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Abstract. We look for partition theorems for large subtrees for suitable un-

countable trees and colourings parallely to the statement λ→ (µ)nκ such that
possibly λ > µ.

We concentrate on sub-trees of κ≥2 expanded by a well-ordering of each level.
However, in the embedding the equality of levels is preserved. The gain is that

we get consistency results without large cardinals.

An intention is to apply the results to model theoretic problems.
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2 SAHARON SHELAH

§ 0. Introduction

§ 0(A). Background and Results.

We continue two lines of research. One is set theoretic: pure partition relations
on trees and the other is model theoretic: Hanf numbers and non-deniability of
well ordering, in particular related to ω1. This is related to the existence of GEM
(generalized Eherenfuecht-Mostowski) for suitable templates (see [Shec]), and ap-
plications to descriptive set theory.

Halpern-Levy [HL71] had proved a milestone theorem on independence of versions
of the axiom of choice: in ZF,AC is strictly stronger than the maximal prime ideal
theorem (i.e. every Boolean algebra has a maximal ideal).

This work isolated a partition theorem1 on the tree ω>2, necessary for the proof.
This partition theorem was subsequently proved by Halpern-Lauchli [HL66] and
was a major and early theorem in Ramsey theory, (so the proof above relies on it).

See more in Laver [Lav71], [Lav73] and [She78b, AP,§2] and Milliken [Mil79],
[Mil81].

The [HL66] proof uses induction, later Harrington found a different proof using
forcing: adding many Cohen reals and a name of a (non-principal) ultrafilter on
N. Earlier, (on adding many reals and a partition theorem) see Silver’s proof of
Π1

1-equivalence relations, in [Sil80].

Now [She92, §4] turns to uncountable trees, i.e. for some κ > ℵ0, we consider trees
T which are sub-trees of (κ>2, /), such that (as in [HL66]) for every level ε < κ,
either (∀η ∈ T ∩ ε2)(ηˆ〈0〉, ηˆ〈1〉 ∈ T ) or (∀η ∈ T ∩ ε2)(∃!ι < 2)[ηˆ〈ι〉 ∈ T ]; (and
of course the first occurs unboundedly often). But a new point is that we have to
use a well ordering of T ∩ ε2 for ε < κ.

Naturally we add “is closed enough (that is under unions of increasing sequences
of length < κ)”. Also colouring with infinite number of colours, the proof uses
“measurable κ which remains so when we add λ many κ-Cohens for appropriate
λ”; it generalizes Harrington’s proof. This was continued in several works, see
Dobrinen-Hathaway [DH17] and references there.

We are here mainly interested in a weaker version which is enough for the model
theoretic applications we have in mind, we start with a large tree and get one
of smaller cardinality, in a sense this is solving the “equations” X /(Erdös-Rado
theorem) = [She92]/ (the partition relation of a weakly compact cardinal) = [HL66]
/ (Ramsey theorem). On other consistent partition relation see Boney-Shelah [S+a],
in preparation.

Turning to model theory see [She75], [She76] and Dzamonja-Shelah [DS04] where
such indiscernibility is considered in a model theoretic context.

A central direction in model theory in the sixties were two cardinal theorems. For
infinite cardinals µ > λ, let Kµ,λ be the class of models M such that M is of cardi-
nality µ and PM of cardinality λ. The main problems were transfer, compactness
and completeness. For connection to partition theorems, Morley’s proof of [Vau65],
the Vaught far apart two cardinal theorem used Erdös-Rado theorem; generally see
[She71b], [She71a], [She78a] and the survey [DS79]. Jensen’s celebrated gap n two

1Using not splitting to 2 but other finite splitting makes a minor difference; similarly here.

Paper Sh:1176, version 2026-01-01. See https://shelah.logic.at/papers/1176/ for possible updates.



PARTITION THEOREMS FOR EXPANDED TREES 1176 3

cardinal theorem solves those problems for e.g (ℵn,ℵ0) when V = L. But can we
get a nice picture in different universes?

Note that by [She89], [Shec], consistently we have GEM (generalized Eherenfuecht-
Mostowski) models for ordered graphs as index models, even omitting types.

On a different direction D.Ulrich has asked me on (∗)n below (and told me it has
descriptive set theoretic consequences, see [SU19]). We intend to prove (in the
sequel [S+b]) that for n < ω:

(∗)n consistently
(a) if ψ ∈ Lℵ1,ℵ0 has a model M of cardinality in+1 with (PM , <M )

having order type ω1 then ψ has a model N of cardinality in+1 and
(PN , <N ) is not well ordered,

(b) moreover, it is enough that M will have cardinality ℵδ, δ ≥ i++
n ,

(c) of course, preferably not using large cardinals.

This requires consistency of many cases of partition relations on trees and more
complicated structures, analysing GEM models. Much earlier we have intended
(mentioned in [She00, 1.15]) to prove the parallel for first order logic; and (in,ℵ0),
using (many Cohen indestructible) measurables κ1 < · · · < κn as in [She92, §4] and
forcing by blowing 2ℵ0 to κ1, 2κ1 to κ2 etc relying on [She92]; but have not carried
out that.

In preparation are also solutions to the two cardinal problems above and

(∗) (a) α• < ω1,iα+1 = (iα)+ω1+1 for α < α• and well ordering of ω1 is not
definable in {ECψ(iα•) : ψ ∈ Lℵ1,ℵ0} or at least,

(b) as above but for iα+1 = ℵi++
α
,

(c) parallel results replacing ℵ0 by µ.

Contrary to the a priori expectation no large cardinal is used.

In a sequel [S+c] we intend also to deal with other partition relations and with
weakly compact cardinals.

We thank Shimoni Garti and Mark Poór for many helpful comments.

§ 0(B). Preliminaries.

Definition 0.1. If µ = µ<κ then “for a (µ, κ)-club of u ⊆ X we have ϕ(u)” means
that: for some χ such that µ,X ∈ H (χ) and e.g. i3(µ + |X|) < χ and some
x ∈H (χ), if x ∈ B ≺ (H (χ),∈), ‖B‖ = µ, [B]<κ ⊆ B and µ+ 1 ⊆ B, then the
set u = B ∩X satisfies ϕ(u); there are other variants.

Definition 0.2. For κ regular (usually κ = κ<κ) and an ordinal γ, the forcing P =
Cohen(κ, γ) of adding γ many κ-Cohen reals is defined as follows:

(A) p ∈ P iff:
(a) p is a function with domain from [γ]<κ,
(b) if α ∈ dom(p) then p(α) ∈ κ>2,

(B) P |= p ≤ q iff:
(a) p, q ∈ P,
(b) dom(p) ⊆ dom(q),
(c) if α ∈ dom(p) then p(α) E q(α).

