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CONSISTENCY OF SQUARE BRACKET PARTITION RELATION
SAHARON SHELAH

ABSTRACT. Characteristic earlier results were of the form CON(2R0 — [)\}%’2),
with 280 an ex-large cardinal, in the best case the first weakly Mahlo cardinal.

Characteristic new results are CON((2%0 = R,,) + 8, — [Nk]i,z): for
suitable k£ < £ < m. So we improve in three respects: the continuum may be
small (e.g. not a weakly Mahlo), we use no large cardinal, and the cardinals
X involved are < 280 after the forcing.

§ 0. INTRODUCTION

In their seminal list of problems [EH71], Erdés and Hajnal posed the question
(15(a)): does 2% £ [R;]2? Recently, Komjath [Kom25] provided a comprehensive
update on this topic.

We continue here works which start with the problem above:[She88, §2], [She92],
[She89], [She95] [She96], [She00] and the work with Rabus [RS00], but we try to be
self-contained.

The simplest case of our result is (recall 0.3 below):

Theorem 0.1. Assume GCH for transparency. Then for some ccc forcing notion
of cardinality Ng in the universe VE, we have 2% = Vg and for any n > 3, N5 —

[Ro]? 5.
Proof. Choose (u1,0,0, ) as (Ng, N5, No, Rg) and apply Theorem 0.2 and Fact 1.12
with (90 = Nl. DO.l

For Hypothesis 1.1, the main case is:

Theorem 0.2. Assume A=A <9 <0 <p=p, 0=0 and 22" = 9++1 for
0 =0,1,2 and 0t* < 0. Then for some A\t -cc, (< \)-complete forcing notion P of
cardinality p (so the forcing does not collapse any cardinal and preserves cardinal
arithmetic outside [\, j1) ), in the universe VF we have, 2* = u and for every o < X,
0 — [8]3,2

Proof. All this paper is dedicated to proving this theorem. Pedantically, choose
0 = k™, notice that Hypothesis 1.1 holds (by Fact 1.12) so we can apply Conclusion

1.11. Ui
We may weaken p = u? to u = p? and replace @ = k by 9 being a suitable limit
cardinal.
Recall,
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Definition 0.3. For possibly finite cardinals 6,9, 0 and &, let § — [0]% . mean:

e if c is a function from [#]? = {u C 0: |u| = 2} into o, then there exists
some subset % of 6 of cardinality @ such that {c(u): u € [#]?} has at most
K-many members.

We thank Yair Hayut and the referee for many helpful comments.
§ 0(A). Preliminaries.

Notation 0.4.

1) cof(§) is the class of ordinals of cofinality cf(J).

2) For a set x, let trcl(x) be the transitive closure of x, that is, the minimal set
Y such that x € Y and (Vy)(y € Y =y CY).

3) Let s2(\) :== {z: |trcl(z)| < A}

4) Let trcloyd(x) be defined similarly to trel(z) considering ordinals as atoms (=
elements), equivalently, the minimal set Y such that z € Y and

(Vy)|ly € Y A (if y is not an ordinal, then y C Y)].
5) Let ., (z) = {z: trclora(z) C H(x) but has cardinality < x}.

Notation 0.5.

(1) P, @ and R are forcing notions.

(2) p,q,r called conditions are members of a forcing notion.

(3) q is as in Definition 1.3, some kind of (< A)-support iterated forcing with
extra information.

Notation 0.6. We may write e.g. N[q, 5, u] instead Ng s, to help with sub-scripts
(or super-script).

Definition 0.7. Let 6,0,k and ) be infinite cardinals. We say that 6 —, (9))?
when 0 > 9 > k> )\ and:

B If (a) then (b), where:
(a) £ is an expansion of (J(x), €, <), where <, is a well-ordering of
H(x), x > 0, and its vocabulary 74 has cardinality < A.
(b) There is a tuple s = (%, N,7) solving p = (i, 0,0, k, \, %), which
means:
Hp,s for u,v € [%]=2,
o, N=(N,:uc[%]?),
o> % C 0 is such that otp(%) = 0,
o3 Nu < %7 [Nu]<>\ g Nu7
o, &[s| == min(%),
L 259 N, N v = u,
o || Nu|| =k and K +1 C N,,
o7 Nu N Nv = Nuﬂv7

o5 T = (Tyuu: u,v € [Z]5? and |u| = |v|) such that if |u| = |v],
then 7, , is an isomorphism from N, onto N, mapping v
onto wu,

o if uy C up and vy C vy all from [Z]5? and |ug| = |val,
Ty o (V1) = uy then my .., Ty, ., are compatible func-
tions?,

o1 for £ = 1,2, the sets N, N for u € [%]* are pairwise equal
2 and included in Ny.

