ERRATA TO:

FIRST ORDER THEORY OF PERMUTATION GROUPS[†]

BY

SAHARON SHELAH

Lemmas 4.1, 4.4 (of [1]) are incorrect, hence 0.1 and 4.2, 4.4, 4.5 fall. We give here a correct version.

Definition 1. (A) For any α there is a unique representation

$$\alpha = \Omega^{\omega} \alpha_{\omega} + \cdots + \Omega^{n} \alpha_{\lceil n \rceil} + \cdots + \Omega \alpha_{\lceil 1 \rceil} + \alpha_{\lceil 0 \rceil}; \alpha_{\lceil n \rceil} < \Omega.$$

Let

$$\alpha[n] = \Omega^{\omega}\alpha_{\omega} + \cdots + \Omega^{n+1}\alpha_{[n+1]}; \alpha^{[n]} = \begin{cases} 1 + \operatorname{cf}\alpha[n]; \operatorname{cf}\alpha[n] < \Omega \\ 0 & \text{otherwise.} \end{cases}$$

(B) Define K^{15} by

$$M_{\alpha}^{15} = \langle U_{\alpha}, \alpha_{[0]}, \cdots, \alpha_{[n]}, \cdots, \alpha^{[0]}, \cdots, \alpha^{[n]}, \cdots, \cdots R_{n}(A_{\alpha}), \cdots; \langle \rangle$$

where $A_{\alpha} = U_{\alpha} \cup \bigcup_{n < \omega} \alpha_{[n]} \cup \bigcup_{n < \omega} \alpha^{[n]}$ in abuse of notation; this is a disjoint union.

Note that $|A_{\alpha}| \leq 2^{\aleph_0}$.

(C) Define K^{16} by

$$M_{\alpha}^{16} = \langle \alpha + 1, U_{\alpha}, \dots, R_{\alpha}^{\Omega}((\alpha + 1) \cup U_{\alpha}), \dots; \langle \rangle.$$

REMARK. In $M_{\alpha}^{1.5}$, instead of one order sign <, we should have many: one for each $\alpha_{[n]}$, $\alpha^{[n]}$. Also we should have separate each $R_n(A_{\alpha})$ according to which place (in the relation) is designated for which domain.

Our main result is:

THEOREM 1. K^1, K^{15}, K^{16} are bi-interpretable.

[†] Volume 14, Number 2, pages 142-162 Received May 23, 1973

Hence instead of conclusion 0.1 we have:

Sh:25

Corollary 2. $\langle P_{\alpha}; \circ \rangle \equiv \langle P_{\beta}; \circ \rangle$ iff

$$\langle U_{\alpha}, \alpha_{[0]}, \alpha_{[1]}, \cdots, \alpha^{[0]}, \alpha^{[1]}, \cdots; < \rangle \equiv_{L_2} \langle U_{\beta}, \beta_{[0]}, \beta_{[1]}, \cdots, \beta^{[0]}, \beta^{[1]}, \cdots; < \rangle.$$

REMARK. A natural question is: in what is K^{15} better than K^7 or even K^1 ? A possible answer is

- (1) Comparing the cardinals of the union of the domains, we get for K^1 , $2^{\aleph_{\alpha}}$, for $K^7 \leq |\alpha| + 2^{\aleph_0}$, and for $K^{15} \leq 2^{\aleph_0}$.
- (2) In Corollary 2 the second part of the equivalence speaks on a well-known logic $-L_2$.
 - (3) In M_a^{15} much irrelevant information on α is thrown.

So for many α 's we get isomorphic M_{α}^{15} 's hence it is clear that they have the same first-order theory of $\langle P_{\alpha}; \circ \rangle$.

LEMMA 3. K^1, K^{16} are bi-interpretable.

PROOF. Trivially K^{16} , K^{7} are explicitly bi-interpretable. So by [1] 3.3 K^{1} , K^{16} are bi-interpretable.

