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ABSTRACT

We prove, in ZFC, that there is an infinite strictly descending chain of

classes of theories in Keisler’s order. Thus Keisler’s order is infinite and

not a well order. Moreover, this chain occurs within the simple unstable

theories, considered model-theoretically tame. Keisler’s order is a central

notion of the model theory of the 60s and 70s which compares first-order

theories, and implicitly ultrafilters, according to saturation of ultrapowers.

Prior to this paper, it was long thought to have finitely many classes,

linearly ordered. The model-theoretic complexity we find is witnessed

by a very natural class of theories, the n-free k-hypergraphs studied by

Hrushovski. This complexity reflects the difficulty of amalgamation and

appears orthogonal to forking.
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0. Introduction

A significant challenge to our understanding of unstable theories in general, and

simple theories in particular, has been the apparent intractability of the prob-

lem of Keisler’s order. Determining the structure of this order is a large-scale

classification program in model theory. Its structure on the stable theories was

known, and recent progress on the unstable case has had surprising applica-

tions, described in [19], [16], [25]. The order was long thought to be finite, with

perhaps four classes, whose identities were suggested in 1978 (see Problem 0.3

below). In the present paper, we leverage the ZFC theorems of [20] to prove,

nearly fifty years after Keisler introduced the order, that Keisler’s order has

infinitely many classes, and moreover is not a well order. The nature of this in-

finite hierarchy suggests that the order may encode much more model-theoretic

information than was generally thought.
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There are a number of recent accounts of Keisler’s order, as in the introduction

to [20]. We give here a brief sketch to put our main theorem in context.

Keisler’s order asks about the saturation properties of certain limits of se-

quences of models, the regular ultrapowers. If D is an ultrafilter on the infinite

set I, let us call D regular if whenever M is a model in a countable language,

whether or not the ultrapower M I/D is |I|+-saturated depends only on the

theory of M . (The theorem giving this equivalent definition is due to Keisler

[10]. In fact, consistently, all ultrafilters are regular [2].) Given a theory T and a

regular ultrafilter D, we may therefore say that “D saturates T ” if indeed M I/D
is |I|+-saturated for some, equivalently every, model of T . Keisler proposed the

study of the pre-order on complete, countable theories given by:

Definition 0.1 (Keisler 1967): T1 � T2 iff any regular ultrafilter D which satu-

rates T2 must also saturate T1.

The pre-order � is usually thought of as a partial order on the �-equivalence

classes. Keisler’s order allows for a comparison of complexity of any two theories,

possibly in different languages, as noted in Morley’s enthusiastic review [26].

Problem 0.2: Determine the structure of Keisler’s order.

Given the complexity of ultrafilters, it was widely believed that Keisler’s order

would be coarse, with a small number of classes, linearly ordered. In order for

ultrafilters to be able to distinguish theories, we would expect, informally, that

the ‘patterns’ of types in each must be much more than superficially different,

and so that divisions in Keisler’s order would correspond to model-theoretic

dividing lines. Indeed, the union of the first two classes is precisely the stable

theories ([27] VI.5). The following problem suggests, in current language, that

the simple unstable theories form a single class, and that the non-simple, non-

maximal theories form a single class. Note already the suggestion that one

would need a parallel (not simply an extension) of local stability theory in

order to approach the problem.

Problem 0.3 ([27] Problem VI.0.1 p. 324): It would be very desirable to prove

that: (1A) T1, T2 ∈ Kind implies T1, T2 are �-equivalent, (1B) T1, T2 ∈ Kcdt

(or we should ask also whether κinp(T ) = ∞, κsct(T ) = ∞) implies T1, T2

are �-equivalent. This will complete the model-theoretic share of investigating

Keisler’s order for countable theories. For this it seems reasonable to try to find

for T ∈ Kind a theory parallel to II, Section 2 for stable theories.
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For a long time, there was little progress on the unstable case; [17] gives some

history. This was due both to the difficulty of constructing ultrafilters and the

state of our understanding of unstable theories. In the last few years, there has

been very substantial progress in this area (Malliaris [21]–[23], Malliaris and

Shelah [17]–[20]). By our earlier paper [15], there are at least two classes within

the simple theories, so at least five classes total.
We now state the main theorem of the present paper:

Main Theorem (6.6 below): There is an infinite descending sequence of simple

rank 1 theories in Keisler’s order. More precisely, there are simple theories

{T ∗
n : n < ω}, with trivial forking, such that writing

• TA for the class of theories without the finite cover property (f.c.p.),

• TB for the class of stable theories with the f.c.p.,

• TC for the minimum unstable class, i.e. the Keisler-equivalence class of

the random graph,

• Tmax for the Keisler-maximal class, i.e. the Keisler-equivalence class of

linear order (or SOP2),

• and Tn for the Keisler-equivalence class of T ∗
n ,

for all m < n < ω, we have:

TA � TB � TC � · · · · · · · · · Tn � Tm � · · · � T2 � T1 � T0 � Tmax.

This theorem says that Keisler’s order, far from being coarse, has a kind

of productive fineness: it is sensitive to an entire hierarchy of amalgamation

properties within the simple theories, detecting a complexity which is orthogonal

to forking. Part of the interest of Keisler’s order is that it appears particularly

sensitive to gradations in the complexity of the independence property, which

is orthogonal to much of what was known.

The current picture may be illustrated as follows:
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The arrow indicates the location of the infinite descending chain.1 The white

regions are not yet mapped. The large shaded region on the right is the max-

imum class; we don’t know whether it may encompass all non-simple theories.

We now introduce some key objects of the proof.

Definition 0.4: Tm,k is the model completion of the theory with one symmetric

irreflexive (k + 1)-ary relation R and no complete graphs on m + 1 vertices.

We say (m, k) is nontrivial to mean that m > k ≥ 2, and say that Tm,k is

nontrivial if (m, k) is. We will assume Tm,k is nontrivial unless otherwise stated.

When m > k = 1, so the edge relation is binary, there is a lot of dividing:

the theory is non-simple and in fact SOP3, but in the case of hyperedges the

situation is different.2

Theorem 0.A (Hrushovski [7]): For m > k ≥ 2, the theory Tm,k is simple with

trivial forking.

Simple theories, a generalization of stable theories which include the ran-

dom graph and pseudofinite fields, are an active area of model-theoretic re-

search as well as a fertile interface for applications of model theory to geometry,

combinatorics, and number theory [1], [8], [14]. However, already for internal

model-theoretic reasons, it had long seemed plausible that the simple unstable

theories might admit a meaningful division into an infinite hierarchy; see, e.g.,

Conjecture 5.6 of [28].

Our argument will be guided by the following informal thesis.

Thesis 0.5: The theories Tm+r,k+r become in some sense less complicated

(closer to the random graph) as r → ∞.

Note that this thesis does not yet account for each coordinate growing sepa-

rately.

1 Note that our main result shows that Keisler’s order is not a well quasi-order.
2 When a simple theory has ‘trivial forking’ it is a model-theoretic indication that, at

least in one strong sense, complexity is low. A formula ϕ(x, ā) divides if for some indis-

cernible sequence 〈āi : i < ω〉 with ā0 = ā, and for some n < ω, every n formulas from

{ϕ(x, āi) : i < ω} are inconsistent. In simple theories forking and dividing coincide. For

the Tn,k , there is quantifier elimination, and so the point is that no formula which is a

finite boolean combination of instances of R can divide.
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Some brief remarks on the proof are in order, since much of the interest of

the result comes from the structure it reveals. How to see differences among the

theories Tn,k? It may appear that any distances between them are in some sense

finitary in nature. The remarkable fact is that there emerges a connection —

both by analogy and by proof — to the sense in which set mappings explain how

certain distances between infinite cardinals are also finitary in nature. The key

theorem for us (all definitions will be given in §1) is the Kuratowski–Sierpinski

characterization of the distance between alephs via existence of free sets in set

mappings:

(ℵα+k, k,ℵα) → k + 1 but (ℵα+k, k + 1,ℵα) �→ k + 2.

The sense in which free sets escape control of their smaller pieces echoes the

characteristic sense in which amalgamation problems in the Tn,k escape control

of their smaller pieces. The proof will make this correspondence more precise.

The effect is that the set theory reflects down to illuminate large differences

among purely model theoretic properties which we would otherwise be hard

pressed to distinguish: ultrafilters (in which we have inscribed the two cardinals

μ = ℵα, λ = ℵα+k in an intelligible way) can show us when there is a significant

difference in the complexity of the amalgamation problems presented by these

different hypergraphs.

In slightly more detail, the ultrafilter contribution may be sketched as follows.

(All definitions will be given below.) Let P(I) denote the set of all subsets of I.

Let μ be an infinite cardinal, μ < |I|. First, we build a certain kind of regular

filter D0 on I, called excellent, in such a way that in the quotient Boolean

algebra B ∼= P(I)/D0 the maximal antichains have size μ, a measure of the

remaining degrees of freedom. Second, we build another kind of ultrafilter D∗
on B, called perfect, and pull it back to I to obtain the final ultrafilter D, called

(λ, μ)-perfected. As part of this picture, there is a way of representing types in

the ultrapower as sequences in the intermediate Boolean algebra B. Now we

ask about the cardinal distance between λ = |I| and μ. It will turn out that if

μ = ℵα, λ = ℵα+� and T = Tk+1,k, then whether such a D saturates T [whether

D∗ is able to resolve the corresponding representations of types in B despite

its relative “narrowness”] will depend on the relative sizes of k and �. So each

finite amalgamation constraint, such as the prohibition on tetrahedra, will be

properly reflected in a certain finite distance built in to our infinite amplifiers,

the ultrafilters.
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In light of Theorem 6.6, we may ask: are there incomparable simple theories in

Keisler’s order? If not, the amalgamation properties highlighted in our theorem

carry a great deal more of the structure of simple theories than one might a

priori expect. If so, if there are many incomparable classes of simple theories and

if they may be internally characterized, this is also likely to be very productive

for model theory because it would bring currently invisible undercurrents of

complexity in simple unstable theories to the surface.

While the present paper reverses nearly fifty years of thinking about Keisler’s

order, this reversal comes with the remarkable suggestion, visible in the mechan-

ics of our proof, that Keisler’s order may provide a systematic way of detecting

the fine ‘combinatorial building blocks’ of structures.

Acknowledgments. H. J. Keisler and C. Laskowski made comments which

significantly improved the paper. Douglas Ulrich pointed out a gap in an earlier

version of 2.4. The referee made many comments which improved the presen-

tation, and pushed us to clarify various points in section 2. Thank you!

1. Preparation

Our model-theoretic approach is guided by the framework of [20] and in par-

ticular its program of stratifying the complexity of simple theories according to

their so-called explicit simplicity. As explained there, to capture the problem

of realizing types in ultrapowers it is helpful to remember that at each index

model, �Los’ theorem may guarantee that the ‘projections’ of various finite frag-

ments of the type are correct but it will not, in general, preserve their relative

position. An informative translation of the complexity which may arise in such

projections is to ask: given a type p ∈ S(N), ||N || = λ not forking over some

small M∗, when can we color the finite pieces of p (or more correctly, sufficiently

closed sets containing them) with μ colors so that any time we move finitely

many pieces of the same color by piecewise automorphisms which are the iden-

tity on M∗, agree on common intersections and introduce no new forking, the

union of the images is a consistent partial type?

The main theorems of the present paper will imply that for each finite k ≥ 2,

for Tk+1,k it is necessary and sufficient to have μ colors when λ = μ+(k−1). To see

that, for instance, the tetrahedron-free three-hypergraph T3,2 requires multiple

colors, consider a type {R(x, a, b), R(x, b, c), R(x, a, c)} in the monster model,

Sh:1050



196 M. MALLIARIS AND S. SHELAH Isr. J. Math.

where |= ¬R(a, b, c) but piecewise automorphisms of {R(x, a, b)}, {R(x, b, c)},

{R(x, a, c)} may move the parameters onto a triangle.

Before making further remarks on strategy, we review a family of classical

results on set mappings. Proofs of Theorems 1.B, 1.C, 1.D may be found in

Erdős, Hajnal, Máté and Rado [4], as noted. We use λ, κ, μ for infinite cardinals

and k, �,m, n for integers.