186 e.g. it follows that: if 1,C2 € % then T {¢ca} | (Np N Ny¢,y) is the identity map.
2Note that 9 has two distinct roles: the size of % and the restriction on N, N 0. We may
separate.
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Observation 0.8. If N = (N, : u € [%]=?) satisfies 0.7(b)e; + o7, then:
(¥) For every x € U{N, : u € [%]=%} the set {u € [#]|=? : x € N,,} has one of

the following forms:

(a) {u} for someu € [%]?,

(b) {C} for some ¢ € %,

(c) {3 uf{e,(} e e #n(Y for some (e,

% %}} U{{¢.&} e %\ (C+ 1)} for some (€ %,

() {0} {ic}s e @},

(9) {0} U{}: Ce#yui{e,C}: e <C are from %}

§ 1. THE FORCING

Our aim here is to prove the consistency of the following configuration:
2<o< A=A <0=0 <0< p=p" =2*

and having 6 — [J]2 ,.

A continuation is in preparation [S*], aiming to further develop the directions
explored here, particularly for the case of superscript n > 2, as dealt within [She92].
We also show there that we can weaken the requirements on the cardinals and have
more pairs.

Hypothesis 1.1. The parameter p = (u, 0,90, A\, A, &) consists of the following:
() A=A <9< < pu=pb,
(b) 0 —4q (8)§’2 (see Definition 0.7, a variant of [She89, 2.1]); in our case using
A twice in intentional.
(¢) o will vary on the cardinal numbers from (2, \) and the
that v < p = 7| < p.
(d) e xiseg Jo(u)t,
e let % be an expansion of (J(x), €, <) with vocabulary of cardinality
A such that for any finite set u C J#(x), the Skolem hull of u N,, =
Sk(u, €,) is of cardinality A and |N,|<* C N.

4

‘nice” p-s are such

We intend to use (< A)-support iterated forcing of quite a special kind but first,
we define the iterand.

Definition 1.2.
(1) Let A be the set of objects a consisting of:
(a) e y<pando € (2,)),
e P is a forcing notion such that:

p € P = dom(p) € [4]°* A (Ya € dom(p))(p(e) € [AUA]Y),
e Pis AT-cc and (< \)-complete,
e the order <p is: p <p q iff:
dom(p) € dom(q) A (Va € dom(p))[p(a) € q(a)],
2

(b) e ¢ is a P-name of a function from [0]* to o, (we may write c(a,f)

instead c({a, B8}) for a # 5 < 0).
(¢) We have (%, N,7) solving p = (, 0,9, \, A\, &), (with #Z as in Definition
0.78(b) and 1.1) such that P, ¢ € N, for every u € [%]=2.

(1A) In the context of Definition 1.2(1), a = (,P,¢, %, N, %) = (Ya, -..), 50 e.g.

Naw = Ny.
(2) We say that the pair (p,z) is a solution of a € A, and write (a,p,z) € AT,
when:

(a) T=(t1,t2) €0 X 0,
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(b) p € PaN Ny (c[a]}, recalling e(a) = min(%),
(c) if p < q€PaN Ny (efa)} and (1 < (2 are from % then there are gy, g2, 71,72
such that for £ = 1,2, we have:
* q <p, 4o,
®1 ¢ € PaN Nycfay and ¢1 [ (NapNva) = g2 [ (Na,p N 7a),
o 1, €PN NaV{C17C2}7
o3 70 IF%c(C1, C2) = tay”,
o; 7¢ [ Najcy is <p,-below W{agl},{s[a]}(W)’
o5 ¢ [ Nac,y is <p,-below F{aCQ}’{E[a]}(q;;,e).
(3) If b = (a,p,7) € AT then let Qp, be the P-name of the following forcing
notion: B
(%) For G C P generic over V,
(a) the set of elements of Qp, = Qp[G] is:

{u €#]<*: if ¢ < G in %, then ¢{(1,(}[G] € {11,102}, moreover

for some q1, q2,71,72 as in Definition 1.2(1)(c)(e1)-(e5), we have r1 € G or ro € G},

(b) the order of Qp[G] is inclusion,
(c) the generic is Vb = |J Gg,-

Definition 1.3.
(1) Let Q := Qp be the class of q which consist of (below, a < lg(q) and
B <lg(q) and e.g. Py =Pqyq):
) 1g(q) is an ordinal < g,
) (Pa,Qs: a <lg(q), 8 <lg(q)) is a (< A)-support iteration,
(c) Pg satisfies the A*-cc,
) Qg is Qp,, where:
o1 bg = (ap,pj,75) € AT,
* ag = (’y[g,PB,gB, %B, Nﬁ,ﬁ'ﬂ) €A,
o3 P} is equal to IF”é(ﬁ) for some £(83) = §q(B8) < B (on Py, see below),
e, The sequence ((P,,P.,a,,b,,§(7)) : v < B) belongs to Ng,, for every
u e [%g]gz.
o5 Let #5 = U{NsuNB: u e [%]|=?},
es we 2 have: for every vy € W3 the set W N ¥, has cardinality < A,
e, For every v € #j, thereis u = ug ., € [%3]=? such that #3N#, C Ng,u
and without loss of generality u is minimal with this property.
(e) P, is a dense subset of P, where,
e P is P, restricted to the set of conditions p € P, such that:
if 5 € dom(p) then p(B) is a member of V (not just a P,-name)
and if ¢1 < (o are in p(8) C s, then there are qi,q2, 71, 72 as in
Definition 1.2(2)(c)(e1)-(e5) with ag, bg here standing for a,b there
and

