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Abstract. We show the consistency of ZFC 4 “there is no NWD-
ultrafilter on w”, which means: for every non-principal ultrafilter D on
the set of natural numbers, there is a function f from the set of natural
numbers to the reals, such that for every nowhere dense set A of reals,
{n: f(n) € A} ¢ D. This answers a question of van Douwen, which was
put in more general context by Baumgartner.

0 Introduction

”

We prove here the consistency of “there is no NWD-ultrafilter on w” {non-
principal, of course). This answers a question of van Douwen [vD81] which ap-
pears as question 31 of [B6]. Baumgartner [B6] considers the question which he
dealt more generally with J-ultrafilter where

Definition1. 1. An ultrafilter D, say on w, is called a J-ultrafilter where J is
an ideal on some set X (to which all singletons belong, to avoid trivialities)
if for every function f : w — X for some A € D we have f"(A4) € J.

2. The NWD-ultrafilters are the J-ultrafilters for

J = {B C Q: B is nowhere dense}
(Q is the set of all rationals; we will use an equivalent version, see 22).

This is also relevant for the consistency of “every (non-trivial) c.c.c. o-centered
forcing notion adds a Cohen real”, see [Sh:F151].

The most natural approach to a proof of the consistency of “there is no
NWD-ultrafilter” was to generalize the proof of CON(there is no P-point) (see
[Sh:b, VI, §4] or [Sh:f, VI, §4]), but I (and probably others) have not seen how.

We nse an idea taken from [Sh 407], which is to replace the given maximal
idenl 1 on w by a quotient; moreover, we allow ourselves to change the quotient.

n
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In fact, the forcing here is simpler than the one e [Sh407). A related work is ' () il ) Aien .
Goldstern, Shelah [GoSh 388]. ! () 1 i o function on dom(H) = Bh U BY, where

We similarly may consider the consistency of “no a-ultrafilter” for limit a < i i
wy (see [B6] for definition and discussion of a—ultrafilters). This question and the B= {2 mew, AAN(m+1)= 0, i< h‘“ﬂ”‘” p 0
problems of preservation of ultrafilters and distinguishing existence properties B ={z' :mE dom(EP)\ AP or m ¢ dom(E?) but A Orn}l -2 ),}
of ultrafilters will be dealt with in a subsequent work [Sh:F187]. ' i < h(m)},

In §3 we note that any ultrafilter with property M (see Definition 25) is an 5
NWD-ultrafilter, hence it is consistent that there is no ultrafilter (on w) with |
property M. !

I would like to thank James Baumgartner for arousing my interest in the '
questions on NWD-ultrafilters and a-ultrafilters and Benedikt on asking about
the property M as well as Shmuel Lifches for corrections, the participants of my ;
seminar in logic in Madison Spring’96 for hearing it, and Andrzej Rostanowski |
for corrections and introducing the improvements from the lecture to the paper.

(B) for 2" € By, H(z{") is a function of the variables
{7 : (n,]) € wp(m, i)} to {—1,1}, where

wy(m) = wy(m, i) = {(£.J) : ¢ e A" nm and j < h(€)},

for n € AP we stipulate H?(z}') = z]' and
(v) HI B isa function to {—1,1}. &
' {e) if £'= 2'and z7 . € BY. n* = min(n/EP) < n and y" € {-1,1} for

r m € AP An*, i < h(m) and z} € {-1,1} for j < h(n*) then for some
- o b y}“ € {—1,1} for j < h(n") we have
In Definition 3 below we define the forcing notion (Q}} » Which will be the one j<hin*) = :5} = (H? (z)(. .. T VS eb

used in the proof of the main result 24. The other forcfng notion defined below,
(Q):Hf),fn 1s a relative of Q}h Various properties are much easier to check for @%,h’
but unfortunately it does not do the job. The reader interested in the main result
of the paper only may concentrate on Q}]h.

2 M "
When it can not cause any confusion, or we mean “for both £ = 1 and £ = 27,

we omit the superscript £.

2. Defining functions like H(z"), ™ € B} (whex? 2= 2) we may al‘low-:;)l
use dummy variables. In particular, if H?(z™) is —1,1 we identify it wi
constant functions with this value. '

3. We say that a function f : {af 1@ < h(n), n < w} — {-1,1} satisfies a

condition p € Qf , if:

Definition2. Let [ be an ideal on w containing the family [w]<% of finite
subsets of w.

1. We say that an equivalence relation E is an [-equivalence relation if:
(a) dom(F) C w,
(b) w\dom(E) €I,
(c) each E-equivalence class is in I.

2. For I-equivalence relations Ky, Ea we write Fy < Eq of

(a) f(z}) = HP(2}) when x} € B and £=1,0r 3} € Bf_,’ and £ = 3, -
(b) fizt) = HP(z?)(... @D, mg)ew,(n i) when £ = 2 and. ' € By,
(¢) flaP) = F@™™"/E") when ¢ =1,n € dom(EP) and i < h(min(n/EF)).

i

4. The partial order <=<g¢ | is defined by p < ¢ if and only if:

(a) EP < E9, g
(3) every function f : {af : 1 < h(n), n < w)} — {—1,1} satisfying ¢

satisfies p.

(i) dom(FE>) C dom(E,),
(i1) £y | dom(F9) refines Es,
(iii) dom(FE>) is the union of a family of F-equivalence classes.

Definition3. Let [ be an ideal on w to which all finite subsets of w belong and
let h : w — w be a non-decreasing function. Let £ € {1,2}. We define a forcing
notion (@f},h (if h(n) = n we may omit it) intended to add (¥ : i < h(n),n < w),
y! € {—1,1}. We use 2! as variables.

1. pe QY , ifand only if p= (H, E, A) = (H?, EP, A?) and
(a) E is an I-equivalence relation on dom(#) C w,
(b) A={n€dom(E):n=min(n/E)},
(c) if £ =1, then H is a function with range C {—1,1} and domain

. Loy =
Proposition4. (leh‘ <q¢ ) isa partial order.

