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We construct an ordered set I of cardinality N, , such that its square is the 
union of N, chains (in the natural partial order). 

The theorem mentioned in the abstract solved a problem of 
Countryman [l] and was announced in [3]. 

The construction generalizes a variant of the construction of Aronszajn 
trees (see, e.g., [2]) where the function is into subsets of w  rahter than 
rationals. Morley noticed that the Countryman problem is equivalent to an 
arithmetical statement; hence, there was a small hope for an independence 
result. 

Notation. Let In = {(t, ,..., t,-J: ti E I}, and if Z = (to ,..., t,-r> E I”, 
let f(i) = ti . We write f ~1 instead of Z E I”. If I is (partially) 
ordered by <, the natural partial ordering < on 1% is defined by 
t < S 0 (Vi < n)[a(i) ,( S(i)]. If lis partially ordered, a chain is a totally 
ordered subset of I. Among sequences of rationals (finite or infinite) 4 is 
the partial order of being an initial segment (not necessarily proper). 

Let i, j, n, m, k, Z, r, p be natmal numbers, and let 01, /3, y, 8 be ordinals. 

THEOREM 1. There is an ordered set I of cardinal@ X, , such that for 
every n, 1% is the union of X, chains (in the natural ordering). 

Proof. For 01 < w1 let S, be the set of sequences of rationals of length 01, 
and S” = UO<a S, , S = S”1. S is partially ordered by i: and ordered by 
the lexicographic order <. We define by induction on a! < w1 sets T, _C S, 
and sets C(t) for t E Tdfl (Ta = Ua+ T,> (i.e., f E (T~+l)?~ for some n < o 
such that: 
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(1) ‘T’, is countable, and # 4. 

(2) If /3 < a, s E TB then for some t E T, ) s 4j t. 

(3) Ef s -=cj t, t E: 2”, , s E q$ alen s E T, . 

(4) C(i) is an infinite subset of W, for i- E ‘T”-‘-l 1 

(5) If S, 1~(7’“‘-“-)“; and i < n implies S(i) 4 5(i); and i,j < n, 
S(i) E So , s(j) E Sy ) j3 < y implies S(i) _- Z(i); then C(T) 2: C(S). 

(6) If /3 < 01, s,, 4...) s, E To! ,s,+~ ,..., s,, E TB ) and k < w then there 
are s;+, ,.~., 4;n’such that: 

(7) lf n < LO, S, i E (Ta+l)n, C(3) n C(t) Z a then (i) S < i or Z < 5 
and (ii) if S + 5, i < n, S(i) = f(i) then S(i) E T”. 

The theorem is proved by I = Uoi<O,I T, with the order <, and for each 
n < w the decomposition of I” to chains I” = UL<w Jln, Jp = (3 E I”: 
I = min C’(S)>. As C(E) is nonempty this is a decomposition, and by 
condition (7) each .I$” is a chain. 1 

Cue A. a: = 0. Let T, be S, = {( )), and for every S E T, , C(S) I= w. 

01 = ‘y + 1. Let T, -_ {s: s E SE ) (3 E T,) (t 4 s)>, so clearly 
> hold. Notice that it suEices to show that (6) holds only for 

p = ye So let k(i), n(ij, m(ij, S(ij __- (sd,...> s,fnci,) (i < w, i odd) be a list 
of all possible candidates for (4). Let 2 (i < w, i even) be a list of all 
i E Un [(P+l),, --- (P)“], each appearing w times. For such 5 let 3 = g(5) be 
a sequence of the same length such that i(l) E P 5 ,3(E) := I(I) and 
f(l) E T, * $1) 4 i(l) n $1) E T, . 

We define by induction on i a finite set Ff of conditions of the form 
I E C’(g), so that we do not contradict conditions (5), (7), if we later define 
C(i) = (I: [If C(S)] E I&( ri forSGF~,S$P. ence, it will be trivial 
10 check that we prove Case (condition (6) holds by (/I)* and (4) by (CX) 
and (5), (7j by the c~mstr~cti 
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ZE C((S&~) ,..., s~~p-l~)) and j < n(i) -+ tj = sji, n(i) < j < m(i) - tj = 
%Yq)l. 

Let us check condition (7), so suppose S, f E (Tu+~)~, and n E C(S) belong 
to ujsiFj or holds in T *+I, and similarly for y1 E C(t). By the induction 
hypothesis on DI and on i we can assume [n E C(S)] E ri . Let 
V = {I < n: S(i) E P}, so 16 V implies S(Z) E a,+, , and the last element of 
S(Z) is q. 

Suppose S, f contradicts 7(i), so for some k, 2, s(f) < t(Z), S(1) > t(Z). 
Clearly ~1 E C(g(Q and 12 E CL@)) and k(S)](Z) < k(W), MWk) 2 
[g(W); hence, for sonle P E iI, 6, k(W(p) = CdMa). Also CbW n 
C(g(f)) # m ; by 7(ii) g(S) # g(t) implies that for each r < MZ, 

Suppose g(S) # g(t); then necessarily [g(S)](p) = [g(i)](p) E Ta but 
then S(p) = [g(S)](p), f(p) = [g(t)](p) (by g’s definition) so S(p) = t(p), 
contradiction. 

