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We study abstract elementary classes (AECs) that, in ℵ0, have amalgamation, 
joint embedding, no maximal models and are stable (in terms of the number of 
orbital types). Assuming a locality property for types, we prove that such classes 
exhibit superstable-like behavior at ℵ0. More precisely, there is a superlimit model 
of cardinality ℵ0 and the class generated by this superlimit has a type-full good 
ℵ0-frame (a local notion of nonforking independence) and a superlimit model of 
cardinality ℵ1. We also give a supersimplicity condition under which the locality 
hypothesis follows from the rest.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

In [27] (a revised version of which appears as [29, Chapter I], from which we cite), the first author 
introduced abstract elementary classes (AECs): a semantic framework generalizing first-order model theory 
and also encompassing logics such as Lω1,ω. He studied PCℵ0 -representable AECs (roughly, AECs which 
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are reducts of a class of models of a first-order theory omitting a countable set of types) and generalized 
and improved some of his earlier results on Lω1,ω [25,26] and Lω1,ω(Q) [24].

For example, fix a PCℵ0 -representable AEC K and assume that it is categorical in ℵ0. Assuming 2ℵ0 < 2ℵ1

and 1 ≤ I(K, ℵ1) < 2ℵ1 , the first author shows (without even assuming PCℵ0 -representability) [29, I.3.8]
that K has amalgamation in ℵ0. Further, [29, §I.4, §I.5], it has a lot of structure in ℵ0 and assuming more 
set-theoretic assumptions as well as few models in ℵ2, K has a superlimit model in ℵ1 [29, I.5.34, I.5.40]. 
This means roughly (see Section 2) that there is a saturated model in ℵ1 and that the union of an increasing 
chain of type ω consisting of saturated models of cardinality ℵ1 is saturated.

The reader can think of the existence of a superlimit in ℵ1 as a step toward showing that the models of 
cardinality ℵ1 behave in a “superstable-like” way. Indeed several recent works [35,36,6,15] have connected 
superlimits with other definitions of superstability in AECs, including uniqueness of limit models and local 
character of orbital splitting.

Another notable consequence of the existence of a superlimit in ℵ1 is that it implies that there is a model 
of cardinality ℵ2. This ties back to a result of the first author: [29, I.3.11]: for a PCℵ0 AEC, categoricity 
in ℵ0 and ℵ1 implies the existence of a model in ℵ2. The argument first establishes, using only categoricity 
in ℵ0 and few models in ℵ1, that there is a pair M, N of models in Kℵ1 such that M <K N and then 
uses, in essence, that (by ℵ1-categoricity) these models are superlimits. In this context, the very strong 
hypotheses make it possible to avoid referring to any stability-theoretic notions. Still, in more complicated 
frameworks the existence of a superlimit model in ℵ1 can be thought of as a key conceptual step toward 
proving existence of models in higher cardinality and more generally developing a stability theory cardinal 
by cardinal.

The arguments for the results from [29, §I.5] discussed in the second paragraph of this introduction 
are complicated by the lack of ℵ0-stability: one can only get that there are ℵ1-many orbital types over 
countable models. The workaround there is to redefine the ordering (but not the class of models) to obtain 
a stable class, see [29, I.5.29]. If the AEC is “nicely-presented”, e.g. a class of models of an Lω1,ω-sentence 
or more generally a finitary AEC [18], then this difficulty does not occur (see [2]): ℵ0-stability follows from 
few models in ℵ1 and 2ℵ0 < 2ℵ1 . One can also obtain ℵ0-stability by starting with only countably-many 
models in ℵ1 [4, 3.18]. Finally, it is worth noting that (assuming amalgamation and joint embedding in ℵ0), 
ℵ0-stability is upward absolute for PCℵ0 -AECs [22].

1.2. Main results

The bottom line is that ℵ0-stability holds in several cases of interest. In fact, there are no known ex-
amples which (under 2ℵ0 < 2ℵ1) are categorical in ℵ0, have few models in ℵ1, and are not ℵ0-stable (see 
[4, Question 3.15]). Thus in the present paper, we start with stability in ℵ0 (and often amalgamation and 
categoricity in ℵ0). Our goal is to say as much as we can on the structure of the class, in particular to get 
superstable-like behavior in ℵ0 and ℵ1, without assuming a non-ZFC hypothesis or I(K, ℵ1) < 2ℵ1 .

One of our first results (Theorem 4.2) is that ℵ0-stability (together with amalgamation and ℵ0-categori-
city) imply that the class K is already PCℵ0-representable. We also show that the assumption of categoricity 
in ℵ0 is not really needed: without assuming it, one can find a superlimit in ℵ0 and change to the class 
generated by that superlimit, which will be categorical in ℵ0. In fact, we prove (Theorem 4.4) that one can 
characterize brimmed models (also called limit models in the literature) as those that are homogeneous for 
orbital types. This has as immediate consequence that the brimmed model of cardinality ℵ0 is superlimit 
(Corollary 4.6). This last result sheds light on an argument of Lessmann [23] and answers a question of 
Fred Drueck (see footnote 3 on [12, p. 25]), who asked when this equality held. The argument works more 
generally assuming only density of amalgamation bases, as in [32].

For the main result of this paper, we assume that orbital types over countable models are determined by 
their finite restrictions. The study of statements of the form “orbital types are determined by their small 
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restrictions” was pioneered by Grossberg and VanDieren [14], who called this condition tameness. Hyttinen 
and Kesälä [18, §3] were the first to specifically study orbital types over finite sets and the condition that 
they determine orbital types over countable models.

Following the first author’s terminology [31, 0.1(2)], we call this last condition (< ℵ0, ℵ0)-locality (not to 
be confused with sequence locality [31, 0.1(1)], which is called locality in [3, 1.8] or [1, 11.4]). This is known 
to hold for several classes of interest:

Example 1.1.

(1) Let K be a finitary AEC (see [18]; this includes classes of models of Lω1,ω-sentences) and assume that K
is stable in ℵ0 (finitary AECs have amalgamation and no maximal models by definition). By [18, 4.11], 
K is (< ℵ0, ℵ0)-local.

(2) Finitary AECs are not the only setup where (< ℵ0, ℵ0)-locality holds. For example, it is known for 
quasiminimal pregeometry classes (that may not be finitary [21, Theorem 2]), see [5, 5.2], and more 
generally in the finite U-rank (FUR) classes of Hyttinen and Kangas [17, 2.17] (we thank Will Boney 
for pointing us to that reference).

We prove the following:

Theorem 1.2. Let K be an AEC with LS(K) = ℵ0 and countable vocabulary. Assume that K is categorical 
in ℵ0, K is (< ℵ0, ℵ0)-local, K has amalgamation and no maximal models in ℵ0 and K is stable in ℵ0. Then:

(1) (Theorem 5.8) There is a good ℵ0-frame on Kℵ0 .
(2) (Corollary 5.9) There is a superlimit model of cardinality ℵ1.

The good ℵ0-frame (or the superlimit in ℵ1) imply the nontrivial corollary that K has a model of cardi-
nality ℵ2 [29, II.4.13]. This consequence also follows from a theorem of the second author [41, 12.1] (which 
however does not give a good ℵ0-frame or a superlimit in ℵ1). The conclusion that there is a superlimit 
model in ℵ1 seems new, even for finitary AECs or FUR classes.

It is natural to ask whether the locality hypothesis in Theorem 1.2 is really needed.2 In fact we do not 
even know whether the existence of a good ℵ0-frame implies (< ℵ0, ℵ0)-locality:

Question 1.3. Let K be an AEC with LS(K) = ℵ0. If there is a good ℵ0-frame on K, is K (< ℵ0, ℵ0)-local?

In Section 6, we give a partial answer: any AEC that is ℵ0-stable, ℵ0-categorical, and supersimple (in a 
sense generalizing that of homogeneous model theory [11]) is (< ℵ0, ℵ0)-local. This generalizes the proof of 
[5, 5.2], which shows that quasiminimal pregeometry classes are (< ℵ0, ℵ0)-local (see also [40]). Supersimple 
ℵ0-stable AECs are also much more general than FUR classes.

1.3. Notes

This paper is organized as follows. Section 2 gives some background definitions and fixes the notation. 
Section 3 is a technical section on good frames (possibly on uncountable models) which sets up the machinery 
to prove the main theorem (more precisely, to prove a strong symmetry property for nonforking in good 
frames). Section 4 works with countable models and shows that ℵ0-stability implies the existence of a 

2 In fact, an earlier version of the present paper asserted that it could be derived from the other hypotheses but the argument 
contained a mistake.
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superlimit in ℵ0. Section 5 builds the good ℵ0-frame and proves the main theorem. Finally, Section 6
studies a sufficient condition to get (< ℵ0, ℵ0)-locality.

This paper was started while the second author was working on a Ph.D. thesis under the direction of 
Rami Grossberg at Carnegie Mellon University and he would like to thank Professor Grossberg for his 
guidance and assistance in his research in general and in this work specifically. We also thank Will Boney, 
Marcos Mazari Armida, and the referee, for their valuable comments on earlier versions of this paper.

Note that at the beginning of several sections, we make global hypotheses assumed throughout the section.

2. Preliminaries

We assume familiarity with the basics of AECs, as presented for example in [13,1], or the first three 
sections of Chapter I together with the first section of Chapter II in [29]. We also assume familiarity with 
good frames (see [29, Chapter II] or [7]; it would help the reader to have a copy of both available during 
the reading of Section 3). This section mostly fixes the notation that we will use.

Given a τ -structure M , we write |M | for its universe and ‖M‖ for its cardinality. We may abuse notation 
and write e.g a ∈ M instead of a ∈ |M |. We may even write ā ∈ M instead of ā ∈ <ω|M |.

We write K = (K, ≤K) for an AEC. We may abuse notation and write M ∈ K instead of M ∈ K. For a 
cardinal λ, we write Kλ for the AEC restricted to its models of size λ. As shown in [29, II.1], any AEC is 
uniquely determined by its restriction K≤LS(K).