Definition 1.1: Let m,n be integers, α an ordinal, and λ, μ infinite cardinals.

(1) We say F : [λ]m → [λ]<μ is a set mapping if F (x)∩x = ∅ for x ∈ [λ]m.

(2) We say the set X ⊆ λ is free with respect to F if F (x) ∩ X = ∅ for

every x ∈ [X ]m.

Notation 1.2: We write

(λ,m, μ) −→ n

to mean that for every set mapping F : [λ]m → [λ]<μ there is a set X of size n

which is free with respect to F , and write

(λ,m, μ) �−→ n

to mean that for some set mapping F : [λ]m → [λ]<μ no set of size n is free

with respect to F .

A celebrated theorem of Sierpiński [29] states that the continuum hypothesis

holds precisely when R3 admits a decomposition into three sets Ax, Ay, Az

such that for w = x, y, z, Aw intersects all lines in the direction of the w-axis in

finitely many points. In other words, this property characterizes ℵ1. Kuratowski

and Sierpiński then characterized all ℵns via set mappings:

Theorem 1.B (see [4] Theorem 46.1): For any m < ω and ordinal α we have

that

(ℵα+m,m,ℵα) −→ m + 1.

Theorem 1.C (see [4] Theorem 45.7): For any m < ω and ordinal α we have

that

(ℵα+m,m + 1,ℵα) �−→ m + 2.

Corollary 1.3 (Monotonicity): Given m0 ≤ m ≤ m1, n0 ≤ n ≤ n1,

(a) if n > m and (λ,m, μ) −→ n, then (λ,m0, μ) −→ n0;

(b) if n1 > m1 and (λ,m, μ) �−→ n, then (λ,m1, μ) �−→ n1.
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Proof. (a) Suppose we are given a set mapping F : [λ]m0 → [λ]<μ. Define

F ′ : [λ]m → [λ]<μ by F ′(u) =
⋃
{F (u′) : u′ ∈ [u]m0} \ u. Clearly F ′ is a set

mapping. Since (λ,m, μ) → n, there is a free set v∗ for F ′, |v∗| = n. Fix

v∗∗ ⊆ v∗ with |v∗∗| = n0 ≤ n. Let us check that v∗∗ is as required for F . Let

u ∈ [v∗∗]m0 and α ∈ v∗∗ \ u. Since F is a set mapping, it suffices to prove that

α /∈ F (u). Towards this, choose w ⊆ v∗ \ (u ∪ {α}) of size m − m0, which is

possible because |v∗ \ (u ∪ {α})| = n− (m0 + 1) = (n− 1) −m0 ≥ m−m0. So

u ∪ w ⊆ v∗ and |u ∪ w| = m0 + (m −m0) = m elements and α ∈ v∗ \ (u ∪ w).

As v∗ was chosen to be a free set for F ′, necessarily α /∈ F ′(u ∪ w). Now recall

the definition of F ′, F ′(u ∪ w) =
⋃
{F (x) : x ∈ [u ∪ w]m0} \ (u ∪ w). Since

α /∈ (u∪w) and we know that α /∈ F ′(u∪w), we conclude α /∈ F (u) as desired.

(b) This holds by the contrapositive of (a), i.e. (a) applied to m1, n1,m, n

instead of m,n,m0, n0.

The general situation for free sets of large finite size relative to m is less clear.

For instance, it is known that:

Theorem 1.D (see [4] Theorem 46.2): For any n < ω and ordinal α we have

that

• (Hajnal–Máté) (ℵα+2, 2,ℵα) −→ n,

• (Hajnal) (ℵα+3, 3,ℵα) −→ n.

However, we note there are also consistency results.3 In the following the-

orem, τ(n + 1) is the least natural number such that τ(n + 1) → (τ(n), 7)5.

The notation a → (b, c)r, for a, b, c, r ∈ N, means that whenever the r-element

subsets of an a-element set are colored with two colors, then either there is a

b-element subset with all its r-tuples of the first color, or there is a c-element

subset with all its r-tuples of the second color. The existence of an a given b, c, r

is given by Ramsey’s theorem. (Further results are in a forthcoming paper [24].)

Theorem 1.E (Komjáth and Shelah [12], Theorem 1): There is a function

τ : ω → ω such that whenever μ is regular, n < ω, λ = μ+n, μ = μ<μ, and∧
�<n 2μ

+�

= μ+�+1, for some (< μ)-complete μ+(n+1)-c.c. forcing notion P of

3 We carry out the present proof entirely in ZFC. It will be very interesting to see whether

future work will show such independence results to also be reflected in the model-theoretic

structure of simple theories, or whether the connection goes no further than what we

develop here.
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cardinality λ collapsing no cardinals, in VP we have 2μ = μ+n and there is a

set mapping F : [λ]4 → [λ]<μ with no free subset of size τ(n).

In symbols, under these assumptions,

(
μ+n, 4, μ

)
�−→ τ(n).

We now briefly motivate our use of these theorems for realizing and omit-

ting types. A first adjustment is that we would like to enclose fragments of

types in suitable larger parameter sets, so we will want to replace the condition

x∩F (x) = ∅ in the definition of set mapping with the condition that x ⊆ F (x)

as in 1.4(1) and also to replace “not free” with 1.4(2).

Definition 1.4: Let k < n be integers, α an ordinal, and λ, θ infinite cardinals

(usually θ = ℵ0). .

(1) We say F : [λ]k → [λ]<θ is a strong set mapping if x ⊆ F (x) for

x ∈ [λ]k.

(2) We say the set X ∈ [λ]n is covered with respect to F if there exists

x ∈ [X ]k such that X ⊆ F (x).

Briefly, working in one of the theories Tk+1,k (k ≥ 2), we will want to associate

to each finite subtype a larger ‘enveloping’ set, and to color these envelopes in

such a way that within any fixed color class, any time a near-forbidden config-

uration (e.g. a hyperedge on the parameters in T3,2) appears, it must already

be contained in one of the associated envelopes. In the course of our analy-

sis, we will be able to ensure the individual envelopes correspond to consistent

partial types over submodels. As will be explained, this property of absorbing

forbidden configurations will then give sufficient leverage for a proof (by contra-

diction) of amalgamation within each color class. The right formalization for

our present arguments is the following. The one-step closure operator cl1 will

be defined in 2.4 below. The existence statement is Lemma 2.5.

Definition 1.5: Let Prn,k(λ, μ) = Pr0n,k(λ, μ) be the statement that:

There is G : [λ]<ℵ0 × [λ]<ℵ0 → μ such that:

if w ∈ [λ]n,

u = 〈uv : v ∈ [w]k〉, v ∈ [w]k =⇒ v ⊆ uv ∈ [λ]<ℵ0

and G � {(uv, cl1(uv)) : v ∈ [w]k} is constant,

then for some v ∈ [w]k we have w ⊆ cl1(uv).
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The saturation half of the argument, Theorem 4.1, involves an analysis of

model-theoretic amalgamation problems arising in ultrapowers with Definition

1.5 as a key ingredient. A key point is that for the hypergraphs in question

we may always take μ < λ, and in fact, the subscript k is tied to the cardinal

distance of λ and μ. The (λ, μ)-perfect (optimal) ultrafilters of [20] play an

important role, as will be explained in due course.

If failures of freeness, which is to say of covering, help with saturation,

when will existence of free sets yield omitted types? A priori, given a model

N = (λ,R) |= Tn,k, we cannot directly apply Theorem 1.B to omit a type,

because that theorem does not guarantee that the free set will occur on an R-

complete graph. The right analogue for the non-saturation half of the argument,

Conclusion 5.4, will be:

Lemma 1.6 (proved in §2): Suppose that n > k ≥ 2 and (λ, k, μ) → n. Then

there is a modelM of Tn,k of size ≥ λ, and λ elements of its domain 〈bα : α < λ〉,
such that writing

P =
{
w ∈ [λ]n : ( ∀u ∈ [w]k+1)(M |= R(bu))

}

we have that for any strong set mapping F : [λ]k → [λ]<μ, for some w ∈ P

(∀v ∈ [w]k)(w �⊆ F (v)).

For orientation, the reader may now wish to read the statement of Theorem

6.1, as well as of the Main Theorem 6.6. Keisler’s order is defined in §6. Further

background on Keisler’s order and saturation of ultrapowers appears in [16] and

in the introduction to [20]. Earlier sources are [10], [11].

We now turn to the proofs.

2. Key covering properties

In this section, we give the existence proof corresponding to Definition 1.5 above,

Lemma 2.5. We also prove Lemma 1.6 above. “Pr” abbreviates “property.”

Locally in this section, we will refer to the property from 1.5 as Pr0n,k(λ, μ)

to distinguish it from the weaker variant Pr1n,k(λ, μ) defined below. We will

establish results for both Pr0 and Pr1 in this section, although only Pr0 is

central for our proofs. The one-step closure operator will be defined in 2.4. (In

all later sections in the paper, Pr means Pr0, as will be stated in Convention

2.8.)
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Definition 2.1: Let Pr1n,k(λ, μ) be the statement that:

if N = (λ,R) |= Tn,k then we can find G : [λ]<ℵ0 → μ such that:

if w ∈ [λ]n, (w,R � w) is a complete hypergraph,

u = 〈uv : v ∈ [w]k〉, v ∈ [w]k =⇒ v ⊆ uv ∈ [λ]<ℵ0

and G � {(uv, cl1(uv)) : v ∈ [w]k} is constant,

then for some v ∈ [w]k we have w ⊆ cl1(uv).

So the only difference between 2.1 and 1.5 is the clause “(w,R � w) is a

complete hypergraph.” We focus on the stronger property Pr0, but Pr1 is

worth stating as it is natural for our setting, and fits well with Lemma 1.6.

We start by upgrading some properties of strong set mappings.4

Claim 2.2: Suppose (λ, �, μ+) �→ � + 1, witnessed by the set mapping

F0 : [λ]� → [λ]≤μ. Let F : [λ]� → [λ]≤μ be any function such that for all

u ∈ [λ]�,

(i) u ⊆ F (u),

(ii) F0(u) ⊆ F (u),

(iii) closure: for all v ∈ [F (u)]�, F (v) ⊆ F (u).

Then for all n > � and w ∈ [λ]n, there exists u ∈ [w]� such that w ⊆ F (u).

Proof. Let n > � be given. Choose w ∈ [λ]n and choose v ∈ [w]� such that

|w ∩F (v)| is maximal. (As w is finite, the maximum is well defined, and by (i),

it is nonzero.) If w ⊆ F (v) we are done. Else, suppose for a contradiction that

we may choose α ∈ w \ F (v). Let x = v ∪ {α}. As |x| = � + 1, there is y ∈ [x]�

such that F0(y) ∩ x �= ∅. As F0 is a set mapping and |x| = � + 1, this means

F0(y)∩ x = x \ y. Thus x \ y ⊆ F0(y) ⊆ F (y), the last inclusion by (ii). We are

assuming in (i) that y ⊆ F (y). We conclude x ⊆ F (y). A fortiori, α ∈ F (y).

Now recall that v ⊆ x, so v ∈ [F (y)]�. By our assumption (iii), F (v) ⊆ F (y).

Thus, remembering w from the beginning of the proof, F (v) ∩ w ⊆ F (y) ∩ w.

But we know α ∈ w, α /∈ F (v), and α ∈ F (y). So F (v) ∩ w � F (y) ∩ w,

contradicting our choice of v.

4 Note that in Claim 2.2, the proof would go through with the hypotheses that

(λ, �, μ) → � + 1, changing the range of the function to [λ]<μ. The statement is for

easy quotation in Claim 2.3.
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Claim 2.3: If (λ, �, μ+) �→ � + 1, then there is a strong set mapping

F : [λ]� → [λ]≤μ such that for any n ∈ [� + 1, ω) and any w ∈ [λ]n, there

is u ∈ [w]� with w ⊆ F (u).

Proof. Let F0 : [λ]� → [λ]≤μ be a set mapping witnessing (λ, �, μ+) �→ � + 1.

