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1 Introduction

The investigation of relations between infinite cardinals in ZF has a long tradition. The
first such relation which was discovered is surely Cantor’s Theorem, which states that for
each infinite cardinal m we have m < 2

m. Other results in ZF for infinite cardinals m are
that 2m � m×m (see Specker [5]) and that fin(m) < 2

m (see Halbeisen [1] or Halbeisen and
Shelah [2]). Related to Specker’s result, and Peng, Shen, Wu [4] proved that 2m �∗

m×m

(i.e., there is no surjection from m×m onto 2
m), and Tarski [6] proved that AC is equivalent

to the statement that for every infinite cardinal m we have m
2 = m. Another ZF result

is that for any infinite cardinal m, seq1-1(m) 6= 2
m, where seq1-1(m) denotes the set of all

finite injective sequences we can build with elements of some set of cardinality m.

Besides ZF results, we can also ask for consistency results. In this direction, among other
results it was shown by Halbeisen, Plati, and Shelah [3], that the existence of infinite
cardinals m and n such that fin(m) < m

2 and seq1-1(n) < fin(n) is consistent with ZF.

One could remark that finite sets and finite sequences are just two of the many types of
structures one can impose on a finite set. For instance, it would be easy to formalize the
natural idea of a cycle and, given some cardinal n, to consider the cardinality cyc(n) of
the set of finite cycles with elements in some set of cardinality n.

In this paper we present a generalization of the concept of finite subsets and finite injective
sequences which entails all the possible finite injective structures one can think of, and

1Research partially support by the Israel Science Foundation (ISF) grant 1838(19) (2019-2023)
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then proceed to refine the techniques developed in [3] in order to simultaneously deal with
any number of instances of that generalization. In general, we will obtain the best possible
result if one restricts their attention to structures of some fixed finite size.

2 Preliminaries and main result

For a positive integer n ∈ ω, let Sn be the group of all permutations of n = {0, . . . , n−1}.
Let H ≤ Sn be a subgroup of Sn and let A be an infinite set. Furthermore, for sets X and
Y , XY denotes the set of all functions from X to Y . For any f ∈ nA, define

f/H :=
{

g ∈ nA : g is one-to-one and ∃σ ∈ H ∀m ∈ n
(

g(m) = f(σm)
)}

and subsequently
[A]H :=

{

f/H : f ∈ nA and f is one-to-one
}

This is a strict generalization of the concept of finite subsets and finite injective sequences.
Indeed, if H = Sn, then [A]H = [A]n (the set of n-element subsets of A), whereas if
H = {ι}, where ι is the identity, then [A]H is the set of injective sequences of length n
with elements in A. More broadly, as an instance of the fact that finite injective structures
can in general be re-conducted to their group of automorphisms, we observe and briefly
justify the following remark.

Fact 2.1. For some positive integer n ∈ ω, let G = (n,E) be a graph with vertex set

{0, . . . , n−1}, and let G = Aut(G) ≤ Sn be the group of automorphisms of G. Furthermore,

let A be an infinite set, let KA be the complete graph on A, and let AG be the set of subgraphs

H of KA such that H ∼= G. Then ZF proves that |[A]G| = |AG |.

Proof. We say that two embeddings ε and ε′ of G into KA are equivalent iff ε[G] = ε′[G],
i.e., ε and ε′ map G to the same subgraph H of G. Let E be the set of equivalence classes
{[ε] : ε is an embedding of G into KA}. Clearly E is in bijection with AG . On the other
hand, each ε is simply an element of nA, and one can easily see that [ε] = [ε′] exactly
when some element g ∈ G exists such that for each i ∈ n we have ε(i) = ε′(gi), implying
that the natural bijection between E and [A]G is indeed well-defined. ⊣

For example, if G is the linear graph on n (for some n ≥ 2), then Aut(G) is isomorphic to
the cyclic group C2 of order 2, and if G is an n-cycle, then Aut(G) is isomorphic to the
dihedral group Dn of order 2n.

We now state the main result of this work:

Theorem 2.2. Fix two natural numbers l, n ∈ ω and l + 1 subgroups G0, . . . , Gl ≤ Sn

which are pairwise not conjugate to each other. It is consistent with ZF that there is an

infinite set A such that |[A]G0 | < · · · < |[A]Gl |.