When we say that M ∈ K is an amalgamation base, we mean (as in [32]) that it is an amalgamation base 
in K‖M‖, i.e. we do not require that larger models can be amalgamated.

For M0 ∈ K, we say that M is universal over M0 if M0 ≤K M and for any N ∈ K with M0 ≤K N , if 
‖N‖ ≤ ‖M0‖ + LS(K), there exists f : N −−→

M0
M (usually we will require also that ‖M‖ = ‖M0‖). We say 

that M is (λ, δ)-brimmed over M0 (often also called (λ, δ)-limit e.g. in [32,16]) if δ < λ+ is a limit ordinal, 
M0 ∈ Kλ, and there exists an increasing continuous chain 〈Ni : i ≤ δ〉 of members of Kλ such that N0 is 
universal over M0, Nδ = M , and Ni+1 is universal over Ni for all i < δ. We say that M is brimmed over M0
if it is (‖M‖, δ)-brimmed over M0 for some limit δ < ‖M‖+. We say that M is brimmed if it is brimmed 
over some M0.

The following key concept appears in [29, I.3.3]:

Definition 2.1. We say that M ∈ K is superlimit if, letting λ := ‖M‖, we have that λ ≥ LS(K), M is universal 
in Kλ (i.e. any M ′ ∈ Kλ embeds into M), M is not maximal, and whenever δ < λ+ is limit, 〈Mi : i < δ〉 is 
increasing with Mi

∼= M for all i < δ, then 
⋃

i<δ Mi
∼= M .

The following notion of types already appears in [28]. It is called Galois types by many, but we prefer the 
term orbital types here. They are the same types that are defined in [29, II.1.9], but we also define them over 
sets. As pointed out in [38, Section 2], this causes no additional difficulties. The following technical point is 
important: when the AEC does not have amalgamation, we may want to compute orbital types only in the 
subclass of amalgamation bases in K (as in [32]). Thus we allow orbital types to be computed in a subclass 
of K in the definition.

Definition 2.2. Fix an AEC K and a subclass K∗ of K, closed under isomorphisms.

(1) We say (A, N1, ̄b1)EK
∗

at (A, N2, ̄b2) if:
(a) For � = 1, 2, N� ∈ K∗, A ⊆ |N�|, and b̄� ∈ <∞|N�|.
(b) There exists N ∈ K∗ and f� : N� −→

A
N , � = 1, 2, such that f1(b̄1) = b̄2.

(2) EK
∗

at is a reflexive and symmetric relation. Let EK
∗ be its transitive closure.

(3) Let ortpK∗(b̄/A; N) be the EK
∗ -equivalence class of (b̄, A, N).
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(4) Define SK∗(A, N), SK∗(M), S <ω
K∗ (M), S <ω

K∗ (∅), etc. for the Stone spaces of orbital types, computed 
inside K∗. This is defined as in [38, 2.20]. For example, S <ω

K∗ (∅) = {ortpK∗(b̄/∅; N) | N ∈ K∗, ̄b ∈ <ωN}.
(5) When K∗ = K, we omit it.

Let us say that an AEC K is stable in λ if for any M ∈ Kλ, |S(M)| ≤ λ. This makes sense in any AEC, 
and is quite well-behaved assuming amalgamation and no maximal models (since then it is known that one 
can build universal extensions). We will often work in the following axiomatic setup, a slight weakening 
where full amalgamation is not assumed. This comes from the context derived in [32]:

Definition 2.3. Let K be an AEC and let λ be a cardinal. We say that K is nicely stable in λ (or nicely 
λ-stable) if:

(1) LS(K) ≤ λ.
(2) Kλ = ∅.
(3) K has joint embedding in λ.
(4) Density of amalgamation bases: For any M ∈ Kλ, there exists N ∈ Kλ such that M ≤K N and N is an 

amalgamation base (in Kλ).
(5) Existence of universal extensions: For any amalgamation base M ∈ Kλ, there exists an amalgamation 

base N ∈ Kλ such that M <K N and N is universal over M .
(6) Any brimmed model in Kλ is an amalgamation base.

We say that K is very nicely stable in λ if in addition it has amalgamation in λ.

Remark 2.4. An AEC K is very nicely stable in λ if and only if LS(K) ≤ λ, Kλ = ∅, K is stable in λ, and 
Kλ has amalgamation, joint embedding, and no maximal models. In particular, stability is a consequence 
of the existence of universal extensions in Definition 2.3.

We will repeatedly use the following fact [32, 1.3.6].

Fact 2.5. Let K be nicely stable in λ and let M0, M1, M2 ∈ Kλ. Let δ1, δ2 < λ+ be limit ordinals such that 
cf(δ1) = cf(δ2).

(1) If M� is (λ, δ�)-brimmed over M0, for � = 1, 2, then M1 ∼=M0 M2.
(2) If M� is (λ, δ�)-brimmed, for � = 1, 2, then M1 ∼= M2.

Proof. The first is a straightforward back and forth argument and the second follows from the first using 
joint embedding. �
Remark 2.6. Uniqueness of brimmed models when cf(δ1) = cf(δ2) is a much harder property to establish, 
akin to superstability. See for example [32,33,16,34]. However when λ = ℵ0 we automatically have that 
cf(δ1) = cf(δ2) = ω.

Good frames were first defined by the first author in his paper number 600, which eventually appeared as 
Chapter II of [29]. The idea is to provide a localized (i.e. only for base models of a given size λ) axiomatization 
of a forking-like notion for a “nice enough” set of 1-types. These axioms are similar to the properties of 
first-order forking in a superstable theory. Jarden and the first author (in [19]) later gave a slightly more 
general definition, not assuming the existence of a superlimit model and dropping some of the redundant 
clauses. We will make use of good frames for types of finite length (not just length one). Their definition is 
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just like for types of length one, we call them good (< ω, λ)-frames. For the convenience of the reader, we 
give the full definition from [7, 3.8] here:

Definition 2.7. Let λ be an infinite cardinal. A good (< ω, λ)-frame is a triple (K, �, S bs
s ) satisfying, where:

(1) K is an abstract elementary class with λ ≥ LS(K), Kλ = ∅.
(2) S bs

s ⊆
⋃

M∈Kλ
S <ω(M). Moreover, if ortp(〈ai : i < n〉/M ; N) ∈ S bs

s (M), then ai /∈ M for all i < n.
(3) � is a relation on quadruples of the form (M0, M1, ̄a, N), where M0 ≤K M1 ≤K N , ā ∈ <ωN , and M0, 

M1, N are all in Kλ. We write �(M0, M1, ̄a, N) or ā
N

�
M0

M1 instead of (M0, M1, a, N) ∈ �.

(4) The following properties hold:
(a) Invariance: If f : N ∼= N ′ and ā

N

�
M0

M1, then f(ā) 
N ′

�
f [M0]

f [M1]. If ortp(ā/M1; N) ∈ S bs
s (M1), then 

ortp(f(ā)/f [M1]; N ′) ∈ S bs
s (f [M1]).

(b) Monotonicity: If ā
N

�
M0

M1, ā′ is a subsequence of ā, M0 ≤K M ′
0 ≤K M ′

1 ≤K M1 ≤K N ′ ≤K N ≤K N ′′

with ā′ ∈ N ′, and N ′′ ∈ KF , then ā′
N ′

�
M ′

0

M ′
1 and ā′

N ′′

�
M ′

0

M ′
1. If ortp(ā/M1; N) ∈ S bs

s (M1) and ā′ is a 

subsequence of ā, then ortp(ā′/M1; N) ∈ S bs
s (M1). [This property and the previous one show that 

� is really a relation on types. Thus if p ∈ S <ω(M1) is a type, we say p does not fork over M0 if 

ā
N

�
M0

M1 for some (equivalently any) ā and N such that p = ortp(ā/M1; N). Note that this depends 

on s, but s will always be clear from context.]

(c) Nonforking types are basic: If ā
N

�
M

M , then ortp(ā/M ; N) ∈ S bs
s (M).

(d) Kλ has amalgamation, joint embedding, and no maximal models.
(e) bs-Stability: |S bs

s (M)| ≤ ‖M‖ for all M ∈ Kλ.
(f) Density of basic types: If M <K N are in Kλ, then there is a ∈ N such that ortp(a/M ; N) ∈

S bs
s (M).

(g) Existence of nonforking extension: If m ≤ n < ω, p ∈ S bs
s (M) ∩ S m(M), N ≥K M is in Kλ, then 

there is some q ∈ S bs
s (N) ∩ S n(M) that does not fork over M and extends p.

(h) Uniqueness: If p, q ∈ S <ω(N) do not fork over M and p � M = q � M , then p = q.

(i) Symmetry: If ā1
N

�
M0

M2, ā2 ∈ <αM2, and ortp(ā2/M0; N) ∈ S bs
s (M0), then there is M1 containing 

ā1 and N ′ ≥K N such that ā2
N ′

�
M0

M1.

(j) Local character: If δ is a regular cardinal, 〈Mi ∈ Kλ : i ≤ δ〉 is increasing continuous, and p ∈
S bs

s (Mδ) is such that �(p) < δ, then there exists i < δ such that p does not fork over Mi.
(k) Continuity: If δ is a limit ordinal, 〈Mi ∈ Kλ : i ≤ δ〉 and 〈αi < α : i ≤ δ〉 are increasing and 

continuous, and pi ∈ S bs
s (Mi) for i < δ are such that j < i < δ implies pj = pi � Mj , then there is 

some p ∈ S bs
s (Mδ) such that for all i < δ, pi = p � Mi. Moreover, if each pi does not fork over M0, 

then neither does p.
(l) Transitivity: If M0 ≤K M1 ≤K M2, p ∈ S(M2) does not fork over M1 and p � M1 does not fork over 

M0, then p does not fork over M0.