Remark. We may reformulate the definition of the partial orders <04, makm?
them perhaps more direct. Thus, in particular, if p,q € @}‘h then p <qi, 4 if
and only if the demand (a) of 3(4) holds and

()" for cach x} € “?_.
() ifa) € BY then H(a}) = H(a]),
() o/ n € dom(EP)\ dom(ET), i < h(min(n/ 7))
then H'Y ':}] ”.f“.r'nm(n,'h ))'

BY = {2 :i < h(n) and n € w \ dom(F) or
n € dom(F) and i € [h(min(n/E)), h(n))},
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(iii) of n € dom(E7) \ A, min(n/ L") > min(n/ L) and
h(min(n/E9)) < i < h(min(n/£7)) then H9(z}) = Hi(a™"("/E")y,

The corresponding reformulation for the forcing notion Q? 1.h 18 more complicated,
but it should be clear too.

One may wonder why we have h in the definition of QE 1,h and we do not fix
that e.g. i(n) = n. This is to be able to describe nicely what is the forcing notion
Q4 » below a condition p like. The point is that @I w9 : g > p} is like Qf , but
we replace I by its quotient and we change the function h. More prec1sely

Proposition5. Ifp € Qf , and A? = {ny 1 k < w}, np < ngpr, A" 1w —> w is

h*(k) = h(nk) and I* = {B Cw: |J (nk/E) € I} then Qf;‘h I {q p<q¢, q} is
kEB :
wsomorphic to Q'I.‘h..

Proor Natural. [ ]

Definition6. We define a Q; ,—name 71={(nn:n <w) by:
M is a sequence of length h(n) of members of {—1,1} such that

M(Genli)=1 & (3peGy,,)(HP(zF)=1).

[Note that in both cases £ = 1 and ¢ = 2, if HP(z7) = 1, 2} € dom(H?) and
¢ > p then H%(a?') = 1; remember 3(2).]

Proposition7.

L Ifn<w, APN(n+1) =0 then plt “y, = (HP(2}) : i<h( i
2. For eachn < w the set {p€ Qrp: AP N(n+1 —ﬂ} is dense in Qg p.
3. If p € Qpn and a C AP is finite or at least | ( n/EP €, and

nea
fi{al :i<h(n) and n € a} — {-1,1},

then for some unique q which we denote by 1, we have:
(a) p<qgeQyp,

(b) E? = E* [ U{n/EP :n € A\ a},

(c) forn € a, i < h(n) we have H9(z}) ts f(x}).

Proor Straight. |

Definition 8.
L. p<n q(in Q) if p < ¢ and:

ke A & |APNkl<n = ke A9,

J09

2opialp s gl
ke AP & |APNkl<n = ke A& E/EP =k/E7.
3op g of p<uy1qand:

nip DR e Shig and dom(E?) = dom(E?).

def PR
4. For a finite set u C w we let var(u) = {z :i < h(n), n € u}.

Proposition 9.

L. If p < q, u is a finite initial segment of A* and A7 Nu = 0, then for some
unique f : {20 : i < h(n) and n € u} — {-1,1} wehauep(p[f] <gq
(where pU1 is from 7(3)).

2. Ifpe Q’t‘r‘h and u is a finite initial segment of AP then
(#)1 feva{_1 1} implies p < pU] and

pYIE “ (¥n € u) (Vi < h(n))(na (i) = f(2]'))",

()2 the set {pl/1: f € > {_1 1}} is predense above p (in Q7 ,).
3. <n is a partial order on Qf ,, and p <n41 ¢ = p <n q. Similarly for <}
and <®. Also

Lo N el il SR e e
4. Ifpe (Q_??h, u is a finite initial segment of AP, |u| =n and
fi{zl:i<h(n) andn€u} — {-1,1} and pY1<qeQf,,

then for some r € Qf’,h we have p <}, r < g, Pl =q.
5 IfpeQ?,, uis a finile initial segment of A7, lu|=n+1 and

[zl i< h(n) andneu} — {-1,1} and U < q,
then for some r € Q%h we have p <% r < ¢ and Ul = ¢.

Proor
1) Define f: {2} :7 < h(n) and n € u} — {-1,1} by:

f(z7) is the constant value of H9(z[)

(it is a constant function by 3(1)(e), 3(1)(f(v))).
2) By 7 and 9(1).

3) Check.
1) Iirst let us define the required condition » in the case £ = 1. So we let
dom(L") ~ L) (n/EP)Udom(FE9),
niw
B {(ny ny)  ny 2904 or for some n € u we have: {ny,ny} C (n/E”))},

A’ whlAY
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l(lmlr that if 2y E'ny then n, ¢ u). Next, for o B37 (where B} is given by
3(1)(e)) we define

Hi(2l') ifng |J k/EP and z} € dom(HY),

kEu

HP (2] ifn e UJ k/EP and x? € dom(HP).
kEu

It should be clear that r = (H7, E". A") € Q} , is as required.

If £ = 2 then we define » in a similar manner, but we have to be more careful
defining the function H”. Thus £" and A" are defined as above, Bj, B and
wy(m. i) for * € BY are given by 3(1)(f). Note that B; = B! and B C BS.
Next we define: . % \

if £ € By then H"(z) = HP(z),

if 7" € B, mN A™ C u then H'(2?) = HP(al®),

if 21" € B} and min(dom(E7)) < m then

H (a)(
HP (27)

H' () =

4 o -'l-"-)(k,j)Ew,.'(’m.z') =
T HI@E o2, ) jnyew, k1)) (k.j)€wn(m,i)

(K" ) €wp (m,i)\w, (m,i)
Note that if (&', j/) € wp(m, i)\ wp(m, i), 2 € Bg then k' € AP \ (wU A%) and
wy(K, ) C wp(m, ).
5)  Like the proof of (4). Let n* = max(u). Put dom(E") = dom(EP) and
declare that n; E™ n, if one of the following occurs:

(a) for some n € u\ {n*} we have {n1,n2} C (n/E?), or

(b) n1 En5 (son € u= —n EP ni), or
(¢) {n1,n2} C B, where

def * ~ )
B=n"/EPU LJ{m/EI tm € dom(E”) \ dom(E9), min(m/E?) > n*},

We let A" = u U A9 (in fact A" is defined from E"). Finally the function H” is
defined exactly in the same manner as in (4) above (for ¢ = 2). | |

Corollary 10. If p € @Jfr'h, n<wandrtisa (Q)f},hﬁname of an ordinal, then
there are u,q and & = {as s fre ver(nlt g0 1}) such that:

(a) p <5 g €Qf,,

(b) u={feAr:|tnar| < n},

(c) for f e Var(“){-l, 1} we have ¢l/1 |- = e

(d) qIF “re {00 1 e PAE e 1}}” (which is a finite sel).