It suffices to build F satisfying the criteria of Claim 2.2. For each u ∈ [λ]�, let

A0
u = u ∪ F0(u). Then by induction on i < ω define

Ai+1
u = Ai

u ∪
⋃

{F0(v) : v ∈ [Ai
u]�}.

Each Ai
u is of size ≤ μ, so letting F (u) =

⋃
{Ai

u : i < ω} suffices.

Definition 2.4 (Content and closure): Suppose (λ, k − 1, μ+) �→ k. Let

F : [λ]k−1 → [λ]≤μ be given by Claim 2.3, in the case � = k − 1. Fix functions

〈Fi : i < μ〉 with Fi : [λ]k−1 → μ, so that for each u ∈ [λ]k−1, 〈Fi(u) : i < μ〉
lists F (u) without repetition. For x ⊆ λ not necessarily finite, we may now

define:

(1) The content of x:

cont(x) = {i < μ : for some v ∈ [w]k−1 and α ∈ x \ v we have Fi(v) = α}.

So cont(x) is finite if x is finite, and of cardinality |x| otherwise.

(2) The n-step closure of x: cl0(x) = x, and

cln+1(x) = cln(x) ∪ {Fi(v) : i ∈ cont( cln(x) ), v ∈ [cln(w)]k−1}.

Thus, if x ⊆ λ is finite, so is its n-step closure cln(x) for each finite n; and if

x is infinite, | cln(x)| = |x| for each n.

In what follows we will mainly use the one-step closure, cl1(x). Notice that

cont(x) asks for which indices i is it the case that Fi takes some (k−1)-element

subset of x to another element of x. To compute the 1-step closure, we then

apply any such Fi to all (k − 1)-element subsets of x.

With these results and definitions in hand we turn towards the existence

statements for saturation and non-saturation, Lemma 1.5 and Claim 1.6.

Lemma 2.5: Suppose (λ, k − 1, μ+) �→ k. Then Prn,k(λ, μ) holds.

Proof. Let F , 〈Fi : i < μ〉 be as in Definition 2.4. We define G(u1, u2) to code:

(1) otp(u1), otp(u2),

(2) {otp(α ∩ u1), otp(α ∩ u2)) : α ∈ u1},
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(3) {〈otp(α0 ∩ u1), otp(α1 ∩ u1), . . . , otp(αk−1 ∩ u1), i〉 : α0, . . . , αk−1 ∈ u1

with no repetition, αk−1 = Fi({α0, . . . , αk−2}) }.

(4) {〈otp(α0 ∩ u2), otp(α1 ∩ u2), . . . , otp(αk−1 ∩ u2), i〉 : α0, . . . , αk−1 ∈ u2

with no repetition, αk−1 = Fi({α0, . . . , αk−2}) } (this implies (3)).

As the sets involved are all finite, and there are at most μ functions Fi, the

range of G is contained in μ. (In fact, these conditions are somewhat more than

is needed.)

Suppose we are given w, ū as in the statement of Pr. That is,

w ∈ [λ]n, ū = 〈uv : v ∈ [w]k〉, v ∈ [w]k → v ⊆ uv ∈ [λ]<ℵ0 , and

G � {(uv, cl1(uv))} : v ∈ [w]k} is constant. By our choice of F , there is some

v∗ ∈ [w]k−1 such that w \ v∗ ⊆ F (v∗). Choose any two distinct elements

α �= β ∈ w \ v∗. Let vα = v∗ ∪ {α}, and let vβ = v ∪ {β}. Observe that

since 〈Fi(v∗) : i < μ〉 lists F (v∗) ⊇ w \ v∗ without repetition, there is some

i = i(α) < μ such that Fi(v∗) = α; fix this i for the next paragraph.

By our assumption, G(uvα , cl1(uvα)) = G(uvβ , cl1(uvβ )). Let f : uvα → uvβ

be a one-to-one order preserving map guaranteed by (1). Since by definition

vα ⊆ uvα , there exist distinct α0, . . . , αk−1∈uvα such that Fi({α0, . . . , αk−2}) =

αk−1, e.g. {α0, . . . , αk−2} = v∗ and αk−1 = α. This means i ∈ cont(uvα). Item

(3) tells us that Fi(f(α0), . . . , f(αk−2)) = f(αk−1). So again by definition

of cont, i ∈ cont(uvβ ). Note that {f(α0), . . . , f(αk−2)} need not be the set

v∗. However, to compute cl1(uvβ ), for every j ∈ cont(uvβ ) we apply Fj to every

element of [uvβ ]k−1, in particular to v∗. So Fi(v∗) ∈ cl1(cont(uvβ )), i.e. α ∈ uvβ .

Since α, β were arbitrary distinct elements of w \ v∗, we have shown that for

any γ ∈ w \ v∗, γ ∈ cl1(uvβ ). Since v∗ ⊆ vβ ⊆ uvβ ⊆ cl1(uvβ ) by definition, we

conclude w ⊆ cl1(uvβ ), which completes the proof.

Observation 2.6:

(1) If λ1 ≥ λ2 ≥ μ2 ≥ μ1 and i ∈ {0, 1}, then

Prin,k(λ1, μ1) =⇒ Prin,k(λ2, μ2).

(2) Pr0n,k(λ, μ) =⇒ Pr1n,k(λ, μ).

Proof. (1) If i = 1, let M1 = (λ1, R) and let M2 = M1 � λ2 = (λ2, R). If

G1 : [λ1]<ℵ0 × [λ1]<ℵ0 → μ1 is suitable, then G2 = G1 � [λ2]<ℵ0 × [λ2]<ℵ0 is

suitable, and has range ⊆ μ1 ⊆ μ2. (2) is immediate.

Now we turn to freeness and non-saturation.
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Claim 2.7: Suppose (λ, k, μ) → n and k < n. Then for any F : [λ]k → [λ]<μ,

e.g. F a strong set mapping, there is w ∈ [λ]n such that for all u ∈ [w]k,

w �⊆ F (u).

Proof. If F is a set mapping, this is immediate. If not, identify λ with λ \ {0}
and define G : [λ]k → [λ]<μ by: G(u) = (F (u) \ u) ∪ {0} [so that G(u) �= ∅].

(Alternately, first assume without loss of generality that F (u) � u for all

u ∈ [λ]k, then define G(u) = F (u) \ u.) Then G is a set mapping, so there

is some w ∈ [λ]n such that for all u ∈ [w]k, w ∩ G(u) = ∅. Thus for each

u ∈ [w]k, if w ∩ F (u) �= ∅ then w ∩ F (u) ⊆ u. Since |u| = k, this means

|w ∩ F (u)| ≤ k < n = |w| so w �⊆ F (u) as desired.

We now prove Lemma 1.6.

Proof of Lemma 1.6. Let us define a model N = (λ,RN ) by:

RN = {(α0, . . . , αk) : αi < λ and i1 < i2 ≤ k =⇒ αi1 �= αi2 mod n

and i1 < i2 ≤ k =⇒ (∃β)(αi1 < nβ ≤ αi2 ∨ αi2 < nβ ≤ αi1)}.

By definition RN is irreflexive, symmetric, and (k + 1)-ary. Let us first show

that if w ∈ [λ]n+1 then w is not a complete RN -hypergraph. If |w| = n + 1, for

some α1 �= α2 ∈ w we have α1 = α2 mod n. Choose u ⊆ w such that α1 ∈ u,

α2 ∈ u, and |u| = k + 1. Then by definition R cannot hold on {α : α ∈ u}, so

w cannot be a complete R-hypergraph. So N is a submodel of some N ′ |= Tn,k

of cardinality λ.

Second, let us show that if F : [λ]k → [λ]<μ is a given strong set mapping,

then for some w ∈ P we have (∀v ∈ [w]k)(w �⊆ F (v)). First let F1 : [λ]k → [λ]<μ

be defined by: if v = {α0, . . . , αk−1} ∈ [λ]k then

F1(v) ={β : for some i0, . . . , ik−1 < n and γ < λ

we have (β < nγ + n) ∧ (γ < nβ + n)

and γ ∈ F ({nα0 + i0, . . . , nαk−1 + ik−1})}.

Why is F1 : [λ]k → [λ]<μ? Recall n is fixed at the start of the proof. So given

v, we first choose i0, . . . , ik−1 (there are finitely many choices) and then choose

those γ ∈ F ({nα0 + i0, . . . , nαk−1 + ik−1} (there are < μ choices) which satisfy

an additional criterion. So F1 : [λ]k → [λ]<μ. As we have assumed (λ, k, μ) → n,

by Claim 2.7 there is w1 = {α∗
i : i < n} such that α∗

0 < · · · < α∗
n−1 < λ and for

all v ∈ [n]k, w1 �⊆ F1({α∗
� : � ∈ v}).
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Define βi = nα∗
i + i for i < n and let w2 = {βi : i < n}, and let us show

w2 is as required for F . First, trivially |w2| = n, as |w1| = n. Second, by

definition of RN above, w2 is a complete RN -hypergraph. Third, let us show

that if u2 ∈ [w2]k and w2 ⊆ F (u2) then we get a contradiction. Let v ∈ [n]k be

such that u2 = {βi : i ∈ v}. Then u1 := {α∗
i : i ∈ v} ∈ [w1]k and w1 ⊆ F1(u1).

[This is because for each α∗
i , i < n we presently have βi ∈ F (u) so there is an

element

γ ∈ F ({nα∗
i + i : i ∈ v}) = F (β0, . . . , βk−1)

such that (α∗
i < nγ + n) ∧ (γ < nα∗

i + n), namely γ = βi, which belongs to

F (β0, . . . , βk−1) since F is a strong set mapping.] This contradicts the choice

of w1. We have shown that for all u ∈ [w2]k, w2 �⊆ F (u), so w2 is as required

which completes the proof of Lemma 1.6.

Convention 2.8: In the remainder of the paper,

(1) “Pr” used without a superscript means Pr0,

(2) all theories are complete and countable unless otherwise stated.

3. Separation of variables and optimal ultrafilters

In this section we explain the advances from [15] and [20], Theorems 3.F and

3.G below, which frame the rest of the proof. The gold standard for saturation is

the following class of ultrafilters, called good, introduced by Keisler [9]. Keisler

proved that good ultrafilters exist, assuming GCH, and Kunen eliminated the

assumption of GCH [13].

Definition 3.1: A filter D on λ is called good if every monotonic f : [λ]<ℵ0 → D
has a multiplicative refinement. In other words, if f satisfies u ⊆ v implies

f(v) ⊆ f(u), then there is g : [λ]<ℵ0 → D such that g(u) ⊆ f(u) for all finite u

and g(u ∪ v) = g(u) ∩ g(v) for all finite u, v.

Fact 3.2 (Keisler [10]): If D is a regular ultrafilter on λ, then D is good if

and only if for every complete countable theory T and any M |= T , Mλ/D is

λ+-saturated.
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We will informally say “D is good for T ” to mean that for all5 M |= T , Mλ/D
is λ+-saturated. Thus, D is good precisely when it is good for every (complete,

countable) T . For more on this correpondence, see [20] §2.

In this paper a main object is to show certain regular ultrafilters are good for

some of the Tk+1,k while not for others. Our first point of leverage for seeing

gradations in goodness will be from [15]. Towards this, let us set notation for

Boolean algebras arising as the completion of the Boolean algebra generated by

α (usually, 2λ) independent partitions of size μ.

Definition 3.3: For an infinite cardinal μ and an ordinal α:

(1) Let FIμ(α) denote the set of partial functions from α to μ with finite

domain.

(2) B0 = B0
α,μ is the Boolean algebra generated by:

{xf : f ∈ FIμ(α)} freely subject to the conditions that:

(a) xf1 ≤ xf2 when f1 ⊆ f2 ∈ FIμ(α).

(b) xf ∩ xf ′ �= 0 iff f, f ′ are compatible functions.

(3) B1
α,μ is the completion of B0

α,μ.

(4) When B is a Boolean algebra, B+ denotes B \ {0}.

Convention 3.4: We will assume that giving B determines α, μ, and a set of

generators 〈xf : f ∈ FIμ(α)〉.