(C) for α < γ let η
˜
α =

⋃
{p(α) : p ∈ G

˜
P satisfies α ∈ dom(p)}, so 
P “η

˜
α ∈ κ2”,
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4 SAHARON SHELAH

(D) for u ⊆ γ let Pu := {p ∈ P : dom(p) ⊆ u}, so Pu l P and η̄u = 〈η
˜
α : α ∈ u〉

is generic for Pu.

Notation 0.3. 1) We denote infinite cardinals by κ, λ, µ, χ, θ, ∂, and σ denotes a
possibly finite cardinal.

2) We denote ordinals by α, β, γ, δ, ε, ζ, ξ and sometimes i, j.

3) We denote natural numbers by k, `,m, n and sometimes i, j.

4) Instead of e.g. ai we may write a[i], particularly in sub-script; also κ(+) means
κ+.

5) Let h[u]; = {h(x) : x ∈ u}.

Notation 0.4. Concerning Definition 1.1:

1) Let T denote members of Tfl or of Twk, writing T mean it can be either.

2) Similarly about T1 ⊆wk T2 or T1 ⊆fl T2 (or embedability).

3) Also, in Definition 1.5, we have either →fl or →wk.

§ 1. Partition Theorems

§ 1(A). The definitions.

Here, we consider partitions on trees. For uncountable trees, we find the need
to consider a well-ordering of each level, still preserving equality of level. We
may consider embeddings where equality of levels is not preserved, see Dzamonja-
Shelah [DS04] (in the web version). This will suffice for the intended model theory
application. Also, we may waive the completeness of the tree, but usually still like
to have many branches.

We intend to deal with an intermediate one (and with the weakly compact cardinal)
in a sequel [S+c].

Definition 1.1. 1) Let Tfl be the class of structures T such that:

(a) T = (u,<∗, E,<,∩, S,R0, R1) = (uT , <
∗
T , ET , <T ,∩T , ST , R

0
T , R

1
T ) but

we may write s ∈ T instead of s ∈ u,
(b) (u,<∗) is a well ordering, so linear, u non-empty,
(c) <T is a partial order included in <∗,
(d) (u,<T ) is a tree, i.e. if t ∈ T then {s : s <T t} is well ordered by <T ;

the level of t is the order type of this set; the tree is with ht(T ) levels,
Also the tree is normal; that is: if t1, t2 ∈ T and {s : s ≤T t1} = {s :

s ≤T t2} and this set has no <T -last element then t1 = t2.
(e) E is an equivalence relation on u, convex under <∗,
(f) (α) each E-equivalence class is the set of t ∈ T of level ε for some ε, so

the set of E-equivalence classes is naturally well ordered,
(β) we denote the ε-th equivalence class by T[ε],
(γ) E has no last E-equivalence class if not said otherwise,
(δ) let levT (s) = lev(s,T ) be ε when s ∈ T[ε], equivalently {t : t <T s}

has order type ε under the order <T ,
(ε) so ht(T ) is

⋃
{levT (s) + 1: s ∈ T } and it is a limit ordinal if not said

otherwise.
(g) if s ∈ u, levT (s) < ζ < ht(T ) then there is t ∈ T[ζ] which is <T -above s,
(h) each s ∈ T has exactly two immediate successors by <T ,
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(i) for s ∈ T we let:
•1 T≥s = {t ∈ T : s ≤T t},
•2 sucT (s) = {t : t ∈ T[lev(s)+1] satisfies s <T t},

(j) let s = t�ε mean that levT (s) = ε ≤ levT (t) ∧ (s ≤T t),
(k) for t1, t2 ∈ T , t1∩T t2 is the maximal common lower bound of t1, t2 (under
≤T ) so we demand it always exists, i.e. (T , <) is normal,

(l) for ` = 0, 1 we have R` ⊆ {(s, t) : s ∈ T and s <T t} , and if s <T s1 <T

s2, then sR`s1 iff sR`s2,
(m) if s ∈ T then for some t0 6= t1 we have sucT (s) = {t0, t1} and ` < 2 ⇒

(∀t)(sR`t iff t` ≤T t); so sR`t is the analog to ηˆ〈`〉 E ν; we may think of
{t : sR`t} as a division to the left side and the right side of the set of the
t′s above s.

1A) We define Twk similarly (“wk” stands for “weak”), but we omit clauses (h),
(m), replacing them with:

(h)’ is s ∈ T and levT (s) + ω ≤ ht(T ), then there is t ∈ spl(T ) such that
s ≤T t, where spl(T ) = {t ∈ T : t has two immediate successors}, and

(m)’ for s ∈ T either sucT (s) may be as in part (1) or is empty or a singleton.

1B) For T ∈ T, <lex :=<lex
T is the lexicographic order, i.e.,

η <lex ν iff (∃ρ)(ρR0 ν ∧ ρR1 η) or (η <T ν ∧ ηR1ν) or (ν <T η ∧ νR0η).

2) Let Tθ,κ = {T ∈ T : the tree T has δ levels, for some ordinal δ of cofinality κ
and for every ε < δ we have θ > |{s ∈ T : s of level ≤ ε}|}.
3) Let T1 ⊆fl T2 mean:

(a) T1,T2 ∈ T,
(b) <T1

:=<T2
�uT1

,
(c) if T1 |= “η ∩ ν = ρ” then T2 |= ‘‘η ∩ ν = ρ”,
(d) RT1,` = RT2,`�uT1

for ` = 0, 1,
(e) <∗T1

:=<∗T2
�uT1 ;

(f) ET1
:= ET2

�uT1
,

3A) Let T1 ⊆wk T2 is defined similarly omitting clause (f).

4) For s ∈ T and ` ∈ {0, 1}, let sucT ,`(s) be the unique immediate successor of s
in T such that (s, t) ∈ RT

` .

5) We say T1,T2 ∈ T are neighbors when they are equal except that for each
t ∈ T1 we can change the order <∗T1

� (t/ET1
) to <∗T2

(t/ET2
).

Definition 1.2. 1) We say f is a ⊆-embedding of T1 ∈ T into T2 ∈ T when: f is
an isomorphism from T1 onto T ′1 where T ′1 ⊆ T2.

1A) We say that f is a semi embedding of T1 ∈ T into T2 ∈ T, when f is a
⊆-embedding of T1 into some neighbour T ′2 of T2.

