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ABSTRACT

We give a criterion involving existence of many generic sequences of automorphisms for a countable
structure to have the small index property. We use it to show that (i) any a>-stable co-categorical structure,
and (ii) the random graph have the small index property. We also show that the automorphism group of
such a structure is not the union of a countable chain of proper subgroups.

1. Introduction

Let M be a countably infinite structure, and G be Aut (M). Following [27] we write
automorphisms on the right; so if g e G and a e M we write ag for the image of a under g.
If a = (a1}..., an) e M is a (finite) tuple of elements of M, we write ag for (ax g, ...,ang).
We write Ga for the subgroup {geGiag = a} of G. We shall sometimes use the Meq

of [25]; note that essentially G = Aut (Meq) also. If A is a subset of the domain of Meq,
we write Ag for {agiaeA}, and GA for {geG:ag = a for all aeA}.

The group G is a topological group for which the basic open sets are the cosets
of the Ga for aeM. Note that Gag = gGSg, so that in the definition we do not need
to specify whether cosets are left or right. The open subgroups form a base of open
neighbourhoods of 1. In fact, G is a Polish space (see §2).

A subgroup H of G is said to have small index in G if \G:H\ < 2°, and large index
otherwise. If UEM, the right cosets of Ga in G are in bijection with {ag:geG}. Hence
Ga, and so any open subgroup of G, has small (indeed countable) index in G. We say
that M has the small index property if the converse holds: that is, every subgroup
H ^ G of small index is open in G.

If M has the small index property, the topological structure of G can be recovered
from its abstract group structure. This has applications in reconstructing a structure
from its automorphism group; [18] has more information. For related applications of
the small index property see [11, 12].

EXAMPLE 1.1. We list some countable structures with the small index property.
1. The infinite set without structure: proved first by Semmes [24], and (later and

independently) in [4].
2. The countable dense linear ordering (Q, <): proved first by Truss in [26].

Another proof of this result is given in [22].
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3. The countable atomless Boolean algebra [26].
4. A vector space of dimension co over a finite or countable division ring (due to

Evans [7]; one can add a non-degenerate bilinear form).
5. Any Boolean power of a finite simple group by the countable atomless Boolean

algebra: Evans, unpublished.
6. Any countable 2-homogeneous tree [5].
7. Any co-categorical abelian group: Evans, [9].
Any 2-homogeneous dense subset of U has the small index property [6]. In [17] it

is shown that almost strongly minimal structures have a closely related property. An
example (due to Cherlin and Hrushovski) of an co-categorical structure without the
small index property is given in [16]. For more on the small index property and its
variants for uncountable structures see [16, 18, 19].

We shall prove the following theorem.

THEOREM 1.2. If M is a countable co-stable co-categorical structure, or if M is the
random graph, then M has the small index property. Also, Aut(M) is not the union of
a countable chain of proper subgroups.

Our method uses generic automorphisms of M. Recall (for example from [23] or
[27]) that a subset C of a topological space X is comeagre if it contains a countable
intersection of dense open subsets of X. In [27] an automorphism of M was said to
be generic if its conjugacy class in G was comeagre. If ge G, let us write (M,g) for the
expansion of M obtained by adding a function symbol to the language of M and
interpreting it as g. Since Aut (M) is a Polish space, comeagre sets are non-empty, and
hence any two comeagre sets have non-empty intersection. Thus if g, h are generic
then (M,g)^(M,h).

In the cases we consider, G will contain a open subgroup K such that for each non-
zero n < co there is a comeagre subset S of Kn consisting of 'generic sequences' of
automorphisms: for all (gx, ...,gn), (h1,...,hn)eS, the expanded structures
(M,gx, ...,gn) and (M,h1} ...,hn) are isomorphic. Moreover, they are homogeneous in
that (roughly speaking) there are arbitrarily large finite subsets A of M such that A
is grclosed for each / ^ n, and if gt \A — ht\A for each / then the isomorphism can
be chosen to fix A pointwise. We prove this using amalgamation as in [27], following
Frai'sse.

If a subgroup HofG has small index but is not open, then for each s e <<a2 we can
find gs,08eG so that for all s:

• g^eH and gsn$H,
• G0 = es,Q=\, and 6s,1:(M,gsn,...,gs,gs,o)^(M,gs]1,...,gs,gs,1) is an

isomorphism.
Using homogeneity we can choose the 6S to fix increasing finite amounts of M as

s increases. In this way we can arrange that the product Bo = Y\i<a>0<,\i exists for
each aeC02. Let a,x be distinct elements of W2, and suppose that i < co is such that
a \i = T \i = s (say), a{i) = 0 and x(i) = 1. Then by continuity of the group product
operation, &^.0r:(M,gs.o) -> (M,gsn) is an isomorphism, so that O^1.0TeG\H. It
follows that H has large index in G. This contradiction proves the small index
property for M. The argument to show that G is not the union of a countable chain
of proper subgroups is similar.
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A similar technique can be applied to uncountable structures. Let M be an L-
structure, let / be any set and let/( (iel) be function symbols not occurring in L. In
[19], a sequence (g^.iel) of automorphisms of M is said to be existentially closed if
the following holds. Assume that M^N, ht is an automorphism of N extending gt