LEMMA 4. K^{15} is explicitly interpretable in K^{16} .

PROOF. Clearly there are formulas in $L(K^{16})$ which define for $\beta \in \alpha + 1$; the following (in M_{α}^{16}):

 $\beta = \alpha$, $|\beta| \ge \Omega$, β is divisible by Ω , β is divisible by Ω^2 (i.e. $\{\gamma : \gamma < \beta, \gamma \text{ divisible by } \Omega\}$ has an order-type divisible by Ω), β is divisible by Ω^m ;

 $\gamma < \Omega$ is the cofinality of β ; β is the maximal $\gamma \le \alpha$ which is divisible by Ω^n (for any fixed n).

From this the lemma is clear.

MAIN LEMMA 5. K^{16} is interpretable in K^{15} .

DEFINITION 2. For any ordinal i and set of ordinals I let $\gamma(i, I) = \text{order type}$ of $\{j \leq i : (\forall \alpha \in I) (\alpha < i \rightarrow \alpha < j)\}.$

DEFINITION 3. A k-representation of $\langle \bar{a}, \bar{b}, \bar{r} \rangle = \langle a_1, \dots, b_1, \dots, r_1, \dots \rangle$, where $a_i \in (\alpha + 1), b_i \in U_\alpha$, $r_i \in R_n^{\Omega}((\alpha + 1) \cup U_\alpha)$ is a sequence,

$$\langle A, B, \bar{g}, \langle *, \bar{a}', \bar{b}', \bar{r}' \rangle = \langle A, B, g^0, \dots, g^k, g_0, \dots, g_k, \langle *, a'_1, \dots, b'_1, \dots, r'_1, \dots \rangle$$
 such that, for some function F :

(1) A, B are disjoint subsets of U_{α} [more exactly $A, B \in R_1(A_{\alpha})$].

- (2) $a_i' \in A$, $b_i' \in B$, $r_i' \in R_{n_i}$ $(A \cup B) \subseteq R_{n_i}((\alpha + 1) \cup U_\alpha)$, < * a well ordering of U_α , the g_n , g^n 's are one-place functions from A into U_α .
 - (3) F is one-to-one, with domain $A \cup B$ and range $\subseteq (\alpha + 1) \cup U_{\alpha}$,
- (4) the a_i , b_i 's and α belong to the range of F, and U_{α} and the domains of the r_i 's are included in it,
- (5) $F(a_i') = a_i$, $F(b_i') = b_i$, F maps r_i' onto r_i , F maps A into $(\alpha + 1)$, B onto U_α ; and for $a, b \in A$, a < b if F(a) < F(b),
 - (6) for any $a \in A$,

Vol. 15, 1973

order type of
$$\{c \in U_{\alpha}: c < *g_{l}(a)\} = \gamma(F(a), F(A))_{[l]}$$

order type of $\{c \in U_{\alpha}: c < *g^{l}(a)\} = \gamma(F(a), F(a))^{[l]}$.

Remark. The definition depends on α .

Definition 4. $\alpha \sim_k \beta$ if $\alpha_{[l]} = \beta_{[l]}$, $\alpha^{[l]} = \beta^{[l]}$ for $l \leq k$.

LEMMA 6. A) \sim_k is an equivalence relation between ordinals; for each α there is $\beta < \Omega^{k+2}$ such that $\alpha \sim_k \beta$; and if $\alpha \sim_k \beta$, then $\alpha < \Omega^{k+1} \Leftrightarrow \beta < \Omega^{k+1} \Rightarrow \alpha = \beta$.

- B) If $\alpha_i \sim_k \beta_i$ for $i < \gamma$, then $\alpha = {}^{df} \sum_{i < \gamma} \alpha_i \sim_k \sum_{i < \gamma} \beta_i = {}^{df} \beta$.
- C) If $\alpha \sim_{k+1} \beta$, $A \subset \alpha$, $|A| < \Omega$ then there is an order-preserving $F: A \to \beta$ such that for every $a \in A \cup \{\alpha\}$ $\gamma(a,A) \sim_k \gamma(F(a),F(A))$ (where we stipulate $F(\alpha) = \beta$).