A good λ-frame is defined similarly, except we require all types to be types of singletons (i.e. they are in S(M)
instead of S <ω(M)). We say that an AEC K has a good (< ω, λ)-frame if there is a good (< ω, F)-frame 
where K is the underlying AEC.
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Notation 2.8. If s = (K, �, S bs
s ) is a good-(< ω, λ)-frame (or a good λ-frame), write �

s

:= �. Also write 

Ks for K and Ks = Kλ. We will also write M ≤s N as a shortcut for M ≤K N and M, N ∈ Ks (= Kλ).

Remark 2.9. The reader might wonder about the reasons for having a special class of basic types. Following 
[29, Definition III.9.2], let us call a good frame type-full if the basic types are all the nonalgebraic types. 
There are no known examples of a good λ-frame which cannot be extended to a type-full one. However a 
construction of good frames of the first author [29, II.3] builds a non type-full good frame and it is not clear 
that it can be extended to a type-full one until a lot more machinery has been developed. Thus it can be 
easier to build a good frame than to build a type-full one, and most results about frames already hold in 
the non-type-full context. That being said, readers would not miss the essence of the present paper if they 
assumed that all the frames here were type-full.

Remark 2.10. Any good λ-frame (i.e. for types of length one) extends to a good (< ω, λ)-frame (using 
independent sequences, see [29, III.9.4]) or [7, 5.8]. This frame will however not be type-full.

From now on until the end of Section 5, “nonforking” will refer to nonforking in a fixed frame s (usually 
clear from context).

3. Weak nonforking amalgamation

In this section, we work in a good λ-frame and study a natural weak version of nonforking amalgamation, 
LWNFs (LWNF stands for “left weak nonforking amalgamation”). The goal is to obtain a natural criteria 
for proving the existence of a superlimit in ℵ1 and also prepare the ground for the proof of symmetry in 
the good frame built in Section 5. The main results are the existence property (Theorem 3.10) and how the 
symmetry property of LWNFs is connected to s being good+ (Theorem 3.14). Throughout this section, we 
assume:

Hypothesis 3.1.

(1) s = (K, �, S bs
s ) is a fixed good (< ω, λ)-frame, except that it may not satisfy the symmetry axiom.

(2) K is categorical in λ.

Remark 3.2. In this section, λ is allowed to be uncountable. However the case λ = ℵ0 is the one that will 
interest us in the next sections.

The reason for not assuming symmetry is that we will use some of the results of this section to prove
that the symmetry axiom holds of a certain nonforking relation in Section 5.

We will use:

Fact 3.3 (II.4.3 in [29]). Let δ < λ+ be a limit ordinal divisible by λ. Let 〈Mi : i ≤ δ〉 be increasing 
continuous in Ks. If for any i < δ and any p ∈ S bs

s (Mi), there exists λ-many j ∈ [i, δ) such that the 
nonforking extension of p to Mj is realized in Mj+1, then Mδ is brimmed over M0.

To understand the definition below, it may be helpful to think of s as type-full. Then LWNFs(M0, M1,

M2, M3) holds if and only if the type of any finite subsequences of M1 over M2 does not fork over M0 (M3 is 
the ambient model). Thus LWNFs is an attempt to extend nonforking to types of infinite sequences so that 
it keeps a strong finite character property. In the present paper, LWNFs will be a helpful technical tool 
but it is not clear that it has the uniqueness property (in contrast with the relation NF from [29, §II.6]
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or [19, §5], which will have the uniqueness property but requires more assumptions on the good frame). If 
LWNFs does have the uniqueness property, this has strong consequence on the structure of the frame, see 
Theorem 3.17.

Definition 3.4. Define the following 4-ary relations on Ks:

(1) LWNFs(M0, M1, M2, M3) if and only if M0 ≤s M� ≤s M3 for � = 1, 2 and for any b̄ ∈ <ω|M1|, if 
ortp(b̄, M2, M3) and ortp(b̄, M0, M3) are basic then ortp(b̄, M2, M3) does not fork over M0.

(2) RWNFs(M0, M1, M2, M3) if and only if LWNFs(M0, M2, M1, M3) [RWNF stands for “right weak non-
forking amalgamation”].

(3) WNFs(M0, M1, M2, M3) if and only if both LWNFs(M0, M1, M2, M3) and RWNFs(M0, M1, M2, M3)
[WNF stands for “weak nonforking amalgamation].

When s is clear from context, we write LWNF, RWNF, and WNF.

The following result often comes in handy.

Lemma 3.5. Let δ < λ+ be a limit ordinal. Let 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 be increasing continuous in Ks. 
Assume that for each i ≤ j < δ, we have that LWNF(Mi, Ni, Mj , Nj). If for each i < δ, Ni realizes all the 
basic types over Mi, then Nδ realizes all the basic types over Mδ.

Proof. Let p ∈ S bs
s (Mδ). By local character, there exists i < δ such that p does not fork over Mi. In 

particular, p � Mi is basic. Since Ni realizes all the basic types over Mi, there exists a ∈ |Ni| such that 
p � Mi = ortp(a, Mi, Ni). Because for all j ∈ [i, δ), LWNF(Mi, Ni, Mj , Nj), we have by continuity that 
ortp(a, Mδ, Nδ) does not fork over Mi, hence by uniqueness it must be equal to p. Therefore a realizes p, 
as needed. �

Next, we investigate the properties of LWNF. We are especially interested in the symmetry property: 
whether LWNF is equal to RWNF. To understand it better, we consider the following ordering, defined 
similarly to ≤∗

λ+ from [29, II.7.2]:

Definition 3.6. For R ∈ {LWNF, RWNF, WNF}, define a relation ≤R on Kλ+ as follows. For M0, M1 ∈ Kλ+ , 
M0 ≤R M1 if and only if there exists increasing continuous resolutions 〈M �

i ∈ Kλ : i < λ+〉 of M � for 
� = 0, 1 such that for all i < j < λ+, R(M0

i , M
1
i , M

0
j , M

1
j ).

The following is a straightforward “catching your tail argument”, see the proof of [39, 4.6] (this assumes 
that all types are basic, but the argument goes through without this restriction). Roughly, it says that if 
M ≤K N (≤K is the usual order on K), then we can find a resolution of M and N so that the pieces are in 
left weak nonforking amalgamation.

Fact 3.7. Let M, N ∈ Kλ+ . If M ≤K N , then M ≤LWNF N .

Whether M ≤RWNF N can be concluded as well seems to be a much more complicated question, and 
in fact is equivalent to s being good+ (Theorem 3.14), a weakening of symmetry. We now observe that an 
increasing union of a ≤RWNF-increasing chain of saturated models is saturated:

Lemma 3.8. Let δ < λ++ be a limit ordinal. If 〈Mi : i < δ〉 is a ≤RWNF-increasing sequence of saturated 
models in Kλ+ , then 

⋃
Mi is saturated.
i<δ
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Proof. If cf(δ) ≥ λ+, then any 
⋃

i<δ Mi will be λ+-saturated on general grounds. Thus assume without loss 
of generality that δ = cf(δ) < λ+. Let Mδ :=

⋃
i<δ Mi. We build 〈Mi,j : i ≤ δ, j ≤ λ+〉 such that:

(1) For any i ≤ δ, Mi,λ+ = Mi.
(2) For any i < δ, j < λ+, Mi,j ∈ Ks.
(3) For any i ≤ δ, 〈Mi,j : j < λ+〉 is increasing and continuous.
(4) For any j ≤ λ+, 〈Mi,j : i < δ〉 is increasing and Mδ,j =

⋃
i<δ Mi,j .

(5) For any i1 < i2 ≤ δ, j1 < j2 ≤ λ+, Mi2,j2 realizes all the types in S bs
s (Mi1,j1).

This is easy to do. Now for each i1 < i2 < δ, we have by assumption that Mi1 ≤RWNF Mi2 . Thus the set 
Ci1,i2 of j < λ+ such that for all j′ ∈ [j, λ+), RWNF(Mi1,j , Mi2,j , Mi1,j′ , Mi2,j′) is a club (that it is closed 
follows from the local character and continuity axioms of good frames). Therefore C :=

⋂
i1<i2<δ Ci1,i2

is also a club. Hence by renaming without loss of generality for all i1 < i2 < δ and all j ≤ j′ < λ+, 
RWNF(Mi1,j , Mi2,j , Mi1,j′ , Mi2,j′).

Now let N ≤K Mδ be such that N ∈ Kλ. We want to see that any type over N is realized in Mδ. By 
Fact 3.3, it is enough to show that any basic type over N is realized in Mδ.

Let j < λ+ be big-enough such that N ≤K Mδ,j . It is enough to see that any basic type over Mδ,j is 
realized in Mδ,j+1. To see this, use Lemma 3.5 with 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 there standing for 〈Mi,j : i ≤ δ〉, 
〈Mi,j+1 : i ≤ δ〉 here. We know that for each i ≤ i′ < δ, RWNF(Mi,j , Mi′,j , Mi,j+1, Mi′,j+1) and therefore 
LWNF(Mi,j , Mi,j+1, Mi′,j , Mi′,j+1). Thus the hypotheses of Lemma 3.5 are satisfied. �

The next fact will be used to prove the existence property of LWNF. Its proof is a direct limit argument 
similar to e.g. [16, 5.2]. Roughly, the nonforking relation there is given by “there exists a smaller submodel 
over which the type does not split”; in fact, these smaller submodels have to be kept as part of the data of 
the tower. This is not needed here. The argument is also similar to [19, 3.1.8]. However there the symmetry 
axiom is needed: there is an extra requirement on the type of a certain element b, but here we do not make 
that requirement so do not need symmetry.

Fact 3.9. Let α < λ+. Let 〈Mi : i ≤ α〉 be ≤s-increasing continuous (in Kλ) and let 〈āi : i < α〉 be given 
such that āi ∈ <ωMi+1 for all i < α and ortp(āi, Mi, Mi+1) ∈ S bs

s (Mi) (we allow the āi’s to have different 
length).

There exists 〈Ni : i ≤ α〉 ≤s-increasing continuous such that:

(1) Mi <s Ni for all i ≤ α.
(2) ortp(āi, Ni, Ni+1) does not fork over Mi.

We can now list and then prove some basic properties of weak nonforking amalgamation. For the conve-
nience of the reader, we repeat Hypothesis 3.1.