Fact 3.5: The existence ofB0
2λ,μ, thus its completion is by Engelking–Karlowicz

[3]. See also Fichtenholz and Kantorovich[5], Hausdorff [6], or Shelah [27] Ap-

pendix, Theorem 1.5.

The next definition was used in Theorem 3.F, i.e. [15] Theorem 6.13. It

allows us to involve arbitrary ultrafilters D∗ on complete Boolean algebras in

the construction of regular ultrafilters D.

Definition 3.6 (Regular ultrafilters built from tuples, from [15] Theorem 6.13):

Suppose D is a regular ultrafilter on I, |I| = λ. We say that D is built from

(D0,B,D∗) when:

(1) D0 is a regular, |I|+-excellent filter on I

(for the purposes of this paper, it is sufficient to use regular and good),

(2) B is a Boolean algebra,

5 When D is regular, if M ≡ N in a countable signature then Mλ/D is λ+-saturated if

and only if Nλ/D is λ+-saturated, Keisler [10] Corollary 2.1a.
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(3) D∗ is an ultrafilter on B,

(4) there exists a surjective homomorphism j : P(I) → B such that:

(a) D0 = j−1({1B}),

(b) D = {A ⊆ I : j(A) ∈ D∗}.

It was verified in [15] Theorem 8.1 that whenever μ ≤ λ and B = B1
2λ,μ,

there exists a regular good D0 on λ and a surjective homorphism j : P(I) → B

such that D0 = j−1(1). Thus, Definition 3.6 is meaningful.

Suppose now that D is built from (D0,B,D∗), witnessed by j. Consider

a complete countable T and M |= T . Suppose N � Mλ/D, |N | = λ and

p ∈ S(N), where p = 〈ϕα(x, aα) : α < λ〉. (As ultraproducts commute with

reducts, we may assume without loss of generality that T = T eq and so that

each aα is a singleton.) For each finite u ⊆ λ, the �Los map �L sends u �→ Bu

where

Bu := {t ∈ I : M |= (∃x)
∧
α∈u

{R(x, aα[t])}.

Let bu = j(Bu). The key model-theoretic property of the sequence

〈bu : u ∈ [λ]<ℵ0〉 in B is captured by the following definition.

Definition 3.7 (Possibility patterns, [15] Definition 6.1): Let B be a Boolean

algebra, normally complete, and ϕ̄ = 〈ϕα : α < λ〉 a sequence of formulas. Say

that b is a (λ,B, T, ϕ̄)-possibility when:

(1) b = 〈bu : u ∈ [λ]<ℵ0〉 is a sequence of elements of B+,

(2) if v ⊆ u ∈ [λ]<ℵ0 then bu ⊆ bv,

(3) if u∗ ∈ [λ]<ℵ0 and c ∈ B+ satisfies

(u ⊆ u∗ =⇒ ((c ≤ bu) ∨ (c ≤ 1 − bu))) ∧
(
α ∈ u∗ =⇒ c ≤ b{α}

)
,

then we can find a model M |= T and aα ∈ M for α ∈ u∗ such that for

every u ⊆ u∗,

M |= (∃x)
∧
α∈u

ϕα(x; aα) iff c ≤ bu.

If Δ is any set of formulas, we say b is a (λ,B, T,Δ)-possibility if it is a

(λ,B, T, ϕ̄)-possibility for some sequence ϕ̄ of formulas from Δ.

In some sense, 3.7 says that the “Venn diagram” of the elements of b̄ accu-

rately reflects the intersection patterns of the given sequence of formulas in the

monster model. We will often keep track of a full type p ∈ S(N), but recall
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that it suffices to deal with ϕ-types for each ϕ because saturation of ultrapowers

reduces to saturation of ϕ-types, [22] Theorem 12.

Definition 3.8 (Moral ultrafilters on Boolean algebras, [15] Definition 6.3): We

say that an ultrafilter D∗ on the Boolean algebra B is (λ,B, T,Δ)-moral when

for every (λ,B, T,Δ)-possibility b = 〈bu : u ∈ [λ]<ℵ0〉 which is a sequence of

elements of D∗, there is a multiplicative D∗-refinement b
′

= 〈b′
u : u ∈ [λ]<ℵ0〉,

i.e.

(1) u1, u2 ∈ [λ]<ℵ0 =⇒ b′
u1

∩ b′
u2

= b′
u1∪u2

,

(2) u ∈ [λ]<ℵ0 =⇒ b′
u ⊆ bu,

(3) u ∈ [λ]<ℵ0 =⇒ b′
u ∈ D∗.

We write (λ,B, T )-moral in the case where Δ is all formulas of the language.

The following key theorem of [15] connects “morality” of D∗ to goodness of

D in the natural way.

Theorem 3.F (“Separation of variables”, Malliaris and Shelah [15] Theorem

5.11): Suppose that D is a regular ultrafilter on I built from (D0,B,D∗). Then

the following are equivalent:

(A) D∗ is (|I|,B, T )-moral.

(B) D is good for T .

Theorem 3.F helps with analyzing the intermediate classes in Keisler’s order,

as shown in [15]. It also focuses the regular ultrafilter construction problems

essential to Keisler’s order on to the problem of constructing ultrafilters D∗
on complete Boolean algebras, where one has a priori much more freedom and

is not bound by regularity. Much recent work has focused on building such

D∗. In the paper [20], which is foundational for the present argument, we built

a powerful family of so-called optimal ultrafilters over any suitable tuple of

cardinals (λ, μ, θ, σ), along with their simpler avatars, the perfect ultrafilters.

In the present paper, we use θ = σ = ℵ0 so the criterion of “suitable” reduces to

requiring that λ > μ ≥ ℵ0. Given the transparency of the theories involved, we

have written the present proof to use only the more easily quotable definition

of “perfect.”

Definition 3.9: Let b = 〈bu : u ∈ [λ]<ℵ0〉 be a sequence of elements of

B = B1
α,μ. We say X is a support of b in B when X ⊆ {xf : f ∈ FIμ(α)} and

for each u ∈ [λ]<ℵ0 there is a maximal antichain of B consisting of elements of

Sh:1050



208 M. MALLIARIS AND S. SHELAH Isr. J. Math.

X all of which are either ≤ bu or ≤ 1 − bu. When a support supp(b̄) is given,

write

B+
supp(b̄),μ

to mean B+
α∗,μ

where α∗ ≤ α is minimal such that
⋃
{dom(f) : xf ∈ supp(b)} ⊆ α∗.

Definition 3.10 (Perfect ultrafilters, [20] Definition 9.15): We say that an ultra-

filter D∗ on B = B1
2λ,μ is (λ, μ)-perfect when (A) implies (B):

(A) 〈bu : u ∈ [λ]<ℵ0〉 is a monotonic sequence of elements of D∗
and supp(b̄) is a support for b̄ of cardinality ≤ λ, see 3.9, such that

for every α < 2λ with
⋃
{dom(f) : xf ∈ supp(b)} ⊆ α,

there exists a multiplicative sequence

〈b′
u : u ∈ [λ]<ℵ0〉

of elements of B+ such that

(a) b′
u ≤ bu for all u ∈ [λ]<ℵ0 ,

(b) for every c ∈ B+
α,μ ∩D∗, no intersection of finitely many members

of {b′
{i} ∪ (1 − b{i}) : i < λ} is disjoint to c.

(B) There is a multiplicative sequence b̄′ = 〈b′
u : u ∈ [λ]<ℵ0〉 of elements of

D∗ which refines b̄.

Definition 3.11: Suppose D is built from (D0,B,D∗) where D0 is a regular filter

on I, |I| = λ, B = B1
2λ,μ and D∗ is (λ, μ)-perfect. In this case we say D is

(λ, μ)-perfected.

Theorem 3.G ([20] Theorem 9.18 and Conclusion 9.20): For any infinite λ > μ,

there exists a regular, (λ, μ)-perfect ultrafilter on B1
2λ,μ. Moreover, there exists

a (λ, μ)-perfected, thus regular, ultrafilter on λ which is not good for any non-

simple theory, in fact, not μ++-good for any non-simple theory.

4. The saturation condition

In this section we prove that whenever n, k, λ, μ are such that the property

Prn,k(λ, μ) from 1.5 above holds, then any (λ, μ) perfect(ed) ultrafilter will be

able to handle the theory Tn,k.

Theorem 4.1: Suppse we are given k < n, μ < λ, D, and T , where:

(1) λ, μ, n, k are such that Prn,k(λ, μ) holds, from 2.5.
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(2) T = Tn,k.

(3) D is a (λ, μ)-perfected ultrafilter on I, |I| = λ.

Then D is good for T , i.e. for any M |= T , M I/D is λ+-saturated.

Proof. To begin let us fix several objects.

• The assumption on D means we may fix D0, B = B1
2λ,μ, j and a

(λ, μ)-perfect ultrafilter D∗ on B such that D is built from (D0,B,D∗)

via j.

• The fact that D is regular means we may choose any M |= Tn,k as the

index model. For convenience, suppose |M | > λ.

• Fix a lifting from M I/D to M I , so that for each a ∈ M I/D and each

index t ∈ I the projection a[t] is well defined. If c̄ = 〈ci : i < m〉 ∈
m(M I/D), then we use c̄[t] to denote 〈ci[t] : i < m〉.

• Fix a partial type p = p(x) over A ⊆ M I/D, |A| ≤ λ which we will try

to realize. Without loss of generality, p is nonalgebraic and M I/D � A ≺
M I/D. Then, by our choice of theory, it suffices to consider p ∈ SΔ(A),

|A| ≤ λ where Δ = {R(x, x1, . . . , xk),¬R(x, x1, . . . , xk)}.

With these objects in hand let us proceed with the analysis.

(4.1) Let 〈ai : i < λ〉 list the elements of A without repetition.

(4.2) Let 〈vβ : β < λ〉 enumerate [λ]k without repetition.

We will generally use u, v, w ⊆ λ for sets of i’s and s ⊆ λ for sets of β’s. When

w ∈ nλ is a finite sequence or a finite set (which, for this purpose, we consider

as a sequence, in increasing order), let āw mean 〈ai : i ∈ w〉. Then for some

function t : λ → {0, 1}, (4.2) induces an enumeration of p as

(4.3) p = 〈R(x, āvβ )t(β) : β < λ〉.

Recall that here ϕ0 = ¬ϕ, ϕ1 = ϕ. For each s ∈ Ω := [λ]<ℵ0 , we will denote

the set of indices for vertices appearing in {R(x, āvβ )t(β) : β ∈ s} as follows:

(4.4) vert(s) =
⋃

{vβ : β ∈ s}.

In the other direction, let the index operator ind accept a finite set of indices

for elements of A and return the relevant indices for formulas in the type

(4.5) ind(u) = {β < λ : v ∈ [u]k and vβ = v}.

As we assumed the list (4.2) was without repetition, ind : [λ]<ℵ0 → [λ]<ℵ0 .
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Now for each s ∈ Ω, the �Los map �L: Ω → D sends s �→ Bs where

(4.6) Bs := {t ∈ I : M |= (∃x)
∧
β∈s

R(x, āvβ [t])t(β)}.

Define bs = j(Bs). This gives a possibility pattern for T = Tn,k (Definition

3.7):

(4.7) b̄ = 〈bs : s ∈ Ω〉.

With this setup, the strategy for the remainder of the proof will be to construct a

sequence 〈b′
s : s ∈ Ω〉 which, along with b̄, satisfies the hypotheses of Definition

3.10(A). Then 3.10(B) will guarantee that b̄ has a multiplicative refinement in

B and thus, by separation of variables, that D is good for T . We will proceed

as follows. First, we build an appropriate support for b̄. Second, we use this

data to define associated equivalence relations. Third, we define the sequence

b̄′. It will be immediate from the definition that this sequence is multiplicative

and refines b̄ on singletons. Fourth, we show that the sequence b̄′ is not trivial,

i.e. it satisfies 3.10(A)(b). Finally, we show that b̄′ is a refinement of b̄, and

thus satisfies 3.10(A)(a).

Our first task is to choose an appropriate support for b̄ in the sense of 3.9.

