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ABSTRACT

We prove that suitable iteration does not collapse X, [and does not add reals],
i.e., that in such iteration, certain sealing of maximal antichains of stationary
subsets of w, is allowed. As an application, e.g., we prove from supercompact
hypotheses, mainly, the consistency of: ZFC + GCH + “for some stationary
set S C wy, P(w)/(D,, + S) is the Levy algebra” (i.e., the complete Boolean
Algebra corresponding to the Levy collapse Levy (R, < X,) (and we can add
“a variant of PFA”) and the consistency of the same, with “Ulam property”
replacing “Levy algebra™). The paper assumes no specialized knowledge (if
you agree to believe in the semi-properness iteration theorem and RCS
iteration).

§0. Introduction
By Foreman, Magidor and Shelah [FMS 1], CON(ZFC + k is supercompact)

implies the consistency of ZFC + “D,, is X,-saturated” [i.e., if B is the Boolean
algebra P(w,)/D,,, “D,, is R,-saturated” means “B satisfies the X,-c.c.”]; see
there for previous history. This in fact was deduced from the Martin Maxi-
mum by [FMS 1] whose consistency was proved by RCS iteration of semi-
proper forcings (see [Sh 1]). Note that [FMS] refutes the thesis: in order to get
an elementary embedding j of V with small critical ordinal, into some
transitive class M of some generic extension V* of V, you should start with an
elementary embedding of j of V” into some M’ and then force over V*.
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This thesis was quite strongly rooted. Note that it is closely connected to the
existence of normal filters D on A which are A *-saturated or at least precipitous
(use for P the set of non-zero members of 2(4)/D ordered by inverse inclusion,
Jj the generic ultrapower). See [FMS 1] for older history.

In fact, it was proved directedly that MM * = SPFA*. Much later we prove
that MM is equivalent to the Semi-Proper Forcing Axiom (in ZFC)
[Sh 5].

Following [FMS 1, §1, §2] much activity follows. Woodin proves from
CON(ZF + ADR + @ regular) the consistency of ZFC + “8 | S is X,-dense”,
for some stationary S C w,.

By Shelah and Woodin [ShWj}, if there is a supercompact cardinal, then
every projective set of reals is Lebesgue measurable (etc.). This was obtained
by combining (A) and (B) below which were proved simultaneously:

(A) The conclusion holds if there are weakly compact cardinal « and a
forcing notion P, |P| =k, satisfying the x-c.c., not adding reals and
|, “there is a normal filter D on w,, B = 2(w,)/D satisfying the
R,-c.c.”

(B) There is a forcing as required in (A) (see [FMS 1, §3]).

This was improved to using cardinals x satisfying: Pr,(x) PN strongly
inaccessible, and for every f: k — k there is an elementary embedding j: V —
M (M a transitive class), k the critical ordinal of j and H(j( f)(x)) C M, or at
least Pr,(x)' ks strongly inaccessible, and for every f: k — k there is k; <k,
(Va<x)fla)<k, and for some elementary embedding j: V—-M (M a
transitive class), k, is the critical ordinal of j and H((j(/)Xx)) CM (S C w,
stationary, co-stationary).

For the Lebesgue measurability of every projective set, we use approxima-
tely n such cardinals for sets X,.

By [Sh 2] “2% < 2"=D,, is not R,-dense”, and if D is a layered filter on 4
then #(A) is the union of A filters extending D.

The work presented here was done then, but was mistakenly held as
incorrect for quite a time. Only we here replace part of the consistency proof of
the Ulam assertion (£, w,) is the union of X, X,-complete non-trivial mea-
sures, by a deduction from a strong variant of layerness. We prove, from some

t Now usually called Woodin cardinals. After this work was written, the results of Martin Steel
and Woodin clarify the connection between determinacy and large cardinals and Woodin has
some consistency proofs for larger ideals on w,; very interesting among them is “D,, + S is
X,-dense” from a huge cardinal.
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supercompacts, that we can force, for a stationary co-stationary S C w,,
that GCH + 2(w)/(D,, + S) is the Levy algebra, i.e., the completion of
Levy (R, < R,) (or S = w,, but 2% = R,) and related results. The method is
(RCS) semi-proper iteration, hence it can be used, e.g., to prove consistency
with additional statements. Relative to the progress of [ShW], we improved
some results to the use of x’s satisfying Pr, instead of supercompact; this is not
written now as [ShW] hasn’t materialized yet, but as a result we do not try to
“save” in the use of large cardinals (one such A suffices for D,, R,-saturated).'

Note that the x supercompact is seemingly necessary if we want a suitable
variant of MA. Those points (i.e., using smaller large cardinals and getting also
variants of MA (mainly without adding reals)) will be dealt with in a sequel
paper. Around the time this was reasserted Woodin proved, from some k’s
satisfying Pr,, that CON(ZFC + 2% = R, + #(w,)/D,,) is the Levy algebra, by
methods related to Steel forcing.

Also in Spring 1983, Foreman proved (in [FMS 2]), from the consistency of
almost huge cardinals, CON(ZFC + GCH + on A* + there is a layered ideal)
for arbitrary regular A. This was interesting as by [FMS 2], we can get a
uniform ultrafilter D on A which not only is not regular but even A**/D =4+,
Note that some years ago Magidor [Mg] proved the consistency of ZFC +
GCH + “for some uniform ultrafilter on R,;, X¥/D = R,”. Another result of
[FMS 1] is that we can get “for every 4, D, is precipitous” and we can get this
even to Chang filters. Later Gitik, for A a supercompact cardinal, gave a proof
which does not use a supercompact above 4.