REMARK. This lemma is not new, in fact, see e.g. Kino [2].

Proof. A) Trivial.

- B) We prove by induction on γ .
- (I) For $\gamma = 0$, 1 there is nothing to prove.
- (II) For $\gamma + 1$, if $\alpha_{\gamma} \ge \Omega^{k+1}$ then $\beta_{\gamma} \ge \Omega^{k+1}$ (and vice versa) and then $\alpha \sim_k \alpha_{\gamma}$, $\beta \sim_k \beta_{\gamma}$ hence $\alpha \sim_k \beta$. So assume $\alpha_{\gamma} < \Omega^{k+1}$ so $\alpha_{\gamma} = \beta_{\gamma}$ and it is easy to check that $\alpha \sim_k \beta$.
 - (III) y a limit ordinal.

We can assume each α_i , β_i is $\neq 0$, hence of $\alpha = \text{cf } \beta$. If $\{i < \gamma : \alpha_i \geq \Omega^{k+1}\}$ is unbounded, so is $\{i < \gamma : \beta_i \geq \Omega^{k+1}\}$ hence α and β are divisible by Ω^{k+1} , together this implies $\alpha \sim_k \beta$. So we can assume that there is $i_0 < \gamma$ such that $i_0 \leq i < \gamma$ $\Rightarrow \alpha_i < \Omega^{k+1}$ hence $\alpha_i = \beta_i$. So $\sum_{\gamma > i \geq i_0} \beta_i = \sum_{\gamma > i \geq i_0} \alpha_i$ hence $\alpha = \sum_{i \leq i_0} \alpha_i + (\sum_{\gamma > i > i_0} \alpha_i) \sim_k \sum_{i \leq i_0} \beta_i + (\sum_{\gamma > i > i_0} \beta_i) = \beta$.

C) As $\alpha \sim_{k+1} \beta$, $\alpha = \alpha^1 + \xi$, $\beta = \beta^1 + \xi$, $\alpha_1 \beta_1$ are divisible by Ω^{k+2} and have equal cofinalities or cofinalities $\geq \Omega$. It suffices to prove for the case $\xi = 0$,

because we can define for $\alpha^1 \leq i < \alpha$, $F(i) = \beta^1 + (i - \alpha^1)$. If $\lambda = \text{cf } \alpha = \text{cf } \beta < \Omega$, then $\alpha = \sum_{i < \lambda} \alpha_i$, $\beta = \sum_{i < \lambda} \beta_i$, each $\alpha_i \beta_i$ is divisible by Ω^{k+2} and has cofinality $\geq \Omega$. We can now, for each $i < \lambda$, define F on

$$A \cap \{\xi \colon \sum_{j < i} \alpha_j \le \xi < \sum_{j \le i} \alpha_j\} \text{ into } \{\xi \colon \sum_{j < i} \beta_j \le \xi < \sum_{j \le i} \beta_j\}.$$

So we reduce the problem to the case of α , of $\beta \ge \Omega$. In this case define F inductively, so that for each $a \in A$, $\gamma(a, A) \sim_k \gamma(F(a), F(A))$ and $\gamma(F(a), F(A)) < \Omega^{k+2}$. As Ω is regular $|A| < \Omega$, this implies, by induction, that $F(a) < \Omega^{k+2} \le \beta$.