PROOF  Let k = J] 2™, Let {f, : ¢ < k} enumerate Var(w{_1 1}, By

. ¢ feu
induction on ¢ < k define r, ay, such that:

5

T . Yl £ « y
o = P, re Sn Te41 € ‘Q’]‘hv T‘EJ:% lhﬂl:, B ﬂ'fl 2

The induction step is by 9(4). Now ¢ = . and (o Sofieyaniulr g }) are as
required. ]

Covollavy 10, 10 2 then i 10(a) we may re quure p <y g € 'U"}“,,-

I'ioon Sl just use 9(5) instead of 9(4). |

Definition 12, Let [ be an ideal on w containing [w]<“ and let E be an
[-equivalence relation.

I. We define a game GM;(E) between two players. The game lasts w moves.
In the n*" move the first player chooses an I-equivalence relation E! such
that

Es=E, [>0 = E; <Kl

and the second player chooses an I-equivalence relation E? such that
E} < EZ.In the end, the second player wins if

U{dom(Eﬁ) \dom(E.,,) :ncw}el

(otherwise the first player wins).

2. For a countable elementary submodel N of (H(x), €, <*) such that
I,E € N we define a game GM{ (E) in a similar manner as GM;(F), but
we demand additionally that the relations played by both players are from
N (ie. E},E2€ N for n € w).

Proposition13.

1. Assume that I is a mazimal (non-principal) ideal on w and E is an I-
equivalence relation. Then the game GM(E) is not determined. Moreover,
for each countable N < (H(x), €, <*) such that I, E € N the game GMP(E)
15 not determined.

2. For the conclusion of (1) it is enough to assume that P(w)/I £ ccc.

ProoFr 1) As each player can imitate the other’s strategy.
2) Easy, too, and will not be used in this paper. u

Proposition 14.

1. Let p € va‘h. Suppose that the first player has no winning strategy in
GM(E?). Then in the following game Player I has no winning strateqy:
in the n*" move,
Player I chooses a Qf ,-name T, of an ordinal and

Player 11 chooses p,,u,,w, such that: w, is a set of < T 2" ordi-
feu,

nals, p < pn <}, Pati, Pn Snt1 Pnsl, Un a finite initial segment of APn
with n clements and p, |- “Tn € w,”, moreover

[ "“"""{ k) 5 p!;’r] forces a value lo Tn-
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In the end, the second Player wins of for some q = powe have
q Ik “(Vn € w)(r, € wy) "

We can let Player 11 choose kn < w and demand [un| < kn, and in the end
Player 1] wins if liminf(k, : n < w) < w or there is q as above.

2 Letpe @f,h and let N be a countable elementary submodel of (H(x), €, <*)
such thatp, I he N. If the first player has no winning strategy in GM!N(E'P)
then Player I has no winning strategy in the game like above but with restrie-
tion that 1., p, € N.

Proor 1) Asin [Sh 407, 1.11, p.436).

Let St, be a strategy for Player I in the game from 14. We shall define a strategy
St for the first player in GM;(EF) during which the first player, on a side, plays
a play of the game from 14, using St,, with {(Pe : £ < w) and he also chooses
<q€ Tl uJ)

Then, as St cannot be a winning strategy in GM;(E), in some play in which
the first player uses his strategy St he loses, and then (pe: £ < w) will have an
upper bound as required.

In the n*" move (so E}Ef‘ Ge, pes g, we for £ < n oare defined), the first player
in addition to choosing E,l1 chooses ¢, , p,, u,,, such that:

(8 P=p_y <qo=po, p. €QL,, g, € Q4 4,
(b)Y ps <X Pnt1 € @fr,hv
(c) ugis 0,
(d) upyy =u, U {min(A9+1 \ u,)}, so [Uppi1|=n+1,
(e) Bg=EP, EL, = Epn | (dom(EPn)\ if EPn),
i€u,
(f) ¢, is defined as follows:
(fo) if n =0 then Ea» = E2
(f1) if n > 0 then dom(E9) = dom(EPn-1) and z Fa y if and only if
either 2 E2 y,
or for some k € U, we have z,y e k/EPa-1’
orz,y € (dom(E})\ dom(E2)) U min(dom(E2))/E2,
(f2) H% is such that Pn-1 < qn,
(g) Pn _<_;, Gn+1 S:H.l Pnt1,y Pn <n+1 In+1 (SO Pn <n41 pn+1)|

(h) if f e varfua)f_ 7. 1} then pgl forces a value to T

In the first move, when n — 0, the first player plays E} = gr (as the rules
of the game require, according to (e)). The second player answers choosing an
I-equivalence relation E¢ > Ej. Now, on a side, Player I starts to play the game
of 14 using his strategy St,. The strategy says him to play a name 74 of an
ordinal. He defines q0 by (f) (so ¢ € @5,;& is a condition stronger than p and
such that EF% — E?) and chooses a condition py > ¢, deciding the value of the
name rq, say py IF 1o = a. He pretends that the second player answered (in the
game of 14) by: py, uy = 0, wo = {a}. Next, in the play of G'M; (7)), he plays
E] = EPo as declared in (e).