Theorem 3.10. Let s = (K, �, S bs
s ) be a fixed good (< ω, λ)-frame, except that it may not satisfy the 

symmetry axiom. Assume that K is categorical in λ. Let R ∈ {LWNF, RWNF, WNF}.

(1) Invariance: If R(M0, M1, M2, M3) and f : M3 ∼= M ′
3, then R(f [M0], f [M1], f [M2], M ′

3).
(2) Monotonicity: If R(M0, M1, M2, M3) and M0 ≤s M

′
� ≤s M� for � = 1, 2, then R(M0, M ′

1, M
′
2, M3).

(3) Ambient monotonicity: If R(M0, M1, M2, M3) and M3 ≤s M
′
3, then R(M0, M1, M2, M ′

3). If M ′′
3 ≤s M3

contains |M1| ∪ |M2|, then R(M0, M1, M2, M ′′
3 ).

(4) Continuity: If δ < λ+ is a limit ordinal and 〈M �
i : i ≤ δ〉 are increasing continuous for � < 4 with 

R(M0
i , M

1
i , M

2
i , M

3
i ) for each i < δ, then R(M0

δ , M
1
δ , M

2
δ , M

3
δ ).
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(5) Long transitivity: If α < λ+ is an ordinal, 〈Mi : i ≤ α〉, 〈Ni : i ≤ α〉 are increasing continuous and 
LWNF(Mi, Ni, Mi+1, Ni+1) for all i < α, then LWNF(M0, N0, Mα, Nα).

(6) Existence: If R = WNF, M0 ≤s M�, � = 1, 2, then there exists M3 ∈ Kλ and f� : M� −−→
M0

M3 such that 
R(M0, f1[M1], f2[M2], M3).

Proof. Invariance and the monotonicity properties are straightforward to prove. Continuity and long tran-
sitivity follow directly from the local character, continuity, and transitivity properties of good frames. We 
prove existence via the following claim:

Claim: There exists N0, N1, N2, N3 ∈ Ks such that LWNF(N0, N1, N2, N3) and N� is brimmed over N0

for � = 1, 2.

Existence easily follows from the claim: given M0 ≤s M�, � = 1, 2, there is (by categoricity in λ) an 
isomorphism f : M0 ∼= N0 and (by universality of brimmed models) embeddings f� : M� → N� extending f
for � = 1, 2. After some renaming, we obtain the desired LWNF-amalgam. To obtain an RWNF-amalgam, 
reverse the role of M1 and M2.

Proof of Claim: The idea of the proof is as follows: for some suitable ordinal α, we want to build 〈Mi :
i ≤ α〉, 〈ai ∈ Mi+1 : i < α〉 with the following property: whenever 〈Ni : i ≤ α〉 is as described by 
Fact 3.9 (plus slightly more), we must have that LWNF(M0, Mα, N0, Nδ), Mα is brimmed over M0, and N0

is brimmed over M0. To achieve this, we simply start with an arbitrary 〈Mi : i ≤ α〉, 〈ai : i < α〉 and, if 
it fails the property, take a witness to the failure, add some more aj’s to make it more brimmed, and start 
again to consider whether this witness satisfies the property. After doing this for sufficiently many steps, we 
eventually succeed to build the desired object. This is somewhat similar to the construction of a reduced 
tower in [32,16], although here we are dealing with nonforking independence and not just set-theoretic 
disjointness.

We now start with the proof. Let δ := λ · λ. We choose (M̄α, ̄aα) by induction on α ≤ δ such that:

(1) M̄α = 〈Mα
i : i ≤ α〉 is ≤s-increasing continuous.

(2) āα = 〈āi : i < α〉, and āi ∈ Mα
i+1 for all i < α.

(3) For all i < α, ortp(āαi , Mα
i , M

α
i+1) ∈ S bs

s (Mα
i ).

(4) For each i ≤ δ, 〈Mα
i : α ∈ [i, δ]〉 is <s-increasing continuous.

(5) For each i < δ and each α ∈ (i, δ], ortp(āi, Mα
i , M

α
i+1) does not fork over M i

i .
(6) If p ∈ S bs

s (Mα
i ) for i ≤ α < δ, then for λ-many β ∈ [α, δ), ortp(āβ , Mβ+1

β , Mβ+1
β+1 ) is a nonforking 

extension of p.
(7) If i < α < δ and ortp(ā, Mα

0 , M
α
i+1) ∈ S bs

s (Mα
0 ), then for some β ∈ (α, δ) exactly one of the following 

occurs:
(a) ortp(ā, Mβ+1

0 , Mβ+1
i+1 ) forks over Mα

0 .
(b) There is no 〈M∗

j : j ≤ i + 1〉 ≤s-increasing continuous such that:
(i) Mβ

j ≤s M
∗
j for all j ≤ i + 1.

(ii) ortp(āj , M∗
j , M

∗
j+1) does not fork over Mβ

j for all j < i + 1.
(iii) ortp(ā, M∗

0 , M
∗
i+1) forks over Mβ

0 .

This is possible: Along the construction, we also build an enumeration 〈(b̄γj , k
γ
j , i

γ
j , α

γ
j ) : j < λ, γ < λ〉

such that for any γ ∈ (0, λ), any α < λ · γ, any i < α, any k ≤ i, and any ā ∈ <ωMα
i+1, if 

ortp(ā, Mα
k , M

α
i+1) ∈ S bs

s (Mα
k ), then there exists j < λ so that b̄γj = ā, iγj = i, kγj = k, and αγ

j = α. We 

require that always kγj ≤ iγj < αγ
j < λ · γ and the triple (b̄γj , M

αγ
j
γ , M

αγ
j

γ ) represents a basic type. We 

kj ij +1
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make sure that at stage λ · (γ + 1) of the construction below, b̄γ
′

j , kγ
′

j , iγ
′

j , αγ′

j are defined for all j < λ, 
γ′ ≤ γ.
For α = 0, take any M0

0 ∈ Ks. For α limit, let Mα
i :=

⋃
β∈[i,α) M

β
i for i < α and Mα

α :=
⋃

i<α Mα
i . Now 

assume that M̄α, āα have been defined for α < δ. We define M̄α+1 and āα. Fix ρ and j < λ such that 
α = λ · ρ + j. We consider two cases.
– Case 1: ρ is zero or a limit: Use Fact 3.9 to get 〈Mα+1

i : i ≤ α〉 <s-increasing continuous such that 
Mα

i <s M
α+1
i for all i ≤ α, and for all i < α, ortp(āi, Mα+1

i , Mα+1
i+1 ) does not fork over Mα

i . Pick any 
Mα+1

α+1 with Mα+1
α <s M

α+1
α+1 and any āα ∈ <ωMα+1

α+1 such that ortp(āα, Mα+1
α , Mα+1

α+1 ) ∈ S bs
s (Mα+1

α ).
– Case 2: ρ is a successor: Say ρ = γ + 1. Let ā := b̄γj , α0 := αγ

j , k0 := kγj , i0 := iγj . There are two 
subcases.
∗ Subcase 1: Either k0 = 0, or k0 = 0 and (7b) holds with i, α, β there standing for i0, α0, α here.

In this case, we proceed as in Case 1 to define 〈Mα+1
i : i ≤ α〉. Then we pick āα, Mα+1

α+1 such that 
ortp(āα, Mα

α , M
α+1
α+1 ) is the nonforking extension of ortp(ā, Mα0

i0
, Mα0

i0+1).
∗ Subcase 2: k0 = 0 and (7b) fails.

In this case, let 〈M∗
j : j ≤ i0 + 1〉 witness the failure and set Mα+1

j := M∗
j for j ≤ i0 + 1. Then 

continue as in Case 1 and define āα, Mα+1
α+1 as before.

This is enough:
We proceed via a series of subclaims:

Subclaim 1: If p ∈ S bs
s (M δ

i ) for i < δ, then for λ-many β ∈ [i, δ), ortp(āβ , M δ
β , M

δ
β+1) is a nonforking 

extension of p.

Proof of subclaim 1: Pick i′ ∈ (i, δ) such that p does not fork over M i′

i . By (6), we know that for 
λ-many β ∈ [i′, δ), the nonforking extension of p � M i′

i to Mβ+1
β is realized in Mβ+1

β+1 by āβ . But by 

(5) we also have that ortp(āβ , M δ
β , M

δ
β+1) does not fork over Mβ

β . In particular by uniqueness āβ also 
realizes p. †subclaim 1

Subclaim 2: M δ
δ is brimmed over M δ

0 .

Proof of subclaim 2: Apply Fact 3.3 to the chain 〈M δ
i : i ≤ δ〉, using the previous step. †subclaim 2

We now choose M̄∗ = 〈M∗
i : i ≤ δ〉 increasing continuous such that M∗

0 is brimmed over M δ
0 , M δ

i ≤s M
∗
i

for all i ≤ δ, and ortp(āi, M∗
i , M

∗
i+1) does not fork over M δ

i . This is possible, see case 1 above. Now 
let (N0, N1, N2, N3) := (M δ

0 , M
δ
δ , M

∗
0 , M

∗
δ ). We have just said that M∗

0 is brimmed over M δ
0 , and by 

subclaim 2, M δ
δ is brimmed over M δ

0 . Thus N� is brimmed over N0 for � = 1, 2. It remains to see:

Subclaim 3: LWNF(M δ
0 , M

δ
δ , M

∗
0 , M

∗
δ ).

Proof of subclaim 3: Pick ā ∈ <ωM δ
δ such that ortp(ā, M δ

0 , M
δ
δ ) is basic. By local character, there exists 

α < δ such that ortp(ā, M δ
0 , M

δ
δ ) does not fork over Mα

0 . Further, we can increase α if necessary and 
pick i < α such that ā ∈ <ωMα

i+1. We now apply Clause (7). We know that (7a) fails for all β ∈ (α, δ) by 
the choice of α, therefore (7b) must hold for all β ∈ (α, δ). Now if ortp(ā, M∗

0 , M
∗
δ ) forks over M δ

0 , then 
it must fork over Mβ

0 for all high-enough β, but then 〈M∗
j : j ≤ i + 1〉 would contradict Clause (7b). 