(for each iel), and 0(x,y) is a conjunction of (a) L-formulas, (b) formulas of the form
ft(Vi) = v2 for iel and vv v2 in x*y. Then for all ae M, if (N, ht: ie I) \= 3y<f>(a, y) then
(M,g,:ze/)N3y0(a,j;). Using amalgamation of existentially closed sequences of
automorphisms, Lascar and Shelah prove that if M is a saturated model of a first
order theory T of cardinality X = X<x > \T\, then whenever H <, Aut(Af) has index at
most X, there is A ^ M with \A\ < X and

def

Aut^ (M) = {ge Aut {M): ag = a for all a e A} ^ H.

The proofs will appear in [19] but are similar to the ones we present here. Shelah
has announced that the result also holds when X is singular (in which case T is
stable).

We remark that the topological arguments we give can often be replaced by game-
theoretic ones, by dint of the Banach-Mazur theorem [23, Theorem 6.1].

The layout of the paper is as follows. In §2 we define the notion of an
amalgamation base for M, and show that if such a base exists then M has many
homogeneous generic sequences of automorphisms of all finite lengths. In §3 we show
that co-stable co-categorical structures and the random graph have amalgamation
bases. In §4 we prove that a meagre subgroup (that is, one with comeagre
complement) of a Polish group has large index. This will be needed in § 5 when we
show that the existence of many homogeneous generic sequences of all finite lengths
implies the small index property. Finally in §6 we establish the result on ascending
chains of subgroups. Theorem 1.2 follows from Theorems 2.9, 5.3,6.1 and the results
of §3.

Some history may be helpful. When Shelah visited Hodges in the summer of 1989,
he sketched a strategy for proving that the random graph has the small index
property, and Hodges took notes. Hodkinson later extracted versions of Theorems
2.9 and 5.3 from these notes, and proved Theorem 4.1. Lascar improved the
argument, and used it and an earlier result of Hrushovski (Theorem 3.1 below) in
showing that co-stable co-categorical structures have the small index property. Finally
Hrushovski [14] proved Theorem 3.6, completing the argument for the random
graph, and Lascar obtained Theorem 6.1.

NOTATION. Throughout the paper M will be a countably infinite structure, with
further conditions where stated; A,B, etc. will generally denote sets of elements, and
A^M(A<=: Meq) will mean that A is a set of elements of the domain of M (respectively,
of Afeq). If A c AfeQ, we write Aut (,4) for the set of A/eq-elementary permutations of
A. Except in §4, the symbol G will denote Aut(M); we shall identify Aut(Af) with
Aut(Meq). We write H < G to mean that H is a subgroup of G. If g,heG, we shall
use g* to denote h~xgh. If a is an ordinal, a2 is the set {/:/: a -> 2} of sequences of zeros
and ones of length a. If/ea2, we let/^0,/Al ea+12 denote the extensions/* of/with
/•(a) = 0,1 respectively. If>5 ̂  a, tep2 and sea2, we write t < s if s \fi = t. We use <a2
to denote U/?</2-

Acknowledgements. The second author is supported by Advanced Fellowship
B/ITF/266 from the UK SERC. He would like to thank Dov Gabbay, Robin Hirsch,

Sh:391



SMALL INDEX PROPERTY FOR CO-STABLE CO-CATEGORICAL STRUCTURES 207

Lefty Kreouzis, Dugald Macpherson and Mark Reynolds for helpful conversations.
The fourth author thanks the United States Israel Binational Science Foundation and
the British Council for partial support. His visit to the first author in 1989 was
supported by Visiting Research Fellowship GR/E 91639 of the UK SERC and a
grant from the London Mathematical Society.

The authors gratefully thank the referee for very useful comments.

2. Homogeneous generic sequences of automorphisms

Here we consider generic sequences of automorphisms. We shall give a sufficient
condition for a countably infinite co-categorical structure M to have many
homogeneous generic sequences of automorphisms of all finite lengths.

2.1. Generic sequences of automorphisms

DEFINITION 2.1. A base for M is a set @1{M) of subsets of Meq satisfying:
1. GA is open in G for all Ae@(M),
2. ifAe@(M) and geG then Age@(M).

DEFINITION 2.2. Let 3&(M) be a base for M, and let 0 < n< co. We say that
(Sv • ~>gn)

eGn 1S ̂ (M)-generic, or just generic, if the following two conditions hold.
1. If Ae@(M) then {GB:A £ Be@(M), Bgt = B for all i ̂  «} is a base of open

neighbourhoods of 1 in G.
2. Let Ae@(M) be such that Agi = A (1 < i < «). Let Be@(M) extend A; and

let /̂ eAutCZ?) extend gt\A (l^i^ri). Then there is <xeGA such that
d extends h{ for all i.