For example, since for n > 2, Cn 6= Sn, Theorem 2.2 states that there is a model of ZF
with a complete graph K on an infinite set, such that K contains strictly more complete
graphs on n vertices than it contains linear graphs on n vertices.
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The following Lemma implies that Theorem 2.2 is the best possible result if we restrict
our attention to structures of some fixed finite size n.

Lemma 2.3. Let A be a set. Consider a natural number n ∈ ω and two subgroups G,H ≤
Sn which are conjugate to each other. Then, ZF proves that |[A]G| = |[A]H |.

Proof. The claim is obvious whenever A is finite because in this case the cardinality of
[A]G solely depends on the cardinality of G. Otherwise, we need to explicitely define a
bijection. Let π ∈ Sn so that πHπ−1 = G. For any f ∈ nA and hence f/G ∈ [A]G, define

π∗ : f/G 7→ fπ/H

Let us show that this function is indeed well-defined, in the sense that the image does not
depend on the choice of representative. Given a fixed g ∈ G, we have that fgπ/H = fπ
iff there exists some h ∈ H such that fgπ = fπh, or equivalently such that fg = fπhπ−1,
which is true given the assumption on π. The fact that π∗ is surjective is obvious, as
given any f ∈ nA we have that π∗ : fπ−1/G 7→ f/H. For injectivity we rely once more on
the definition of π: if fπ/H = tπ/H then for some h ∈ H we have fπh = tπ and hence
t = fπhπ−1, but πhπ−1 ∈ G, which gives f/G = t/G. ⊣

3 Proof of the Main Result

In this section, we first recall the construction, given in [3], of ℵ1-homogeneous and ℵ1-
universal models. Then we show how to use these models in order to obtain the consistency
result claimed in Theorem 2.2. Compared to [3], there’s a difference in the construction
of a plain extension, which will be essential for the consistency proof. Namely, if l ∈ ω is
the number of subgroups, then here there’s a dependency on the parameter t ∈ l. Instead,
Proposition 3.2 does not change from its first appearance in [3], and is here included for
completeness.

3.1 On the Construction of ℵ1-homogeneous and ℵ1-universal

models

Let K be the class of all the pairs (A, {fi}i∈l) ∈ K such that A is a (possibly empty) set
and, for all i ∈ l, fi is an injection fi : [A]

Gi → [A]Gi+1 . We will also refer to the elements
of K as models. We define a partial ordering ≤ on K by stipulating

(A, {fi}i∈l) ≤ (B, {gi}i∈l) ⇐⇒

A ⊆ B

∧ ∀i ∈ l fi ⊆ gi

∧ ∀i ∈ l
(

ran(gi ↾ ([B]Gi \ [A]Gi)) ⊆ [B]Gi+1 \ [A]Gi+1
)

.

When the functions involved are clear from the context, with a slight abuse of notation
we will just write A ≤ B instead of (A, {fi}i∈l) ≤ (B, {gi}i∈l) and A ∈ K instead of
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(A, {fi}i∈l) ∈ K. Moreover, given i and some element a ∈ [A]Gi , we will write ran(a) to
indicate the range of any of the elements in a.

We give two preliminary definitions. Given a model (M, {fi}i∈l) and a countable subset
A ⊆ M , we define the closure cl(A,M) as the smallest superset of A that is closed under all
fi and pre-images with respect to the same functions. Constructively, we can characterize
cl(A,M) as the following countable union: define cl0 = cl0(A,M) := A and, for all k ∈ ω,

clk+1 = clk ∪
⋃

i∈l

⋃

p∈[clk]
Gi

p 6=∅

ran
(

fi(p)
)

∪
⋃

i∈l

⋃

q∈[clk]
Gi+1∩ran(fi)

ran
(

f−1
i (q)

)

.