2) For any ordinal α (limit, if not said otherwise) and sequence <̄ = 〈<β : β < α〉,
with <β a well ordering of β2 we define T = Tα,<̄ as follows (omitting <̄ means
“for some”):

(a) universe α>2,
(b) <T is /�α>2,
(c) ET := {(η, ν) : η, ν ∈ β2 for some β < α},
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(d) <∗T := {(η, ν) : η, ν ∈ α>2 and `g(η) < `g(ν) or (∃β < α)(`g(η) = β =
`g(ν) ∧ η <β ν)},

(e) R` := {(η, ν) : ηˆ〈`〉 E ν ∈ T },
(f) η ∩T ν := η ∩ ν.

3) For T ∈ T and ζ < ht(T ), let <T ,ζ be <∗T �T[ζ].

4) For any T ∈ T, let

(a) sub1(T ) := {U ⊆ T : U 6= ∅ and for every s1 ∈ U , s2 ∈ T there is t ∈ U
such that s1 <T t ∧ levT (s2) ≤ levT (t)},

(b) sub2(T ) is the set of U ∈ sub1(T ) such that: if s1, s2 ∈ U , levT (s1) =
levT (s2) and |sucT (s1) ∩U | = 2 = |sucT (s2) ∩U | then s1 = s2 .

5) We say U ⊆ T is complete (in T ) when if t ∈ T[δ], δ < ht(T ) is a limit ordinal
and {s : s < t} ⊆ U , then t ∈ U . We say that T is complete when uT is complete.

Claim 1.3. 1) If θ = sup{(2|α|)+ : α < κ} and <̄ = 〈<β : β < κ〉 as in 1.2(2)
above, then Tκ,<̄ is well defined and belongs to Tθ,κ.

2) If κ = κ<κ,T = Tκ,<̄ are as in part (1), then there is U ∈ sub2(T ) which is
complete in T and for every s ∈ U there exists t ∈ T such that s <T t, levT (t) <
levT (s) + 2levT (s) and |sucT (t) ∩U | = 2.

It follows that U and T have the same number of κ-branches. Note however that,
T � U /∈ T because clause (m) of 1.1(1) may fail still we may demand T �U ∈ Twk

(see 1.1(1A)).

3) For every T1 ∈ T such that δ = ht(T 1) satisfying α < δ ⇒ αα < δ, there
are Twk ∈ T and h such that ht(T1) = ht(T ) and U ∈ sub2(T ) and h is an
⊆wk-embedding of T1 into T with range U and |U | = |T1| = |T |.

Proof. It is clear. �1.3

Definition 1.4. 1) For T ∈ T let eseqn(T ) be the set of sequences ā such that:

(a) ā is an <∗T -increasing sequence of length n of members of T ,
(b) k < ` < n⇒ ak ∩ a` ∈ {am : m < n}; (in fact, “ ∈ {am : m ≤ k}”).
(c) k, ` < n ∧ lev(ak) ≤ lev(a`)⇒ a`�lev(ak) ∈ {am : m < n},

1A) For U ⊆ T we let eseqn(U ,T ) be eseqn(T ) ∩ (nU ), similarly for part (2).

2) Let eseq(T ) = eseq<ω(T ) = ∪{eseqn(T ) : n < ω}.
2A) For finite A ⊆ T we define the sequence b̄ = cl(A) = clT (A) = cl(A,T ) as
the unique b̄ such that:

(a) b̄ ∈ eseq(T ),
(b) A ⊆ Rang(b̄),
(c) Rang(b̄) is minimal under those restrictions.

Also let pos(A) = pos(A,T ) be the unique function h from A into lg(b̄) such that
for every a ∈ A we have: i = h(a) iff bi = a.

2B) We may replace above A by a finite sequence ā, and let c`T (ā) be c`T (rang(ā))
and pos(ā) be the function mapping ` < lg(ā) to k iff a` = bk.

3) We say ā, b̄ ∈ eseq(T ) are T -similar or ā ∼T b̄ when for some n we have:

(a) ā, b̄ ∈ eseqn(T ),
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(b) for any k, i,m < n we have (notice that, <∗T is not mentioned):
•1 ak ≤T ai iff bk ≤T bi,
•2 (ak, ai) ∈ RT

` iff (bk, bi) ∈ RT
` for ` = 0, 1,

•3 ak ∩T a` = am iff bk ∩T b` = bm, actually follows,
•4 ak = a` � lev(am) iff bk = b`�lev(bm),
•5 (ak ∩ am)RT ,`ai iff (bk ∩ bm)RT ,`bi for ` = 0, 1; actually follows,
•6 levT (ak) ≤ levT (a`) iff levT (bk) ≤ levT (b`); actually follows,
•7 ak <

∗
T ai iff bk <

∗
T bi.

3A) We say that ā, b̄ ∈ nT are T -similar when ā′ = cl(ā), b̄′ = cl(b̄) are T -similar
and a′` = ak ⇔ b′` = bk for any ` < lg(ā′), k < n.

4) For ā ∈ nT , let Lev(ā) be the set {levT (a`) : ` < n}.
5) We say that T ∈ T is weakly ℵ0-saturated when:

(∗) for every ε < ht(T ) and s0, . . . , sn−1 from T[ε], there are ζ ∈ (ε, ht(T ))
and t0 <

∗
T · · · <∗T tn−1 from T[ζ] satisfying k < n⇒ sk <T tk,

6) For T ∈ T let:

(a) incrn(T ) be the set of <∗T -increasing ā ∈ nT and let nT be the set of
sequences of length n from T ,

(b) incr(T ) = ∪{incrn(T ) : n < ω} and seq(T ) = ∪{nT : n < ω}.

7) For T ∈ T:

(a) for t̄ ∈ incr(T ) or just seq(T ), let sim− tp(t̄,T ) be the pair (the similarity
type of cl(t̄,T ),pos(t̄,T )), that is all the information from part (3) (of 1.4)
and pos,

(b) if in addition, U ⊆ T then we let sim− tp(t̄,U ,T ) be the function map-
ping s̄ ∈ ω>U to sim− tp(t̄ˆs̄,T ).

8) Let Sn be the set of similarity types of sequences of length n in some T ∈ T, so
the sequences are not necessarily increasing.

9) Naturally S = ∪{Sn : n < ω}.
10) For T ∈ T and n < ω we define fseqn(T ) as the set of sequences s̄ = 〈sη : η ∈
∪{m2 : m ≤ n}〉 such that for some ordinals α(0) < . . . α(n) we hav:

•1 sη ∈ T is of level α(lg(η)),
•2 sη <T sν when η is a proper initial segment of ν,
•3 for ι = 0, 1 above sηR

T
ι sν iff ν(lg(η))ι.

