

a < wi} with |ps] = n and |a,| = m for every o < wy, apply goodness to the
sequence of 2n + m tuples (uy, , Up, , @) rather than just (u,,,vp, ). The argument
is then as before, mutatis mutandis. O

Lemma 3.5. Let A be good and A be a filtration. The finite-support product
HZ';W Q4 is ccc, appropriate and generically adds a family {fn}n<w of partial,
strictly increasing functions A — A which respect the slices of the filtration and

Un<w fn= Ua<w1 (Aa+1 \Aa) X (Aa+1 \Aa)

Proof. Since Q ; is ccc when A is good it follows that Q ; forces itself to remain
ccc by the fact that it is appropriate. It follows therefore that the finite-support
product is itself ccc and in fact appropriate since finite support iterations of ccc,
appropriate forcing notions are themselves appropriate. By a density argument,
the union of the generic functions cover J, ., (Aa+1\ Aa) X (Aa+1 \ Aa), and we
are done. (|

Let us now finish the proof of Theorem 3.1. This is similar to the proof of [AS81,
Theorem 2].

Proof of Theorem 3.1. Assume GCH and first add N;-many Cohen reals. Call this
set A. Again by [AS81], this is a good set. By a finite support iteration of length
we can, using some bookkeeping, force with every ccc, appropriate partial order of
size <k. By standard arguments we get that in the final model 2%° = x and Martin’s
axiom holds for appropriate posets. By Lemma 1.10 A is still good. Also, as
previously remarked (and observed in [AS81]), in fact there are no ccc inappropriate

posets so full MA holds. Moreover, we can now apply the forcing notion H2"<w Qy to

any filtration of A to obtain a sequence of functions witnessing slicewise-coverability
for that filtration. This completes the proof. O

§ 4. D1scuUssSION AND OPEN (QUESTIONS

We conclude the paper with some final observations and questions for further
research. We first note that proof of Theorem 3.1 actually shows the following.

Theorem 4.1. Let A C R be good and Ni-dense. If MAy, holds then A is slicewise
coverable and hence cannot be made isomorphic to its reverse by any forcing notion
of size Ny which preserves Nj.

In fact, it is easy to see that the above results have nothing to do with N;. There-
fore we get the following, where the notions of “good” and “slicewise coverable” are
generalized above W in the obvious way. Note that if A is a k-dense set of mutually
generic Cohen reals it will good.

Theorem 4.2. Let k be a cardinal and let A C R be good and rk-dense. If MA,
holds then A is slicewise coverable.

As mentioned in the introduction, a corollary of Theorem 4.1 is an alternative
proof of a related (though different) fact shown in [MT17]. This theorem can also
be understood in the context of rigidity of Wi-sized structures under MA. Under
MA, often structures of size N; retain some strong “incompactness” property by
forcing notions preserving ¥; or at least ccc forcing. For example this is true for
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Aronszajn trees, all of which are special (and hence indestructibly Aronszajn) under
MA but not in general. If A is Nj-dense, then for every countable and dense (in
itself) subset B C A, we have that B = B* by Cantor’s Theorem, but A need not
be isomorphic (or even near) to its reverse.

We note that the implication “good — slicewise coverable” can fail in the absence
of MA:

Lemma 4.3. It is consistent for any cardinal k that k < 2%° and there is a good,
k-dense A C R which is not slicewise coverable.

We remark that if k = Xy then adding N;-many Cohen reals over a model of CH
will witness the lemma as CH will hold again in V[A] and hence by the main result
of [Bau73], there will be a ccc forcing notion of size Ry which adds an isomorphism
between A and A*.

Proof. Fix a cardinal k and let A be a k-dense set of mutually generic Cohen reals.
Work in V[A], where we know that A is good. We note the following two facts.
First, as is well known, see e.g. [Bla, p. 473], in V[A] the set of Cohen reals is
not meager. However observe that any slicewise coverable set B C R must in fact
be meager. To see this, fix any filtration B = {Bs : @ € k} and any family of
countably many increasing functions f,, : B — B as in the definition of slicewise
coverability. Note that every x € B there will be an n < w so that f,(z) = x. Now,
note that for any given n < w we have that the graph of f,, is nowhere dense in R2.
The result now follows. (|

In fact there is another way as well to see this which gives more information.

Lemma 4.4. MA(o-linked) is consistent with a good linear order which is not
slicewise coverable.

Proof. As one can force MA(o-linked) by a o-linked forcing over a model of CH, it
suffices to show that o-linked forcing cannot add a countable family of increasing
functions covering a filtration that was not already covered by such a family of
functions. Therefore let A C R be a set which is not slicewise coverable and let A be
such a filtration with no family of functions. Suppose towards a contradiction that
P is o-linked and let {f, : n < w} be forced to be a family of increasing functions
covering A as in the definition of slicewise coverability. Let P = |J P,, be the

partition into countably many linked pieces. If n,m € w then let fnﬁm A= A

n<w

be the partial, increasing function defined by fnm(x) = y if and only if some
p € P, forces that fn(i") = g. It is easy to verify that by linked-ness each fn,m is
a monotone increasing function and collectively they will cover the square of the
filtration. This is a contradiction however, which completes the proof. O

Note that the above implies that the forcing notions of the form Q ; are not in
general o-linked. It is not clear what the relationship is between good, essentially
increasing and slicewise coverable in ZFC.

Question 4.5. What is the ZFC-provable behavior of the classes of good, essentially
increasing and slicewise coverable N;-dense suborders of R in ZFC?

It would be particularly interesting to know whether examples like this are at
the heart of the failure of BA under MA. One way to phrase this is the following.

Question 4.6. Does MA imply that every N;-dense linear order is either reversible
or good?
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As we mentioned in the introduction, the original motivation for this work was
to determine whether PFA for Ni-sized posets (or even MM for N;-sized posets)
suffices to prove BA. While the results presented above hint at a negative answer,
we cannot yet rule this out completely.

Question 4.7. Do either PFA or MM for W;-sized posets prove BA?

By what we have shown it would be enough to answer the following in the
affirmative, though this is not clear.

Question 4.8. If A C R is a good, N;i-dense linear order, is the property that A is
good preserved by countable support iterations of proper forcing notions?

Observe finally that by the proof PFA implies BA in [Bau84], there is always a
proper poset P of size continuum adding an isomorphism from between two given
Ni-dense A and B. By the results above there may not always be one of size R;. This
suggests a cardinal characteristic which might give some interesting information.

Question 4.9. Suppose A, B C R are Nj-dense. What can be said about the least
size of a P which is proper and adds an isomorphism between them? Can it be
strictly between R; and 2%0?
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