ERRATA TO:

FIRST ORDER THEORY OF PERMUTATION GROUPS ${ }^{\dagger}$

BY

SAHARON SHELAH

Lemmas 4.1, 4.4 (of [1]) are incorrect, hence 0.1 and 4.2, 4.4, 4.5 fall. We give here a correct version.

DEFINITION 1. (A) For any α there is a unique representation

$$
\alpha=\Omega^{\omega} \alpha_{\omega}+\cdots+\Omega^{n} \alpha_{[n]}+\cdots+\Omega \alpha_{[1]}+\alpha_{[0]} ; \alpha_{[n]}<\Omega
$$

Let

$$
\alpha[n]=\Omega^{\omega} \alpha_{\omega}+\cdots+\Omega^{n+1} \alpha_{[n+1]} ; \alpha^{[n]}=\left\{\begin{array}{l}
1+\operatorname{cf} \alpha[n] ; c f \alpha[n]<\Omega \\
0
\end{array} \quad \text { otherwise } .\right.
$$

(B) Define K^{15} by

$$
M_{\alpha}^{15}=\left\langle U_{\alpha}, \alpha_{[0]}, \cdots, \alpha_{[n]}, \cdots, \alpha^{[0]}, \cdots, \alpha^{[n]}, \cdots, \cdots R_{n}\left(A_{\alpha}\right), \cdots ;<\right\rangle
$$

where $A_{\alpha}=U_{\alpha} \cup \bigcup_{n<\omega} \alpha_{[n]} \cup \bigcup_{n<\omega} \alpha^{[n]}$ in abuse of notation; this is a disjoint union.

Note that $\left|A_{\alpha}\right| \leqq 2^{*_{0}}$.
(C) Define K^{16} by

$$
M_{\alpha}^{16}=\left\langle\alpha+1, U_{\alpha}, \cdots, R_{n}^{\Omega}\left((\alpha+1) \cup U_{\alpha}\right), \cdots ;<\right\rangle
$$

Remark. In M_{α}^{15}, instead of one order sign $<$, we should have many: one for each $\alpha_{[n]}, \alpha^{[n]}$. Also we should have separate each $R_{n}\left(A_{\alpha}\right)$ according to which place (in the relation) is designated for which domain.

Our main result is:
Theorem 1. K^{1}, K^{15}, K^{16} are bi-interpretable.

[^0]Hence instead of conclusion 0.1 we have:
Corollary 2. $\left\langle P_{\alpha} ; \circ\right\rangle \equiv\left\langle P_{\beta} ; \circ\right\rangle$ iff

$$
\left\langle U_{\alpha}, \alpha_{[0]}, \alpha_{[1]}, \cdots, \alpha^{[0]}, \alpha^{[1]}, \cdots ;\langle \rangle \equiv_{L_{2}}\left\langle U_{\beta}, \beta_{[0]}, \beta_{[1]}, \cdots, \beta^{[0]}, \beta^{[1]}, \cdots ;\langle \rangle\right.\right.
$$

Remark. A natural question is: in what is K^{15} better than K^{7} or even K^{1} ? A possible answer is
(1) Comparing the cardinals of the union of the domains, we get for K^{1}, $2^{*_{\alpha}}$, for $K^{7} \leqq|\alpha|+2^{x_{0}}$, and for $K^{15} \leqq 2^{x_{0}}$.
(2) In Corollary 2 the second part of the equivalence speaks on a well-known logic $-L_{2}$.
(3) In M_{α}^{15} much irrelevant information on α is thrown.

So for many α 's we get isomorphic M_{α}^{15} 's hence it is clear that they have the same first-order theory of $\left\langle P_{a} ;\right.$; \rangle.

Lemma 3. K^{1}, K^{16} are bi-interpretable.
Proof. Trivially K^{16}, K^{7} are explicitly bi-interpretable. So by [1] $3.3 K^{1}, K^{16}$ are bi-interpretable.