11) The similarity type of s̄ ∈ fseq(T ) is the following linear order on ∪{m2 : m ≤
n}:
η <s̄ ν iff lg(η) < lg(ν) or lg(η) < lg(ν) and η < ∗T ν.

So th enumber of similarity types on members of fseqn(T ) is Πm≤n(2m!), and we
can express our partition relations using fseqn(T )

instead eseqn(T ).

Now comes the main property.

Definition 1.5. 1) For T1,T2 ∈ Tfl and n < ω and a cardinal σ let T2 →fl (T1)nσ
mean:
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(∗) if c : eseqn(T2) → σ, then there is a ⊆fl-embedding g of T1 into T2 such
that the colouring c ◦ g is homogeneous for T1, which means:
• if ā, b̄ ∈ eseqn(T1) are T2-similar, then c(g(ā)) = c(g(b̄)).

2) For T1,T2 ∈ T, k < ω and σ, let T2 →fl (T1)
end(k)
σ mean that:

(∗) if c : eseq(T2) → σ then there is an ⊆fl-embedding g of T1 into T2 such
that the colouring c′ = c ◦ g (see below) satisfies c′(η̄) does not depend on
the last k levels, that is:
•1 the meaning of c′ = c ◦ g is that for every s̄ ∈ eseq(T1) we have

c′(s̄) = c(〈g(s̄)〉),
•2 if n < ω and ā, b̄ ∈ eseqn(T2) are T2-similar and

` < n ∧ (k ≤ |Lev(ā) \ lev(a`)|)⇒ b` = a`,

then c′(ā) = c′(b̄).

3) Let T2 →fl (T1)
end(k,m)
σ be defined as in part (2), but we restrict in •2 demanding

that n ≤ m, so the length of the relevant sequence ā ∈ eseq(T2) is bounded.

4) We define T1 →′fl (T1)nσ as in part (1), but c : n(T2)→ σ and ā, b̄ ∈ n(T2).

5) We define similarly T1 →fl (T2)≤nσ and T1 →′fl (T2)≤nσ .

6) We may replace Tfl, ⊆fl, →fl by Twk, ⊆wk,→wk in parts (1)-(5) of Definition
1.5.

Remark 1.6. 1) We may mention some implications among the →,
2) Of course, the equality c(g(ā)) = c(g(b̄)) is required only if ā and b̄ are T2-similar
since this is the best possible homogeneity, as one can define a coloring according
to similarity types.

Claim 1.7. Let T ∈ T.

1) If A ⊆ T is finite non-empty with m elements then:

(a) For some n ≤ (2m − 1)m2 and ā ∈ eseqn(T ) we have A ⊆ Rang(ā);
moreover max{levT (a) : a ∈ A} = max{levT (a`) : ` < n}; in fact ā =
clT (A),

(b) If T ∈ T and A ⊆ T is finite, then cl(A,T ),pos(A,T ) are well defined.

2) The number of quantifier free complete n-types realized in some T ∈ T by some

ā ∈ eseqn(T ) is, e.g. ≤ 22n2+n but ≥ n.

3) If T ∈ T is weakly ℵ0-saturated then T realizes all possible such types, i.e.
each type is realized in some T ′ ∈ T; here “ht(T ) is a limit ordinal” follows.

4) Assume T ∈ Twk and U is a subset of T closed under <T , (that is s <T t ∈
U ⇒ s ∈ U ). Let lev(U ,T ) = sup{lev(s,T ) + 1: s ∈ U }.
If lev(U ,T ) ≤ lev(t,T ) and A ⊆ U is finite then b̄ = cl(A ∪ {t}) has the form
c̄ˆ〈t〉 with c̄ ∈ eseq(T ) ∩ ω>U .

5) If n < ω,T ,U are as in 1.3(2) then the number k∗n of quantifier free complete
n-types realized in T by sequences ā ∈ In satisfies the following k∗0 = 1 = k∗1 and
k∗n+1 = nk∗n(n!) for n ≥ 1, where

In = In(T ) = {ā ∈ nU : ā is without repetitions and 〈lev(ai) : i < lg(ā)〉 is constant}.
6) If T ∈ Twk, T ∈ sub2(T ) and ā ∈ eseqn(T ), then for every ε < ht(T ) for at

most one ` < lg(ā) we have
∧1
`=0(∃w)(aRT

` a`) and......
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Proof. Clearly, (3) and (4) hold, and we shall use them freely.

1) Let B1 = {η ∩T ν : η, ν ∈ A} and note that η ∈ A ⇒ η = η ∩ η ∈ B1. Now by
induction on |A| easily |B1| ≤ 2m − 1. Let B2 := {η�levT (ν) : η ∈ A, ν ∈ B1 and
levT (η) ≥ levT (ν)}.
Easily B2 = cl(A,T ), also |B2| ≤ m2|B1| = m2(2m− 1).

We may improve the bound2 but this does not matter here; similarly below.

2) Considering the class of such pairs (ā,T ), (fixing n); the number of possible

Eā = {(k, i) : akET ai} is ≤ 2n
2

and the number of <ā= {(k, i) : ak <T ai} is

≤ 2n
2

and the number of {(ak, ai) : (ak, ai) ∈ RT
1 and for no j, ak <T aj <T ai}

is ≤ 2n.

Lastly, from those we can compute {(ak, ai) : (ak, ai) ∈ RT
0 } as {(ak, ai) : (ak ∩T

ai = ak) ∧ ((ak, ai) /∈ RT
1 ) ∧ ak 6= ai}, so together the number is ≤ 22n2+n.

Clearly, we can get a better bound, e.g. letting m•n(T ) = |{tpqf(ā�n, ∅,T ) : ā ∈
eseq(T ) has length ≥ n}| then:

(∗)1 •1 m•n(T ) = 1 for n = 0, 1,
•2 m•n+1(T ) ≤ 4n(m•n(T )),
•3 hence m•n(T ) ≤ 4n−1(n− 1)!.

[Why? e.g. for •2 notice that tpqf(ā�(n+1), ∅,T ) is determined by q = tpqf(ā�n, ∅,T )
and the unique triple (m, ι, `) ∈ n× 2× 2 such that:

(∗)1.1 (a) m < n is such that lev(am ∩ an) is maximal, hence am <T an,
(b) amRιan,
(c) ` = 0 iff LevT (an) > LevT (an−1).