Recall that a Polish space is a separable topological space that can be made a
complete metric space. If we let M = {an:n < co} we can metrise G by: d(g, h) = 0 if
g = h, and l/2n otherwise, where n is the least natural number such that ang^anh
or ang~x ̂  anh~x. Then G is complete under this metric, which yields the topology
defined in §1, so G is a Polish space. If n > 1 then Gn, endowed with the product
topology, is also a Polish space. A sequence (gt:i < co) of elements of G is a Cauchy
sequence if and only if for every open subgroup K ^ G there is n < co such that
gfg^eK and gjxg}eK for all i,j>n. Similarly, if p^G and fi =pop1...pj for
each j < co, the sequence {Jj :j < co) is Cauchy if and only if for all open subgroups
K <z G there is n < co such that p^K Of'1. K.fn for all j > n.

We now show that once two generic sequences agree on an element of the base,
they are conjugate over that element.

PROPOSITION 2.3 (Homogeneity). Let 08(M) be a base for M, let n <co be non-
zero, and let (glt ...,gn), (hlt ...,hn) each be ̂ (M)-generic. Let Be@(M) and suppose
that gt\B = ht \ B e Aut (B) for each i ̂  n. Then there isfeGB such that g{ = hjor all
/ ^ n.

(So f: (M, glt..., gn) -*• (M, h^..., hn) is an isomorphism.)
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Proof. The proof is a standard back-and-forth argument, with the complication
that the elements of 38{M) are subsets of Afeq. Let us say that an MeQ-elementary map
9 is determined on an element aeM if GAom(0) ^ Ga. Clearly, any two automorphisms
extending 9 will agree on a. We let 0 be the set {f\A:feGB, Ae@(M), A^B,
Agt = A for all / < n, ht extends g{ \ (Af) for all / ̂  «}. Clearly 0 is non-empty, as
it contains the identity map on B.

CLAIM. Let 0e0 , and let asM. Then there is 0 ' e0 extending 9 and determined
on a. Similarly, there is 9"e& extending 9 and such that 9"'1 is determined on a.

Proof of Claim. Let feGB, Ae@(M) be such that f\A = 9. As (gls ...,gn) is
generic, we can choose A' 2 A in 3$(M) such that GA. ^ Ga and A'gt = A' for all
/ ^ n. As 9e&, the automorphisms g{ and h{ agree on Af for each i < n. Thus,
A'fe@{M) extends Af and g(\{A'f)ek\x\.{A'f) extends ht\(Af) for all i^n.
So as (hlf ...,hn) is generic, there is f*eGAf such that ht extends g{f* \(A'ff*) for
all i ̂  n. Then the map 9' - iff*) \A' is in 0, extends 9 and is determined on a, as
required. The other half of the claim is proved similarly.

Enumerate the domain of M as {am:m <co). By the claim, 0 is in effect a back-
and-forth system, and we can define, by induction in the usual way, an increasing
chain of elements Bme@(M) for m<co, all containing B, and automorphisms
fm e GB for m < co, in such a way that 9m =f/m \ ̂ m e ®» ̂ o t^ &m anc* *ts inv©rse are
determined on am, and 9m+1 always extends 9m. Now if k,k' > m then/fc and/fc. both
extend 9m, so they agree on am. Similarly, their inverses agree on am. It follows that
(Jm'.m < co) is a Cauchy sequence. Let/be its limit. We check that/is as required.
Certainly fe GB. Let i ̂  n; we check that g{ = ht. Let m <co. Then/|"i?m = 9mG0, SO
ht extends g{ \ (Bmf). Hence g{ hj1 eGB f^Ga , so g{ and ht agree on am. As this holds
for all m, we obtain g{ = ht, as required.

2.2. Extending Meq-elementary maps

We shall need the following 'folklore' lemma (appearing in early papers of
Cameron), and corollaries on extending Meq-elementary maps to automorphisms of
M.

LEMMA 2.4. Assume that M is co-categorical. Then for each open subgroup K ofG,
there are only finitely many subgroups H of G that contain K.

Proof It suffices to prove the result for K= Gs, for arbitrary a eM. Assume a
has length n. By the Ryll-Nardzewski-Engeler-Svenonius theorem (see [2]), there are
only finitely many orbits of G on M2n. If H < G, let

Q> = {(ag,ahg):geG,heH}.

Then O is a union of orbits of G on 2«-tuples, so it can take only finitely many values
as H ranges over subgroups of G. The lemma will follow if we show that if Ga ^ H
then H = {feG:(a,af)e<!>}, so that <1> determines H in this case.