2
\/ (¥y € dom(r))[y € dom(p) A re(7) € p(7)]-
=1
(f) vq = v(q) = sup{vq,s: B <lg(q)}, so P. s C Hx\(7q); let Py = Pig(q)
v(a)
/. /
and Py =P, .
(1A) We may write either Pq  or P, whenever q is clear and (tq,8,1,tq,8,2) is
lbg-

3 Why? By 0.7(b)eso.
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(2) Let <p be the following two-place relation on Qp:

a1 <p 92 iff g1 = q2 [1g(q1), see below.
(3) For g2 € Qp and o, <1g(qz), we define g1 = gy | @, by:

(a) lg(ar) = au,
(b) ( C1170t7HD211, ) (PQLCHqu a) fOI‘ «Q < Cx,
C) (@Ch-ﬂ? Q1,8 fql(,@)) (@Q2ﬂ7 qz,ﬁvng(ﬁ)) for 8 < au.
(4) We say that two conditions p, q € P/, are isomorphic, when:
a) otp(dom(p)) = otp(dom(q)), and
b) if 5 € dom(p) N dom(q) then:
e1 otp(p(B)) = otp(q(p)),
o if e € p(B) N q(B) then otp(s Np(B)) = otp(e Nq(B)),
o3 if £ € p(B),¢ € q(B) and otp(e Np(B)) = otp(¢ N q(B)) then:

T3} (P T Npgey) = 4 [ N ¢y
o, if ¢ < &1 belong to p(B),{ < (1 belong to ¢(53), otp(e N p(B)) =
otp(¢ N ¢(B)) and otp(e; N p(B)) = otp(¢1 N ¢(B)) then:
Ta(cahieey (P T Nageey) = 4 T N gy

Remark 1.4. If we prefer in clause (d) (e3) of Definition 1.3 (1) to have £(5) = 3,
e, Pj = ]P’Qg, we need to add, e.g. “u is regular and e.g. use a preliminary forcing
({a € Qp: lg(a) < p}, <)
Claim 1.5.

(0) For q € Qp, we have: Py |=“p < q” iff {p,q} C Py, dom(p) C dom(q), and
B € dom(p) = p(B) C q(B).

(1) For q € Qp, any increasing sequence of members of length < X\ of Py has
a lub, in fact, if § < X\, p= (pi:i <) € 5(1?11) is increasing, then the following
?he Py, is a lub of p; defined by: dom(p) = (J{dom(p;): i < 0}, and if § € dom(p)

en

(
(

= J{pi(B): i < 6 and B € dom(p;)} .
We denote this p by lim(p).
(2) For q € Qp, we have:
e p Py iff:
(a) p is a function with domain € [1g(q)]
(b) if B € dom(p) then p(B) belongs to [%s]<.
(c) If B € dom(p) and (t1,t2) = (1q,8,1,Lq,8,2) then for every (1 < (o from

p(B), (01 B) I Nas,ic1.cay PP “©{C1, G2} € {11, 02} 7. Moreover, there
are qi, qa2, r1, T2 as in Definition 1.2(2)(c)(e1)-(e5) and

2
\/ (¥ € dom(ry))[y € dom(p) N B Are(7) € p(7)]-
=1

<A
’

(8) If g € Qp and a <1g(q) then q | o € Qp.
(4) <p is a partial order on Qp.
(5) If @ = (q;: j < d) is <p-increasing then it has a <p-lub, lim(q), of length
U{lg(q;) : j <4}
(6) If B <lg(q), a=aqp, u € [%,p)=? and Ny = Na ., then:
(%) if p € IP’QI then ¢ = p | Nqp.u satisfies ¢ € Ny, and q <p, p where q is
defined by:
e; dom(q) =dom(p) NN, NS
oo If v € dom(q) then q(y) = p(y) N Ny.
(7) If (A) then (B), where:
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(A) (a) i, <A,
(b) pi € Py fori <,
(¢c) if i < j <y, then p; and p; are essentially comparable, i.e.:
« if 8 € dom(p;) N dom(p;) then pi(8) € p;(8) or p;(8) € pil ).
(@) p={pi: i < iv).
(B) p has a lub p called im(p) or Um({p;: ¢ < i.}) defined by:
o dom(p) = U{dom(p;): i < i},
e if 3 € dom(p), then

= J{pi(B): i <. satisfying B € dom(p;)}.