J13

Now suppone that we are at Lhe (1 + )™ stage of (he play of GCMp(57), the
first player haw played 10! i1 already and on a side he has played the play of
the game 14 an defined by (a) (h) and St, (so in particular he has defined a
condition p, and 1) e EP [ (dom(EPn) \ U i/EP") and wu, is the set of

1€, .
the first n elements of AP» ). The second player plays an I-equivalence relation

Eify > Bl Now the first player chooses (on a side, pretend.ir_lg to play in tgle
game of 14): a name 1,4, given by the strategy St,, a condition ¢,4, € 'Q“l
determined by (f) (check that (g) is satisfied), u,4; as in (d) and a condition
Put1 € QF , satisfying (g), (h) (the last exists by 10). Note that, by (g) and 9,
the condition Pn+1 determines a suitable set Wy 4. Thus, Player I pretends that
his opponent in the game of 14 played Pn+1,Unyt1, wye1 and he passes to the
actual game GM;(E?). Here he plays E} ,, defined by (e).

The strategy St described above cannot be the winning one. Consequently,
there is a play in GM;(E?) in which Player I uses St, but he looses. Dur-
ing the play he constructed a sequence ((pn,u,,w,) : n € w) of legall moves
of Player II in the game of 14 against the strategy St,. Let E? = lim Epn

n<w
(i.e. dom(E7) = () dom(E*~), z E9y if and only if for every large enough n,
<w . .
z EPr y) and let f?q(.r,m) will be HP(21") for any large enough n (it is eventually

constant). It follows from the demand (8) that E%-equivalence classes are in .
Moreover, dom(E';H)\dom(EgH) C k/E7, where k is the (n+ 1)** member of
A9, Therefore

w\dom(E?) =w\ N dom(EP») C
new
w \ dom(E*°) U [ J{dom(E2) \ dom(E}. ) inew}e i
(remember, Player I lost in GM;(ET)). Now it should be clear that q € @i,h

and it is stronger than every pn (even p, <& gq). Hen?e Player II wins the
corresponding play of 14, showing that St, is not a winning strategy.

2) The same proof. ]

Proposition15. If in 14 we assume £ = 2 and demand Pn <2 pny1 instead
Pn <}, Pny1 then Player II has a winning strategy.

Proor Using 11, the second player can find suitable conditions Pn (in the
game of 14) such that p, SS{H Pn+1. But note that the partial orders <® ha?re
the fusion property, so the sequence (p, : n < w) will have an upper bound in

(Q}}?,h’ B

Remark. We could have used <y also in [Sh 407].
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Definition16 see [Sh:f, VI, 2.12, A-F].

1. A forcing notion P has the PP-property if:
(@FF) for every n € “w from VT and a strictly increasing & € YwN'V there
is a closed subtree T C <%w such that:
(@) p € lim(T), ie. (Vn<w)(n|[neTd),
(#) T'N"w is finite for each n < w,
(7) for arbitrarily large n there are k, and n < #(0) < j(0) < (1) <
J(1) < ... < i(k) < j(k) < w and for each £ < k, there are m(f) < w
and %0, ... ,pt™8 € T NIy such that j(¢) > z(i(£) + m(£)) and

(Vv € TNIFw) (3¢ < k)(Im < m(£))(n"™ Q).

2. We say that a forcing notion [P has the strong PP-property if
(#*FF) for every function g : w — V from VT there exist a set B €

[w]NO NV and a sequence (w, : n € BY € V such that for each n € B
lw,| < n and g(n) € w,.

Remark. Of course, if a proper forcing notion has the strong PP-property then
it has the PP-property.

Conclusion 17 Assume that for each p € Q% , and for each countable N <
(H(x), €, <*) such that-p,I,h € N, the first player has no winning strategy in
Gﬁij(E”) (e.g. if I is a mazimal ideal). Then

(*) Qf,’h 18 proper, a-proper, strongly a-proper for every a < wy, s “w-bounding
and it has the PP-property, even the strong PP-property. |

By [Sh:f, VI, 2.12] we know

Theorem 18. Suppose that (JP',-,@j 1j < a,i < a) is a countable support itera-
tion such that

e @JJ. ts proper and has the PP-property”.

Then P, has the PP-property. |

2 NWD ultrafilters

A subset A of the set Q of rationals is nowhere dense (NWD) if its closure (in
@) has empty interior. Remember that the rationals are equipped with the order
topology and both “closure” and “interior” refer to this topology. Of course, as
@ is dense in the real line, we may consider these operations on the real line
and get the same notion of nowhere dense sets. For technical reasons, in forcing
considerations we prefer to work with “2 instead of the real line. So naturally
we want to replace rationals by <“2. But what are nowhere dense subsets of

a8

wWo then? (One may worry about the way we “embed” =%2 into “2.) Note

that we have n natueal lexicographical ordering <gp of =% 2:

0 <op t il and only il

either there 1s € < w such that g[f = v[€ and n(€) < v(f)

ory (1) <dwv

or v (0) Q1.
Clearly (<92, <) is a linear dense order without end-points (and consequently
it is order-isomorphic to the rationals). Now, we may talk about nowhere dense
subsets of <¥2 looking at this ordering only, but we may relate this notion to

the topology of “2 as well.
Proposition19. For a set A C <W92 the following conditions are equivalent:

1. A is nowhere dense,
2. (Ve <w(Fve < dv & (Vpe<¥2wdp = p¢A)
3. the set

A (ne¥2: (vnew)(3v e A)(nin Qv)}

is nowhere dense (in the product topology of “2),
4. there is a sequence (1, : n < w) such that for each n <w
(i)n 7 : [0, ) — 2 for some £, > n and

(ii)n (Vp € A)(mn € p), (R
5. there is a sequence (1, : n < w) such that for each n < w condition (i)n (see

above) holds and
(i); (we™)({pe<Y2:vum dp}NA=0),

6. there are B € [w]NU and (1, : n € B) such that for each n € B the conditions
(i), (ii), above are satisfied.

Proor 12 =3 Suppose A C <®9 is nowhere dense but for some
sequence 7 € <%2, for every v € <“2 extending 7 there is p € A such that
v < p. Look at the interval (77(0),77(1))<,. (of (S¥2,<sz)). We claim that A
is dense in this interval. Why? Suppose

n7(0) <tz My <tw M7 ez M (L)
Assume £g(ng) < Lg(n7). Take v 4 ) ~(0). By the definition of the order <z,
we have then

0 <z v {0) <z ¥ (1) <tz M and n <.
By our assumption we find p € A such that »7(0,1) < p. Then
v {0) <gr p <tz v (1) and hence p € (15,77 ) <ew -

Similarly if fo(n}) < Lg(ng)-
2 = Should be clear if you remember that sets

[i4] (ne¥2:van} (for v € <W2)
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constitute the hasis of the Lopology of “'2

s A e Suppose A* is nowhere dense in “2. Let n < w. Considering
all elements of 2" build (e.g. inductively) a function 77 : [n,€4) — 2 such that
n < ¢, and

(Vv € 2")([v"ns] N 4™ = 0).