Now suppose g(S) = g(i). Then i ,< S by the choice of q. 
It remains to check 7(ii); so assume S(Z) = i(Z), 3(Z) E T,,, , then 

necessarily [n E C(I)] E Pi and the checking is easy. 

Case C. a: = 6 is a limit ordinal. We choose 01, < 8 (n < w), 
%L -=c %a+1 1 6 = un<u 42 . We can easily define by induction on i < co, 
ki < w  and sgi,..., &, E T”i+l such that: 

(i) if I < m(i), i < j then: sLi 4 .slj and sj E Pi iff s$ E Taj iff 
&i = j 

(;i) ki < ki+l , m(i) < m(i + 1) 
(iii) if r(O),..., V(V - I) < m(i), p < ki then 

(a) ki n C((& ,..., s~~~-~~)) = ki n C((& ,..., ~~~~~1,)) 

(B> li: ki < I < Jci+l) n C(<S~& ,..., &‘-lJ> # B 

(iv) for any /3, k, n, m, s,, ,..., s, appropriate for (6) there is i so that: 
k < ki , ,L3 c 01~ ; n < 1 < m -+ sI c s$&+~, and sz = .s$:,+~ for I < H; 
and for every p < k, r(O) ,..., r(p - 1) < rz, 

k n C(<S,~,~ ,..., s,~~-J) = k n CK.$&+T~o~ 9-1, s~:)+~+~~)). $ 

By the induction hypothesis (6), it easy to define ki, m(i), and ,Q. 
Let sj be the minimal member of Se-k1 such that j < i < w  -+ sji + s, . 
Let T, = (sj: j < w, sj E SJ. Let h, be defined on P+l: h,(sJ = sji 
for j < i, and hi(sj) = s,,O for j > i, but h,(s) = s for s E P. Let 
C((to ,*.*, t&) be the set of Z < w  such that for every i big enough 
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1 E C((h,(t(J2..., ~z~(~,-,))) (by (iii)(a) this is equivalent to: for arbitrarily 
large i). Clearly if t, ,..#) t,-l E 7’” we do not change the C we have. Now 
conditions (I), (3) hold trivially, (2) follows from (i)2 (iv); (4) follows from 
(iii)@); (S), (7) follow from the definition of c(S), and thel~selv~s as 
an induction assumptions (6) follows by (iv). 

So we finish Case C, hence the induction, hence the proof. 

Ohservatiotzs. 

(0 a similar construction we can prove that the weak 
theorem s for L,,, (thus solving 114, problem 81) and some s 
theorems. The proofs will appear. 

(2) If h = Cuch AU we can construct a similar tree for A, Ai instead of 
K, , K, , by a similar construction or prove its existence by Chang’s two- 
cardinal theorem (see, e.g., [5]). 

(3) Clearly we can construct the tree so that it will be a special 
Aronszajn tree. 

Notation. We write *[I] if I is uncountable and I2 is the union of N, 
chains, usually denoted by J, (11 < w), which are w.l.o.q., pairwise 
disjoint. Orders II, I2 are called near if they have isomorphic uncount- 
able subsets; hereditarily near if any uncountable 1, C P, I, C I2 are near. 

(4.) If *[a], then 4 is a Specker order, i.e., I is uncountable, but we 
cannot embed into it tijl, wl* and any uncountable set of reals. ence, 

~ (We leave the proof as an exercise; this was noticed 

(5) If  *[Z] then for each M, P is the union of o chains [(so ,..., s+J, 
(t,, ,~.., t,-J will be in the same chain iff 

(This was observed by Galvin before Theorem 1 was proved, and then by 
the referee and the author.) 

(6) hf *[Zli then 1 cannot contain Iwo a.~~i~jso~~o~~~i~ ~l~~o~~ta~le 
subsets. (Sff: 1; ---3 I, is such an ~l~ti~isornor~bi~rn~ {(s,f(s)): s c .I,) is an 
~~n~~o~ntab~e subset of I”, no two members of which belong to a chain). In 
particular it follows that 1, 1’” are not hear. (This was observed by 
before Theorem 1 was proved, and iatcr by ‘;i’. Avraham and the author,) 

(7) It is easy to prove that if OR, (e.g., if V - L, see C6]) then there 
are 29 nairwise not near orders, satisfying *[a]. 

(8) II. Friedman asked for the existence of an infmite complete 
order I, such that any open interval of 1 is isomor~~~ic to 1, but P is not 
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antiisomorphic to itself. The completion P of the I from Theorem 1 can 
serve as an example if we construct it with care. Another way is to define 
I, by induction: I, = I, In+* is an extension of I,,, by adding to the right 
of each element of 1, a copy of fi then the completion of unCu I, is an 
example. 

(9) Conjectwe. (A) “For every Specker order I there is a J near 
to it with *[J]” is consistent. 

(B) “If *[I] and *[J] then I is near to J or to J*” is consistent. 
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