Proof. Part (2) is crucial but easy to verify. Parts (0), (1), (3), and (4) are also
easy.

(5) For this, define q := lim(q) naturally, but we elaborate.

(+) (a) lg(a) = U{lg(a:): i < 4},

) if i <0 and a <lg(q;), then (Pq,a,Pq o) = (Pg;.a, Py, o)
) ifi <dand g < lg(ql) then (Qq B:4q, 57bq ﬁ) = (@qz‘ﬁ’aqz‘,ﬁqumﬂ)v
)
)

(Pg,1g(a): Py, lg(q)) is (U{Pq,: 7 < 0}, U{Py, : i < 0}) when cf(d) > A,

e) if ¢f(6) < A, then (Pg 14(q), P
* Py = Pyiga)

each 8 < lg(q;) with j < 0, Qp[g,q;) is closed under increasing

unions of length < A.

Recalling that in Definition 1.3(1)(c), we use 8 and not «, “Pq satisfies the A*-
cc” is not required for proving 1.5 (5), only “if 5 < lg(q) then Pq g satisfies the
AT-cc”, which is clear. Note that even though we formally do not need it here, the
chain condition of Py will be proved in claim 1.6.

(6) Note that:

(a) If v € dom(q) then v € N,, and ¢g(y) C Ny,

(b) As dom(q) and q(7) for v € dom(q) has cardinality < A and [N,]<* C N,
so recalling clause (a) obviously ¢ € N,.

(c) To prove q is in Py, we need, for v € dom(q) and (1 < (2 from q(vy) C %,
to verify the condition in 1.5(2)(c).

(d) But as y 6 Ny hence q | (v + 1) and (1,2 belong to N, also Ng . 1¢,1,

Na.¢}> Nay.{¢1.co} belong to N, hence are included in it so we can finish

easily.

(7) Follows by our definitions. O s

(b
(c
(d
( qla(q)) are defined as inverse limit. Then,
is dense in Pq because by Definition 1.2(3), for

‘We now arrive to the

Crucial Claim 1.6. If q € Qp then Py satisfies \T-cc. Moreover Pq is AT -
Knaster.

Proof. 1t suffices, by 1.3(1)(e), to prove that Pg P:; la(q)
assume:
(#)1 (a) Let p= (pe: & < A1), where pe € P,
(b) it suffices to prove that for some ¢ < £ <A™, p; and pg are compatible.
[Why? By the definitions.]
(x)2 For some stationary set S C cof(\) N AT, we have:
o; (dom(pe): £ € S) is a A-system with heart w, € [lg(q)]<*, and
o, if B € w, then (pe(B): £ € S) is a A-system.

[Why? By the Delta system lemma, the proof using Fodor’s lemma recalling
A=A

satisfies the AT-cc, so
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()3 Without loss of generality, (p¢: £ € S) are pairwise isomorphic (see Defini-
tion 1.3(4)).
[Why? Easy because for every a,u the model N, ,, has cardinality \.]

()4 For v < 8 from w,, we have:
o Let #j,up,, be as in 1.3(1)(d)es.
e, Without loss of generality, ug  is disjoint to Ng 5 ¢y \ Nq,p,0 N p for
every ¢ € %p and is disjoint to Ng g (c.¢c} \ Nq,p,0 N for every e < ¢
from %p.
[Why? As for any v < § from w, we have to omit from %3 at most two
elements and w, has cardinality < A.]
(x)5 We fix (1) # £(2) from S and we shall prove that pe(1) and pe(2) have a
common upper bound; this suffices for proving the Crucial Claim 1.6.
(%)g For € wy:
(a) for £ € {1,2}, consider the sequence <a§(5)’6: € < ep) listing the set
Peey(B) in increasing order
(b) Why e and not €3,7 as the two sequences have the same length
because pg(1), pe(2) are isomorphic, see Definition 1.3(4) e;.

o i B
(c) Let S5 ={e < eg: Qe(1),e # O45(2)78}’

(d) so by Definition 1.3 (4) e5 the sets {a?(l)’s: € € S}, {a§(2)1€: €€ I3}

are disjoint and disjoint to {ag(l)e: e €eg\ S} = {O‘g(z)e: € €
e\ B
Let 8 = (B;: @ < i,) list the closure of {a, a+1: o € w, }U{0,1g(q)} in increasing
order, so necessarily i, < A and clearly it suffices:
(*)7 To choose ¢; € P 5 a common upper bound of {pe(1) [ Bi,Pe2) | Bi} in-
creasing with ¢ < i, by induction on ¢ < i, such that:
(%) If B e w,\{B;:7 <i}and((1),((2) are from . then:
o1 dom(q;) N Np {ae.cayaeia.cz) 15 & subset of