Therefore ortp(ā, M∗
0 , M

∗
δ ) does not fork over M δ

0 , as desired. †subclaim 3 †Claim �
The following properties of LWNF may or may not hold in general (we have no examples for the failure 

of symmetry, but uniqueness fails in the last good frame of the Hart–Shelah example, see [10,8]):

Definition 3.11. Let R ∈ {LWNF, RWNF, WNF}.

(1) We say that R has the symmetry property if R(M0, M1, M2, M3) implies R(M0, M2, M1, M3).



576 S. Shelah, S. Vasey / Annals of Pure and Applied Logic 169 (2018) 565–587

Sh:1119
(2) We say that R has the uniqueness property if whenever R(M0, M1, M2, M3) and R(M0, M1, M2, M ′
3), 

there exists M ′′
3 with M ′

3 ≤s M
′′
3 and f : M3 −−−−−−−→

|M1|∪|M2|
M ′′

3 .

The following are trivial observations about the definitions:

Remark 3.12.

(1) WNF has the symmetry property, and LWNF has the symmetry property if and only if RWNF has the 
symmetry property if and only if LWNF = RWNF = WNF.

(2) LWNF has the uniqueness property if and only RWNF has it.

Recall from [29, III.1.3]:

Definition 3.13. s is good+ when the following is impossible:
There exists an increasing continuous 〈Mi : i < λ+〉, 〈Ni : i < λ+〉, a basic type p ∈ S bs

s (M0), and 
〈āi : i < λ+〉 such that for any i < λ+:

(1) Mi ≤s Ni.
(2) āi+1 ∈ |Mi+2| and ortp(āi+1, Mi+1, Mi+2) is a nonforking extension of p, but ortp(āi+1, N0, Ni+2)

forks over M0.
(3)

⋃
j<λ+ Mj is saturated.

We now show that being good+ is a consequence of symmetry for LWNF. Moreover, good+ allows us to 
build a superlimit in λ+.

Theorem 3.14. (1) ⇒ (2) ⇔ (3) ⇒ (4), where:

(1) LWNF has the symmetry property.
(2) s is good+.
(3) For M, N ∈ Kλ+ both saturated, M ≤K N implies M ≤WNF N .
(4) There is a superlimit model in Kλ+ .

Proof.

• (3) implies (4): This follows from Lemma 3.8 and the fact that the saturated model in λ+ is universal 
and has a proper extension [29, II.4.13].

• ¬(2) implies ¬(3): Fix a witness 〈Mi : i < λ+〉, 〈Ni : i < λ+〉, 〈āi : i < λ+〉, p to the failure of 
being good+. Write Mλ+ :=

⋃
i<λ+ Mi, Nλ+ :=

⋃
i<λ+ Ni. By assumption, Mλ+ is saturated. Clearly, 

increasing the Ni’s will not change that we have a witness so without loss of generality Nλ+ is also 
saturated. We claim that Mλ+ ≤RWNF Nλ+ . We show this by proving that for any i < λ+ and any 
j ≤ i + 1, ¬ RWNF(Mj , Nj , Mi+2, Ni+2). Indeed, ortp(āi+1, Nj , Ni+2) forks over Mj : if not, then by 
transitivity ortp(āi+1, Nj , Ni+2) does not fork over M0, and hence ortp(āi+1, N0, Ni+2) does not fork 
over M0, and we know that this is not the case of the witness we selected.

• ¬(3) implies ¬(2): Fix M, N saturated in Kλ+ such that M ≤K N but M ≤RWNF N .

Claim: For any A ⊆ |M | of size λ, there exists M0 ≤s M1 ≤K M and N0 ≤s N1 ≤K N such that 
M0 ≤s N0, M1 ≤s N1, A ⊆ |M0|, but ¬ RWNF(M0, N0, M1, N1).
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Proof of Claim: If not, we can use failure of the claim and continuity of RWNF to build increasing contin-
uous resolution 〈Mi : i ≤ λ+〉, 〈Ni : i ≤ λ+〉 of M and N respectively such that RWNF(Mi, Ni, Mj , Nj)
for all i < j < λ+. Thus M ≤RWNF N , contradicting the assumption. †Claim

Build 〈M∗
i : i ≤ λ+〉, 〈N∗

i : i ≤ λ+〉 increasing continuous resolutions of M , N respectively such 
that for all i < λ+, M∗

i ≤s N∗
i and ¬ RWNF(M∗

i+1, N
∗
i+1, M

∗
i+2, N

∗
i+2). This is possible by the claim. 

Let ā∗i+1 ∈ |M∗
i+2| witness the RWNF-forking, i.e. ortp(ā∗i+1, N

∗
i+1, N

∗
i+2) forks over M∗

i+1. By Fodor’s 
lemma, local character, and stability, there exists a stationary set S, i0 < λ+ and p ∈ S bs

s (M∗
i0

) such 
that for all i ∈ S, ortp(ā∗i+1, M

∗
i , M

∗
i+2) is the nonforking extension of p. Without loss of generality, i0

is limit and all elements of S are also limit ordinals.
Now build an increasing continuous sequence of ordinals 〈ji : i < λ+〉 as follows. Let j0 := i0. For i
limit, let ji := supk<i jk. For i successor, pick any ji ∈ S with ji > ji−1.
Now for i not the successor of a limit, let Mi := M∗

ji
, Ni := N∗

ji
, āi := ā∗ji . For i = k + 1 with k a limit, 

set Mi := M∗
jk

, Ni := N∗
jk

, āi := ā∗ji . This gives a witness to the failure of being good+.
• (1) implies (3): If LWNF has the symmetry property, then by Remark 3.12, LWNF = RWNF = WNF. 

By Fact 3.7, it follows that M ≤K N implies M ≤WNF N for any M, N ∈ Kλ+ , so (3) holds. �
Question 3.15. Are the conditions in Theorem 3.14 all equivalent?

Question 3.16. Is there a good λ-frame s such that LWNFs does not have the symmetry property?

The next result shows that the uniqueness property has strong consequences. The first author has given 
conditions under which when λ = ℵ0, failure of uniqueness implies nonstructure [30, VII.4.16].

Theorem 3.17. Assume that s is a good (< ω, λ)-frame (so it satisfies symmetry). If LWNF has the uniqueness 
property, then LWNF has the symmetry property and s is successful good+ (see [29, III.1.1]).

Proof. By [39, 3.11] (used with the pre-(≤ λ, λ)-frame induced by LWNF, recalling Fact 3.7) s is weakly 
successful. This implies that there is a relation NF = NFs that is a nonforking relation respecting s (see 
[29, II.6.1], in particular it has all the properties listed in Theorem 3.10, as well as uniqueness and sym-
metry). Now as NF respects s, we must have that NF(M0, M1, M2, M3) implies LWNF(M0, M1, M2, M3). 
Since LWNF has the uniqueness property and NF has the existence property, it follows from [9, 4.1] that 
LWNF = NF. In particular, LWNF has the symmetry property.

To see that s is successful good+, it is enough to show that for M, N ∈ Kλ+ , M ≤K N implies M ≤NF N

(where ≤NF is defined as in Definition 3.6). This is immediate from Fact 3.7 and LWNF = NF. �
To prepare for the proof of symmetry in the λ = ℵ0 case, we end this section by introducing yet another 

notion of nonforking amalgamation (VWNF stands for “very weak nonforking amalgamation”). In this case, 
we look at finite sequences both on the left and the right hand side. We show that if s is a good frame, then 
VWNF has the symmetry property and locality of types implies that VWNF = LWNF. Thus in this case 
LWNF has the symmetry property too.

Definition 3.18.

(1) For M ≤s N , B ⊆ |N |, ā ∈ <ωN , we say that ortp(ā, B, N) does not fork over M if there exist M ′, N ′

with N ≤s N
′, M ≤s M

′ ≤s N
′, and B ⊆ |M ′| such that ortp(ā, M ′, N ′) does not fork over M0.

(2) We define a 4-ary relation VWNFs = VWNF on Ks by VWNF(M0, M1, M2, M3) if and only if 
M0 ≤s M� ≤s M3, � = 1, 2 and for any ā ∈ <ωM1 and any finite B ⊆ |M2|, if ortp(ā, M0, M3)
and ortp(ā, M2, M3) are both basic, then ortp(ā, B, M3) does not fork over M0.
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Theorem 3.19. Assume that s is a type-full good (< ω, λ)-frame.

(1) VWNF has the symmetry property: VWNF(M0, M1, M2, M3) if and only if VWNF(M0, M2, M1, M3).
(2) If for any M ∈ Ks and any p = q ∈ S bs

s (M) there exists B ⊆ |M | finite such that p � B = q � B, then 
VWNF = LWNF. In particular, LWNF has the symmetry property.

Proof.

(1) By the symmetry axiom of good frames.
(2) This is observed in [37, 4.5]. In details, it suffices to show that for M ≤s N , p ∈ S bs

s (N) does not 
fork over M if and only if p � B does not fork over M for all finite B ⊆ |N |. Let q ∈ S bs

s (N) be the 
nonforking extension of p � M . For any finite B ⊆ |N |, we have that q � B = p � B, by the uniqueness 
property for (the extended notion of) forking, see [9, 5.4]. Therefore by the assumption we must have 
p = q, as desired. �

4. Building a superlimit

In this section, we work in ℵ0 and show assuming ℵ0-stability and amalgamation that K is PCℵ0 (Theo-
rem 4.2) and has a superlimit (Corollary 4.6).

Hypothesis 4.1. K = (K, ≤K) is an AEC with LS(K) = ℵ0 (and countable vocabulary).

We will use without comments Fact 2.5 and Remark 2.6. The essence of it is that since λ = ℵ0 all 
brimmed models have the same length, and hence are isomorphic (and the isomorphism fixes any common 
base they may have).