As there are ≤ 4n possibilities, we are done.]

It suffices to consider the case T is weakly ℵ0-saturated (see 1.4(5), 1.7(3)) and
then we can get exact values.

Now for n ≥ k ≥ 1 let,

m∗n,k(T ) := |{tpqf(ā, ∅,T ) : ā ∈ eseqn(T ) such that |{` : lev(a`) = max(Lev(ā))}| = k}|.

So,

• m∗1,1(T ) = 1, m∗1,0(T ) = 0 and stipulate m∗0,k(T ) = 0,

• if n = k ≥ 1, then m∗n,k(T ) = 1,

2in fact the exact bound is:

• clT (A) = m+ (m− 1) +
(m
2

)
+

(m−1
2

)
and it is obtained.

[Why is this bound? For any such A, define the sets A[0] := A, A[1] := {η ∩ ν : η 6= ν ∈ A},
A[2] := {η� lg(ν) : η, ν ∈ A and lg(ν) < lg(η)} and

A[3] := {η� lg(ν ∩ ρ) : η, ν ∈ A and η 6 ν, η 6 ρ and ν 6= ρ}.
Early clT (A) = A[0] ∪ A[1] ∪ A[2] ∪ A[3]; disjoint and we prove the inequality bu induction on

m. For m = 1, cl(A) = A, so it is clear. If |A| = m = n + 1, let a0 <∗
I · · · <

∗
I am list A and let

B := A \ {am}. Easily, B[i] ⊆ A[i] for i < 4 and:

• A[0] \B[0] has at most one element,
• A[1] \B[1] has at most one element,

• A[2] \B[2] has at most m elements,
• A[3] \B[3] has at most m− 1 elements.

Together we are done.]
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10 SAHARON SHELAH

• if 2k − 1 > n ≥ k ≥ 1, then m∗n,k(T ) = 0,

• if n ≥ 1, then m∗n+1,1(T ) = Σ{2k ·m∗n,k(T ) : k ∈ [1, n]},

and more generally,

• if n > k ≥ 1, then

m∗n+k,k =
∑{

`!·
(
`

`1

)
·
(
`− `1
`2

)
·2` ·m∗n,`(T ) : `, `0, `1, `2 ∈ [0, n), ` = `0+`1+`2

}
.

[Why? Considering p = tpqf(ā�(n + k), ∅,T ) we fix q = tp(ā�n, ∅,T ), let ` be
maximal such that n− ` ≤ i < n⇒ lev(ai) = lev(an−1) (equivalently lev(an−`)) =
lev(an−1)). For ι = 0, 1, 2, let Sι = {m : n − ` ≤ m < n and ι = |{j < k : am <T

aj}|}, so (S0, S1, S2) is a partition of [n − `, n). Let S•1 = {m ∈ S1 : if j < k then
amR1as}. Fixing ` the number of possibles q’s is m∗n,`(T ) and fixing q (and so `)
the freedom left is choosing `0, `1, `2 ≥ 0 such that `1 + 2`2 = k and then choosing
the partition (S0, S1, S2) which have

(
`
`1

)(
`−`2
`2

)
possibilities we have 2`1 possible

choices of S•1 and lastly k possible linear orders of {ai : i ∈ [n, n + k)} clearly we
are done.]

3), 4), 5) Clear. �1.7

Claim 1.8. Let3 σ ≥ ℵ0 be a cardinal and T ∈ T. Then:

1) If T → (T )
end(1)
σ then T → (T )

end(k)
σ for every k < ω.

2) If T → (T )
end(1)
σ then T → (T )nσ for every n < ω.

3) If k ≥ 1 and T` ∈ T for ` = 0, . . . , k and T`+1 → (T`)
end(1,m)
σ for ` < k, then

Tk → (T0)
end(k,m)
σ , hence Tk → (T0)≤mσ .

Proof. Clear. �

§ 1(B). Forcing in ZFC.

Remark 1.9. Concerning the choice of m(∗) in 1.13 below (given m), it is minor
from the author’s point of view, i.e., its value is immaterial for the model theoretic
results.

Trivially m(∗) = 2m suffices.

Definition 1.10. Let T ∈ T and s̄ ∈ eseq(T ).

(1) Let last− lev(s̄) := {` < lg(s̄) : if k < lg(s̄), then levT (sk) ≤ levT (s`)}
and let last− ele(s̄) := {s` : ` ∈ last− lev(s̄)} and init− lev(s̄) = {` < lg(s̄) : ` /∈
last− lev(s̄)}.
(2) Let order(s̄,T ) := {@ : @ is a linear order on last− ele(s̄)}.
(3) Let Eseq(T ) be the set of pairs (s̄,@), where s̄ ∈ eseq(T ) and @∈ order(s̄,T ).

(4) The similarity type of (s̄,@) ∈ Eseq(T ) is naturally defined: ((s̄1,@1), (s̄2,@2

) ∈ Eseq(T )) have the same similarity type iff sim− tp(s̄1,T1) = sim− tp(s̄2,T ′2 )
when for ι = 1, 2, we let:

•1 αι be such that {sι,` : ` ∈ last− ter(s̄ι,Tι)} ⊆ T[αι],

3If σ < ℵ0 we have parallel results depending on decreasing σ in the conclusion on the bounds

from 1.3, that is, for part (2): if T → (T )
end(1,m(1))
σ(1)

, then T → (T )
end(n,m(2))
σ(2)

.
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•2 T ′ι be like Tι except that we change <Tι,αι for every `, k ∈ last− term(s̄1)
we have sι,` <T ′ι sι,k ⇔ ` @ι k.

(So it does not follows that s̄1, s̄2 have the same similarity type).

(5) For T1, T2 ∈ T, we have F2 →1 (F1)
end(1,m)
σ when (A) ⇒ (B), where:

(A) c : Eseq(T2)→ σ.
(B) There is a semi embedding h from T1 into T2 (see Definition 1.2(1A)) such

that:
• if (s̄1,@1), (s̄2,@2) ∈ Eseq≤m(T2), |last− lev(s̄1)| = m = |last− lev(s̄2)|

and s̄2�init− lev(s̄1) = s̄2�init− lev(s̄2), then we have c(h(s̄1),@1) =
c(s̄2,@2).

(6) We define F2 →2 (F1)
end(1,m)
σ similarly, but in (B) we demand h to be an

embedding.

(7) We define F2 →` (F1)
end(k,m)
σ for ` = 1, 2 and k ∈ [1, ω) similarly.