Nﬂ,{%u),cu)} U Nﬂv{aaz),c(a)} U Nz,

o if £=1,2 and v € dom(q;) N Np {ag o} then ai(v) = peey(7)
ory € Ngp
Let us carry the induction.
Case 1: i = 0. Clearly, this case is trivial, letting qg = 0.
Case 2: ¢ is a limit ordinal.
In this case, let ¢; = lim(g;: j < ¢), so by Claim 1.5(1), g; is well-defined and is
as required by the definition of the order and satisfies (x)7.
Case 3: i =j+ 1 and 3 ¢ w..
In this case, dom(pg(1y) N dom(pe(ay) N B; € B, hence the condition

¢ = q; U (pecy I[85, Bi)) U (pe2y | 18 Bil))
is as promised.
Case 4: i = j+ 1 and 3; € w..
By the choice of 8, clearly 8; = 8; + 1 and let %/ = %5,
Recalling 1.3(1)(d) and 0.7(b)(eg), we have:
(¥)s ag, = aq,p, determine:
() 75, = (Tt u,0 € [%]<2 and Jul = o],
(b) Ng; = (Nu: u € [%3,]57),
(c) for e(1),e(2) € .7, let:
o v[e(1),e(2)] = {ac).c)) 1))}, and
o ule(1),£(2)] = {ag).e1), 2e2).e2) }-

~— —
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) for e € .7, let v[e] =
(e) t=1j,, see 1.3 (1) (d) 1.
(£) 7 = &a(B); see 1.3(1)(d) 3.
We shall now define p.(1),.(2) for €(1),£(2) € .# such that:

()0 (a) Per),e2) € Py N Nyje(1),e(2))> hence dom(pe(1).e2)) € ¥ N Nuje(1),e(2))»

(b) if (1) = &(2), then Pe(1),e(2) | (v N Nv[s(l)])7 Per) | Nyje(r)) are es-
sentially comparable; see 1.5(7)(A)(c), moreover the first is <p_-above
the second,

(c) if e(1) = €(2), then po1ye2) [ (v N Nuje2))s Pe) | Nufee) are
essentially comparable, moreover the first is <p_ -above the second,

(d) pe(1),e(2) satisfies 1.3(1)(e)e with (v;,(1),£(2)) here standing for (3, (1, (2)
there,

(e) {gj [ No} U{pe(1),e2) [ No: e(1),6(2) € &} are pairwise essentially
comparable,

(f) if e(1) # €(2) then po(1yc2) [ Ny < Pe(e) [ Niappy for £=1,2.

(g) if S €. x .7 then the lub g, of {g;[Ny1),c2)]: €(1),£(2) € 7}
satisfies the condition in (x)7.

~ ™

gag(l)’e} and ule] = {ag() ),

We have to show two things: By and Hy. The first says we can choose them (the
Pe(1),:(2)-8), the second that this is enough.
B; we can choose pe(1),(2) for £(1),£(2) € . as required in (x)r.
We consider two possible cases:
Case 4.1: €(1) # (2).
Let pe(1)e(2) = T(Der) [ Nofe(r) e(2)]), Where T = Tufe(1) e(2)),0fe(1) (2]
Why is (x)g preserved? Most clauses are obvious, but (x)g(g) deserve elaboration,
recalling that we have to satisfy (x)7.
So let 8 € #, \ {B.: ¢ < i}, hence for some j(*) < i, we have § = f3;(,), hence
we have (;(,) > (; hence B, > B; and we have &, C %' x % and deal with ¢, .
For this, it is enough to consider the cases:
®1 S = {¢(1),¢(2)}, where ¢(1) = (1) and {(2) = £(2) hence from .#, so
¢(1) # ¢(2),
B = {C(1),¢(2)} where C(1) # €(2) are from . but (¢(1),(2)) # (<(1),2(2).
Easy to check.
Case 4.2: (1) = ¢(2).
In this case, we pick some sequence (p..: € € .) by choosing p. . by induction
one €. Now, p.. € IP"ﬁj N Nuje(1),e(2)] is such that:
(¥) (&) peeis gp’;ﬁj -above pe(1) [ Nyje and above the restriction pea) [ Ny,
(b) (pec I Npg: C € (e+1)NF) is <p,, -increasing, and
(c) there are gi1,q2,71,72 as in Definition 1.3(2)(c) (e1)-(e5) with bgq g,
standing here for (a,p, ) there such that:

(Vy € dom(re)) [y € dom(pec) Are(y) S pee(7)]-

o~
Ih<lw
L

We can choose pe . by the properties of bg,
Having defined all the p.(1)c(2)-s we can proceed.
B2 The following set of members of P, has a common upper bound g,:
® Pe(1); Pe(2), and
® Do(1),e(2) for e(1),(2) € 7.