in order to finally define cl(A,M) :=
⋃

i∈ω cli. Furthermore, for each t ∈ l, we set a
standardized way to extend a partial model (A, {f ′

i}i∈l), where each f ′
i is only a partial

function, to an element of K: fix a t ∈ l and consider (A, {f ′
i}i∈l), where A is a set and

each f ′
i is an injection with dom(f ′

i) ⊆ [A]Gi and ran(f ′
i) ⊆ [A]Gi+1 . Let (M0, {f

0
i }i∈l) =

(A, {f ′
i}i∈l) and, for j ∈ ω, define inductively (Mj+1, {f

j+1
i }i∈l) as follows: Mj+1 is the

fully disjoint union

Mj ⊔
⊔

i∈l

⊔

P∈[Mj]Gi

P /∈dom(fj
i )

{aP1 , . . . , a
P
n } ⊔

⊔

t∈i∈l

⊔

P∈[Mj ]
Gi+1

P /∈ran(fj
i )

{aP1 , . . . , a
P
n }.

For what concerns each injection f j+1
i , we naturally require the inclusion f j

i ⊆ f j+1
i , as well

as the equality dom(f j+1
i ) = [Mj ]

Gi , where for P ∈ [Mj ]
Gi \dom(f j

i ), we define f
j+1
i (P ) :=

[{〈i, aPi 〉 : i ∈ n}]. Finally, for each i so that t ∈ i ∈ l and for each P ∈ [Mj ]
Gi+1 \ ran(f j

i ),

consider the class x := [{〈i, aPi 〉 : i ∈ n}] ∈ [Mj+1]
Gi and set f j+1

i (x) = P . We are now in
the position of defining the plain extension of (A, {f ′

i}i∈l) as

(M, {fi}i∈l) :=





⋃

j∈ω

Mj ,
{

⋃

j∈ω

f j
i

}

i∈l



 .

Given the previous definitions, we remark that given a model M ∈ K and a countable
subset A ⊆ M , we have that cl(A,M) ≤ M , which proves the following:

Fact 3.1. For every countable subset A of a model M ∈ K, there is a countable model N
such that A ⊆ N ≤ M .

Proposition 3.2 (CH). There is a model M∗ of cardinality c in K such that:

• M∗ is ℵ1-universal, i.e., if N ∈ K is countable then N is isomorphic to some

N∗ ≤ M∗.

• M∗ is ℵ1-homogeneous, i.e., if N1, N2 ≤ M∗ are countable and π : N1 → N2 is an

isomorphism then there exists an automorphism π∗ of M∗ such that π ⊆ π∗.
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• If N ≤ M∗ and A ⊆ M∗ are countable, then there is an automorphism π of M∗

that fixes N pointwise, such that π(A) \N is disjoint from A.

Proof. We construct the model M∗ by induction on ω1, where we assume that ω1 = c. Let
M0 = ∅. When Mα is already defined for some α ∈ ω1, we can define

Cα :=
{

N ≤ Mα : N ∈ K and N is countable
}

.

The construction of Mα+1, starting from Mα, consists of a disjoint union of two differently
built sets of models. First, for each element N ∈ Cα, let SN be a system of representatives
for the strong isomorphism classes of all the models M ∈ K such that N ≤ M with M
countable. Here, by strong we mean that, for two models M1 and M2 with N ≤ M1,M2,
it is not enough to be isomorphic in order to belong to the same class, but we require that
there exists an isomorphism between M1 and M2 that fixes N pointwise, which we can
express by saying that M1 is isomorphic to M2 over N . We first extend Mα by the set

M ′
α =

⊔

N∈Cα

⊔

M∈SN

M \N,

where “
⊔

” indicates that we have a disjoint union, and now we define Mα+1 as the plain
extension of Mα ⊔M ′

α. Finally, for non-empty limit ordinals δ define Mδ = ∪α∈δMα, and
let

M∗ =
⋃

α∈ω1

Mα.

It remains to show that the model M∗ has the required properties: First we notice that
M∗ has cardinality |M∗| = c, as required, and since, by construction, M1 is ℵ1-universal,
M∗ is also ℵ1-universal. In order to show that M∗ is ℵ1-homogeneous, we make use of
a back-and-forth argument. Let N1, N2 ≤ M∗ be countable models and π : N1 → N2 an
isomorphism. Let {xα : α ∈ ω1} be an enumeration of the elements of M∗ and let I0 := N1.
If xδ1 is the first element (with respect to this enumeration) in M∗ \ I0, then, by Fact 3.1,
there exists a countable model I ′1 ≤ M∗ such that I0 ≤ I ′1 and xδ1 ∈ I ′1. Similarly, there is a
countable model J ′