First note that if K is stable and has few models, we can say something about its definability:

Theorem 4.2. Assume that I(K, ℵ0) ≤ ℵ0.

(1) The set {M ∈ Kℵ0 : |M | ⊆ ω} is Borel.
(2) If K has amalgamation in ℵ0 and is stable in ℵ0, then the set {(M, N) : M ≤K N and |N | ⊆ ω} is Σ1

1.

In particular if K has amalgamation in ℵ0 and is stable in ℵ0, then K is a PCℵ0-representable AEC.

Proof.

(1) Fix M ∈ Kℵ0 . By Scott’s isomorphism theorem, there exists a formula φM of Lℵ1,ℵ0(τK) such that 
N |= φM if and only if M ∼= N . Now observe that the set

{N : N is a τK-structure with |N | ⊆ ω and N |= φM}

is Borel and use that I(K, ℵ0) ≤ ℵ0.
(2) For M, N ∈ Kℵ0 with M ≤K N , let us say that N is almost brimmed over M if either N is brimmed 

over M , or N is ≤K-maximal. Using amalgamation, it is easy to check that if N, N ′ are both almost 
brimmed over M , then N ∼=M N ′ (as in Fact 2.5, recalling that the chains witnessing the brimmedness 
must have cofinality ω). Moreover there always exists an almost brimmed model over any M ∈ Kℵ0 .
Fix 〈M∗

n : n < ω〉 such that for any M ∈ Kℵ0 there exists n < ω such that M ∼= M∗
n (possible as 

I(K, ℵ0) ≤ ℵ0). For each n < ω, fix N∗
n ∈ Kℵ0 almost brimmed over M∗

n. We have:
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�1 For M, N ∈ Kℵ0 :
(a) There is n < ω and an isomorphism f : M∗

n
∼= M .

(b) If N is almost brimmed over M , then any such f extends to g : N∗
n
∼= N .

�2 For M1, M2 ∈ Kℵ0 , M1 ≤K M2 if and only if M1 ⊆ M2 and for some n1, n2 < ω, for some (N, f1, f2)
we have: M1 ⊆ M2 ⊆ N and for � = 1, 2, f� is an isomorphism from (M∗

n�
, N∗

n�
) onto (M�, N).

[Why? The implication “if” holds by the coherence axiom of AECs. The implication “only if” holds as 
there is N ∈ Kℵ0 which is almost brimmed over M2 (and so M2 ≤K N) hence N is almost brimmed 
over M1 and use �1 above.]
The result now follows from �2.

By [2, 3.3], it follows that K is PCℵ0 . �
We now study homogeneous models and show that they coincide with brimmed models. Note that the 

homogeneity here is with respect to a set D of orbital types.

Definition 4.3. Let D be a set of orbital types over the empty set and let M ∈ K. We say that M is 
(D, ℵ0)-homogeneous if it realizes all the types in D and whenever p ∈ D is the type of an (n +m)-elements 
sequence and ā ∈ nM realizes pn (the restriction of p to its first n “variables”), there exists a sequence 
b̄ ∈ mM such that āb̄ realizes p.

The next result characterizes the countable brimmed model in AECs that are nicely stable in ℵ0 (recall 
Definition 2.3).

Theorem 4.4. Assume that K is nicely stable in ℵ0 and let K∗ be the class of amalgamation bases in Kℵ0 . 
Let M ∈ Kℵ0 . The following are equivalent:

(1) M is brimmed.
(2) M is (S <ω

K∗ (∅), ℵ0)-homogeneous (see Definition 2.2(4)).

Proof. Let M ∈ Kℵ0 . First we show:

Claim: If M is brimmed, ā, ̄b ∈ M , then ortpK∗(ā/∅; M) = ortpK∗(b̄/∅; M) if and only if there is an 
automorphism f of M sending ā to b̄.

Proof of Claim: The right to left direction is clear. Now assume that ortpK∗(ā/∅; M) = ortpK∗(b̄/∅; M). 
Say 〈Mi : i < ω〉 witness that M is brimmed, and without loss of generality assume that ā, ̄b ∈ M0. Then 
ortpK∗(ā/∅; M0) = ortpK∗(b̄/∅; M0). Since K∗ has amalgamation, there exists M ′

0 ∈ K∗ with M0 ≤K M ′
0

and f : M0 → M ′
0 so that f(ā) = b̄. Since M1 is universal over M0, we can assume without loss of generality 

that M ′
0 = M1. Now extend f to an automorphism of M using a back and forth argument.

From the claim, it follows directly that if M is brimmed, then it is (S <ω
K∗ (∅), ℵ0)-homogeneous. Conversely, 

the countable (S <ω
K∗ (∅), ℵ0)-homogeneous model is unique (standard back and forth argument) and so it 

must also be brimmed. �
Remark 4.5. By adding constants to the language, we can also characterize brimmed models over M0 as 
those that are homogeneous for orbital types of finite sequences over M0.

Corollary 4.6. If K is nicely stable in ℵ0, then there is a superlimit model of cardinality ℵ0.

Proof. Let M ∈ Kℵ0 be brimmed (it exists by nice stability in ℵ0). We claim that M is superlimit. To see 
this, we check the conditions of Definition 2.1. On general grounds, brimmed models are universal in Kℵ0 , are 
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not maximal (from the definition of nice stability), and there is a unique brimmed model of cardinality ℵ0. 
Still, it is not obvious that if 〈Mi : i < δ〉 is an increasing chain of brimmed models in Kℵ0 and δ < ω1, 
then 

⋃
i<δ Mi is brimmed. To see this, we use Theorem 4.4: each Mi is ((S <ω

K∗ (∅), ℵ0)-homogeneous, and it 
is clear from the definition that an increasing union of such homogeneous models is homogeneous. Thus Mδ

is (S <ω
K∗ (∅), ℵ0)-homogeneous. By Theorem 4.4 again, Mδ is brimmed, as desired. �

We have justified assuming amalgamation in the following sense:

Corollary 4.7. If K is nicely stable in ℵ0, then there exists an AEC K′ = (K ′, ≤K′) such that:

(1) LS(K′) = ℵ0.
(2) K′

<ℵ0
= ∅.

(3) τK′ = τK.
(4) K ′ ⊆ K and for M, N ∈ K ′, M ≤K′ N if and only if M ≤K N .
(5) For any M ∈ Kℵ0 there exists M ′ ∈ K′

ℵ0
with M ≤K M ′.

(6) K′ is categorical in ℵ0.
(7) K′ is very nicely stable in ℵ0. In particular it has amalgamation in ℵ0.
(8) K′ is PCℵ0 .

Proof. Let M ∈ Kℵ0 be superlimit (exists by Corollary 4.6). Let K ′
ℵ0

:= {N ∈ K : N ∼= M}. Now let K′ be 
the AEC generated by (K ′

ℵ0
, ≤K) (in the sense of [29, II.23]). One can easily check that K′ is nicely stable 

in ℵ0; from this and ℵ0-categoricity we get amalgamation in ℵ0, hence (7) holds. As for (8), it follows from 
Theorem 4.2. �
5. Building a good ℵ0-frame

The aim of this section is to build a good ℵ0-frame from nice ℵ0-stability. By Corollary 4.7, we may 
restrict the class to a superlimit so that it is categorical in ℵ0. As before, we assume:

Hypothesis 5.1. K = (K, ≤K) is an AEC with LS(K) = ℵ0 (and countable vocabulary).

The nonforking relation of the frame will be nonsplitting:

Definition 5.2. For M ∈ Kℵ0 and A ⊆ |M |, p ∈ S <ω(M) splits over A if whenever p = ortp(ā/M ; N), there 
exists b̄1, ̄b2 ∈ M such that ortp(b̄1/A; M) = ortp(b̄1/A; M) but ortp(āb̄1/A; N) = ortp(āb̄2/A; N).

The following is proven in [29, I.5.6]. Similar proofs appear in [18, 3.16] or [5, 4.2].

Fact 5.3. Assume that K is nicely stable in ℵ0 and categorical in ℵ0. If M ∈ Kℵ0 and p ∈ S <ω(M), then 
there exists A ⊆ |M | finite such that p does not split over A.

The following result about nonsplitting will also come in handy. It appears in various forms in the 
literature, see e.g. [6, 4.8].

Lemma 5.4 (Weak uniqueness). Assume that K is nicely stable in ℵ0 and categorical in ℵ0. Let M ≤K N

both be in Kℵ0 , p, q ∈ S <ω(N). If both p and q do not split over a finite subset of M and p � A = q � A for 
all finite A ⊆ |M |, then p � B = q � B for all finite B ⊆ |N |.

Proof. Let N ′ be brimmed over N . Let b̄1, ̄b2 ∈ N ′ realize p and q respectively. Fix A ⊆ |M | finite 
such that p and q do not split over A. Let B ⊆ |N | be finite and let b̄ be an enumeration of B. 
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Since M is brimmed, there exists b̄′ ∈ M such that ortp(b̄/A; N) = ortp(b̄′/A; N). By nonsplitting, 
ortp(b̄�b̄/A; N ′) = ortp(b̄�b̄′/A; N ′) for � = 1, 2. Now since b̄′ ∈ M we have by assumption that 
p � Ab̄′ = q � Ab̄′. Therefore ortp(b̄1b̄′/A; N ′) = ortp(b̄2b̄′/A; N ′). Putting these equalities together, 
ortp(b̄1b̄/A; N ′) = ortp(b̄2b̄/A; N ′), so p � B = q � B, as desired. �
Definition 5.5. Let K be nicely stable in ℵ0 and categorical in ℵ0. We define a pre-(< ω, λ)-frame s =
(Ks, �, S bs

s ) by:

(1) Ks = K.

(2) For M0 ≤K M ≤K N all in Kℵ0 , n < ω, ā = 〈ai : i < n〉 ∈ nN , ā
N

�
M0

M holds if and only if ai /∈ M for 

all i < n and there exists a finite A ⊆ |M0| so that ortp(ā/M ; N) does not split over A.
(3) For M ∈ Kℵ0 , S bs

s (M) is the set of all types of finite sequences 〈ai : i < n〉 over M such that for all 
i < n, ai /∈ M .