[Why? Recall Claim 1.5(2) and 1.2(1)(c)(e1) by 1.5(7), clause (A) there holds,
in particular sub-clause (A)(c). The main point is that:
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(*) <Nv[5(1)75(2)] N Vi \ (Nv[s(l)] @] Nu[a(l)]): E(l),E(Z) S y> is a sequence of
pairwise disjoint sets.
Why? As “N, NN, C Ny, for u,v € [%ﬁj]<2 by 0.7e7.
So g. from By is a common upper bound of p¢ (1), pe(2), as promised. Ois

Remark 1.7. 1) No need so far, but we may add in ()4 of the proof of
Crucial Claim 1.6 the following item:
(d) if € wy and (ot @ < tc,p) lists in increasing order the members
of p¢(B) for ¢ € S, then:
e (1c,3: C €5) is constant called ig,
o for i < ig, the sequence (o g,: ¢ € S) is constant or increasing,
e if 4, j < ig the sequence of truth values

(Truth value(a¢ g, < agp,;): ¢ < & are from S)

is constant, and
o if i,j <ig, ( # & are from S and a¢ g; = ag g,; then i = j.
2) We can make our choice of g1, g2, 71,72 canonical, that is:
(A) In 1.2(2) we replace (a,p,7) by (a, p,i,F), where:

o1 Feco (q> = (q1, g2, 7‘1,7“2) = <]FCI’C27Z(q) 10=1,2,3,4)

o, if also (3 < (4 are from % then 7T?37<4,<1,<2F41,C2,g = FCS,C4,£’
where if p < g € Pa N Ny jea) and 1 < (2 are from %,
then (Fe, ¢,.e(p,q): £ < p) is the quadruple (¢1,g2,71,72) as in
1.2(1)(c)(o1)-(s5).

(B) In 1.2(3) similarly and in 1.3(1)(d)
(C) In 1.5(1)(d) use Fg,
(D) In the proof of 1.6, in (x)7H;, case 4.2(%)4.2 we use Fg,,
(E) Update the proof of 1.8 accordingly.
Claim 1.8. If (A) then (B), where:
(A) (a) q € Qp,
(b)) 2< 0 <A,
(c) ¢ is a Pq-name of a function from [0]* into o.
(d) ps« € Pq.
(B) There is some b € AT such that Py = Py and ¢p = ¢ and p. <p_ pb.

_ — o

Proof. Recalling Hypothesis 1.1(b), on the one hand, it is clear how to choose a € A
such that P, = ]P’gl and ¢, = ¢. On the other hand, the choice of pp, and 7y, is similar
to the proof of [She88, 2.1]. We now elaborate.

First, we can find a such that:

(x)a (a) a€A,

(b) ]P)a = ]P)::p
(c) v=lg(a),
(d) ca=c.

Why can we find? Because we have chosen P, as in (*)%(b), it is AT-cc by
Claim 1.6; also ,c, are as is required in Definition 1.2. Lastly we can choose
(%, N) as required because 0 —r4q (8)?’2 holds by Hypothesis 1.1 clause (b) and
0.7 in particular clause (b)ey.

We are left with choosing some appropriate (p,7) and then let b = (a, p, 7). Let

Y ={(q1,q2): q1,q2 € PL N Na,(c[a)} are above p, and,
a1 [ (Nag Nlg(a)) = g2 [ (Nap Nlg(a))},
and let <y be the following two place relation on Y:

(¥)2 (p1,p2) <v (q1,¢q2) iff:
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(a) (p1,p2) €Y and (q1,¢2) €Y,
(b) p1 <p, @1 and p2 <p; .
Clearly,
(%)3 (Y,<y) is a (< A)-complete partial order.
[Why? Recalling 1.5(1).]
(x)4 For (p1,p2) €Y, let
(a) solv(p1,p2) be the set of pairs (¢g,¢1) such that for any {; < (o from

U, there are 11,79 such that for £ = 1,2 clauses es-e5 of Defini-
tion 1.2(2)(c) hold.

(b) solv*t(p1,p2) = N{solv(qi,q2): (p1,p2) <y (q1,92) € Y}.
(*)5 (a) if (p1,p2) <y (q1,q2) then:

solv(p1,p2) 2 solv(qy, g2) 2 solv' (g1, g2) 2 solvT (p1, pa),

(b) if (p1,p2) € Y then solv(py,p2) # 0.

[Why? The first inclusion in Clause (a) holds because <p, is transitive. The
other inclusions are clear, and Clause (b) is easy too.]
(%)¢ If (p1,p2) € Y then for some (g1, ¢2) and 7, we have:
(a) (p1,p2) <y (q1,q2) €Y,
(b) if (q1,92) <y (¢},q5) then T € solv(q},q}), moreover, solv(q,qa) =
solv(gs, g5) = solv™ (1, ¢5) = solv ™ (q1, g2).
[Why? Recalling o < A, hence |0 x o] < A and (Y, <y) is A-complete by (*)s.]
(%)7 For p € P, N Ny (c[a]}, let solv(p) be the set of Z € o x o such that there is
(¢1,42) such that:
*1 p<p, q1, P <p, q2 and
* (q1,02) €Y,
o3 7€ s0lvi(qu,q2),
o4 s0lv(g1,92) = solv' (q1, g2).
(%) (a) if p € P, N Ny fefa)} then solv(p) # 0,
(b) if p <p; q are from P, N N, (.3 then solv(p) 2 solv(q),
(c) if p € P, N Nu(c[ay then for some ¢ and z, for every ¢’, we have
q S]pa Jd NG € P/a N Na,{a[a]} =1 € SOlV(q/).
[Why? Clause (a) follows by (x)g, Clause (b) by the definitions, and Clause (c)
holds as P, and even P, N N, ([a]} is A-complete and |0 x o| < ]
Now, applying (*)s(c) to p, finish the proof of 1.8. Ohs