Clearly (a,ah)e<& for every heH. For the other direction, let (a,af)e<!>, so that
(a,af) = (ag,ahg) for some geG, heH. It is immediate that g,hgf~xeGa. But
Ga ̂  H, so g,hgf~xEH, and it follows that /e i / , as required.
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COROLLARY 2.5. Assume that M is co-categorical. Let f be an Me<l-elementary map
with domain D c= MeQ, and suppose that GD is open. Then there is a geG extending/.

Proof. Clearly, GD = f]deDGd. So by Lemma 2.4 there is a finite D0^D such
that GD = GDQ. NOW as M is saturated, it is easily seen that for all finite X Q D , the
map f\ X extends to some fxeG. Let g =fDo. Then/^ .g^eG^ ^ Gx for all finite X
with Do £ X c D, so g \X =fx \ X —f\X. As such an A'can be found containing any
chosen element of D, we see that g extends / .

COROLLARY 2.6. Assume that M is co-categorical. Let A £ Meq be such that GA

is open. Then Aut(y4) is (at most) countable.

Proof. Choose finite B^M with GB ^ GA. Using Corollary 2.5, for each
ge Aut(A) choose g+ e G extending g. Then if g # h in Aut 04), the right cosets GBg+

and GBh+ are distinct. Hence |Aut(^)| < \G:GB\ < co.

2.3. Existence of many generic sequences

DEFINITION 2.7. Let @(M) be a base for M. We say that M has ample
generic automorphisms if for all non-zero n < co, the set of 08(M)-generic elements of
Gn is comeagre in Gn in the product topology.

We say that M has ample homogeneous generic automorphisms if there exists a base
for M such that M has ample ^(M)-generic automorphisms.

We shall give a sufficient condition for M to have ample homogeneous generic
automorphisms. For this we need another definition.

DEFINITION 2.8. A base $4{M) for M is said to be an amalgamation base if (a) it
is countable, and (b) the following conditions hold.

Cofinality. Let elt..., en be finite elementary maps from M into M. Let A e sf(M).
Then there is Best(M) containing A, and/jeAutCB) extending e% for each i ̂  n.

Amalgamation property. Let A,B, Cesf(M) with A £ B, A £ C. Then there is
a e GA such that whenever g e Aut (Ben), h e Aut (C) satisfy g \ A = h \ A e Aut (̂ 4), then
g U h is an elementary map in Mea.

THEOREM 2.9. Lef M be a countable co-categorical structure and let $#(M) be an
amalgamation base for M. Then M has ample s/(M)-generic automorphisms.

Proof. Let n ^ 1; we show that {ge Gn :g is j^(M)-generic) is comeagre in Gn in
the product topology.

CLAIM 1. Let A es#(M) and asM. Then the set

X(A,a) = {(gl,...,gn)eGn:3Berf(M)(B =>A,B = Bgjor alii *kn,GB^ Ga)}

is an open dense subset of Gn.
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Proof of Claim 1. Since st{M) is a base for M, we know that GB is open for all
Besf{M), and it follows that X(A,a) is open in Gn. To prove that it is dense, let
S £ Gn be a non-empty open subset. We show S n X(A, a) # 0 . We can replace S by
a smaller set, so we can assume it has the form

{fei> •-;gn)eGn:gi extends e, for all i ^ «}

for some finite elementary maps elt ...,en of M into M, and by Corollary 2.5 we
can assume that the e, are defined on a. As s/(M) is an amalgamation base, by the
cofinality condition there is Bes4(M) containing A and the domain and range of each
e,, such that each ei can be extended to/,eAut(2?). By Corollary 2.5 there are gteG
extending/, (all i). Then (gl5 ...,gn)eS 0 X(A,a). This proves the claim.

Now suppose that A^ Bin $4{M), /i,eAut(i?) and Aht = A for each / < n. Let
E — (hx,..., hn), and write:

Y(A,B,R)={(glt ...,gn)eGn: if gt \A = h, \A (all i ^ n)

then there is ae GA such that (g$) \B = ht (all / < «)}.

CLAIM 2. The set Y(A, B, h) is open and dense in Gn.

Proof of Claim 2. This is similar to the proof of Claim 1. As before, Y(A, B, h)
is open. To show density, let

S = {(Si, •••,gn)eGn:gi extends ei for each / ^ n),

where the et are finite elementary maps on M. We show that S D Y(A, B,h)¥= 0 .
Again we can replace S by a smaller set, so as s4(M) is an amalgamation base we

can assume that S = {(g15...,gn)eGn:gi extends/, for all i^n}, where/,eAut(C)
extends e, for all i ^ n, and Ces0(M) contains A. Note that Gc is open in G, so S is
open in G", and by Corollary 2.5, S # 0 .

If/, [.4 # /J, f/4 for some / ^ n, then 5 £ Y(A, B, h), and we are done. Assume that
we are in the other case. As s#(M) is an amalgamation base, there is a e GA such that
for each i, the map /, U h\ is elementary, so by Corollary 2.5 extends to an
automorphism £, of M. Then (glt ...,gn)eS n 704,2?,/i), proving the claim.