This means that for each v € 27 the set {p €A :v7n; < p} is finite (otherwise
use Konig lemma to construct an element of A* in [¥™n3]). Taking sufficiently
large £, > £ and extending 7} to 5, with domain [n,£,) we get that (Vp €
A)(nn € p) (as required).

L e ) Read the conditions.

b Let B, (7, : n € B) be as in 6. Suppose vy, v; € <W9
Vo <gz V1. Assume {g(vg) < Lg(v1) = m. Take any n € B\ (m + 1) and let
v=1170,...,0)"n,. We know that no element of A extends v. But this implies

that the interval (r7(0), »(1))<,, is disjoint from A (and is contained in the
interval (o, 1)<, ). Similarly if Lg(v1) < Lg(vo). [ |

Lemma 20. Let n, k* < w. Assume that i* — (vt in<ic i) for k < k* < w,

< <w, vk e [£3)2 and wy C n,ix), |lwk| > k* and:
G ] _>' -_— —
izi

ifk <k*, my < ma are in wy then maxdom(uf.fh) < ms.

Lastly let
i(*) = max{supdom(v¥) + 1: k < k* and i € (n, i)}
Then we can find p € ()2 such that:
(Vk < k*)(3i € wi)(vf C p).

Proor By induction on &* (for all possible other parameters). For k* =0, |
it 1s trivial.

Let n{ = min(wy) and n; = min(wy \ () +1)). Let £ < k* be with minimal n}.
Apply the induction hypothesis with ngsp = s ny <i<ig)fork < k* k L3P
and {wy \n% e £) here standing for n, v* for k <k {wg 1 k< k)
there and get p; € [2i(*)2, Note that we \ np D wy \ nj has at least Jwg| — 1
elements. Let p € [*(*))2 be such that 1 C pand Dfi? Cp. a

Proposition21. Assume that 2 is a proper forcing notion with the PP-property.
Then

(2™) for every nowhere dense set AC <¥2 in VR there is g nowhere dense
set A* C <Y2 in V such that A 4>

ny

"o Lot A& V® Lo a nowhere dense subsel of %2, Thus, in V¥, we can,
for ench n < w, choone v, € ) 99 such that:

(Vv € "2)(Vp € “Y2) (v va dp = p¢ A).

50 (vy :n < w) € V¥ is well defined. Next for each n we choose an integer
fn € (n,w), a sequence 7, € [4)9 and a set wy, C [n,£,) such that:

[wy] > n,
(Vm € wn)(vim C 1,), so in particular (Ym € w,)(maxdom(u,,) < £,), and
- for any m; < m, from w, we have maxdom(v,,, ) < ms.

Sow =(wp:n<w), fj=(n, :n< w) € VX are well defined.

Since B has the PP-property it is “w-bounding, and hence there is a strictly
increasing & € “wNV such that (Vn € w)(€n < z(n)). Applying the PP-property
of B to & and the function n + (1, w,) we can find (VP <k :in<w)in
V and (((iz(n), je(n)) : € < kp) :n < w) in V such that:

(a) do(n) < jo(n) <ii(n) < ji(n) < ... < ik, (n) < ji.(n),

(b) jk,(n) <io(n+1) for n < w,

(c) xz(i¢(n)) < Je(n), ; .

(d) V' C {(n,w) : n € letn)iem))g and o C [ie(n), je(n)), |w| > i¢(n)} for
4 < LA w,

(e) |V < ie(n),

(f) for every n < w, for some ¢ < k, and (n,w) € VP we have w = s
Nie(n) C 1.

[Note that i;(n) corresponds to i(£) + m(£) in definition 16(1), so we do not
have m¢(n) here.] Working in V, by 20, for each n < w, & <k, there is p? €
lie(n).je(n))9 such that:

(V(n, w) € V*)(3my, ma € w)(my = min(w \ (m1 + 1)) & n | [my,ma) C p}).

Let p, € [o(n)io(n+1))9 he guch that ¢ <k: = p} C p,. As we have worked
inV, {pn :n <w)€V. Let

A" = {p e <¥2:=(3n € w)(pa C p)}.

Clearly A* € V is as required. [ |

Let us recall definition 1 reformulating it slightly for technical purposes. (Of
course, the two definitions are equivalent: see the discussion at the beginning of
fhs hf'I'lit)ll.)

Definition 22, We say that a non-principal ultrafilter D on w is an NWD-
ulteailter of for any sequence (M :n < w) C <32 for some A € D the set
{10 € A} In nowhere dense in <w9.
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Lemma 23, Let D be a non-principal wltraflter on w and | be the dual ideal
fand h:w —s @ non-decreasing lim h(n) = o0 ). Then:
7 — 00

1 in VU ye cannot extend D to an NWD-ultrafilter.
2. IfQisa Q}‘h—name of a proper forcing notion with the PP-property, then
also in V=@ 40 cannot extend D to an NWD-ultrafilter.

Proor 1) et 7= (g,, : n < w) be the name defined in 6, but now we

interpret the value —1 as 0. So I, € #™2" (for each n < w). Clearly it is
enough to show that

(*) IFg: “if X Cw and the set {1 : n € X} is nowhere dense
then there is Y € D disjoint from X7,

So suppose that 7 is a Q}_h—name for a subset of w and a condition ' €Q},
forces that {1. : n € 7} is nowhere dense.

By 19, for some ‘QJ},h—llames Y= (Vm : m < w) we have

philkEipoe U (.89 and for every m < w for no n € r we have vm C 0",
£2>m

By 14 (or actually by its'proof) without loss of generality:

for every n € A?", for some kn € (n,min(47" \ (n + 1))), for every
fi{el ime A" Nn(n+1)and J < h(m)} — {-1,1}, the condition
p“m forces a value to rN &, and TNk, \n#0.