CLAIM 7. In $L(K^{15})$ there are formulas ϕ_k such that $M_{\alpha}^{15} \models \phi_k[A, <^*, \bar{g}, b]$ iff $<^*$ is a well-ordering of U_{α} , $A \subseteq U_{\alpha}$,

$$\bar{g} = \langle g_0, \dots, g_k, g^0, \dots, g^k \rangle,$$

Sh:25

 g_i, g^i are one-place functions from A into U_α

and if $A = \{a_i : i < i_0\}$, $U_{\alpha} = \{b(j) : j < j_0\}$, $b = b(j_1)$, $i < j \Rightarrow a_i < a_j$, $b_i < b_j$ and a_i is an ordinal and $b((\alpha_i)_{[l]}) = g_l(a_i)$, $b((\alpha_i)^{[l]}) = g^l(a_i)$ for each $i < i_0$, $l \le k$ then

$$\sum_{i < i_0} \alpha_i = j_1.$$

REMARK. Remember 6B.

PROOF. Just formalize what was said in the proof of Lemma 6B. As we have second order quantifiers, in fact, on U_{α} (in M_{α}^{15}) this is easy.

- CLAIM 8. For every kind of sequence $\langle a_1, \dots, b_1, \dots, r_1, \dots \rangle$ (i.e. the number of a_i 's, b_i 's and r_i 's; and the number of places of each r_i) for every k;
- (A) there is a formula $\psi_k \in L(K^{15})$ such that for any sequence $\langle A, B, \bar{g}, e^*, \bar{a}', \bar{b}', \bar{r}' \rangle$ of the right kind (for being a suitable presentation)
- $M_{\alpha}^{15} \models \psi_k[A, B, \bar{g}, <^*, \bar{a}', \bar{b}', \bar{r}']$ iff $\langle A, B, \bar{g}, <^*, \bar{a}', \bar{b}', \bar{r} \rangle$ is a k-representation (in M_{α}^{15}).
- (B) Similarly there is a formula $\theta_k \in L(K^5)$ saying that two k-representations have a common source.
- PROOF. (A) Just go through Definition 3 and see that it can be done with the help of Claim 7.
- (B) Go through the representation with minimal A: that is let $A' = \{a'_1, \dots, \}$ \cup {last element of A} \cup {the domain of the r_i 's intersection with A}.
 - LEMMA 9. For each formula $\phi(\bar{x}, \bar{y}, \bar{z})$ in $L(K^{16})$ we can effectively find

Sh:25

 $k(\psi)$ and $\phi^* \in L(K^{15})$ such that for any α , and any $a_1, \dots, \in \alpha + 1$, $b_1, \dots, \in U_{\alpha}$, $r_i \in R_{n_i}^{\Omega}((\alpha + 1) \cup U_{\alpha})$ and any $k(\psi)$ -representation $\langle A, B, \bar{g}, \langle , \bar{a}', \bar{b}', \bar{r} \rangle$, $M_{\alpha}^{15} \models \phi^*[A, B, \bar{g}, \langle , \bar{a}', b', \bar{r}']$ iff $M_{\alpha}^{16} \models \phi[a_1, \dots, b_1, \dots, r_1, \dots]$.

REMARK. The proof is similar to 3.2, except the added parameter k.

PROOF. We prove it by induction of ϕ . For atomic formulas conjunction and negation there is no problem (remember that from k_1 -representation we can get a k_2 -representation, if $k_1 > k_2$, by omitting some g's). So we are left with the case of existential quantifiers. Now note that two k-representations may have a common source, but nevertheless not all their sources are common. But by Lemma 6(C) if two (k+1)-representations have a common source, then any source of one is k-represented by the other after omitting the suitable g's. Now the proof should be clear.

PROOF OF LEMMA 5. By Lemma 9 it is immediate.

REFERENCES

- 1. S. Shelah, First order theory of permutation groups, Israel J. Math. 14 (1973), 149-162.
- 2. A. Kino, On definiability of ordinals with infinitely long expressions, J. Symbolic Logic 31 (1966), 365-375 (correction in 32 (1967), 343).

Institute of Mathematics
The Hebrew University of Jerusalem
Jerusalem, Israel