Lemma 4. $\quad K^{15}$ is explicitly interpretable in K^{16}.
Proof. Clearly there are formulas in $L\left(K^{16}\right)$ which define for $\beta \in \alpha+1$; the following (in M_{α}^{16}):
$\beta=\alpha,|\beta| \geqq \Omega, \beta$ is divisible by Ω, β is divisible by Ω^{2} (i.e. $\{\gamma: \gamma<\beta, \gamma$ divisible by Ω \} has an order-type divisible by Ω), β is divisible by Ω^{m};
$\gamma<\Omega$ is the cofinality of $\beta ; \beta$ is the maximal $\gamma \leqq \alpha$ which is divisible by Ω^{n} (for any fixed n).
From this the lemma is clear.
Main Lemma 5. K^{16} is interpretable in K^{15}.
Definition 2. For any ordinal i and set of ordinals I let $\gamma(i, I)=$ order type of $\{j \leqq i:(\forall \alpha \in I)(\alpha<i \rightarrow \alpha<j)\}$.

Definition 3. A k-representation of $\langle\bar{a}, \bar{b}, \tilde{r})=\left\langle a_{1}, \cdots, b_{1}, \cdots, r_{1}, \cdots\right\rangle$, where $a_{i} \in(\alpha+1), b_{i} \in U_{\alpha}, r_{i} \in R_{n_{t}}^{\Omega}\left((\alpha+1) \cup U_{\alpha}\right)$ is a sequence,

$$
\left\langle A, B, \bar{g},\left\langle^{*}, \bar{a}^{\prime}, b^{\prime}, \bar{r}^{\prime}\right\rangle=\left\langle A, B, g^{0}, \cdots, g^{k}, g_{0}, \cdots, g_{k},\left\langle^{*}, a_{1}^{\prime}, \cdots, b_{1}^{\prime}, \cdots, r_{1}^{\prime}, \cdots\right\rangle\right.\right.
$$

such that, for some function F :
(1) A, B are disjoint subsets of U_{α} [more exactly $\left.A, B \in R_{1}\left(A_{\alpha}\right)\right]$.
(2) $a_{i}^{\prime} \in A, b_{i}^{\prime} \in B, r_{i}^{\prime} \in R_{n_{1}}(A \cup B) \subseteq R_{n_{i}}\left((\alpha+1) \cup U_{\alpha}\right),<^{*}$ a well ordering of U_{α}, the g_{n}, g^{n} 's are one-place functions from A into U_{α}.
(3) F is one-to-one, with domain $A \cup B$ and range $\subseteq(\alpha+1) \cup U_{\alpha}$,
(4) the a_{i}, b_{i} 's and α belong to the range of F, and U_{α} and the domains of the r_{i}^{\prime} 's are included in it,
(5) $F\left(a_{i}^{\prime}\right)=a_{i}, F\left(b_{i}^{\prime}\right)=b_{i}, F$ maps r_{i}^{\prime} onto r_{i}, F maps A into $(\alpha+1), B$ onto U_{a}; and for $a, b \in A, a<{ }^{*} b$ if $F(a)<F(b)$,
(6) for any $a \in A$,
order type of $\left\{c \in U_{\alpha}: c<^{*} g_{l}(a)\right\}=\gamma(F(a), F(A))_{[l]}$
order type of $\left\{c \in U_{\alpha}: c<^{*} g^{l}(a)\right\}=\gamma(F(a), F(a))^{[l]}$.

Remark. The definition depends on α.
DEFINITION 4. $\alpha \sim_{k} \beta$ if $\alpha_{[l]}=\beta_{[l]}, \alpha^{[l]}=\beta^{[l]}$ for $l \leqq k$.
LEMMA 6. A) \sim_{k} is an equivalence relation between ordinals; for each α there is $\beta<\Omega^{k+2}$ such that $\alpha \sim_{k} \beta$; and if $\alpha \sim_{k} \beta$, then $\alpha<\Omega^{k+1} \Leftrightarrow \beta<\Omega^{k+1} \Rightarrow \alpha=\beta$.
B) If $\alpha_{i} \sim_{k} \beta_{i}$ for $i<\gamma$, then $\alpha={ }^{d f} \Sigma_{i<\gamma} \alpha_{i} \sim_{k} \Sigma_{i<\gamma} \beta_{i}={ }^{d f} \beta$.
C) If $\alpha \sim_{k+1} \beta, A \subset \alpha,|A|<\Omega$ then there is an order-preserving $F: A \rightarrow \beta$ such that for every $a \in A \cup\{\alpha\} \gamma(a, A) \sim_{k} \gamma(F(a), F(A)$) (where we stipulate $F(\alpha)=\beta$).