Following an idea from [18], whenever i, j ∈ λ let

(4.8) Aai=aj := {t ∈ I : ai[t] = aj [t]} and aai=aj := j(Aai=aj ).

For each i < λ let F{i} be the set of all f ∈ FIμ(2λ) such that for some j ≤ i,

both (4.9) and (4.10) hold:

(4.9) xf ≤ aai=aj ;

(4.10) for all k < j, xf ∩ aai=ak
= 0.

For each finite u ⊆ λ, define Fu to be
⋂
{F{i} : i ∈ u}. Note that each Fu is

upward closed, i.e. f ∈ Fu and g ⊇ f implies g ∈ Fu. For each s ∈ Ω, the

benefit of working with elements of Fvert(s) will be that we may consider the

partial function i �→ ρi(f) on FIμ(2λ) where

(4.11) ρi(f) = min{j ≤ i : xf ≤ aai=aj}.

The key point is that if f ∈ Fvert(s) and i ∈ vert(s) and ρi(f) = j, then for no

f ′ ⊇ f does there exist j′ < j such that xf ′ ≤ aai=aj′ . We will refer to this

property by saying that for each i ∈ s, ρi is “s-accurate.”
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As a result, for each choice of s ∈ Ω and f ∈ Fvert(s) we may naturally collect

all the “active” indices by mapping

(4.12) (s, f) �→ w∗
s,f := {j ≤ i : for some i ∈ vert(s), ρi(f) = j} ∪ vert(s).

Recalling the one-step closure operator cl1 from 2.4 above, it will also be useful

to keep track of the slightly larger, but still finite, set

(4.13) (s, f) �→ ws,f := {j ≤ i : for some i ∈ cl1(w∗
s,ζ), ρi(f) = j} ∪ cl1(w∗

s,ζ).

Naming both w∗
s,f and ws,f sets the stage for the application of G from 2.5

towards the end of the proof. The map (4.13) is really like a finite closure

operator: for each s ∈ Ω and f ∈ Fvert(s), we have that vert(s) ⊆ ws,ζ ∈ [λ]<ℵ0 ,

f ∈ Fws,f
, and wind(ws,f ),f = ws,f . Moreover, if f ∈ Fvert(s) then f ∈ Fws,f

.

Notice also that

(4.14) for any s ∈ Ω and any c ∈ B+, there is f ∈ Fvert(s) with xf ≤ c.

Why? Recall that for a, c ∈ B+, we say that c supports a when either c ≤ a

or c ≤ 1 − a. Without loss of generality, c supports bs. Since vert(s) is finite,

it will suffice to prove that for a given i ∈ vert(s) we can find f such that

xf ≤ c and f ∈ F{i}. As the generators are dense in the completion, there is

f ∈ FIμ(2λ) with xf ≤ c, and (4.9) trivially holds for f in the case j = i. If

(4.10) does not hold in the case j = i, there are i1 < i and f1 ⊇ f such that

(4.9) holds for f1 in the case j = i1. Since the ordinals are well ordered, after

iterating this for finitely many steps we find j = ik and fk ⊇ · · · ⊇ f1 ⊇ f for

which (4.10) also holds. This proves (4.14).

We need one more ingredient to construct the support: the partitions should

decide not only equality but also the formulas R on elements from ws,ζ . Towards

this, for each u ∈ [λ]k+1, write

(4.15) aR(āu) = j( {t ∈ I : M |= R(āu)}).

We may also say that 1 − aR(x,āv) = a¬R(x,āv) and 1 − aR(āu) = a¬R(āu),

naturally defined. We may now state a definition. There is a component of

support and a component of coherence across all s ∈ Ω.

(4.16)

f̄ = 〈 f̄s = 〈(fs,ζ , ws,ζ) : ζ < μ〉 : s ∈ Ω〉 is a good support for b̄ when:

(1) for each s ∈ Ω,

(a) for each ζ < μ, f = fs,ζ ∈ Fvert(s),
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(b) for each ζ < μ, ws,ζ = ws,fs,ζ , which is well defined by (a) and

(4.13),

(c) the sequence 〈xfs,ζ : ζ < μ〉 is a maximal antichain of B supporting

each element of the set6

{bs′ : s′ ⊆ s} ∪ {aR(āu) : u ∈ [ws,ζ ]k+1},

(2) for each s, s′ ∈ Ω with s′ ⊆ s, f̄s refines f̄s′ ,

(3) for every finite X ⊆
⋃
{dom(fs,ζ) : s ∈ Ω, ζ < μ} and every s ∈ Ω, there

is s∗ ∈ Ω such that s ⊆ s∗ and ζ < μ =⇒ X ⊆ dom(fs∗,ζ).

One way of building a good partition is to miniaturize the argument from [20],

as follows. First, we address (1)(a)+(c). For each s ∈ Ω, we try to choose

fs,ζ by induction on ζ < μ+ such that 0 ∈ dom(fs,ζ). Arriving at ζ, suppose

we have some remaining unallocated c ∈ B+, i.e. a nonzero c disjoint to⋃
{xfs,γ : γ < ζ}. Without loss of generality, c supports bs. By (4.14), we

may choose f ∈ Fvert(s) so that xf ≤ c. Condition (1)(c) asks that xf also

support each element of a finite set, so without loss of generality (by taking

intersections) we may assume (c) is satisfied. This completes the inductive

step. As no antichain of B has cardinality greater than μ, the construction will

stop at an ordinal < μ+, but as 0 ∈ dom(fs,ζ) for each ζ the ordinal is ≥ μ.

Without loss of generality the sequence is indexed by μ. Then (1)(b) holds by

(4.13).

To ensure conditions (2) and (3), we refine the partitions just obtained. Let

〈s� : � < λ〉 list Ω. We update fs� = 〈fs�,ζ : ζ < μ〉 by induction on � < μ as

follows. Arriving at �, if (∃k < �)(s� ⊆ sk) then let k(�) = min{k < � : s� ⊆ sk}
and let f s� = f sk . If there is no such j, we choose fs� such that it refines fsk

(i.e. every fs�,ζ extends fsk,ζ for some ζ < μ) whenever k < � and sk ⊆ s�.

There are at most 2|s�| < ℵ0 such j so this can be done.

At the end of this process, if necessary, we may re-index the partitions so

that they are of order type μ. By construction, for each s ∈ Ω and ζ < μ the

set ws,ζ is well defined by (1)(b). This completes the construction of a good

support for b̄.

(4.17) For the remainder of the proof, we fix a good support f̄ for b̄.

(4.18) Fix V ⊆ 2λ, |V| ≤ λ such that
⋃

{dom(fu,ζ) : u ∈ Ω, ζ < μ} ⊆ V .

6 By condition (1)(a), {aai=aj : i, j ∈ ws,ζ} are implicitly also here.
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Finally, for each s ∈ Ω and each ζ < μ, define7

(4.19) Gs,ζ to be the set of functions g = gs,ζ : ind(ws,ζ) → {0, 1} such that:

(a) if xfs,ζ ≤ bs, then for all β ∈ s, gs,ζ(β) = t(β),

(b) if γ ∈ ind(ws,ζ), i �= j ∈ vγ and ρi(fs,ζ) = ρj(fs,ζ), then gs,ζ(γ) = 0,

(c) if β �= γ ∈ ind(ws,ζ) and {ρi(fs,ζ) : i ∈ vγ} = {ρi(fs,ζ) : i ∈ vβ}, then

gs,ζ(γ) = gs,ζ(β),

(d) if w ∈ [ws,ζ ]n and xfs,ζ ≤ aR(āu) for each u ∈ [w]k+1, then gs,ζ � ind(w)

is not constantly 1.

Regarding condition (a), recall that by construction in (4.16)(1)(c), xfs,ζ decides

bs′ for all s′ ⊆ s and it likewise decides aR(āu) for each u ∈ [ws,ζ ]k+1. To see

that Gs,ζ �= ∅ simply involves unwinding the definition. There are two cases.

If xfs,ζ ≤ 1 − bs, then Gs,ζ contains the function which is constantly 0. If

xfs,ζ ≤ bs, then recalling (4.15) we have that if there is u ∈ [ws,ζ ]k+1 such that

each v ∈ [u]k is vβ for some β ∈ s, then xfs,ζ ≤ 1 − aR(āu). Thus, we may set

g(γ) = 1 if and only if γ ∈ ind(w∗
s,ζ) and {ρi(fs,ζ) : i ∈ vγ} = {ρi(fs,ζ) : i ∈ vβ}

for some β ∈ s. (Call such a g “minimal,” since the only edges it has are

those required by (a) and then extended to colliding indices by (c).) Note that

since each ρi is s-accurate, it is sufficient to give the behavior of g on the set

{ρi(fs,ζ) : i ∈ ws,ζ}, as the condition of s-accurate and the definition (4.15)

ensure that if u, u′ ∈ [ws,ζ ]k+1 and {ρi(fs,ζ) : i ∈ u} = {ρi(fs,ζ) : i ∈ u′}
then xfs,ζ ≤ aR(āu) if and only if xfs,ζ ≤ aR(āu′ ). So indeed Gs,ζ �= ∅. For the

remainder of the proof,

(4.20) for each s ∈ Ω and ζ < μ, fix gs,ζ ∈ Gs,ζ (w.l.o.g. minimal),

(4.21)

for each s ∈ Ω and ζ < μ, let g∗s,ζ be the restriction of gs,ζ to ind(w∗
s,ζ).

We will informally refer to these objects gs,ζ as “floating types.”

7 Informally, elements of Gs,ζ specify consistent R-types over the parameters with indices

in ind(ws,ζ). Edges only hold on distinct tuples since R is irreflexive. Given two tuples

which “collapse” to the same values, either both or neither have an edge. The type

extends p � s if possible, that is, if the �Los map allows it. In the case where j is the

identity so the elements xfs,ζ are subsets of I, the reader may think of g∗s,ζ as coding an

R-type over {ai[t] : i ∈ ws,ζ} which is consistent for any t ∈ ws,ζ . We will essentially

arrive at this picture towards the end of the proof; we will find a set C such that (among

other things) j(C) ⊆ xfs,ζ , choose t ∈ C and consider the type given by g∗s,ζ at t.
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Our second task is to organize the data already obtained in terms of a family

of equivalence relations. This will elide some of the background noise and so

give us a cleaner picture of any barriers to realizing the type. By hypothesis (1)

of the Theorem, Prn,k(λ, μ) holds. Thus, identifying λ with the set of indices

for elements of A as in (4.1), let us fix G : [λ]<ℵ0 × [λ]<ℵ0 → μ such that:

for each w ∈ [λ]n and each sequence 〈uv : v ∈ [w]k〉 of fi-

nite subsets of λ such that v ∈ [w]k implies v ⊆ uv and

G � {(uv, cl1(uv)) : v ∈ [w]k} is constant, there is v ∈ [w]k

such that w ⊆ cl1(uv).

Let E be the equivalence relation on W = Ω × μ× μ given by:

(4.22) E((s, ζ, ξ), (s′, ζ′, ξ′)) if and only if

(a) ζ = ζ′ and ξ = ξ′,
(b) otp(s) = otp(s′), otp(ind(ws,ζ)) = otp(ind(ws′,ζ)) and the order pre-

serving map from ind(ws,ζ) onto ind(ws′,ζ) takes s to s′ and ind(w∗
s,ζ)

onto ind(w∗
s′,ζ),

(c) otp(vert(s)) = otp(vert(s′)), otp(ws,ζ) = otp(ws′,ζ), otp(w∗
s,ζ) =

otp(w∗
s′,ζ) and the order preserving map from ws,ζ onto ws′,ζ takes w∗

s,ζ

to w∗
s′,ζ , and vert(s) to vert(s′),

(d) otp(dom(fs,ζ)) = otp(dom(fs′,ζ)),

(e) if γs ∈ dom(fs,ζ), γs′ ∈ dom(fs′,ζ) and otp(γs ∩ dom(fs,ζ)) =

otp(γs′ ∩ dom(fs′,ζ)) then fs,ζ(γs) = fs′,ζ(γs′),

(f) 〈gs,ζ(β) : β ∈ ind(ws,ζ)〉 = 〈gs,ζ(β) : β ∈ ind(ws,ζ)〉,
(g) G(w∗

s,ζ , cl1(w∗
s,ζ)) = G(w∗

s′,ζ , cl1(w∗
s,ζ)) = ξ. Note that cl1(w∗

s,ζ) ⊆ ws,ζ .