In order to prove that s is a good ℵ0-frame, we will make an additional locality hypothesis. See Example 1.1
and the next section for setups where it holds.

Definition 5.6. K is (< ℵ0, ℵ0)-local if for any M ∈ K p, q ∈ S <ω(M), p � A = q � A for all finite A ⊆ |M |
implies p = q. We say that K is weakly (< ℵ0, ℵ0)-local if this holds for a superlimit M .

Remark 5.7. The definition of locality includes types of any finite length, not just of length one. This will 
be used to prove the symmetry property of LWNFs, via Theorem 3.19.

We now prove, assuming nice stability, categoricity, and locality, that the pre-frame defined above is a 
good ℵ0-frame.

Theorem 5.8. Assume that K is nicely stable in ℵ0 and categorical in ℵ0. If K is (< ℵ0, ℵ0)-local, then s
(Definition 5.5) is a type-full good (< ω, ℵ0)-frame. Moreover LWNFs has the symmetry property (recall 
Definitions 3.4 and 3.11). In particular, s is good+.

Proof. Once we have shown that s is a type-full good frame, the moreover part follows from Theorem 3.19. 
The last sentence is by Theorem 3.14.

Now except for symmetry, the axioms of good frames are easy to check (see the proof of [29, II.3.4]). For 
example:

• Local character: Let 〈Mi : i ≤ δ〉 be increasing continuous in Ks. Let p ∈ S bs
s (Mδ). By Fact 5.3, there 

exists a finite A ⊆ |Mδ| such that p does not split over A. Pick i < δ such that A ⊆ |Mi|. Then p does 
not fork over Mi.

• Uniqueness: by Lemma 5.4 and locality.
• Extension: follows on general grounds, see [41, 3.5].

Symmetry is the hardest to prove, and is done as in [29, I.5.30]. We give a full proof for the convenience 
of the reader.

Suppose that ortp(b̄, N2, N3) does not fork over N0 and let c̄ ∈ <ωN2\N1. We want to find N1, N ′
3

such that N0 ≤s N1 ≤s N ′
3, N3 ≤s N ′

3, b̄ ∈ <ωN1 and ortp(c̄, N1, N ′
3) does not fork over N0. Assume 

for a contradiction that there is no such N1. Using existence for LWNFs (see Theorem 3.10), as well as 
the extension property for nonforking, we can increase N2 and N3 if necessary and find N1 such that 
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LWNFs(N0, N1, N2, N3), N� is brimmed over N0, and N3 is brimmed over N� for � = 1, 2. By assumption, 
p := ortp(c̄, N1, N3) forks over N0.

Claim 1: Let I be the linear order [0, ∞) ∩Q. There exists an increasing chain 〈Ms : s ∈ I〉 such that for 
any s < t in I, Ms, Mt are in Kℵ0 and Mt is brimmed over Ms.

Proof of Claim 1: Let φ ∈ Lω1,ω be a Scott sentence for the model in Kℵ0 . Let ψ ∈ Lω1,ω be a Scott 
sentence for a pair M, N ∈ Kℵ0 such that N is brimmed over M . Now let K∗ be the class of sequences 
〈Mj : j ∈ J〉 such that J is a linear order, Mj |= φ for all j ∈ J , and (Mj , Mk) |= ψ for all j < k in J . 
It is easy to see that K∗ is axiomatizable by a sentence in Lω1,ω. Moreover, for each α < ω1, there is a 
sequence 〈Mi : i < α〉 in K∗. By [20, Theorem 12(i)], this implies that K∗ contains an I-indexed member, 
as desired. †Claim 1

Fix I, 〈Ms : s ∈ I〉 as in Claim 1. Fix N ′
0 such that N0 is brimmed over N ′

0 and p � N0 does not fork 
over N ′

0.
For any fixed infinite J ⊆ I, write MJ :=

⋃
s∈J Ms. Assume now that MI is brimmed over MJ . Let 

NJ
0 := MJ , NJ

1 := MI . Let NJ
3 be brimmed over NJ

1 . By categoricity and uniqueness of brimmed models, 
there exists f0 : N ′

0
∼= M0, fJ

0 : N0 ∼= NJ
0 , fJ

1 : N1 ∼= NJ
1 , and fJ

3 : N3 ∼= NJ
3 such that f0 ⊆ fJ

0 ⊆ fJ
1 ⊆ fJ

3 . 
Let fJ

2 := fJ
3 � N2 and let NJ

2 := fJ
2 [N2]. Note that LWNFs(NJ

0 , N
J
1 , N

J
2 , N

J
3 ) holds.

Let pJ := ortp(fJ
3 (c̄), fJ

3 [N1], fJ
3 [N3]) = ortp(fJ

3 (c̄), MI , NJ
3 ). Since we are assuming that

ortp(c̄, N1, N3) forks over N0, we have that pJ forks over NJ
0 . Moreover pJ � NJ

0 does not fork over M0.

Claim 2: If J has no last elements, I\J has no first elements, and t ∈ I\J , then pJ � Mt forks over NJ
0 .

Proof of Claim 2: Suppose that pJ � Mt does not fork over NJ
0 . Note that Mt is brimmed over MJ . 

Find N ′
1 such that N0 ≤s N ′

1 ≤s N1, N ′
1 is brimmed over N1, and fJ

1 : N ′
1
∼= Mt. Let b̄′ ∈ <ωN ′

1 be 
such that ortp(b̄′, N0, N ′

1) = ortp(b̄, N0, N1). Since LWNFs(N0, N1, N2, N3), we know that ortp(b̄′, N2, N3)
does not fork over N0, hence by uniqueness ortp(b̄, N2, N3) = ortp(b̄′, N2, N3). But we have assumed that 
ortp(c̄, N ′

1, N3) does not fork over N0 and ̄b′ ∈ <ω1N ′
1, hence by a simple renaming we obtain a contradiction 

to our hypothesis that symmetry failed. †Claim 2

Claim 3: If J1 � J2 are both proper initial segments of I with no last elements and J2\J1 has no first 
elements, then pJ1 = pJ2 .

Proof of Claim 3: Fix t ∈ J2\J1. By Claim 2, pJ1 � Mt forks over NJ1
0 . We claim that pJ2 � Mt does not 

fork over NJ1
0 . Indeed recall that NJ2

0 = MJ2 and by assumption pJ2 � NJ2
0 does not fork over M0. Therefore 

by monotonicity also pJ2 � Mt does not fork over MJ1 = NJ1
0 . †Claim 3

To finish, observe that there are 2ℵ0 cuts of I as in Claim 3. Therefore stability fails, a contradiction. �
The next corollary does not assume categoricity, but uses amalgamation in ℵ0, rather than just density 

of amalgamation bases.

Corollary 5.9. If K is very nicely stable in ℵ0 and weakly (< ℵ0, ℵ0)-local, then K has a superlimit of 
cardinality ℵ1.

Proof. By Corollary 4.6, K has a superlimit N0 in ℵ0. Let K′ be the class generated by this superlimit, as 
described by the proof of Corollary 4.7. Then K′ is categorical in ℵ0 and nicely stable in ℵ0, hence we can 
apply Theorem 5.8 and get a type-full good+ ℵ0-frame with underlying class K′

ℵ0
. By Theorem 3.14, K′ has 

a superlimit model in ℵ1. This is also a superlimit in K: the only nontrivial property to check is universality. 
Let M ∈ Kℵ1 . Fix any M0 ∈ Kℵ0 with M0 ≤K M . By universality of N0, there exists f : M0 → N0. Now let 
N ∈ K′ be superlimit in ℵ1 with N0 ≤K N . Using amalgamation (amalgamation in ℵ0 suffices for this, see 
[29, I.2.11]), we can find g : M → N extending f , as needed. �
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6. Locality from supersimplicity

In this section, we give a sufficient condition for locality. As before, we assume:

Hypothesis 6.1. K = (K, ≤K) is an AEC with LS(K) = ℵ0 (and countable vocabulary).

In the context of a nicely ℵ0-stable AEC, the following definition generalizes that of a supersimple 
homogeneous model [11, 2.5(iv)]. The idea is that we want to have a nice notion of nonforking available 
for all finite sets (not only models). However we do not require that forking over finite sets satisfies any 
uniqueness requirement. Thus it is not a-priori clear that supersimplicity implies the existence of a good 
frame (although this will follow from ℵ0-categoricity and Theorems 5.8, 6.10).

Throughout this section expressions such as “nonforking” or “not fork” will refer to the relation defined 
in Definition 6.2(3) below. We give examples after the definition.

Definition 6.2. Assume that K is nicely ℵ0-stable and categorical in ℵ0. We say that K is supersimple if there 
exists a 4-ary relation � such that:

(1) �(A, B, C, N) implies that N ∈ Kℵ0 , A ∪B ∪C ⊆ |N | and A, B, C are all finite or countable. We write 

B
N

�
A
C instead of �(A, B, C, N). Below, we may abuse notation and write e.g. A1A2 instead of A1∪A2, 

or b̄
N

�
ā
c̄ instead of B

N

�
A
C, where A, B, C stand for the ranges of ā, b̄, and c̄ respectively.

(2) Normality: B
N

�
A
C if and only if AB

N

�
A
AC.

(3) Invariance under K-embeddings: If f : N → N ′ and A ∪ B ∪ C ⊆ |N |, then B
N

�
A
C, if and only if 

f [B] 
N ′

�
f [A]

f [C]. This shows that � is really a relation on types, so we say ortp(b̄/C; N) does not fork 

over A if b̄
N

�
A
C.

(4) Monotonicity: If B
N

�
A
C and A ⊆ A′ ⊆ B′ ⊆ B then B′

N

�
A′

C.

(5) Symmetry: If B
N

�
A
C, then C

N

�
A
B.

(6) Local character: If M ∈ Kℵ0 and p ∈ S <ω(M), then there exists A ⊆ |M | finite such that p does not 
fork over A.