Now stf(M) is countable, and by Corollary 2.6, so is Aut(2?) for all Bes#(M). The
theorem now follows, since

:g is ^(M)-generic} = f] X(A, a) n ft
,4,5

a countable intersection of dense open sets.

3. Amalgamation bases

We now show that co-stable co-categorical structures and the random graph have
amalgamation bases.

Firstly let M be a countably infinite structure whose theory is co-stable and
co-categorical. We work in the real M, but we shall use MeQ a little. In particular,
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acl (A) for A £ M will always denote the algebraic closure of A in Meq. But we will
make no distinction between G = Aut(M), and Aut(Meq). We begin with the
following theorem, due to E. Hrushovski (unpublished).

THEOREM 3.1. IfB^M is finite and A = acl (B) then GA is open in G.

Proof. Without loss of generality we may assume that B = 0 . We must find a
finite set C c M such that GC^GA.

For each n < co and each O-definable equivalence relation R on n-tuples of M with
a finite number mR of classes, add to the language of M new n-ary relation symbols
f̂t,i>---> f̂l,mR> anc* interpret them as the /^-equivalence classes. Let M' be the

resulting expanded structure.
As M is to-categorical, two n-tuples in M lie in the same orbit of Aut (M') if they

lie in the same inequivalence class for each finite equivalence relation R on «-tuples
as above. But there are only finitely many M-inequivalent R of this kind. Hence M'
is co-categorical; and clearly it is co-stable.

Now by [13, Theorem 2.1], the language of an co-categorical co-stable theory is
essentially finite. Hence there is a finite subset {Ux,..., U,} of the UR m such that all
the others are definable from them. Let C be a finite subset of M such that for each
i < s there is cte C with M' 1= ^ ( c j . Then Gc < GA.

This argument also shows that M is (/-finite (see [16] for the definition of
(r-finiteness).

DEFINITION 3.2. We say that B ^ M is homogeneous if for all a, BeB, if there is
geG such that ag = b, then there is geG such that Bg = B and ag = b. We write
tf{M) for {B^M.B is finite and homogeneous}, and JfT(M) for {acl (B) :BeJf(M)}.

Clearly Jf(M) is closed under automorphisms. From this and Theorem 3.1, we
deduce that Jf is a base for M.

FACT 3.3. We have that 3rif{M) is cofinal in the set fc<m(M) of all finite subsets of
M. (See [3].)

PROPOSITION 3.4. The set JT(M) is an amalgamation base for M.

Proof. Clearly Jf (M) is countable. Let eli...,enbe finite elementary maps on M,
and let Ae3f(M). Choose BeJf?(M) such that A = SLC\(B). Using Fact 3.3 let
Ce Jf(M) contain B and the domains and ranges of the et. By saturation of M there are
g1,...,gneG extending eXi..., en, and by homogeneity we can assume that Cg{ = C for
all /. Let D = acl (C) e Jf(M). Then Dgt = D for all i. So gt\D<= Aut (D) extends et for
all i.

Now let A,B, CeJT(M) with A^B,A^C. There is <xeGA such that B<x and C
are independent over y* in Meq. The proof is then completed by quoting the following
fact.

FACT 3.5. Let A,B,Cetf(M) with A c B, A c C Z>e JKC/I /fort 5 am/ C are
independent over A. Iffe Aut (B), geAut(C) andf\A = g\ As Aut (A), thenfv g is
elementary.
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Proof. The proof is an easy modification of [16, Theorem 3.3].

Secondly let M be the random graph. See [1] for information on the random
graph. We do not use Meq here. We shall prove that the base fi<0)(M), the set of all
finite subsets of M, is an amalgamation base for M.

As M has quantifier elimination, the elementary maps on M are just the
isomorphisms of induced subgraphs of M. Let A,B, Ce^<(0(M) with A<=, B,A^C.
There is oneGA such that B<x n C = A and there are no graph edges between Ba\A
and C\A. Then whenever geAut(i?a), heAut(C) satisfy g\A = h \AE Aut (A), the
map g U h is M-elementary. Hence the amalgamation condition of Definition 2.8
holds.

For cofinality it is enough to show that whenever el5 ...,en are isomorphisms of
finite induced subgraphs of M, there is a finite subgraph A of M and g{ e Aut (A)
extending ei for each / ̂  n. As M is homogeneous and universal for finite graphs, the
following theorem, recently proved by Hrushovski, establishes this.

THEOREM 3.6. Let X be a finite graph. Then there exists a finite graph Z containing
X as an induced subgraph, such that any isomorphism between induced subgraphs ofX
extends to an automorphism of Z.

Proof. See [14].

J. Truss [27] proved earlier in a different way that a single isomorphism of
subgraphs of X may be extended to an automorphism of a larger finite graph.