Definition 1.11. 1) Fixing m̄ = 〈ml : l ≤ l(∗)〉, m` ≥ 1 and T ∈ T, let eseqm̄(T )
is the set of s̄ ∈ eseq(T ) such that:

(1) the set {lg(si) : i < lg(s̄)} has `(∗) + 1 members,
(2) let α0 < · · · < α`(∗) list it,
(3) |{` : lg(s`) = α`}| = m` for ` ≤ `(∗).

2) For T1,T2 ∈ T, let T2 →` (T1)
end(1,m̄)
σ , mean (A)⇒(B), where:

(A) c : Eseqm̄(T2)→ σ.
(B) There is a semi embedding h if ` = 1 and an embedding if ` = 2 from T1

into T2 such that:
• if (s̄1,@1), (s̄2,@2) ∈ Eseq≤m(T2), |last− lev(s̄1)| = m`(∗) = |last− lev(s̄2)|

and s̄2�init− lev(s̄1) = s̄2�init− lev(s̄2), then we have c(h(s̄1),@1) =
c(s̄2,@2).

3) For T1, T2 ∈ T, we have F2 →` (F1)m̄σ when (A) ⇒ (B), where:

(A) c : Eseqm̄(T2)→ σ.
(B) There is a semi embedding h if `1, and an embedding if `2 from T1 into T2

such that:
• if s̄1, s̄2 ∈ Eseqm̄(T2), then we have c(h(s̄1)) = c(s̄2).

Claim 1.12. The obvious implications hold. In particular, if m̄ = 〈m` : ` ≤ `(∗)〉
and T`+1 →2 (T`)

end(1,m̄�(`+1))
σ for ` < `(∗), then T`(∗) →2 (T0)m̄σ .

Major Claim 1.13. In VP we have T2 →2 (T1)
end(1,m)
σ when (see Remark 1.14)

for a suitable m(∗):

(a) we have:
(•1) κ = κ<κ,

(•2) λ→ (κ+)
m(∗)
Υ , where Υ = 2κ, λ regular, really λ = (im(∗)−1(κ+))+,

(•3) σ < κ and σ ≥ ℵ0.
(b) P = Cohen(κ, λ),
(c) T2 ∈ T expands (κ(+)>2,C) in VP,
(d) In VP, T1 ∈ Tκ,κ and T1 ⊆ T +

1 , where T +
1 expands (κ>2,C) and so

otp(T1,[α], <T1,α
) < κ for α < κ, see 1.2(3),
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Remark 1.14. 1) As in [She89], m(∗) = 2m suffice. More on the value of m(∗), see
[Shea] (see more in [S+c] and [S+d]).

2) Can we for →2
wk get a better to m(∗)? Intend to return to this in [S+c] and

[S+d].

Proof. First,

�1 Without loss of generality, T1 ∈ V is an object (not just a P-name).

[Why? Let T
˜

1 be a P-name, then for some u ∈ [λ]≤κ we have T
˜

1 is a Pu-name.
We can force by Pu, so as P/Pu = Cohen(κ, λ), we are done.]

So κ,T1,T
˜

2 are well defined (T
˜

2 a P-name). Let c
˜

be a P-name, c
˜

: Eseq(T
˜

2)→ σ,
without loss of generality be such that:

�2 if (t̄,@) ∈ Eseq(T2), then from c
˜

(t̄,@) we can compute:
(a) c

˜
(t̄,@′) when @′∈ order(t̄,T ),

(b) the similarity type of t̄ in T2,
(c) the similarity type of c

˜
((t̄,@)�u) when u ⊆ dom(t̄), t̄�u ∈ Eseq(T

˜
2).

Let η̄
˜

= 〈η
˜
α : α < λ〉 be the generic of P, so 
“η

˜
α ∈ κ2” and let η̄

˜
u = 〈η

˜
α : α ∈ u〉

for u ⊆ λ.
Next, in V, we choose:

(∗)1 (a) let χ > λ and <∗χ a well ordering of H (χ),
(b) let B ≺ A0 = (H (χ),∈, <∗χ) be of cardinality κ such that [B]<κ ⊆ B

and λ, κ, µ, σ,T1,T
˜

2, c
˜
∈ B;

(c) let u∗ = B ∩ λ ∈ [λ]κ,
(d) let Gu∗ ⊆ Pu∗ be generic over V0 = V, and let G ⊆ P be generic over

V0 such that Gu∗ ⊆ G,
(e) let η̄u = 〈η

˜
α[G] : α ∈ u〉, for u ⊆ λ,

(f) let V1 = V0[Gu∗ ] = V0[η̄u∗ ],
(g) let V2 = V[G] = V0[η̄λ] = V1[η̄λ\u∗ ].

(∗)2 (a) let T
˜

0 be the P-name of the sub-structure of T
˜

2 with set of elements
{η
˜

: η
˜

is a canonical P-name of a member of T
˜

2 and this name belongs
to B},

(b) let δ∗ = δ(∗) be κ+ = min(κ+ \u∗) = κ+ ∩u∗, noting δ∗ has cofinality
κ because u∗ = B ∩ κ+, [B]<κ ⊆ B and ‖B‖ = κ,

(c) let 〈δε : ε < κ〉 be increasing continuous with limit δ∗ in V0,
(d) B2 = B[Gλ], B1 = B2�{τ

˜
[Gλ] : τ

˜
is a Pu-name from B for some

u ∈ [λ]≤κ ∩B}, B0 = B, so B2 ≺ A2 = H (χ)[Gλ] and B1 ∩ κ≥λ =
B2 ∩ (κ≥λ)V1 .

Clearly,

(∗)3 (a) 
Pλ“T
˜

0 ⊆ T
˜

2 is closed under initial segments, is of cardinality κ
and has δ∗ levels and is closed under unions of increasing chains of
length < κ and ν ∈ T

˜
0 ⇒ νa〈0〉, νa〈1〉 ∈ T

˜
0, and α < δ∗ ⇒ (∀ν ∈

T0)(∃ρ)[ν C ρ ∈ T0 ∧ lg(ρ) ≥ α], so T
˜

0 ∈ T”,
(b) T

˜
0 is actually a Pu∗ -name and we can use δ∗ = B ∩ κ+ as its set of

levels.

(∗)4 (a) let T0 = T
˜

0[Gu∗ ], c0 = c�eseq(T0) so they are from V1,
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(b) let P∗ = P/Gu∗ = Pλ\u∗ .