Claim 1.9. If (4) then (B), where:

(A) (a) g€ Qp and qo <p q,
(b) v(a) < p, solg(a) < p,
(c) be Ay and Py, =Py, .

(B) There exists some qi such that:
(a) q gp qi1,
(b) lg(ar) = lg(a) +1,
(C) blg(q) [Ch] =b.

Proof. Easy. Oig

Lastly, before arriving at the main conclusion, we have to prove the following.
Claim 1.10.
(1) Assume q € Qp, a <lg(q) and b = bq,o = (Aa, Pa,ta) = (a,p, 1), then:

e IFp, . Vo, € (%12 and for every a # B € Vays Ca,{a, B} € {t1,02}7.
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(2) If b = (a,p,1) € AT, cf(9) > A, and in VP, Qy satisfies the A\*-cc, then
for some p € Qp NPy N Ny c[ay we have* p IFg, Vo, € [%)° and for every
a#pBe Vo, » caf{a, B} € {i1,12}".

Proof. (1) The second phrase in both conclusion holds by the definitions of Q.
By the proof of “Pq satisfies the AT-cc”, we can show for ¢ < 9, the density of
the set

S = {p € P: a € dom(p) and there is § € p(a) such that e < otp(%a, N B)}.

(2) Easily, for every 8 € % we can choose pj = {8}, qs = {(p,p})}. Clearly,
qp € Po x Qp for B € %a. So by the AT-cc for some 3 € U, q3 IF“{e € Ua: qc €
Qb} € [%a)?; well assuming cf(9) > A. O1.10

Conclusion 1.11. There exists a forcing notion P satisfying the following condi-
tions:
(a) P is AT -cc of cardinality p.
(b) P is (< \)-complete; hence, it collapses no cardinals, changes no cofinalities,
and preserves cardinal arithmetic outside the interval [\, p).
(c) IFp 2> = p”.
(d) IFp 9 — [0)257 for every o € (2, ).

Proof. Choose a <p-increasing continuous sequence (qq: o < p) € #(Qp) such that
lg(qa) = @, Pq, has cardinality < (Ja|+ A)<* and,
e if & < p and IFp,_“c: [6]> — o7, then for unboundedly many 3 € |a, i),
Cagt1,s — &
The existence of bg[qsy1] with c[bg[gs+1]] = ¢ as required holds by Claim 1.8
and Claim 1.9 below.
Clearly J{Pq,: B < u} is a forcing notion as is required. O; 11

Conclusion 1.11 is meaningful because:

Fact 1.12. Assume that A = A\ < 9 <0 < p = pf, and [a < p = |af* < 4,
0 > J(k) and & = kT, k = k. Then the demands in Hypothesis 1.1 hold.

Remark 1.13. To justify the assumption, notice that:

(A) Omitting k = x* does not help.

(B) 8 —¢q (8)?)9‘ implies § — ()3, hence necessarily 0 > 227,

With stronger lower bound on 6, see [She89].

The main point is proving 6 —q (8)5)"2. For this, see [She89], § = 3,,(9) for
some small m suffice, on this the bounds in 1.11 depends; we intend to return to
this in [ST]. Anyhow just § < 97 and GCH in [0, 91“] would suffice for me.

Proof. The point is to prove 6 —4q (8)3’2. Let # be as in 0.7(a), 0 = 2%, 0y = 291,
and 6 > 0s.

Let x > 2#, and €, be an expansion of (J(x), €, <}, %) with vocabulary of
cardinality A such that for any finite set v C J#(x), the Skolem hull of u, N, =
Sk(u, €,) is of cardinality A and |N,|<* C N,.

Let ¢, Lo+ 000+ ¢, be of cardinality d; such that 0 +1 C €,. Let §; ==
min(f \ €;). Similarly, choose €; <L, , €, of cardinality 0; such that 0; +1 C &;
and {Q:Q,Bo} Q Q:l.

Let €y = € N &€y and choose By € 1 NE; CHONEC, realizing the L&a—type which
(1 realizes over €.

Now,

we may omit p but it does not matter.



Paper Sh:1258, version 2026-01-06. See https://shelah.logic.at/papers/1258/ for possible updates.