Since the sets and ordinals in question are all finite, but ζ < μ may vary, it

is easy to see that there are precisely μ equivalence classes of E. Choose an

enumeration of these classes as

(4.23) W̄ = 〈Wε : ε < μ〉, so W =
⋃

εWε.

Fix a representative function

(4.24) h : μ → W such that h(ε) ∈ Wε.

In the rest of the proof, we will often denote the values of ζ, ξ at h(ε) by

ζh(ε), ξh(ε) respectively. The next definition will be central. For each β < λ,

ε < μ let us collect all elements of Ω which occur as part of an ε-template tuple
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(s, ζ, ξ) where β ∈ s and xfs,ζ ≤ bs:

(4.25) Uβ,ε = {s : (s, ζh(ε), ξh(ε)) ∈ Wε, β ∈ s, xfs,ζh(ε)
≤ bs}.

A useful property of these sets is the following: for each ε < μ,

(4.26) if s ∈ Uβ,ε and s′ ∈ Uβ′,ε then G(ws,ζh(ε)
) = G(ws′,ζh(ε)

) = ξh(ε).

This completes our construction of the equivalence relations. We now have the

necessary scaffolding for the third task.

Our third task is to define the sequence b̄′. Recalling V from (4.18), fix α < 2λ

so that V ⊆ α. Without loss of generality, α ≥ λ. We now copy the functions

fs,ζ onto a new domain where new partitions will allow us to code additional

information.8 Let Codem denote some fixed one-to-one m-fold coding function

from λm to λ. Let tv denote the truth value of an expression (either 0 or 1).

(4.27) For each s ∈ Ω, ζ < μ define f∗ = f∗
s,ζ as follows.

(1) dom(f∗) ⊆ α · 2 +λ · 5 is finite, range(f∗) ⊆ μ, and f∗ is determined by

the remaining conditions,

(2) if γ ∈ dom(fs,ζ), then

f∗(α + γ) = Code2(fs,ζ(γ), otp(γ ∩ dom(fs,ζ))),

(3) if γ = 〈i, j〉 ∈ range(Code2(ws,ζ × ws,ζ)), then

f∗(α · 2 + γ) = tv(ρi(fs,ζ) = ρj(fs,ζ)),

(4) if γ = 〈i1, . . . , ik〉 ∈ range(Codek(ws,ζ × · · · × ws,ζ)), then

f∗(α · 2 + λ + γ) = tv(xfs,ζ ≤ bs),

(5) if γ = 〈i0, . . . , ik〉 ∈ range(Codek+1(ws,ζ × · · · × ws,ζ)), then

f∗(α · 2 + λ · 2 + γ) = tv(xfs,ζ ≤ aR(ā〈i0,...,ik〉)),

(6) if γ ∈ ws,ζ , then

f∗(α · 2 + λ · 3 + γ) = Code3(tv(γ ∈ vert(s)), otp(γ ∩ vert(s)), otp(γ ∩ ws,ζ)),

(7) if γ ∈ ind(ws,ζ), then

f∗(α · 2 + λ · 4 + γ) = Code4(tv(γ ∈ s), otp(γ ∩ s), otp(γ ∩ ind(ws,ζ)), gs,ζ(γ)).

8 Compare the usual construction of good ultrafilters.
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This completes the definition (4.27). Of course, this definition could be made

more efficient and the domain smaller (say, by more judicious use of Codem).

Finally,

(4.28) let c̄ = 〈cε : ε < μ〉 be given by cε = x{(α+α+λ·5,ε)}}.

This new antichain will help us to divide the work in the next definition. Notice

that any of its elements will have nonzero intersection with any of the elements

from B+
α+α+λ·5.

We have all the ingredients to define b̄′. For each β < λ, let

b′
{β} =

(⋃
{cε ∩ xf∗

s,ζh(ε)
∩ xfs,ζh(ε)

: ε < μ, s ∈ Uβ,ε}
)
∩ b{β}.(4.29)

Let us justify that (4.29) is not zero: for each ε < μ such that Uβ,ε �= ∅, and for

each s ∈ Uβ,ε,

cε ∩ xf∗
s,ζh(ε)

∩ xfs,ζh(ε)
∩ b{β} > 0.

This is because domains of the functions corresponding to xfs,ζh(ε)
, cε and

xf∗
s,ζh(ε)

are mutually disjoint, and adding b{β} is allowed by the definition

of Uβ,ε. (Recall that by monotonicity, β ∈ s implies bs ≤ b{β}.) For each

s ∈ Ω \ ∅, define

b′
s =

⋂
{b′

{β} : β ∈ s}.(4.30)

Let b′
∅ = 1B. This completes the definition of the sequence b̄′:

(4.31) b̄′ = 〈b′
u : u ∈ Ω〉.

By construction, b̄′ is multiplicative, and b′
s ≤ bs when |s| = 1.

Our fourth task is to prove that the sequence b̄′ defined in (4.31) satisfies

Definition 3.10(A)(b) along with b̄ and the choice of support f̄ determined

earlier in the proof (i.e. α∗ of Definition 3.9 may be taken to be the α of the

present proof). Compare this to the ultrafilter existence proof of [20].

As the generators are dense in the completion, it will suffice to show that for

any f ∈ FIμ(α), any finite I ⊆ λ, and any a ∈ D∗ such that supp(a) ⊆ α,

(4.32) a ∩
⋂

{b′
{β} ∪ (1 − b{β}) : β ∈ I} > 0.

Taking intersections if necessary, we may write I as the disjoint union of I0 and

I1 where for each β ∈ I0, a ≤ 1−b{β} and for each β ∈ I1, a ≤ b{β}. Recalling
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that b′
s ≤ bs when |s| = 1, we suppose that I1 is nonempty (otherwise we are

done) and it will suffice to show that

(4.33) a ∩
⋂

{b′
{β} : β ∈ I1} > 0.

As bI1 ∈ D∗, without loss of generality a ≤ bI1 and we can find f ∈ FIμ(α)

such that xf ≤ a. Recall V from (4.18). Write f as the disjoint union f in∪fout

where dom(f in) ⊆ V and dom(fout) ⊆ α \ V . Necessarily bI1 ∩ xf in > 0. As

f̄I1 gives rise to a partition, let ζ∗ < μ be such that

(4.34) xfI1,ζ∗ ∩ xf in ∩ bI1 > 0.

Recall the function G which was given as a witness to Pr. Let ξ∗ = G(wI1,ζ∗)

and let ε < μ be such that (I1, ζ∗, ξ∗) = (I1, ζh(ε), ξh(ε)) ∈ Wε. Going forward,

we will write ζh(ε) instead of ζ∗ for clarity. As we have xf ≤ bI1 , it follows from

the definition (4.25) that

(4.35) I1 ∈ Uβ,ε for each β ∈ I1.

Now let us verify that

(4.36) 0 < xfout ∩ xf in ∩
(
cε ∩ xf∗

I1,ζh(ε)
∩ xfI1,ζh(ε)

)
∩ bI1 .

The reason is that conflicts can only arise when the domains of the relevant

functions intersect. By construction,

cε, xfout , xf∗
I1 ,ζh(ε)

, xfI1,ζh(ε)

do not interfere with each other and the first three do not interfere with xf in

or with bI1 . By (4.34), xfI1,ζh(ε)
∩ xf in ∩ bI1 is nonzero. Replacing xf =

xf in ∩xfout and quoting the definition of b′
I1

in (4.29) and (4.30), we are done.

This completes the proof of (4.32).

To complete the proof of Theorem 4.1, it remains to show that for each

s ∈ Ω, b′
s ≤ bs. This will suffice for 3.10(A)(a). The background template for

our argument is [20] Claim 6.2, Step 10, item (5). Before beginning this proof,

note that by our definition of the sequence b̄′, whenever 0 < c ≤ cε ∩ b′
{β},

necessarily
⋃

{c ∩ xf∗
s,ζh(ε)

∩ xfs,ζh(ε)
: s ∈ Uβ,ε} > 0.(4.37)

In particular, under this hypothesis, there is s ∈ Uβ,ε such that

(4.38) c ∩ xf∗
s,ζh(ε)

∩ xfs,ζh(ε)
> 0 thus c ∩ xfs,ζh(ε)

∩ b′
{β} > 0.
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Now suppose for a contradiction that b̄′ is not a multiplicative refinement of

b̄. Then for some finite I ⊆ λ and some c0 ∈ B+,

(4.39) c0 ≤ b′
I \ bI =

⋂
β∈I

b′
β \ bI .

Without loss of generality, c0 ≤ cε for some ε < μ and c0 = xf for some

f ∈ FIμ(2λ). Enumerate I as 〈βi : i < |I|〉. Working in B, by induction on

i < |I|

(4.40) we choose functions fi and sets sβi such that:

(i) fi ∈ FIμ(2λ),

(ii) j < i implies fj ⊆ fi,

(iii) sβi ∈ Uβi,ε,

(iv) fi ⊇ fsβi
,ζh(ε)

∪ f∗
sβ ,ζh(ε)

.

Let f−1 = f . Suppose we have defined fj for −1 ≤ j < j + 1 = i, and we define

fi and sβi as follows. By hypothesis,

(4.41) xfj ≤ b′
I ∩ cε.

First note that by (4.41) and monotonicity of b̄′,

(4.42) xfj ≤ b′
{βi} ∩ cε.

Second, by (4.39), c0 ≤ cε ∩ b′
{βi}. Thus by (4.37), Uβi,ε �= ∅. Apply (4.38) to

choose sβi ∈ Uβi,ε such that

xfj ∩ xfsβi
,ζh(ε)

∩ xf∗
sβi

,ζh(ε)
> 0.

Combining this equation with (4.42),

xfj ∩ cε ∩ b′
{βi} ∩ xfsβi

,ζh(ε)
∩ xf∗

sβi
,ζh(ε)

> 0.

Let fi = fj ∪ fsβi
,ζh(ε)

∪ f∗
sβi

,ζh(ε)
. This completes the induction. For future

reference, let us fix two objects from this construction:

(4.43) Let f∗ :=
⋃

i<|I| fi.

(4.44) Let 〈sβi : i < |I|〉 = 〈sβ : β < β∗〉 be as just inductively defined.

Note that by construction,

(4.45) for each β ∈ I, xf∗ ≤ xfsβ,ζh(ε)
.

Sh:1050



Vol. 224, 2018 KEISLER’S ORDER HAS INFINITELY MANY CLASSES 219

Consider the set of indices for ‘active’ elements:

(4.46) W =
⋃

{wsβ ,ζh(ε)
: β ∈ I}.

(4.47) W ⊇ W ∗ =
⋃

{w∗
sβ ,ζh(ε)

: β ∈ I}.

To finish the argument, we will move back to the index model. Informally,

the point will be that xf∗ holds open a ‘space’ in the Boolean algebra which

reflects a particular configuration at some index t ∈ I (a configuration which we

will show cannot happen). First, we shall be careful to choose an appropriate

t, as follows. Since the theory Tn,k is ℵ0-categorical, let Γ = Γ(W ) be the finite

set of formulas in the variables {xi : i ∈ W}. For v ⊆ W , let ϕ(x̄v) denote

that the free variables of ϕ are among 〈xi : i ∈ v〉, and as above let āv denote

〈ai : i ∈ v〉. For each ϕ = ϕ(x̄v) ∈ Γ, the �Los map gives

Cϕ(āv) := {t ∈ I : M |= ϕ(āv[t])} and let cϕ(āv) = j(Cϕ(āv)).

Γ is finite, so we may assume, without loss of generality (by increasing f∗ if

necessary), that xf∗ supports (decides) each of the finitely many cϕ(āv). More

precisely, we may assume Γ admits a partition into disjoint sets Γ0 ∪ Γ1 where

ϕ(x̄v) ∈ Γ0 if and only if tv
(
xf∗ ≤ cϕ(āv)

)
= 0.