1 with N2 ≤ J ′
1 ≤ M∗ such that there exists an isomorphism π′

1 : I
′
1 → J ′

1

with π ⊆ π′
1. Now, let xγ1 be the first element in M∗ \ J

′
1: for the same reason as above

we can find countable models J1, I1 such that I ′1 ≤ I1 ≤ M∗ and J ′
1 ≤ J1 ≤ M∗, together

with xγ1 ∈ J1 and the fact that there exists an isomorphism π1 : I1 → J1 with π′
1 ⊆ π1.

Proceed inductively with xδα+1 being the first element in M∗ \ Iα and find countable
models Iα ≤ I ′α+1 ≤ M∗, Jα ≤ J ′

α+1 ≤ M∗ and an isomorphism π′
α+1 : I

′
α+1 → J ′

α+1 with
xδα+1 ∈ I ′α+1 and πα ⊆ π′

α+1. As in the second part of the base step, let xγα+1 be the first
element in M∗ \ J

′
α+1 and find countable models I ′α+1 ≤ Iα+1 ≤ M∗, J

′
α+1 ≤ Jα+1 ≤ M∗,

with an isomorphism πα+1 : Iα+1 → Jα+1 such that xγα+1 ∈ Jα+1 and π′
α+1 ⊆ πα+1. We

naturally take the union at limit stages and finally obtain π∗ = ∪α∈ω1πα, which is the
required automorphism of M∗.

To show the last property of the theorem, let N ≤ M∗ and A ⊆ M∗ be both countable.
Since the cofinality of ω1 is greater than ω, we can find by construction both a countable
model M satisfying the properties A ⊆ M , N ≤ M ≤ M∗ and a further countable model
M ′ with N ≤ M ′ ≤ M∗ such that M ′ ∩ (A \ N) = ∅, and such that there exists an
isomorphism i : M → M ′ with i fixing N pointwise. Now, by M∗ being ℵ1-homogeneous
we obtain an automorphism i∗ extending i, as required. ⊣
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3.2 Consistency Proof

We are now ready to prove the consistency result claimed in Theorem 2.2. Let l, n ∈ ω
and let G0, . . . , Gl ≤ Sn be pairwise non-conjugate subgroups. In order to show that
it is consistent with ZF that there is an infinite set A with |[A]G0 | < · · · < |[A]Gl |, we
have to find a model of ZF in which this statement holds, which is—by the Jech-Sochor
Theorem—provided by finding a permutation model of ZFA in which this statement holds.

We consider the permutation model V that arises naturally by considering the elements
of the ℵ1-universal and ℵ1-homogeneous model M∗ as the set of atoms and the automor-
phisms Aut(M∗) as the group of permutations. In particular, each permutation in the
group preserves all the injections fi : [M ]Gi → [M ]Gi+1 that the model (M∗, {fi}i∈l) comes
with. The normal ideal of supports is given by the countable subsets. If A is the set
of atoms, clearly in V we have, for all i ∈ l, an injection from [A]Gi into [A]Gi+1 . As-
sume now towards a contradiction that there is in V , for some fixed t ∈ l, an injection
h : [A]Gt+1 →֒ [A]Gt . Let S be a support of h and let M be the closure of S with respect
to M∗. Consider some n-element set E which is disjoint from M and call N the plain
extension of M∪E with respect to the index t. Let ε be an element of [E]Gt+1 and consider
h(ε).

The first step of the proof is to realize that, because of the third property in Prop. 3.2, we
can assume that E ⊆ cl(M ∪ ran(h(ε))). This inclusion requires ran(h(ε)) to be, for some
k ∈ l + 1 and some P ∈ [N ]Gk , a single whole block {aP1 , . . . , a

P
n } in the construction of

the plain extension of M ∪E. Next, from the same inclusion we deduce that the following
holds: consider the undirected graph whose verteces are given by all the blocks added in
the construction of the plain extension of M ∪E and by E itself, and whose edges connect,
when the range of the considered P is a whole block, the block ran(P ) with {aP1 , . . . , a

P
n }.