12 S. SHELAH

()1 choose a. € € N6 by induction on & < 9, such that:
e a., (3 realize the same first-order type in €, over the set {82} U (4. N
&), where:

14‘E = Sk¢({a4 C < 5} U {ﬁhﬁo})‘
(¥)2 Let N§ = N¢g, 5,1 N Co.

Note,
(x)s for e < ¢ < 0, the following pairs realize the same type over N in €,:
o (045,0[4)7
(P (065750),
o3 (e, B1),
oy (ﬁm 51)-

[Why? For the equality of e; and e note the choice of a..
For the equality of e; and e3, note the choice of Sy.
For the equality of e5 and e4 note the choice of a..]

so for e < ( < 0,

(*)4 ® NE‘&C} = N{ag,ag}a
o NG <

o3 Ny < N[ ¢y
(¥)5 for e < (<0, let fi. ¢} be the isomorphism from N{*e,c} onto Nyg, 3,1
[Why does it exist? by (*)s.]
(*¥)6 fie,cy is the identity on Ny (and Nj < Ny ).
[Why? By (+)s]
(x)7 if£(0) < ¢(0) <9, (1) < ¢(1) < and {£(0),¢(0)} N{e(1),¢(1)} =0, then

Nico).cy N NEw.ca)y = Nigo.sry N € = Nj.

[Why? The second equality holds by (x)2; without loss of generality ((0) < ¢(1).
Now

)

*1 Nio),c0y " Nwemy = M)y N NViaeay 5,3 by the choice of ¢(1).
o, if ¢(0) < &(1) then

N{*e(o),c(o)} N N{am),[sl} = N{*e(o),c(o)}} N N(go,813 = Nie(0),c00y NNy =
Nj because the first equality follows by the choice of a(1) second equality
by (*)4e5 and (*)2; the third equality by (x)s.

o3 if £(0) < (1) < ¢(0), then:
Nt N Naeay 813 = Nowy 803 0 Niowq 61}
= (N{*ag(m,ﬁo} n 930) n (N{as(m,ﬁl} a %)
- (N{aao),al} n QO) n (N{a«m,m} n CO)
= (Macorm) N€) N (Ngg5) N €0)
= (Mo ) N €) N NG = Nj.

[Why? The first equality holds by the choice of Sy. The second equality as
Nic(0),¢0)y € €o and the first equality. The third equality holds by the choice of
Bo- The fourth equality holds by the choice of a(gy. The fifth equality holds by the
choice of Nj i.e., (¥)2. Finally, the sixth equality holds as Nia.uy.p3 2 Ng by the
choice of a.(z).]
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oy If £(1) < £(0), then:
Nfs(OM(O)} N Naey.813 = Nae).80) NV Vo613
= (N{*as(ohﬁo} n CO) m (Nikas(l),ﬁl} m €0>

= (N{ag(o)yﬁl} N Qto) N <N{aa(1),ﬂ1} N Q:())
= (N{go,,3 NE) N (N{aa(l)ﬁl} N e:)
= NQT n (N{Ofs(l)vﬁl} N CO) = N(Z?

[Why? The first equality holds by the choice of By. The second one holds as
Nic(0),c0)y € €o and the first equality. The third equality holds by the choice of
Bo. The fourth equality holds by the choice of a.(). The fifth equality holds by
the choice of Ny, i.e., by (x)2. Finally, the sixth equality holds as Nia. s 2 Ny
and by the choice of a.(g).

Recalling e; and the division to cases in o5, @3 and e4, we are done proving (*)g.]

(¥)7 if e < (1) < ¢(2) <9, then N,cay N Nege) = Ny = Niainy | Co-
[Why? By the choice of a(2) and ag¢(yy.]

(%) if 1 < (2 < & < 0O, then Nf(m} N Nf

ok T
o}l = N{E}7 where Ny, =

{e}
Jeer1(Nggo 1))
[Why? For ¢ < 9, Ntac,80y M€ = Nya, 5,3 N €o by the choice of By, and oy, By
realize the same type of €, over {51} U (4. N &).]

() e Let Nj., be the Sk(N/, UN},,,€,), and
o let M* = (Sk(UZ<5 Nise oy U{N{se4m,sesn}: m <n < 5}*)})Z<5,
[ ]

let M be M} expanded by:
+
° céwf = Q5eqp for £ < 5,
Mt «
Py ° = IN{5.1p| for £ <5,
M x
® Pm»” = |N{58+m758+n: m<n<5}|'
(*)10 There is some 24 € [6]‘9 such that:
o (M?:e€)isa A-system with heart Ny,
e the M. are pairwise isomorphic.
[Why? Because d = 9y and 9y = (9p)* by the A-system lemma.|
(#)11 (Ng: u € %) is arequired when %, = {5e+2: ¢ € %} and Nf; 5 = M.

Pedantically, % = {a¢: ¢ € %} and NE‘Q = N for u € [%3]=2. 0412

¢: C€u
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