The “accurate” subset of I is the one defined by

C :=
⋂

{Cϕ(āv) : ϕ(x̄v) ∈ Γ1} ∩
⋂

{I \ Cϕ(āv) : ϕ(x̄v) ∈ Γ0} ⊆ I.

Since j(C) ≥ xf∗ > 0, necessarily C is nonempty.

(4.48) Fix some t ∈ C (so t ∈ I) for the remainder of the proof.

Now consider the picture in the model M given by index t. The set of elements

{ai[t] : i ∈ W} accurately reflects the picture given by xf∗ in the following

ways. First, if j ≤ i ∈ W , then M |= ai[t] = aj [t] if and only if ρi(f∗) = ρj(f∗).

Second, for all u ∈ [W ]k+1, M |= R(āu[t]) if and only if xf∗ ≤ aR(āu) in

the sense of (4.15). Moreover, for each β ∈ I, xf∗ ≤ aR(āu) if and only if

xfsβ,ζh(ε)
≤ aR(āu).

At the given index t, the “floating types” of (4.19) have become actual partial

types, which we now name. For each β ∈ I, let

(4.49) rβ(x) := {R(x, āvγ [t])
gsβ,ζh(ε)

(β)
: γ ∈ ind(wsβ ,ζh(ε)

)},
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and its restriction

(4.50) r∗β(x) := {R(x, āvγ [t])
gsβ,ζh(ε)

(β)
: γ ∈ ind(w∗

sβ ,ζh(ε)
)}.

Condition 4.19(b) ensures that each rβ(x) is a complete, consistent R-type over

{ai[t] : i ∈ wsβ ,ζh(ε)
}, and hence that each r∗β(x) is a complete, consistent R-

type over {ai[t] : i ∈ w∗
sβ ,ζh(ε)

}. Condition 4.19(a) ensures that R(x, āvβ )t(β) ∈
r∗β(x) ⊆ rβ(x), because β ∈ sβ ∈ Uβ,ε. However,

⋃
{r∗β(x) : β ∈ I} is not a

consistent partial type. This is because something even stronger is true:

(4.51) {R(x, āvβ [t])t(β) : β ∈ I} is not a consistent partial type.

Why? xf∗ ∩ bI = 0, so the formula (∃x)
∧
{R(x, āvβ [t])t(β) : β ∈ I} belongs to

Γ0.

As we are working in Tn,k, the inconsistency of (4.51) can come from one of

two sources: collisions or edges, which we rule out in turn.9

Returning to the proof, the first possible problem is collision of parameters,

i.e. perhaps there are β �= γ ∈ I such that t(β) �= t(γ) but {ai[t] : i ∈ vβ} =

{aj [t] : j ∈ vγ}. [Note: for this part of the argument, we might as well work in

the general context of the types r and ws,ζ ; the r∗ and w∗
s,ζ will be important

presently.] By condition (4.40)(iv) in the inductive construction of f∗, we know

that for each β ∈ I, f∗ extends an element of f̄sβ . Thus, for each i ∈ wsβ ,ζh(ε)
,

the ‘minimum collision’ functions ρi(f∗) from (4.11) are well defined. Translat-

ing,

{aρi(f∗)[t] : i ∈ vβ} = {ai[t] : i ∈ vβ} = {aj[t] : j ∈ vγ} = {aρj(f∗)[t] : j ∈ vγ}.

9 To review our context: We have assumed for a contradiction that there exists

some nonzero c0 in (4.39). As a consequence, we’ve found a finite set of formulas

{R(x, āvβ [t])t(β) : β ∈ I} in M such that each is individually consistent but the whole set

is inconsistent. As we are working in Tn,k , the inconsistency of (4.51) can come from one

of two sources: collisions or edges. Now, each of the R(x, āvβ [t])t(β) is included in turn

in a type r∗β(x) over the finite set {ai[t] : i ∈ w∗
sβ ,ζh(ε)

}, and each r∗β(x) is included in a

type rβ(x), over the larger finite set {ai[t] : i ∈ wsβ,ζh(ε)
} ⊆ M . Our plan is to first use

consistency of each r∗β(x), and their various mutual coherence conditions as guaranteed

by the ultrafilter, to rule out inconsistency from collisions. Second, we use consistency

and the mutual coherence of the rβ(x)’s to rule out inconsistency from edges, by invoking

G and recalling that cl1(w∗
sβ ,ζh(ε)

) ⊆ wsβ ,ζh(ε)
by (4.13).
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Moreover, since the functions ρi were constructed to give a (definitive) minimal

witness, we have that

{ρi(f∗) : i ∈ vβ} = {ρj(f∗) : j ∈ vγ} ∈ [W ]k.

Call this set v. Let δ < λ be such that vδ = v in the enumeration from (4.2).

Recalling the definition of the ws,ζ in (4.13), necessarily vδ ∈ [wsβ ,ζh(ε)
]k and

vδ ∈ [wsγ ,ζh(ε)
]k, or in other words,

δ ∈ ind(wsβ ,ζh(ε)
) ∩ ind(wsγ ,ζh(ε)

).

By definition of gs,ζ in (4.19)(c), the collision in each case ensures that

(4.52) gsβ ,ζh(ε)
(β) = gsβ ,ζh(ε)

(δ) and likewise gsγ ,ζh(ε)
(δ) = gsγ ,ζh(ε)

(γ).

Recall that we had chosen sβ ∈ Uβ,ε and sγ ∈ Uγ,ε in (4.40)(iii), so condition

(4.19)(a) gives that

(4.53) gsβ ,ζh(ε)
(β) = t(β) and likewise t(γ) = gsγ ,ζh(ε)

(γ).

However, condition (4.40)(iv) in the inductive construction of f ensures that

for each β ∈ I, f ⊇ f∗
sβ ,ζh(ε)

. Since ε is fixed, by condition (4.27)(7),

(4.54) gsβ ,ζh(ε)
(δ) = gsγ ,ζh(ε)

(δ).

By (4.52), (4.54), and transitivity of equality,

(4.55) gsβ ,ζh(ε)
(β) = gsβ ,ζh(ε)

(γ).

In the presence of our hypothesis that t(β) �= t(γ), equations (4.53) and (4.55)

give an obvious contradiction. This contradiction shows that collision of pa-

rameters cannot be responsible for the inconsistency of the partial type.

The second possible problem is a background instance (or instances) of R on

the parameters, i.e. perhaps there is w ∈ [W∗]n such that for all u ∈ [w]k+1,

M |= R(āu[t]), and for each v ∈ [w]k, there is β = β(v) ∈ I such that t(β) = 1

and {ai[t] : i ∈ vβ} = {aj [t] : j ∈ v}.

Recall that our property Pr for the function G with range μ (fixed just before

defining the equivalence relation E earlier in the proof) guarantees that: “for

any w ∈ [λ]n and any 〈uv : v ∈ [w]k〉 such that v ∈ [w]k implies v ⊆ uv ∈ [λ]<ℵ0 ,

if G � 〈(uv, cl1(uv)) : v ∈ [w]k〉 is constant, then for some v ∈ [w]k we have

that w ⊆ cl1(uv).” Apply this in the case where uv = w∗
sβ(v),ζh(ε)

and cl1(uv) =

cl1(w∗
sβ(v),ζh(ε)

) ⊆ wsβ(v),ζh(ε)
. Because ε is fixed, the value ξ = ξh(ε) of G on these

sets is constant. Thus, there is some β∗ ∈ I such that w ⊆ cl1(w∗
β∗,ζ) ⊆ wβ∗,ζ .
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In other words, the relevant near-complete hypergraph is already contained in

the base set of one of our consistent partial types.

Now the argument is similar to that of the “collision” problem treated above.

Fix for awhile v ∈ [w]k and β = β(v). Let δ < λ be such that v = vδ. Again,

for each i ∈ wsβ ,ζh(ε)
the functions ρi(f∗) are well defined and entail that

{ρi(f∗) : i ∈ vβ} = {ρj(f∗) : j ∈ v}.

Thus, by (4.19)(c),

gsβ ,ζh(ε)
(β) = gsβ ,ζh(ε)

(δ).

Since w ⊆ wsβ∗ ,ζh(ε)
and v ∈ [w]k, we have also that δ ∈ dom(gsβ∗ ,ζh(ε)

). Again

by (4.40)(iv) and (4.27)(7), we have that

gsβ∗ ,ζh(ε)
(δ) = gsβ ,ζh(ε)

(δ) = t(β) = 1.

As v ∈ [w]k was arbitrary, this shows that rβ∗(x) includes {R(x, āv) : v ∈ [w]k}.

In light of our assumption that M |= R(āu[t]) for all u ∈ [w]k+1, this contradicts

rβ∗ being a consistent partial type. This shows that an occurrence of R on the

parameters cannot be responsible for inconsistency.

We have ruled out the only two possible causes of inconsistency for (4.51).

This contradiction proves that the situation of (4.39) never arises. This com-

pletes the proof that b̄′ is a multiplicative refinement of b̄.

This completes the proof of Theorem 4.1.

Conclusion 4.2: Suppose that for some ordinal α and integers �, k,

(1) � < k,

(2) μ = ℵα, λ = ℵα+�

or just: (λ, k − 1, μ+) �→ k.

(3) T = Tn,k.

Then there is a regular (λ, μ)-perfect ultrafilter on λ which is good for T but

not μ++-good for any non-low or non-simple theory.

Proof. Theorem 3.G gives a (λ, μ)-perfected ultrafilter which is not μ++-good for

any non-simple or non-low theory. As for saturation, we know by Kuratowski–

Sierpinski that (ℵ(α+1)+(k−2), k − 1,ℵα+1) �→ k, so when λ = ℵα+(k−1) and

μ+ = ℵα+1 we have that (λ, k−1, μ+) �→ k. So by Lemma 2.5, Prn,k(λ, μ) holds

for these cardinals, therefore the hypotheses of Theorem 4.1 are satisfied.
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5. The non-saturation condition

In this section we prove the complementary result to Theorem 4.1, by connecting

non-saturation of Tk+1,k to existence of large free sets in set mappings.

Claim 5.1: Suppose that:

(1) for some ordinal α and integers 2 ≤ k < �, μ = ℵα, λ = ℵα+�,

or just: (λ, k, μ+) → k + 1,

(2) B = B1
2λ,μ,

(3) D∗ is an ultrafilter on B,

(4) T = Tk+1,k.

Then D∗ is not (λ, T )-moral.

Remark 5.2: Note that there is no mention of optimality or perfection of the

ultrafilter. The only factor is the distance of λ and μ as reflected in the Boolean

algebra B (or what amounts to the size of a maximal antichain at the “transfer

point” in Theorem 3.F). To justify item (1), recall that

(ℵ(α+1)+k, k,ℵ(α+1)) → k + 1

by Kuratowski–Sierpinski, so if � = k+1, ℵα+� = ℵα+(k+1) and μ+ = ℵα+1 and

we have → as desired.

Proof. Our strategy will be to build a sequence b̄ of elements of B+ and prove

that it is a possibility pattern for T but does not have a multiplicative refine-

ment. We continue with much of the notation and terminology of the previous

section.

By Theorem 1.B above (and monotonicity), for k ≤ m = � − 1,

(ℵα+m+1, k,ℵα+1) → k + 1, so we can apply Claim 1.6 to (λ, k, μ+). [No-

tice that μ+ here replaces μ there.] Thus, we may fix a model M of Tk+1,k with

λ distinguished elements b̄ = 〈bα : α < λ〉 with the following property. Let

P = {w ∈ [λ]k+1 : M |= R(bv)},
noting that by choice of T , P � [λ]k+1. The property is that whenever

F : [λ]k → [λ]≤μ is a strong set mapping, for some w ∈ P we have

(∀v ∈ [w]k)(w �⊆ F (v)).