(7) Extension: If p ∈ S <ω(C; N) does not fork over A ⊆ C, then there is q ∈ S <ω(N) such that q extends 
p and q does not fork over A.

(8) Transitivity: If B
N

�
A
C and B

N

�
C
D with A ⊆ C ⊆ D, then B

N

�
A
D.

(9) Relationship with splitting: If M ≤K N are both in Kℵ0 , p ∈ S <ω(N), and p does not fork over M , 
then there is A ⊆ |M | finite such that p does not split over A.

Remark 6.3. It may be helpful to compare Definition 6.2 with Definition 2.7. The idea of 6.2 is to give a 
sort of analog of good frames but to allow types over sets. Note that the statement of symmetry in 2.7 is 
more technical, precisely because types over sets are not allowed. However the idea is the same. Another 
difference is that local character in 6.2 is stated as “every type does not fork over a finite set”. In 2.7, it 
is stated as “every type over the union of an increasing chain does not fork over a previous element of the 
chain”. Again, the lack of types over sets makes it impossible to state the former in good frames.
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Example 6.4.

(1) Working inside a supersimple homogeneous model N (in the sense of [11, 2.5(iv)]), we can define B
N

�
A
C

to hold if and only if B is ℵ0-free from C over A (in the sense of [11, 2.2]). The first four conditions of 
Definition 6.2 are then easy to check. Symmetry is [11, 2.14] and transitivity is [11, 2.15]. Local character 
and extension are given by the definition in [11, 2.5]. Now if in addition N is ℵ0-stable (in the sense of 
[11, 5.1] or equivalently in the sense given here), then by [11, 5.2] the last axiom of Definition 6.2 holds.

(2) Let K be a FUR class [17, 2.17] (this includes in particular all quasiminimal pregeometry classes). Then 
letting � be defined as in [17, 2.38], we can also check that it satisfies Definition 6.2.

We first show that if a type p over a finite set does not fork over a subset A of a countable model M , 
then the type is realized inside M .

Lemma 6.5. Assume that K is nicely ℵ0-stable, supersimple, and categorical in ℵ0. Let M ≤K N both be 
in Kℵ0 , and let B ⊆ |N | be finite. Let p ∈ S <ω(B; N). If p does not fork over B ∩ |M |, then p is realized 
in M .

Proof. Extending N if necessary, we can assume without loss of generality that N is brimmed over M . 
Let q ∈ S <ω(N) be a nonforking extension of p. Let b̄ be an enumeration of B. Fix A′ ⊆ |M | finite and 
big-enough such that B ∩ |M | ⊆ A′, ortp(b̄/M ; N) does not split and does not fork over A′ and q does not 
split over A′ (recall Fact 5.3). Let M0 ≤K M be such that M is brimmed over M0 and M0 contains A′. 

Let d̄ ∈ M be such that d̄ realizes q � M0. We have that b̄
N

�
M0

M so by symmetry and monotonicity, d̄
N

�
M0

b̄. 

By extension, we can pick M ′
0 such that M0 ≤K M ′

0 ≤K N , M ′
0 contains b̄, and d̄

N

�
M0

M ′
0. Now as q � M ′

0

does not split over a finite subset of M0 and d̄ realizes q � M0, we must have by Lemma 5.4 that d̄ realizes 
q � B = p, as desired. �

We will prove locality in supersimple ℵ0-stable AECs by a back and forth argument. More precisely, we 
start with M ≤K N , N brimmed over M , and elements ā1, ̄a2 ∈ N whose types over every finite subset 
of M match. First, we will do a back and forth argument to find an automorphism of N sending ā1 to ā2
and fixing M setwise (Lemma 6.8). We will then use this automorphism and nonsplitting to build another 
automorphism that fixes M pointwise (Theorem 6.10).

The next lemma starts setting up the stage by making sure that we can map an element of M to an 
element of M .

Lemma 6.6. Assume that K is nicely ℵ0-stable, supersimple, and categorical in ℵ0. Let M ≤K N both be 

in Kℵ0 . Let b̄1, ̄b2 ∈ N , ā1, ̄a2, ̄c1 ∈ M be such that ortp(ā1b̄1; N) = ortp(ā2b̄2; N). If b̄1
N

�
ā1

c̄1, then there 

exists c̄2 ∈ M such that ortp(ā1b̄1c̄1; N) = ortp(ā2b̄2c̄2; N).

Proof. Extending N if necessary, we can assume without loss of generality that N is brimmed over M . By 

symmetry, c̄1
N

�
ā1

b̄1. Let f be an automorphism of N sending ā1b̄1 to ā2b̄2. By invariance, f(c̄1) 
N

�
ā2

b̄2 (but 

we do not know that f(c̄1) ∈ M). Let q := ortp(f(c̄1)/ā2b̄2; N). We have to show that q is realized in M . 
Since q does not fork over ā2 ∈ M , this is exactly what Lemma 6.5 tells us. �

Our main lemma in the back and forth argument will be:
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Lemma 6.7 (The back and forth lemma). Assume that K is nicely ℵ0-stable, supersimple, and categorical 
in ℵ0. Let M ≤K N both be in Kℵ0 with N brimmed over M . Let b̄1, ̄b2 ∈ N , ā1, ̄a2 ∈ M be such that 

ortp(ā1b̄1; N) = ortp(ā2b̄2; N) and b̄�
N

�
ā�

M for � = 1, 2. If d̄1 ∈ N , d̄′1 ∈ M , there exists c̄1, ̄c2, d̄′2 ∈ M and 

d̄2 ∈ N such that:

(1) ortp(ā1b̄1c̄1d̄
′
1d̄1; N) = ortp(ā2b̄2c̄2d̄

′
2d̄2; N).

(2) b̄�d̄�
N

�
ā�c̄�d̄′

�

M for � = 1, 2.

Proof. Using Lemma 6.6, we can enlarge ā1 and ā2 if necessary to assume without loss of generality that d̄′1
is empty. Now using local character, fix c̄1 ∈ M such that b̄1d̄1

N

�
ā1c̄1

M . By Lemma 6.6, there exists c̄2 ∈ M

such that ortp(ā1b̄1c̄1; N) = ortp(ā2b̄2c̄2; N). Let f be an automorphism of N witnessing this. By extension 

and monotonicity, pick d̄2 ∈ N such that ortp(d̄2/ā2b̄2c̄2; N) = ortp(f(d̄1)/ā2b̄2c̄2; N) and d̄2
N

�
ā2b̄2c̄2

Mb̄2. 

It remains to see that b̄2d̄2
N

�
ā2c̄2

M . We do this using a standard nonforking calculus argument: by normality, 

b̄2d̄2
N

�
ā2b̄2c̄2

Mb̄2 and we also know from the hypotheses of the lemma that b̄2
N

�
ā2

M , so by monotonicity and 

normality ā2b̄2c̄2
N

�
ā2c̄2

M . Now using transitivity, monotonicity, and symmetry, b̄2d̄2
N

�
ā2c̄2

M , as desired. �
We can now build the desired automorphism which fixes M setwise.

Lemma 6.8. Assume that K is nicely ℵ0-stable, supersimple, and categorical in ℵ0. Let M ∈ Kℵ0 , A ⊆ |M |
finite, p, q ∈ S <ω(M) such that p and q do not fork over A. If p � A = q � A, then there exists an 
automorphism f of M fixing A such that f(p) = q.

Proof. Let N ∈ Kℵ0 be brimmed over M . Say p = ortp(b̄1/M ; N), q = ortp(b̄2/M ; N). Let ā be an 
enumeration of A and let ā� := ā, � = 1, 2. Now apply Lemma 6.7 repeatedly in a back and forth argument 
to build an automorphism g of N fixing A such that g(b̄1) = b̄2 and g[M ] = M . Let f := g � M . �

We now show that we can actually build an automorphism fixing M pointwise. The next lemma is the 
main argument for this:

Lemma 6.9. Assume that K is nicely ℵ0-stable, supersimple, and categorical in ℵ0. Let M ∈ Kℵ0 and let N
be brimmed over M . Let b̄1, ̄b2 ∈ N be such that ortp(b̄1/A; N) = ortp(b̄2/A; N) for all finite A ⊆ |M |. For 
any d̄1 ∈ N , there exists d̄2 ∈ N such that ortp(b̄1d̄1/A; N) = ortp(b̄2d̄2/A; N) for all finite A ⊆ |M |.

Proof. Let p := ortp(b̄1/M ; N), q := ortp(b̄2/M ; N). Fix A ⊆ |M | finite such that both p and q do not 
fork over A and ortp(b̄1d̄1/M ; N) does not split over A. By Lemma 6.8, there exists an automorphism f
of M fixing A such that f(p) = q. Let g be an automorphism of N extending f such that g(b̄1) = b̄2 and 
let d̄2 := g(d̄1). We claim that this works. Fix C ⊆ |M | finite and let c̄2 be an enumeration of C. Let 
c̄1 := g−1(c̄2). We know that ortp(c̄1/A; N) = ortp(c̄2/A; N), so by nonsplitting, ortp(b̄1d̄1c̄1/A; N) =
ortp(b̄1d̄1c̄2/A; N). Applying g, we have that ortp(b̄1d̄1c̄1/A; N) = ortp(b̄2d̄2c̄2/A; N). Putting the two 
equalities together, ortp(b̄1d̄1c̄2/A; N) = ortp(b̄2d̄2c̄2/A; N), so ortp(b̄1d̄1/C; N) = ortp(b̄2d̄2/C; N), as 
desired. �
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We have arrived to the main theorem of this section:

Theorem 6.10. If K is nicely ℵ0-stable, supersimple, and categorical in ℵ0, then K is (< ℵ0, ℵ0)-local (recall 
Definition 5.6).

Proof. Let M ∈ Kℵ0 and let p, q ∈ S <ω(M) be such that p � A = q � A for all finite A ⊆ |M |. Let N be 
brimmed over M and let b̄1, ̄b2 ∈ N realize p and q respectively. Now apply Lemma 6.9 in a back and forth 
argument to get an automorphism of N fixing M taking b̄1 to b̄2. �
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