(∗)5 (a) for each α ∈ λ \ u∗, in V1[ηα] there is η•α ∈ limδ∗(T0)V1[ηα] hence
lg(η•α) = δ∗ such that ε < δ∗ ⇒ η•α�ε ∈ T0 and η•α is a generic δ∗-
branch of T0 over V1,

(b) Clearly limδ∗(T0)V1[ηα] ⊆ T2[Gλ].

We shall work in V1.

(∗)6 (in V1) for α ∈ λ \ u∗, let η
˜

•
α be a P{α}-name of η•α, so without loss

of generality for some κ-Borel function B : κ2 → δ(∗)2, from V1 we have

“η

˜

•
α = B(η

˜
α) is as above in (∗)5(a)”; note that B does not depend of α.

[Why? See the proof of (∗)7]

(∗)7 Without loss of generality,
(a) Recall we had in (∗)2(c) an increasing sequence 〈δ(ε) := δε : ε < κ〉 so

that δ(∗) =
⋃
ε<κ δ(ε)

(b) Let 〈Bε : ε < κ〉 be such that Bε is a κ-Borel function from κ2 to δ(ε)2
from V1 and 
“η

˜

•
α�δε = Bε(η

˜
α)” for α ∈ λ \ u∗,

(c) In V0, let B
˜
,B
˜
ε be Pu∗ -names forced to be as above, can be considered

as Pu∗ -name.

[Why?

For η ∈ ω2, define ν = νη ∈ κκ as follows: for ε < κ, we let νη(ε) be the the
unique ζ < χ such that η

˜
α(ζ) = 1 ∧ ε = otp{ξ < ζ : η

˜
α(ξ) = 1} if there is such

ζ and 0 otherwise. Now, T0 ∩ δ(ε)λ has ≤ κ members, hence we can interprete
Bε(η) = Bε(η�(ε + 1)), a member of T0 ∩ δ(ε)λ, which is E-increasing with ε and
B(η) =

⋃
{Bε(η�(ε+ 1)) : ε < κ}. That is, we can first choose Bε by induction on

ε < κ such that Bε(η) depend just on νη�(ε + 1) and (∗)8 below holds and then
choose B.]

(∗)8 If ε < κ, ν ∈ κ2, and B(ν) = ρ, then Bε(ν�ζ) = ρ � δε.

Recalling we work in V1 and V, V1 have the same cardinal arithmetic, there are
U , N̄ such that:

(∗)9 (a) U ⊆ λ \ u∗,
(b) otp(U ) is κ+,
(c) N̄ = 〈Nu : u ∈ [U ]≤m〉,
(d) Nu ∩Nv ⊆ Nu∩v when u, v ∈ [U ]≤m,
(e) κ,T1,T

˜
2, c

˜
,B,B1 ∈ Nu ≺ A0, ‖Nu‖ = κ, [Nu]<κ ⊆ Nu for u ∈

[U ]≤m,
(f) if u, v ∈ [U ]≤m and |u| = |v|, then there is a unique isomorphism gu,v

from Nv onto Nu and it is the identity on (κ + 1) ∪ {c, η
˜
,B} hence

on T2, 〈η
˜
α, η

˜

•
α : α < λ \ u∗〉 and maps v onto u, and if v1 ⊆ v, u1 =

gu,v[v1] ⊆ u then gu1,v1 � Nv ⊆ gu,v,
(g) 〈η

˜

•
α : α ∈ U 〉 is <∗T

˜
2
-increasing.

[Why? By clause (a)(•3) of the assumption of 1.13 as in [She89], there is such m(∗)
(see 1.14), for clause (g) recall that <∗T

˜
2

is a (linear) well-ordering.]

(∗)10 notation:
(a) for finite u ⊆ T0,[ε] for some ε < δ∗, let
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(α) Hu := {h : h is a one-to-one function from u into U },
(β) We let Fu be the set of f such that for some (s̄,@) = (s̄f ,vf )

and g = gf we have
(•1) (s̄,@) ∈ Eseq(T1),
(•2) last− ele[s̄] = v, and note s̄ = clT1

({si : i < lg(s̄)}) so we
let u = uf ,

(•3) g is an increasing function from {levT1(si) : i < lg(s̄)} into
ht(T0) = δ∗,

(•4) f is a semi embedding of T1 � {si : i < lg(s̄} into T0

mapping {si : i ∈ v} onto u,
(•5) so f(si) ∈ T0,[g(i)] where levelT1

(f(si)) = g(levT1
(si)).

(b) If in V2, (s̄,@) ∈ Eseq(T0), u = last− ele[s̄] ∈ [T0,[ε]]
≤m and h ∈ Hu,

then we let s̄[h] be the (t̄,@) ∈ Eseq(T1) such that lg(t̄) = lg(s̄) and

i ∈ lg(s̄) \ u ⇒ ti = si and i ∈ last− lev(s̄) ⇒ ti = sai η
˜

′
i where

η
˜

′
i = η•h(si)

�[ε(s̄), δ∗).

We define AP :=
⋃
ε<κ APε, where APε is the set of objects a which consists of (so

ε = εa, ν̄ = ν̄a, etc).

�0
a (a) ε < κ,

(b) •1 ν̄ = 〈νρ : ρ ∈ T1,[ε]〉 is with no repetitions; (will serve as an
approximation to an embedding),

•2 f is an ⊆fl-embedding of T1,[≤ε] = T1�{η ∈ T2 : lg(η) ≤ ε} into
T0,

•3 f(ρ) = νρ for ρ ∈ T1,[ε].
(c) η̄ = 〈ηρ : ρ ∈ T1,[ε]〉; (νρ will serve as condition in P{α} for some α),
(d) νρ ∈ T0,[ζ] and ηρ ∈ κ>2 for some ζ = ζa < κ (for all ρ ∈ T1,[ε]),
(e) Bζ(ηρ) = νρ,

(f) p̄ = 〈pu,h : u ∈ [T0,[ε]]
≤m), h ∈ Hu〉, where pu,h ∈ Pλ\u∗ ,

(g) pu,h ∈ Nh[u] and [ρ ∈ u ∧ h(ρ) = α⇒ pu,h(α) = ηρ],

(h) if h1, h2 ∈ Hu and h1[u] = h2[u] then α ∈ dom(pu,h1
) \ h1[u] ⇒

pu,h1
(α) = pu,h2

(α),
(i) if h1, h2 ∈ Hu and ρ1, ρ2 ∈ u ⇒ [h1(ρ1) < h1(ρ2) ≡ h2(ρ1) < h2(ρ2)],

then gh2[u],h1[u] maps pu,h1
to pu,h2

,

(j) if u1, u2 ∈ [ε2]≤m, h` ∈ Hu` for ` = 1, 2, and h1, h2 are compatible,
then (pu1,h1�Nh1[u2]) and pu2,h2 are compatible.