[Why? Give a strategy to Player I in the game there for p* trying to force the
needed information, so for some such play Player II wins and replaces p* by g
from there.]

Again by 14 we may assume that

for every f : {zI' : j < h(m) and m € 47 N(n+1)} — {-1,1},
n € AP for some i/ we have

] 2 Eeon
p"‘“r Ik “#/ is an initial segment of v and fg(Df) =n+1".

For n € A?" and f . {zI" 15 < h(m) and m € 47" n (n+1)} — {~1,1} and
k€ AP\ (n+1) let:

(a) flk2'] be the function with domain {1:;” :J < h(m) and m € A*" N(k+1)}
extending f that is constantly 1 on (ior’n(f[k""]) \ dom(f),

(b) p/ be an w-sequence (p{ : € < w) such that for each k € AP \(n+1) we
have p/ [ (k+ 1) = /™" | (1 4 1),

10

Now, for every ne A" we can find p? € <92 such that for every function
[ {&" < h(m)and me A" N (n+1)} — {-1,1}

for some £(f) ¢ (h(n),w) we have p{(}.) C py, (so £(f) < Lg(pr)). . .
[Why? Let {f; : j < j(*)} list the possible [’s, and we chose by mfiuctlon on
j< .j[*). pl € <92 such that p/ q pi*!, and P+ satisfies the requirement on

. v A
fiveg po=(0,...,0), p*l = plmps ).
h(n)

Now choose by induction on ¢ < w, n; € A" such that n¢ < neyi1, and

La(pr.) < h(ncy1). Without loss of generality U (n¢/EP") € I. Then
‘ i)

either | J{n/EP' :n e A-’i. and (3¢ < w)(nac < n < nacy1)} €D
or U{n/EP" :n € AP" and (3¢ < w)(nacyr < n < nacya)} €D,

so by renaming the latter holds. (Again, it suffices that the ideal I is such _tl.w.t
the quotient algebra P(w)/I satisfies the c.c.c.) Lastly we define a condition

r€Qf

dom(E") = [ ) nac/EP"U{ J{n/E"": ne 4”" and (3 <w)(nact1 < n < nacya)},
(<w
nac/E” = (na¢/EP") U H{m/EP" : m € A" 0 (nacy1,nacta)}

(note that this defines correctly an /-equivalence relation EF), Af =nstc =
w}. The function H™ is defined by cases (interpreting the value 0 as —1, where

appears):

Hi(eD ) = H”'{a:}“) if m € (w\ dom(EP")) and ? < h(m),
H™(z) = H* (2™)if m €dom(EP’) and j € [h(min(m/E*")), h(m))
H'(zP)=1 if medom(EP") and min(m/EP’) € (na¢, no¢41]

and j < h(min(m/E?"))
H"(z") = py,..(7) if m € dom(EP") and min(m/E?") € (nz("..l_l,ngc.l_g)
and j € dom(p},, ) and j > h(nac)
HiaPY=1 otherwise (but z7* € dom(H")).

Now check that p* < r € Q] , and for each n € dom(E") \ U nac/EP":
= : S

rIF “ 9, violates the property of v and hence n ¢ 7.

As dom(E")\ U -n-u.c/E'f’. € D we have finished.

2)  Should be clear by (*) of the proof of 23(1) and 21.
However wo will give an alternative proof of 23(2). We start as in the proof of
(1) muppone some (p*,r*) € Q) , » Q forces “F is an NWD-ultrafilter on w
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extending D”. As IF*n, (¢ g, | € "0 for some (0 , « Q)-name 7 for a subset

of w
(p*,*)IF “7 € F and (Vn € <W(F e Y2(nQr &k (VneT)(-w g M) 7
So for some Q}'h * Q-name 7 = (vn 1 n < w)

(p",r*)IF “v € U [£3)2 and for no n € T we have vy C .
JE[Ew)

So for some Q} p * Q-names dg, we

(e, r*) IF“w>de > 8 we ClEde), |we] > (4-T]o<p h(5))! and
[my <mpinwe, = maxdom(ym,) < ma]”.

Let p* € GQM C Qj  and G@},h generic over V. Now in V[G@},h]’ the forcing
notion Q[Gqr ‘;.] is “w-bounding (this follows from the PP-property) and also
Qj 4 is “w-bounding,

Hence for some r’ € Q[Glgy ] and strictly increasing ¢ € “w NV we have:

r’ IFgiey, 1 d, < z(n) and m € w, = dom(vm) C [0,2(n))”.

In V[Gq: |, by the property of Q, there are ' < r € QGq:,] and a
sequence ({iz(n), je(n)) : € < k,) : n <w) such that

io(n) < jo(n) < ir1(n) < ji(n) < ... < jk, (n) <ie(n+1),je(n) > 2(ie(n))

and there are 7}, = (v}, J € [iz(n),je(n))) for t < i¢(n), £ < k, and

Wy 4, = (w;',z‘t_j 2 J € [te(n), ig41(n)) for t < ig(n),£ < ky,) such that
i “’@ Aﬁ(yi;(n)-é-j tj € [Z,g(ﬂ),]g(ﬂ,))) is ﬁ:&.i,t and
(Wiy(n)+j ¢ J € lie(n) : je(n))) is @y, , , for some t < ig(n)”.
Back in V we have a Q} ,-name r** and (((i¢(n), je(n)) : £ < kn) :n < w) and
(T pp it <ie(n)) 1 £ < kn,n < w) and ((wy, ,, :t < ig(n)) : € < kn,n < w) are
forced (by p*) to be as above.
By 14, increasing p*, we get
for every f: {eP :i < h(m),m € A Nn(n+1)} — {-1,1},n€ AP",
L W11
the condition p* "~ forces a value to
(((ie(m), je(m)) - €
£

(#5001 1 <de(n),

(W00 1t <ie(n), € < kn)

moreover, without loss of generality

ne A" = ji (n) <min(AP" \ (n+1)).