Remark. This lemma is not new, in fact, see e.g. Kino [2].
Proof. A) Trivial.
B) We prove by induction on γ.
(I) For $\gamma=0,1$ there is nothing to prove.
(II) For $\gamma+1$, if $\alpha_{\gamma} \geqq \Omega^{k+1}$ then $\beta_{\gamma} \geqq \Omega^{k+1}$ (and vice versa) and then $\alpha \sim_{k} \alpha_{\gamma}, \beta \sim_{k} \beta_{\gamma}$ hence $\alpha \sim_{k} \beta$. So assume $\alpha_{\gamma}<\Omega^{k+1}$ so $\alpha_{\gamma}=\beta_{\gamma}$ and it is easy to check that $\alpha \sim_{k} \beta$.
(III) γ a limit ordinal.

We can assume each α_{i}, β_{i} is $\neq 0$, hence $\operatorname{cf} \alpha=\operatorname{cf} \beta$. If $\left\{i<\gamma: \alpha_{i} \geqq \Omega^{k+1}\right\}$ is unbounded, so is $\left\{i<\gamma: \beta_{i} \geqq \Omega^{k+1}\right\}$ hence α and β are divisible by Ω^{k+1}, together this implies $\alpha \sim_{k} \beta$. So we can assume that there is $i_{0}<\gamma$ such that $i_{0} \leqq i<\gamma$ $\Rightarrow \alpha_{i}<\Omega^{k+1}$ hence $\alpha_{i}=\beta_{i}$. So $\Sigma_{\gamma>i \geqq i_{0}} \beta_{i}=\Sigma_{\gamma>i \geqq i_{0}} \alpha_{i}$ hence $\alpha=\Sigma_{i \leqq i_{0}} \alpha_{i}$ $+\left(\Sigma_{\gamma>i>i_{0}} \alpha_{i}\right) \sim_{k} \Sigma_{i \leq i_{0}} \beta_{i}+\left(\Sigma_{\gamma>i>i_{0}} \beta_{i}\right)=\beta$.
C) As $\alpha \sim_{k+1} \beta, \alpha=\alpha^{1}+\xi, \beta=\beta^{1}+\xi, \alpha_{1} \beta_{1}$ are divisible by Ω^{k+2} and have equal cofinalities or cofinalities $\geqq \Omega$. It suffices to prove for the case $\xi=0$,
because we can define for $\alpha^{1} \leqq i<\alpha, F(i)=\beta^{2}+\left(i-\alpha^{1}\right)$. If $\lambda=\operatorname{cf} \alpha=\operatorname{cf} \beta<\Omega$, then $\alpha=\Sigma_{i<\lambda} \alpha_{i}, \beta=\Sigma_{i<\lambda} \beta_{i}$, each $\alpha_{i} \beta_{i}$ is divisible by Ω^{k+2} and has cofinality $\geqq \Omega$. We can now, for each $i<\lambda$, define F on

$$
A \cap\left\{\xi: \sum_{j<i} \alpha_{j} \leqq \xi<\sum_{j \leqq i} \alpha_{j}\right\} \text { into }\left\{\xi: \sum_{j<i} \beta_{j} \leqq \xi<\sum_{j \leqq i} \beta_{j}\right\} .
$$

So we reduce the problem to the case $\operatorname{cf} \alpha, \operatorname{cf} \beta \geqq \Omega$. In this case define F inductively, so that for each $a \in A, \gamma(a, A) \sim_{k} \gamma(F(a), F(A))$ and $\gamma(F(a), F(A))<\Omega^{k+2}$. As Ω is regular $|A|<\Omega$, this implies, by induction, that $F(a)<\Omega^{k+2} \leqq \beta$.

Claim 7. In $L\left(K^{15}\right)$ there are formulas ϕ_{k} such that $M_{\alpha}^{15} \vDash \phi_{k}\left[A,<{ }^{*}, \bar{g}, b\right]$ iff $<*$ is a well-ordering of $U_{\alpha}, A \subseteq U_{\alpha}$,
$\vec{g}=\left\langle g_{0}, \cdots, g_{k}, g^{0}, \cdots, g^{k}\right\rangle$,
g_{l}, g^{l} are one-place functions from A into U_{α}
and if $A=\left\{a_{i}: i<i_{0}\right\}, U_{\alpha}=\left\{b(j): j<j_{0}\right\}, b=b\left(j_{1}\right), i<j \Rightarrow a_{i}<^{*} a_{j}, b_{i}<^{*} b_{j}$ and α_{i} is an ordinal and $b\left(\left(\alpha_{i}\right)_{[l]}\right)=g_{l}\left(a_{i}\right), b\left(\left(\alpha_{i}\right)^{[l]}\right)=g^{l}\left(a_{i}\right)$ for each $i<i_{0}$, $l \leqq k$ then