Let further

�1
a AP+ =

⋃
{AP+

ε : ε < κ}, where AP+
ε is the set of a ∈ APε such that:

(k) pu,h forces a value to c
˜

(s̄,@) when for some f ∈ Fu we have s̄ = s̄f ,
uf = u, @=@f= {(s`, sk) : s`, sk ∈ u and {h(s`) < h(sk)}.

�2 we define the two-place relation ≤AP as follows: a1 ≤AP a2 iff:
(a) a1,a2 ∈ AP,
(b) ε1 = εa1

≤ εa2
= ε2,

(c) if ι ∈ {0, 1}, ρ1 ∈ ε(1)2, ρa1 〈ι〉E ρ2 ∈ ε(2)2, then ηa1,ρ1
a〈ι〉E ηa2,ρ2 and

νa1,ρ1
a〈ι〉E νa2,ρ2 ,
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(d) if n ≤ m, u1 ∈ [T1,[ε(1)]]
n ⊆ [ε(1)2]n, u2 ∈ [T1,ε(1)]

n, u1 = {ρ�ε(1) : ρ ∈
u2〉, and h` ∈ Hu` for ` = 1, 2, then ρ ∈ u2 ⇒ h2(ρ)�ε(1) = h1(ρ�ε(1)),
and pu1,h1

≤P∗ pu2,h2
.

�3 (AP, <AP) is a partial order.

[Why? Read the definitions.]

�4 for ε = 0 there is a ∈ APε .

[Why? Trivial.]

�5 (a) If ε < κ is a limit ordinal and aζ ∈ APζ for ζ < ε is ≤AP increasing,
then there is aε ∈ APε such that ζ < ε⇒ aζ <AP aε.

(b) In clause (a), we can add: if aζ ∈ AP+
ζ for ζ < ε then aε ∈ AP+

ε .

[Why? Straightforward recalling that [Nu]<κ ⊆ Nu.]

�6 if ε < κ and a ∈ APε there is b such that:
(a) b ∈ APε,
(b) a ≤AP b,
(c) εb = εa + 1,

[Why? Straightforward.]

�7 if a ∈ APε, then there is b ∈ AP+
ε such that a ≤AP b.

Toward this, we first show:

�7.1 if a ∈ APε, u ∈ [T1,[ε]]
≤m and p, s̄, @ are as in clause (k) of �1

a then there
is b ∈ APε such that a ≤AP b and pa,u,h forces a value to c

˜
(s̄,@).

[Why? First choose p ∈ Nh[u]∩P above pa,u,h forcing a value to c(s̄,@). Then choose
pb,u1,h for relevant pairs by combining pa,u1,h1

and p (so pb,u,h = p) remembering
�2.]

�8 we can choose aε ∈ APε by induction on ε < κ such that ζ < ε⇒ aζ ≤AP aε
and ε = ζ + 1⇒ aε ∈ AP+

ε .

[Why? Use �4 for ε = 0, use �5 for ε a limit ordinal and �6 +�7 for ε = ζ + 1.]

Now define h : T1 → T2 by ρ ∈ T1,[ε] ⇒ h(ρ) = ηaε,ρ and check.]

Lastly,

�9

⋃
{faε : ε < κ} is an embedding as is desired.

�1.13

Remark 1.15. 1) Using the end of §1A we get the desired conclusions.

2) In 1.13 we may state and prove the variant with the square bracket. In more
details,

(A) We say ā, b̄ ∈ eseqm(T ) are weakly T -similar as before but omitting
“a` <

∗
T ak ⇔ b` <

∗
T bk”; that is, when lg(ā) = lg(b̄) and for some permu-

tation π of lg(ā) for k, `,m < lg(ā), we have:
(a) levT (a`) = levT (ak)⇒ levT (bπ(`)) = levT (bπ(k)),
(b) a` <T ak ⇔ bπ(`) <T bπ(k).
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(B) We replace “T2 → (T1)
end(k,m)
σ ” by “T2 → [T1]

end(k,m)
σ,j ” for suitable finite

j which means that 1.5(1)(∗)•2 is replaced by:
•2 if n < ω and ā ∈ eseqn(T2), then the following set has at most j

elements:
{c′(b̄) : b̄ ∈ eseqn(T2) is weakly T1-similar to ā and ` < n ∧ (k ≤
|Lev(ā)) \ lev(a`)|)⇒ b` = a`}.

3) This will be enough for the model theory, and if we use minimal j (well, depends
on s̄�v(s̄)), we get back to 1.13.

Conclusion 1.16. Assume κ = κ<κ and κ < χ ≤ ∞ is limit and θ ∈ [κ, χ) ⇒
2θ = θ+, and if χ is singular then 2χ = χ+.

We can find a forcing notion P such that:

(a) P is a (< κ))-complete forcing notion of cardinality χ<χ,
(b) P collapses no cardinal, changes no cofinality,
(c) 2θ < θ+ω for θ ∈ [κ, χ),
(d) in VP, if θ+ω ≤ χ, then for every k,m < ω, for some n < ω, for every

T1 ∈ T expanding (θ>2,C) there is T2 ∈ T expanding (θ(+n)>2,C) we

have T2 → (T1)
end(k,m)
θ .

Discussion 1.17. We may like to replace κ>2 by κ>I and even use creature tree
forcing, see Roslanowski-Shelah [RS99], [RS07], Goldstern-Shelah [GS05]) but (in
second thought, for κ = ℵ0 maybe see the paper with Zapletal [SZ11]). That is,
for κ > ℵ0 in each node we have a forcing notion which is quite complete, but of
cardinality < κ = set of levels.

So we do not have a tree but a sequence of creatures, 〈cε : ε < ht(T )〉, such that for
a colouring we like to find dε ∈ Σ(cε) for ε < κ, which induces a sub-tree in which
the colouring is 1-end-homogeneous. Alternatively we have 〈cη : η ∈ T 〉 where cη
is a creature with set of possible values being in sucT (η), see [RS07].

Clearly the answer is that we can, but it is not clear how interesting it is. We can
just,

� replace 2 by Υ ∈ [2, κ) and κ>2 by κ>Υ; in the Definition 1.1 replace RT ,`

(` < 2) by RT ,` (` < Υ) and add: if s ∈ T , then sucT (s) is either a
singleton or is {s` : ` < Υ}, where s`RT ,`s for ` < Υ.
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