4. Polish groups

In this section we work in the slightly more general setting of a Polish group: a
group G that is also a Polish space with a (countable) set of open subgroups forming
a base of neighbourhoods of the identity. (The group G = Aut (M) is an example of
such a group.) Then G is a complete metric space, and we write d(g, h) for the metric
on G.

A subset S of a topological space X'\s said to be meagre if X\S is comeagre. We
shall prove the following result, needed in §5.

THEOREM 4.1. Any meagre subgroup of G has index 2W in G.

REMARKS 4.2. 1. By [16, Lemma 2.6], any subgroup H of G with the Baire
property is either meagre (and so by Theorem 4.1 of large index), or open. As closed
sets have the Baire property (see [23, Chapter 4]), Theorem 4.1 implies the result of
Evans [8] that for any countable structure M, any closed subgroup of Aut (M) of
small index is open. (Evans' result in turn generalises the definability theorem of
Kueker [15].)

2. If H is meagre in G then so is each coset of H; it follows that \G\H\ > co. So
Theorem 4.1 needs no proof if one wishes to assume the continuum hypothesis. If
K < 2° then MAK implies that any union of K meagre subsets of a Polish space is meagre,
so Theorem 4.1 follows trivially from Martin's Axiom. See [21] for more information.

3. For the Polish space U, Solovay [21, §4.2] proved by forcing that there is a
model of ZFC+->CH in which there exist meagre sets I ( c K (/ < coj such that
U y o
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4. Theorem 4.1 is an easy consequence of the game-theoretic argument of Hodges
[10, Theorem 4.1.5], which is an adaptation of [25, Theorem IV.5.16].

DEFINITION 4.3. A coset system is a pair (X, X), where X is a non-empty set and
A is a map providing for each x,yeX a. non-empty open subset X(x,y) of G. If there
is no ambiguity we write Gxy for X(x,y), and Gx for X(x,x). We require that for all
x,y,zeX:

x y v z xz

Here, for subsets S,T^G, we write S~l for {r1: s e S} and S. T for {st: s e S, t e T),
as usual.

As an example, if D is an orbit of G = Aut (M) on Mn, then each non-empty set
X and map a:X-> D yields a coset system (X, v), where

REMARK 4.4. Let (X,X) be a coset system and let x,yeX. The axioms yield
X(x,x) = X(x,x).X(x,x)~1. Hence Gx is an open subgroup of G. As Gxy = Gx.Gxy,
it is clear that Gxy is a union of right cosets of Gx. But if g,heGxy, then
g/r1 e (7^. G^ = Gx. Hence Gxy is a single right coset of Gx, and so a closed
subset of G (for all x,}/). Similarly, Gxy is a single left coset of Gy. If also zeX,
choose arbitrary gyeGxy and gzeGxz; then Gy2 = g'1 .Gx.gz. As a special case, Gy is
the conjugate of Gx by g r

DEFINITION 4.5. If (X,X) and (X,/i) are coset systems, (A',//) is said to refine
(X,X) ifKx,y) ^ X(x,y) for all x,yeX.

LEMMA 4.6. Lef C^A) be a coset system, let x,yeX be distinct, and let
5 c X{x,y) be open and non-empty. Then there is a refinement {X,/J) of (X,X) such
that ii(x,y) £ S.

Proof. Choose, for each z e X, an element gz e X{x, z) in such a way that gx = 1
and gy e S. Then 1 € Sig'1) ^ X(x, x), and Sig'1) is open. Choose an open subgroup
K^ Sig'1), and if Z,Z'EX define pt(z,z') = g~x.K.gz.. Then (A^) is a coset system
with the required properties.

DEFINITION 4.7. If (X, X) is a coset system, and S^G, we write (X, X) c 5" if
G^ £ S for all distinct x,yeX.

COROLLARY 4.8. Le/ D ^ G be open and dense, and let (X, X) be a coset system
such that X is finite. Then there is a refinement (X, fi) of (X, X) such that (X, //) £ D.

Proof Let x,ye X be distinct. By definition, X(x,y) is open, so that X(x,y) n D
is non-empty and open. By Lemma 4.6, there is a refinement (X,/i) of(X, X) such that
[i{x,y) c J). As J is finite, the proposition follows by induction.

DEFINITION 4.9. If X is finite and (X, X) is a coset system, we shall write
diam^/ l ) for ma.x{diam(X(x,y)):x,yeX}, where if 5 e G is non-empty,
diam(S)d= sup{d(g,h):g,heS}eU U {oo}.
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Using Lemma 4.6, we can also prove the following corollary.

COROLLARY 4.10. Let X be finite, let (X, X) be a coset system, and let e > 0. Then
there is a coset system (X,^i) refining (X,X) and of diameter less than e.

Proof. If x,ye X are distinct, then choose geX(x,y) and let

S = {heX(x,y):d(g,h)<\e}.