321

Now hy 20, withont Toss of generality for cach n o 1" we can find a function
S Tronn [o nind APSN (- 1))] to {—1,1} such that:
L™ e b)), mo APT N (n+ 1)} —{-1,1},n€ AP

W) v p
then (p*  r®") lorees that p, extends some vy,

Now we continue as in the proof of 23(1). |

3 The consistency proof

Theorem 24. Assume CH and $(ycwycf(v)=w,} -
Then there is an ¥a—cc proper forcing notion P of cardinality Ry such that

IFp “there are no NWD-ultrafilters on w .

Proor Define a countable support iteration (]P,-,Qj 11 < wy,j < wy) of

proper forcing notions and sequences (D; : i < ws) and (IT : 1 < ws) such that
for each 7 < ws:

1. D; is a P;—name for a non—principal ultrafilter on w,

2. Q, is a P;-name for a proper forcing notion of size ¥ with the PP-property,
S f}‘ is a P; x ,—name for a function from w to <wg

4. Ibpag “if X C w and the set {n}, :n € X} C <@9 is nowhere dense then
there is Y € D; disjoint from X;’,

if D is a P,,~name for an ultrafilter on w then the set

on

{i < g () = )« % Dy S DIRIY
1s stationary.

Let us first argue that if we succeed with the construction then, in Ve we will

have
2% — N, 4+ “there is no NWD-ultrafilter on w”.

Why? As each @, is (a name) for a proper forcing notion of size Ry, the limit
[P, is a proper forcing notion with a dense subset of size ®; and satisfying the
Ry-cc. Since P, is proper, each subset of w (in VF«2) has a canonical countable
name (i.e. a name which is a sequence of countable antichains; every condition in
the n*® antichain decides if the integer n is in the set or not; of course we do not
require that the antichains are maximal). Hence IFp_, 2% < R, (remember that
we have assumed V |=CH). Moreover, by 18 + 21 we know that [P, satisfies
(pove) of 21; ie:

II-,,-W “cach nowhere dense subset of <“2 can be covered
by a nowhere dense subset of <“2 from V.

Now sippose that D s a [P, name for an ultrafilter on w. By the fifth require-
ment, wo lind { < wy such that D; = 'DI’P(UJ]VW' (and cf (i) = wy). Since P,

salinllon (b ), wo linve
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IFp,, “if X Cwand the set {n! :n X} C %2 s nowhere dense then there

is an element of 'P['i’(u.‘]v"' disjoint from X"

[Why? Cover {5}, : n € X} by a nowhere dense set A C <“2 from V and look
at the set Xy = {n€w:pi € A}. Clearly X, € VF*% and X C Xo. Applying
the fourth clause to Xy we find ¥ € P; = P['P(w)vm‘ such that ¥ N X, = §.
Then YN X = 0 too.]

But this means that, in V¥« the function ﬁi exemplifies that D is not an NWD

ultrafilter (remember ‘D['P(w)vp' C D). Moreover, as CH implies the existence
of NWD-ultrafilters, we conclude that actually IFe,, 2% =R,

Let us describe how one can carry out the construction. Each @3. will be
Qj, » for some increasing function h € “w (e.g. h(n) = n) and a (P;—name for
a) maximal non—principal ideal J; on w. By 22, 17 we know that @}r.,h satisfies

the demands (2)-(4) for the ultrafilter D; dual to I; and the function 4 as in
the proof of 22. Thus, what we have to do is to say what are the namesID,-. To
choose them we will use the assumption of Q{v<wact(v)=w, }- In the process of
building the iteration we choose an enumeration ((pi» i) = 1 < wa) of all pairs
(p, 7) such that p is a condition in P, (in its standard dense subset of size No)
and 1 is a canonical (countable) P.,~name for a subset of w. We require that.
pi € P; and 7; is a P-name (of course, it is done by a classical bookkeeping
argument). Note that each subset of P(w) from VF«2 has a name which may be
interpreted as a subset X of w+: if i € X then p;i forces that 7; is in our set. Now
we may describe how we choose the names D;. By 0{‘)’<wziff(')‘)=w1} we have a
sequence (X : ¢ < wy & cf(i) = w;) such that

(i) X; Cifor each i € wy, cf(?) = wy,
(ii) if X C wy then the set

{’1: € wsy: Cf(i} =w & ‘Y,' =X ﬂz}
is stationary.

Arriving at stage i < wa, cf(i) = w; we look at the set X;. We ask if it codes a
P;—name for an ultrafilter on w (i.e. we look at {(pa: 7o) : @ € X;} which may be
interpreted as a IP;-name for a subset of P(w)). If yes, then we take this name as
D;. In all remaining cases we take whatever we wish, we may even not define the
name 7' (note: this leaves us a lot of freedom and one may use this to get some
additional properties of the final model). So why we may be sure that the fifth
requirement is satisfied? Suppose that we have a P,,~name for an ultrafilter on
w. This name can be thought of as a subset X of w,. If i < wy 1s sufficiently
closed then X Ni is a P;—name for an ultrafilter on w which is the restriction of
D to VP So we have a club (' C wy such that for each i € C', if cf(i) = w, the
X Niis of this type. By (ii) the set

SE 15 i € C & of (i)i= wi 8. X0 = X 1)

i stationary ot ennily, for each @ € 5, the name D; has been chosen in such a
way Lhat [, DY w), so we are done. |

We note that this implies that there is also no ultrafilter with property M. This
was asked by Benedikt in [Bn].

Definition 25. A non-principal ultrafilter D on w has the M-property (or prop-
erty M) if:

if for some real £ > 0, for n < w we have a tree T}, C <%2 such that
u(lim(7)) > ¢
then (34 € D)( ) hm(T;,) # 0)

neA

(where u stands for the Lebesgue measure on %2).

Proposition26. If a non-principal ultrafilter D on w is not NWD, then D does
not have the property M.

Proor Let
S; ={TN*22:T7 C<¥2, T atree not containing a cone, p(lim(T)) > e}

(note that S is a set of trees not a set of nodes) and let S¢ = [EJSE.