$$
\Sigma_{i<l_{0}} \alpha_{i}=j_{1}
$$

Remark. Remember 6B.
Proof. Just formalize what was said in the proof of Lemma 6B. As we have second order quantifiers, in fact, on U_{α} (in M_{α}^{15}) this is easy.
Claim 8. For every kind of sequence $\left\langle a_{1}, \cdots, b_{1}, \cdots, r_{1}, \cdots\right\rangle$ (i.e. the number of a_{i} 's, b_{i} 's and r_{i} 's; and the number of places of each r_{i}) for every k;
(A) there is a formula $\psi_{k} \in L\left(K^{15}\right)$ such that for any sequence $\langle A, B, \bar{g}$, $\left.<{ }^{*}, a^{\prime}, \bar{b}^{\prime}, \bar{r}^{\prime}\right\rangle$ of the right kind (for being a suitable presentation)
$M_{\alpha}^{15} \vDash \psi_{k}\left[A, B, \bar{g},<^{*}, \tilde{a}^{\prime}, \bar{b}^{\prime}, \tilde{r}^{\prime}\right]$ iff $\left\langle A, B, \bar{g},<^{*}, \tilde{a}^{\prime}, \bar{b}^{\prime}, \tilde{r}\right\rangle$ is a k-representation (in M_{α}^{15}).
(B) Similarly there is a formula $\theta_{k} \in L\left(K^{5}\right)$ saying that two k-representations have a common source.

Proof. (A) Just go through Definition 3 and see that it can be done with the help of Claim 7.
(B) Go through the representation with minimal A : that is let $A^{\prime}=\left\{a_{1}^{\prime}, \cdots,\right\}$ $\cup\{$ last element of $A\} \cup\left\{\right.$ the domain of the r_{i} 's intersection with $\left.A\right\}$.

Lemma 9. For each formula $\phi(\bar{x}, \bar{y}, \bar{z})$ in $L\left(K^{16}\right)$ we can effectively find
$k(\psi)$ and $\phi^{*} \in L\left(K^{15}\right)$ such that for any α, and any $a_{1}, \cdots, \in \alpha+1, b_{1}, \cdots, \in U_{\alpha}$, $r_{i} \in R_{n_{i}}^{\Omega}\left((\alpha+1) \cup U_{\alpha}\right)$ and any $k(\psi)$-representation.$\left\langle A, B, \vec{g},\left\langle, \hat{a}^{\prime}, \bar{b}^{\prime}, \bar{r}\right\rangle, M_{\alpha}^{15}\right.$ F $\phi^{*}\left[A, B, \vec{g},<, \bar{a}^{\prime}, b^{\prime}, \bar{r}^{\prime}\right]$ iff $M_{\alpha}^{16} \vDash \phi\left[a_{1}, \cdots, b_{1}, \cdots, r_{1}, \cdots\right\}$.

Remark. The proof is similar to 3.2 , except the added parameter k.
Proof. We prove it by induction of ϕ. For atomic formulas conjunction and negation there is no problem (remember that from k_{1}-representation we can get a k_{2}-representation, if $k_{1}>k_{2}$, by omitting some g 's). So we are left with the case of existential quantifiers. Now note that two k-representations may have a common source, but nevertheless not all their sources are common. But by Lemma $6(\mathrm{C})$ if two $(k+1)$-representations have a common source, then any source of one is k-represented by the other after omitting the suitable g 's. Now the proof should be clear.

Proof of Lemma 5. By Lemma 9 it is immediate.

References

1. S. Shelah, First order theory of permutation groups, Israel J. Math. 14 (1973), 149-162.
2. A. Kino, On definiablity of ordinals with infinitely long expressions, J. Symbolic Logic 31 (1966), 365-375 (correction in 32 (1967), 343).

The Hebrew University of Jerusalem
Jerusalem, Israel

[^0]: \dagger Volume 14, Number 2, pages 142-162
 Received May 23, 1973