Clearly S is non-empty and open. By Lemma 4.6 we can choose a refinement (X,n)
of (X,X) such that fx{x,y) c S. Hence diam(/i(jc,<y)) < e. Note that /i(x,x) = K in
Lemma 4.6 can also be taken to have diameter less than e. As Zis finite, the corollary
now follows by induction, as before.

DEFINITION 4.11. A homomorphism from a coset system (Y, n) into a coset system
(X,X) is a map v.Y^X such that n{y,y') £ X(v(y),v(y')) for all y,y'eY. A
homomorphism v as above is said to be surjective if it is so as a map from Y onto X.

LEMMA 4.12. Let (X,X) be a coset system, let Y be any non-empty set and let
v:Y-*X be given. Then there is a canonical coset system (Y,/i) such that v is a
homomorphism from {Y,n) into (X,X).

Proof. Define n{y,y') = X(v(y), v(/)).

THEOREM 4.13. Let C be a comeagre subset of G. Then for each a,xem2 there is
an element gateG, such that for all o,x,vew2,

™ otrt'Om OCTO>

• ifa^x thengoxeC.

Proof. Let D^G (i < co) be dense open sets such that f]i<0)Di e C. We can
assume that if / <j < co then Di 2 D}. For each n < co we shall define a coset system
Tn = (n2, Xn) by induction on n. We shall require that:

1. r n c / ) n f o r a l l « ^ l ,
2. diam(Tn) <\/nifn^\,
3. if n < m < co, the map (s \-* s \ n) for s e m2 is a (surjective) homomorphism from

Tm onto Tn.
Define 7̂  = ({0}, Xo) by Xo(0,0) = G. Inductively assume that Tn has been

defined. By Lemma 4.12 we can define a coset system T* = (n+12,X*) on n+12 by:
X*(s, t) = Xn(s \n, t\n). By Corollaries 4.8 and 4.10 there is a refinement Tn+1 of T* of
diameter less than l/(« + 1) such that Tn+l £ Dn+1. Then (si-+s\ri) is a homomorphism
from Tn+1 onto Tn. This completes the definition of the Tn.

For each a, x e m2 and each n <co, choose some gax n e Xn(a \n, x \ n). It follows from
(2) and (3) that {Xn{a\n,x\n):n < co) is a decreasing chain of subsets of G and
diam(>ln(cr[«,T|'H)) < \/n. Hence (gaT n:n <co) is a Cauchy sequence; we define
gar to be its limit.

Let a,x, vem2. We show that gaT.gm = gao. If K^ G is open, then for all large
enough n we have

(Sor ^SCT) EW = fa) K8OT) 8W, »•
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Hence
oatoro OffAoar *^-OOT) ow OCTTVO<JT oat) ow,n oor, n * oTO, n

for all large enough n, so (garn.gwn:n<co) converges to gax.gw. But also,
&T,»-Sro,»eAn((j\n,v\n). It now follows from (2) that ^ . . ^ . . ^ J < l/« if
« ^ 1. So we obtain that gax.gxo = gav, as required.

Finally let a # z be in W2. By Remark 4.4, each An(cr \n,z \ri) is closed, so since
SffT.m n̂C0" f«,T [») if "» > /i, we have that g^eXJjj \n,z \n) for all n. By (1), for all
n so large that a \n # T [«, we have that kn(a \n, z \ri) c Z)n. Since we assumed that the
Z>n form a decreasing chain, this is enough to ensure that gne[\n<mDn^C. The
proof is complete.

Proof of Theorem 4.1. Suppose that H < G is meagre. Choose elements
gffreG (a, rew2) as in Theorem 4.13 such that if <r ^ T then £OT£#. Evidently g~) =
gxa for all <J,T. Let t r e ^ be arbitrary. If r,y are distinct, gT<7.^ = ^ T 0 ^ . Hence the
right cosets Hgxa (ze01!) are all distinct, and so \G:H\ = 2<B.

COROLLARY 4.14. Assume that H^G has small index but is not open. Let
C £ G be any comeagre set. Then for all open subgroups K^G, we have that

1. (COK)(]H^0,
2. (C

Proof Note that K is also a Polish group in which C (1 K is comeagre.
(1) If C n K c # \ i / then # n # is meagre in K. Hence by Theorem 4.1 it has

large index in K, a contradiction.
(2) If C n K £ H then # n K is comeagre in K. By translating, it follows that all

cosets of H n AT in AT are also comeagre in K. But any two comeagre sets intersect, so
and His open, also a contradiction.

5. Generic automorphisms and the small index property

We can now prove the first part of Theorem 1.2. We let G = Aut(M) again.

NOTATION 5.1. If X^Gn+1 (where n<co) and g = (glt ...,gn)eGn (we let
G° = {0}), we define:

We then define:
dX = {Jfe G": Xg is comeagre in G}.

FACT 5.2 (Kuratowski, Ulam). Ifn<cois non-zero, and C £ Gn+1 w comeagre
(in the product topology) then dC is comeagre in Gn.

Proof See [23, Theorem 15.1], for example.