Now let t; <t if: ¢, € 55,12 € 57, €1 < frand ¢y =t,N%22. So 5° is a tree
with w levels, each level is finite. As D is not NWD, we can find n € lim(S*)
for n < w such that:

if A€ D then {n}, : n € A} is somewhere dense.
Now let 7% C <%2 be a tree such that (T N*22: ¢ < w) = n5. We claim that:
(Tf : n < w) exemplifies D does not have the M-property.
Clearly T is a tree of the right type, in particular
p(im(TE)) = inf{|TE N2|/2¢ : L < W) >e.

So assume A € D and we are going to prove that [ lim(7%) is empty. We know
neA
that {n;, : n € A} is somewhere dense, so there is * < w and t* € S§. such that:

Pelcabvrites 'S “(3ne At and).
Now |"'l‘,r.' A is > ¢ (s0 S: was defined). So we choose £ > ¢* such that:

ifveg*s vieet
than 1] (p@‘2:p| ¢ €t* and p # v} € S§,




Sh:594

hence there iy 5 e € A suel thal 1L appears in - Now clearly
N lim(7%) e 5 lim(7% )
neA vels +*
vietee®
D {n6<w2:nIPEﬂ{tL:uE"?,uffEt"}}:@,
finishing the proof. [ |

Conclusion 27 the universe VP, from 24, there is no (non—principal) ul-
trafilter (on w) with property M. [ |

Concluding Remarks 28 We may consider some variants of Q2.

In definition 3 we haye dom(H?) is as in 3(1) but: Hr [BY gi{res constants
(not functions) and for " € BY\ BY, letting n = min(m/EP) the function
HP(2) depends Jjust on 1z} : 7 < i}. Moreover, it is such that changing the

value of g7 changes the value, so HP(2]) = g1 x Sm (2B, . &7 1). Call this
Q?,h'
A second variant is when we demand the functions f7,, (€8 2 1) to be

constant, call it Q}'h.

Both have the properties proved Q?,. In particular, in the end of the proof
of 9(5), we should change: H"(2) is defined exactly as in the proof of 9(4)
except that when i < h(n*), k = min(m/E¥), k ¢ dom(EY), k ¢ u (so m, k, n*
are E""—equiva]ent) we let H™(zF) = H(2l") x (2P x 2" (the first two are
constant), so H"(2") is computed as before using this value,
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Abstract. We argue that the models that are relevant to computer scj-
ence are recursive and that Recursive Model Theory deserves being stud-
ied systematically, with at, least the same vigor as Finite Model Theory
has been. We study the status of some fundamental theorems from the
classical model theory in this context and establish failure of several of
them, including (generalized) Completeness, Compactness, Beth’s Defin-
ability, Craig’s Interpolation, and Lyndon’s Lemma.

1 Introduction

Classical Model Theory deals with all models. If, for whatever reason, the class of
models is restricted, this may potentially change model-theoretical laws that we

refutable in models not in the considered class. Hence, restricting the class of
models may expand the class of true sentences. Conversely, the class of satisfiable
sentences may shrink. If this actually happens, the equivalence between Model
Theory and Proof Theory implied by Godel’s Completeness Theorem discontin-
ues to hold, although in a specific situation a remedy can possibly be found by
changing the axiomatization.

studied in the context of Finite Model Theory. Surprisingly or not, Finite Model
Theory looks very much different from its classical counterpart,
The author is generally interested in Logic in Computer Science, and while

finite models often are relevant to Computer Science, without question, not all
the models that show up in CS applications are finite. Even in databases which

have long been the Finite Model Theory refuge, infinite models not only show
up, but actually move towards the central stage. In other CS playgrounds, say, in
verification, finite models have never had any noticeable fraction of the market,.
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hence there iy 5 e € A such thal ll, appears in - Now clearly
N lim(7%) 2 b (75 )
neEA vela r
vigtete®
2{n6<w2:nff€ﬂ{fL:uE"Q,VIfEi"}}:@,
finishing the proof. 5

Conclusion 27 In the universe V¥er from 24, there is no (non.-princz'pal} ul-
trafilter (on w) with property M . [ |

Concluding Remarks 28 We may consider some variants of Q2.

In definition 3 we have dom(H?) is as in 3(1) but: HP B gi'."es constants
(not functions) and for z* € By \ BY, letting n = min(m/EP) the function
H?(21") depends Jjust on {=} : j <4}, Moreover, it is such that changing the

value of 27 changes the value, so HP(z1) = g7 Lomlh. = » 27 1). Call this
3 .
Q7 4-
A second variant js when we demand the functions Fonledivn »xl1) to be

constant, call jt @:3.,1.

Both have the broperties proved Q%,. In particular, in the end of the proof
of 9(5), we should change: H"(2") is defined exactly as in the proof of 9(4)
except that when i < h(n*), k = min(m/E?), k ¢ dom(E9), k ¢ u (so m, k, n*
are E’"—equiva]ent) we let H(zF) = H(z) x =Py x 2P’ (the first two are
constant), so H" (™) is computed as before using this value.
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Abstract. We argue that the models that are relevant to computer scj-
ence are recursive and that Recursive Model Theory deserves being stud-
ied systematically, with at least the same vigor as Finite Model Theory
has been. We study the status of some fundamental theorems from the
classical model theory in this context and establish failure of several of
them, including (generalized) Completeness, Compactness, Beth’s Defin-
ability, Craig’s Interpolation, and Lyndon’s Lemma.

1 Introduction

Classical Model Theory deals with all models. If, for whatever reason, the class of
models is restricted, this may potentially change model-theoretical laws that we
take for granted. Take, for instance, the central for logic notion of truth. There
may be sentences that are uniformly true in al] the models of a certain class, but
refutable in models not in the considered class. Hence, restricting the class of
models may expand the class of true sentences. Conversely, the class of satisfiable
sentences may shrink. If this actually happens, the equivalence between Model
Theory and Proof Theory implied by Gédel’s Completeness Theorem discontin-
ues to hold, although in a specific situation a remedy can possibly be found by
changing the axiomatization.

Theory looks very much different from its classical counterpart,.
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have long been the Finite Mode] Theory refuge, infinite models not only show
up, but actually move towards the central stage. In other CS playgrounds, say, in
verification, finite models have never had any noticeable fraction of the market,.
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