Then, ran(h(ε)) is in the same connected component as E. Let us now proceed with a
few remarks and definitions regarding this graph. Notice that each vertex v distinct from
E is in the form {aP1 , . . . , a

P
n }, and hence naturally comes with a unique index i, namely

that i ∈ l + 1 such that P ∈ [N ]Gi . We will call this index the pure interpretation of
v. Similarly, every vertex v has an interpretation for each other edge involving v. More
explicitely, each time some k ∈ l + 1 and Q ∈ [v]Gk are considered in the construction of
the plain extension, we get a new vertex w = {aQ1 , . . . , a

Q
n } and an edge between v and w,

to which we associate k as the relative interpretation of v. Finllay, this graph is acyclic,
reason for which there is a unique path between E and ran(h(ε)). Given this unique path
〈s0, . . . , sm〉, each intermediate node v has two interpretations, one for each edge of the
path involving v, which we will intuitively call left L(v) and right R(v). We now need the
following:

Lemma 3.3 (Algebraic Claim). Let G and H be subgroups of Sn which are not conjugate

to each other and let E be a set with |E| ≥ n. A pair (g, h) ∈ [E]G × [E]H is said to be

concording if the range of g equals the range of h. Let (g, h) ∈ [E]G× [E]H be a concording

pair and let f be an element of g. Enumerate the range E = {ri : ri = f(i)} and let G∗ be

the group that acts on E in the same way as how G acts on n. Then, modulo swapping G
with H, there exists some permutation σ ∈ G∗ such that σ(g) = g and σ(h) 6= h.

Proof. Choose a representative f̃ ∈ h and, for all i ∈ n, define ki so that f̃ : i 7→ rki . Let
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τ be the permutation of n sending i 7→ ki. Pick a permutation σ∗ ∈ G∗ and recall that
σ∗f̃ ∈ h iff there exists some π ∈ H such that, for all i ∈ n, we have f̃(πi) = σ∗f̃(i). That
is, such that σ∗f̃(i) = σ∗rki = rσki = rστi equals f̃(πi), i.e. τπi = στi. From this last
equality it is clear that all the σ∗f̃ belong to h if and only if G ⊆ τHτ−1. Similarly, each
analogous π∗(f) belongs to g if and only if τ−1Hτ ⊆ G. ⊣

Our goal is to find a point on the path, hence a block, on which to apply the algebraic
claim in order to destroy the pair (ε, h(ε)) while fixing pointwise the support S of h.
Start from s0 = E: if R(E) is not t + 1, then we can apply the algebraic claim in order
to either move e and pointwise fix 〈s1, . . . , sm〉 or fix e and move 〈s1, . . . , sm〉 to some
pointwise disjoint sequence of blocks, hence we assume that R(E) = t+ 1, which implies
L(s1) = t+ 2. Assume now that L(s1) 6= R(s1). Then we can reach our goal by applying
the algebraic claim at this point, but it is important to remark how we can apply the claim
thanks to how we constructed the plain extension. Indeed, the algebraic claim concludes
that at least one among two options holds. If we are in the case in which we can preserve
the relevant element in [s1]

GL(s1) while moving the one in [s1]
GR(s1) , then the fact that we

can apply the claim would also be true even if we did not add any pre-image for injections
with indeces i with t ∈ i ∈ l. On the other hand, the fact that the plain extension is
symmetric enough to accept a permutation which preserves the relevant class in [s1]

GR(s1)

and destroys the one in [s1]
GL(s1) is due to the fact that we added those pre-images, since

we need to move E. To further clarify, we say that adding pre-images only for those
indeces i with t ∈ i ∈ l is sufficient thanks to the fact that we could reduce our proof to
the case in which the right interpretation of s0 is t + 1. Proceeding this way, we obtain
that the left interpretation of sm is greater or equal to t+ 1, and in particular L(sm) 6= t,
which is what we will now use to conclude. Since h(ε) ∈ [sm]Gt , we can finally apply
the algebraic claim in order to either move h(ε) while preserving the relevant element
of [sm]GL(sm) and fixing pointwise each block in 〈s0, . . . , sm−1〉, or while fixing h(ε) and
moving 〈s0, . . . , sm−1〉 to some pointwise disjoint sequence of blocks, hence concluding the
proof.
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