Without loss of generality we may extend M to be λ+-saturated. For the

remainder of the proof, fix a choice of ordinals 〈αw : w ∈ P〉 with no repetitions,

where each αw < 2λ. Choose also for each w ∈ P a corresponding function

gw ∈ FIμ(α∗) such that dom(gw) = {αw} and xgw = ∅ mod D∗.
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Overview in a special case. Before giving the construction in the generality of

the Boolean algebra B, we describe for the reader the picture in the special

case where we consider an ultrapower N = M I/D, where D is built from a

regular filter D0 and B is identified with some independent family F ⊆ Iμ of

cardinality 2λ. What we would like to do is choose a set A of size λ in the

ultrapower which is an empty graph in N , i.e. for all u ∈ [A]k+1, N |= ¬R(āu).

As a result, the type p(x) = {R(x, āv) : v ∈ [A]k+1} will be a consistent partial

type in N . However, by judicious choice of the parameter set A, we will be able

to show that p cannot be realized. To do this we need to ensure that edges

appear on the projections of A to the index models, but not too many and not

too often.

We begin with the idea that for each i < λ, ai is the equivalence class in N

of the sequence which is constantly equal to bi. We then essentially doctor this

sequence by winnowing P , i.e. erasing some of the edges. Formally, of course, at

each index t we choose a sequence 〈b′i[t] : i < λ〉 of distinct elements of M (using

the fact that M is universal for models of T of size ≤ λ) such that for all w ⊆ λ,

if M |= R(b̄′w) then M |= R(b̄w), but not necessarily the inverse. We will then

set ai = 〈b′i[t] : t ∈ I〉/D for each i < λ. How to winnow edges? Following the

notation of the proof of 4.1, fix an enumeration of [λ]k as 〈vβ : β < λ〉 without

repetition, so the eventual type will be enumerated by {R(x, āvβ ) : β < λ}. Let

Ω = [λ]<ℵ0 . For each s ∈ Ω, let the ‘critical set’ cs(s) be the set of w ∈ P such

that each v ∈ [w]k is vβ for some β ∈ s. (Note that this is generally weaker

than saying that w ⊆ vert(s).) The rule is that for each t ∈ I, and each w ∈ P ,

we leave an edge on {b′i : i ∈ w} if and only if t ∈ xgw . By the choice of gw,

no edge will persist in the ultrapower, so 〈ai : i < λ〉 is an empty graph in

N . It remains to prove the type is not realized. Before giving this argument,

we carry out the construction just described in the generality of the Boolean

algebra. (The type just described easily converts to a possibility pattern using

the �Los map as in (4.6) on p. 210, so we may conclude this argument using the

more general proof.)

General proof. Let 〈vα : α < λ〉 list [λ]k without repetition. For s ⊆ λ, let

vert(s) =
⋃
{vβ : β ∈ s} ∈ [λ]<ℵ0 collect the indices for all relevant vertices.

Let Ω = [λ]<ℵ0 . For each s ∈ Ω, let

bs = 1B −
⋃

{xgw : w ∈ P and [w]k ⊆ {vβ : β ∈ s}}.
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Essentially, we omit the formal representative of any bad configuration once our

type fragment s includes indices for all of the edges (in the type) connecting to

it.

Let us show that 〈bs : s ∈ Ω〉 is a possibility pattern for Tk+1,k. Fix for

awhile s ∈ Ω and c ∈ B+. Decreasing c if necessary, we may assume that for

any w ∈ P ∩ [vert(s)]k+1, either c ≤ xgw or c ≤ 1−xgw . It follows that for any

s′ ⊆ s, either c ≤ bs′ or c ≤ 1 − bs′ .

To satisfy Definition 3.7, we now need to choose parameters b′i ∈ M for

i ∈ vert(s) such that: b̄′ = 〈b′i : i ∈ vert(s)〉 is without repetition and for any

s′ ⊆ s,

M |= (∃x)
∧
β∈s′

ϕ(x; b̄′vβ ) iff c ≤ bs′ .

We can do this by choosing our parameters so that for any i0, . . . , ik−1 ∈ vert(s)

we have 〈b′i� : � < k〉 ∈ RM if and only if |{i� : � < k}| = k [i.e. they are distinct]

and {i� : � < k} ∈ P and c ≤ xg{i� :�<k} . Note that there is such a sequence of

parameters in the monster model (forgetting edges on the b̄ as described above)

so it suffices to show such a sequence works. If c ≤ bs′ , then by definition of

bs′ , there is no w ∈ P such that [w]k ⊆ {vβ : β ∈ s′} and c ≤ xgw . So there are

never enough edges on the parameters to produce an inconsistency in the set

{R(x; b̄′vβ ) : β ∈ s′}.

If c ∩ bs′ = 0B, then because c ∈ B \ {0B}, it must be that bs′ �= 1B. By

definition of the sequence b̄, there is w ∈ P with [w]k ⊆ {vβ : β ∈ s′} and (since

c decides all relevant edges) c ≤ xgw . Then M |= R(b̄′w). Recalling that

{R(x; b̄′vβ ) : β ∈ s′} ⊇ {R(x; b̄′v) : v ∈ [w]k}

the left-hand side cannot be consistent. This completes the proof that b̄ is a

possibility pattern.

No multiplicative refinement. Now let us assume for a contradiction that

〈b′
s : s ∈ Ω〉 is a multiplicative refinement of the possibility pattern just de-

scribed. That is, s1, s2 ∈ Ω implies b′
s1 ∩ b′

s2 = b′
s1∩s2 and for each s ∈ Ω,

b′
s ≤ as. As each b′

{β} ∈ B+, we may write b′
{β} =

⋃
{xhβ,i

: i < i(β) ≤ μ}
where 〈hβ,i : i < i(β)〉 is a set of pairwise inconsistent functions from FIμ(2λ).

Let Sβ =
⋃
{dom(hβ,i) : i < i(β)}, so Sβ ⊆ 2λ has cardinality ≤ μ.

First, we show that for each w ∈ P the domain of gw is detected by the

supports of at least one of the k-element subsets of w.
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Subclaim 5.3: If w ∈ P ⊆ [λ]k+1 then αw ∈
⋃
{Sβ : vβ ∈ [w]k}.

Proof. Let x = {β : vβ ∈ [w]k} ∈ [λ](
m
k). Since b

′
is multiplicative,

b′
x =

⋂
{b′

β : β ∈ x}.

Let f ∈ FIμ(2λ) be such that xf ≤ b′
x. Then xf ≤ b′

{β} for each β ∈ x. Letting

g=f �
⋃
{Sβ : vβ ∈ [w]k}=

⋃
{Sβ : β∈x}, we have that vβ∈ [w]k =⇒ xg≤b′

{β}.

This implies that xg ≤ b′
x ≤ bx because b̄′ refines b̄. By definition,

bx = 1B −
⋃

{xgu : u ∈ P and [u]k ⊆ {vβ : β ∈ x}}.

So as [w]k ⊆ {vβ : β ∈ x}, necessarily xg ∩ xgw = 0B. Since our Boolean

algebra B was generated freely, it must be that dom(gw) ∩ dom(g) �= ∅, but

dom(gw) = {αw}. This shows that αw ∈
⋃
{Sβ : vβ ∈ [w]k} as desired.

We resume our proof by contradiction. Define a strong set mapping

F : [λ]k → [λ]≤μ by: if v ∈ [λ]k let β be such that v = vβ , and let

F (v) =
⋃

{w ∈ [λ]m : w ∈ P and αw ∈ Sβ}.

Then F (v) is well defined, F (v) ⊆ λ, and |F (v)| ≤ μ for v ∈ [λ]k. (Recall that

〈αw : w ∈ P〉 is without repetition.) Now for all w ∈ P ⊆ [λ]k+1, there is

v = vβ ∈ [w]k such that αw ∈ Sβ. Thus w ⊆ F (v). We have proved that for all

w ∈ P ,

(∃v ∈ [w]k)(w ⊆ F (v)).

This is a contradiction, so the possibility pattern b does not have a solu-

tion. Thus, D∗ cannot be moral for Tk+1,k. This completes the proof of

Claim 5.1.

Conclusion 5.4: Suppose that for some ordinal α and integers �, k,

(1) 2 ≤ k < �,

(2) T = Tk+1,k,

(3) μ = ℵα, λ = ℵα+�,

(4) B = B1
2λ,μ,

(5) D∗ is any ultrafilter on B,

(6) D1 is any regular ultrafilter on λ built from (D0,B,D∗).

Then D1 is not good for T . In particular, if D1 is a (λ, μ)-perfected ultrafilter

on λ, then D1 is not good for T .
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Proof. By Claim 5.1 and Theorem 3.F. Note that if we allow � = k = 1, Tk+1,k

is not simple so we can likewise avoid saturation of T .

6. Infinitely many classes

We emphasize that all results in this section are in ZFC.

Theorem 6.1: Suppose μ = ℵα and λ = ℵα+� for α an ordinal and � a nonzero

integer. Let D be a (λ, μ)-perfected ultrafilter on λ. Then for any 2 ≤ k < ω:

(a) If k < �, then D-ultrapowers of models of Tk+1,k are not λ+-saturated.

(b) If � < k, then D-ultrapowers of models of Tk+1,k are λ+-saturated.

Proof. (1) Conclusion 5.4.

(2) Conclusion 4.2.

In fact, by the proofs, more is true:

Conclusion 6.2: Suppose we are given

(a) for some ordinal α and integer �, μ = ℵα, λ = ℵα+�,

(b) D1 is built from (D0,B2λ,μ,D),

(c) T = Tk+1,k.

Then

(1) if k < �, D1 is not (λ+, T )-good,

(2) if � < k and in addition D is (λ, μ)-perfect, D1 is (λ+, T )-good.

Theorem 6.3: For any k∗ > 2 and ordinal α there is a regular ultrafilter D on

ℵα+k∗ such that

(1) if k∗ < k2, then D is good for Tk2,k2+1,

(2) if k1 < k∗, then D is not good for Tk1,k1+1.

Proof. By Theorem 6.1 and §3 Theorem 3.G.

We now recall the definition of Keisler’s order. For a current account of what

is known, see [19], and for further intuition, see the introductory sections of [17].

Note that this allows us to compare any two theories, regardless of language.

Definition 6.4 (Keisler’s order, Keisler [10]): Let T1, T2 be complete countable

theories. We write T1 � T2 if: for any λ ≥ ℵ0, any M1 |= T1, any M2 |= T2 and
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any regular ultrafilter on λ,

if M2
λ/D is λ+-saturated then M1

λ/D is λ+-saturated.

Here “regular” entails that the relation � is independent of the choice of M1,

M2.

Corollary 6.5: Let � mean in Keisler’s order. Then:

(1) If 2 ≤ k1 and k1 + 1 < k2, then

Tk1,k1+1 �� Tk2,k2+1.

(2) Keisler’s (partial) order contains either an infinite descending chain or

an infinite antichain within the simple unstable theories.

Proof. (1) is immediate by 6.3 and (2) follows by Ramsey’s theorem.

Note that Keisler’s order is a partial order on equivalence classes of theories,

and the following theorem proves existence of an infinite descending chain in

this partial order already within the simple unstable rank one theories there

may indeed be additional structure.

Theorem 6.6: There is an infinite descending sequence of simple rank 1 the-

ories in Keisler’s order. More precisely, there are simple theories {T ∗
n : n < ω}

with trivial forking such that, writing

• TA for the class of theories without fcp,

• TB for the class of stable theories with fcp,

• TC for the minimum unstable class, i.e. the Keisler-equivalence class of

the random graph,

• Tmax for the Keisler-maximal class, i.e. the Keisler-equivalence class of

linear order (or SOP2),

• and Tn for the Keisler-equivalence class of T ∗
n ,

for all m < n < ω, we have

TA � TB � TC � · · · · · · · · · Tn � Tm � · · · � T2 � T1 � T0 � Tmax.

Proof. The structure of the order on TA, TB , TC , Tmax was known, see [17]

§4. To obtain the infinite descending chain, let T ∗
n be the disjoint union of the

theories Tk,k+1 for k > 2n + 2. Here “disjoint union” is understood naturally,

for instance, the theory of the model M formed by taking the disjoint union of
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models Mk |= Tk,k+1 in disjoint signatures. Clearly, k′ > k implies T ∗
k′ � T ∗

k

and � is by Theorem 6.3. This completes the proof.
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