THEOREM 5.3. If M is a countable structure with ample homogeneous generic
automorphisms, then M has the small index property.
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Proof. Let @(M) be a base for M such that {geGn:g is ^(Af)-generic} is
comeagre in Gn in the product topology for all n ^ 1. We begin with the following
claim.

CLAIM. Let n < co and let g = (g1,...,gn)eGn be generic (or, if n = 0, empty).
Then {/e G: (g,f) is generic} is comeagre in G.

Proof of Claim. If n = 0 the result is given. Suppose that n > 0. By assumption,
the set C of generic («+l)-tuples is comeagre in Gn+1. By the Kuratowski-Ulam
Theorem, dC is comeagre, and hence dense, in Gn. Choose Be@(M) such that
Bgt = B for / = 1, ...,n, and then h = (hlt ...,hn)edC such that gt and ht agree on
B for each i. By Proposition 2.3 there is 0eGB such that h6

i=gi for each z^n.
Then {feG:(g,f) is generic} = 6~x.Cn.O, which is comeagre in G. This proves
the claim.

Now assume for contradiction that H is a subgroup of G of small index that is not
open in G. Enumerate the domain of M as {an:n < co}. We shall define by induction
onse<(o2:

• elements y,,g,.0,g,n 6 G.

We shall require that y0 = 1, and that for each se <Ctt2:
1. if te <a2, t ^ s and f # 0 , then 5S& = 5S;
2. gs^GBi n # , and g^eG^H;
3. if 5en2 for « > 0 then the tuple gs = (gs{1, ...,gsfn) is generic;
4. (g,)*. = (#,)* for all t such that 0 <t^s;
5. if sen2 then ys.oy;\ y^y^eG^ n Ga<y7i for all i ^ n.

Let sen2 for some n < co, and assume that if f < s then 2?t has been defined, and
that if t ^ s, t T* 0 , then gt and y£ have been defined. We shall define Bs, gs*0, gsn, ys*0

and ygn.
Let ^ = {ao,...,an,aoy71, ...,«„y;1}. As f, (if non-empty) is ^(M)-generic,

we can choose Bse08(M) with GB ^GA, and such that Bsgt = Bs for all t < s with
r # 0 . With this choice, (1) holds. By the claim, C = {geG:(gs,g) is generic} is
comeagre in G. So given our assumption on H, by Corollary 4.14 we can choose
g^e(C n GB) n # and ggne(C n GBf)\jy. Hence gs,0 and ggn satisfy (2) and (3).

Now (gs,ga«Q) and (g^g^) are generic and agree on Bse0#(M). So by Proposition
2.3 there is f8eGB such that (gt)

f» = gt for all t ^ 5, and (ggn)/s = gg-0- Define:

Clearly clauses (4) and (5) are satisfied. This completes the construction.
If o€w2, then by Clause 5 of the construction, (yfffn:« < co) is a Cauchy sequence.

Let yo be its limit. Suppose that a # T and n, ̂  are such that a \ n = s*0 and T f n = s* 1.
By (4) and continuity of the product, we have:

lim i
n-»oo
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Hence (gt.0)
v'y^ = ga«v Since gs.o e H and gs,x $ H, we see that ya. y;1 £ H. Thus the

right cosets Hyo {o£a2) are all distinct, and H has index 2m, a contradiction.

6. Ascending chains of subgroups

To complete the proof of Theorem 1.2, we use the techniques of §5 again to show
the following.

THEOREM 6.1. Assume that M is countably infinite and co-categorical, and has
ample homogeneous generic automorphisms. Then G = Aut (M) is not the union of a
countable chain of proper subgroups.

Proof. Assume for contradiction that G is the union of an increasing chain
(Hn:n < co) of proper subgroups. By Lemma 2.4, no Hn is open in G, so for all
aeMand n <co, the subgroup Ga n Hn is not comeagre in Ga. Also, as the union of
countably many meagre sets is meagre, by discarding finitely many of the Hn we can
assume that no Hn is meagre in G. Hence Ga n Hn is not meagre in Ga for any
a and n.

As M has ample homogeneous generic automorphisms, we can undertake
the construction of Theorem 5.3 again. But this time we use the above to arrange
that gs^eHn and g8^Hn for each n <co and sen2. Define ya (cr€C02) as before. So
if sen2, a > ̂ 0 and z > JA1 in <°2, then (g^)™1 = g,n, so that yay;l$Hn.

Now as G = \Jn<mHn, there are n < co and uncountable Igf f l2 such that yaeHn

forallcreS. Choose m ^ « and cr, T e I such that a \m = T[mand<7["m+1 # z\m+l.
Then yay~1^Hm 2 Hn, a contradiction.

The results of Sections 2 and 3 show that any co-stable co-categorical structure
satisfies the conclusion of the theorem, as does the random graph. Macpherson and
Neumann [20] prove that the conclusion holds when M is an infinite set without
further structure.
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