Much later the author proves, for D a layered filter on 4, that (if 22 =47,
A =1<%) there is a homomorphism A from #(1)/D into (), A/D =
[h(A/D))/D; see [Sh 6).

Note that S-completeness is used for convenience; weaker notions can be
used as well (see [Sh 1, VIII, §4], [Sh 4, §2]). We can also make that set of
ordinals in which something nice occurs, a name.

Note that instead of one .S, we can change it getting the result for a maximal
antichain of S’s.

Note that we can use 2.13 (3) much more extensively, e.g. in 2.19. Suppose k¥
is strongly inaccessible {k;, i < x} increasing continuous, ; , | is supercompact

t For “ZFC + D, is Ry-saturated + MA(semi-proper)” one A suffices.

For “ZFC+GCH +(D,, +S)) is layered + MA,, (S;-complete semi-proper forcing of
power = R,)” (S}, Sy, S; a partition of @, to a stationary set) it suffices to use {A: A <k, A satisfies
Pr, } is stationary.

Similarly for the Levy algebra (with a suitably stronger assumption).



Sh:253

348 S. SHELAH Isr. J. Math.

for i non-limit, x = U,;x; (P;, Q;, t;, B;: i <k) an RCS iteration, |P;| <
K; +1, for i pon-limit, Q; = S Seal((B%*':j + 1 <i), S, K;41).

NOTATION AND BasiC FACTS.

(1) #(A4)isthe powersetof4,S_;(4)={B:BCA,|B| <A}, <Fisawell
ordering of H(1), extending <} for u <A.

(2) D, is the club filter on a regular A <R, and D_;(A4) is the club filter on
S<i(4).

(3) (a) B is the Boolean Algebra #(w,)/D,; we do not distinguish strictly

between A € #(4) and A/D,,,.

(b) B of course depends on the universe, so we may write 8" or B[1'];
instead of B[V"] we may write B” or B[P].

(c) f V' C V?, w!" = w!”, then B[ V'] is a weak subalgebra of B[ V7] (i.e.,
maybe distinct elements in B[ V'] are identified in B[V?)).

(d) If P €V is a forcing notion preserving stationary subsets of w, then
B = B[ V] is a subalgebra of B’ (identifying (4/D,,)" and (4/D,,)""
for A€ #(w))"). If Q = (P, Q;: i <a) is an iteration (with limit
P,soi<j=a=P,<P), we let B¢ = Ui < Bfis1,

(4) (a) Let us, for Boolean algebras B,, B,, say B, < B, if B, C B, (i.e., B, isa
subalgebra of B,) and every maximal antichain of B, is a maximal
antichain of B,.

(b) Note that B,<B,, iff B,, B, are Boolean algebras, B, C B, and
(VxEB,— {0 (IyEB,— {0 (VzEB)zNny#0—zNx #0].
However B, < B,, B, C B, C B, implies B, <B,.

(c) Hence, the satisfaction of “B,<B,” does not depend on the
universe of set theory, i.e., if VEB,<B,, V C¥" then V' B, <B,.

(d) By Solovay-Tenenbaum [ST] < is transitive, and if (B;: i <a) is
<-increasing and continuous then B; < U, , B;.

Also, if (B,:{ <) is a C -increasing sequence of Boolean algebras

and By< B for { <&, then By< U, B,.

(5) Also, if in ¥ P, <P,< Py, in V"1 8" <B", and in V" Bh <B" then in V5
Bh < B,

(6) For a set a and forcing notion P, G, is the P-name of the generic set and
a{Gpl =a U {x[Gr): x Eaa P-name}. So a[G,] is a P-name of a set, and
for G C P generic over Vits interpretation is a[G] = a U {x[G]: xEaa
P-name} (x[G] is the interpretation of the P-name V).

(7) We sometimes do not strictly distinguish between a model and its
universe,
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(8) P, Q, R denote forcing notions, &, denotes the minimal element of P
(e, | Fp“- " iff & |p«---7); without loss of generality it exists.
(9) If A > R, is a cardinal, N a countable elementary submodel of (H(1), €),
PEN, G C P generic over V, then N[G] < (H(A)"", €) (as HQA)" =
{z[G): 1€H(4) a P-name} and if |-, “(HQ)", €)Ex@(xg)” then for
some P-name 1 EH ()|, “(HQR)", €)k (1, @)”). See [Sh 1].
Also (N, G) < (H(A)Y,€, G) (i.e,, G is an extra predicate, so you may
write (N, G N | N|)). Also, if R is any relation (or sequence of relations)
on HA)", N < (H(4)",€,R) (and PEN, G C N generic over V) then
(N, G) < (H(A)Y,€, R, G). Usually we use a well ordering <* of H(A).
(10) Let N <, M mean M C M and N Nk is an initial segment of M Nk
and M < N;if we use it for sets (rather than models), the last demand is
omitted. Note thatif N < M < (H(u), €),k <u,N Nk =M N kthen
N<+M.

§1. Preliminaries

1.1. DEFINITION.

(1) A forcing notion P is semi-proper if : for every A regular > 2'¥!, any
countable N < (H(A), €) to which P belongs, and pEP N N there is
q, 0 = q€P, q(N, P)-semi-generic (see below).

(2) For a set a, a forcing notion P and g € P, we say q is (a, P)-semi-generic
if: for every P-name ¢ €a of a countable ordinal, g |-,“a€a™; i.e., if
gI-“alGrlNw,=a Nw,”.

(3) We call W CS_yx(4) (where w, C A) semi-stationary in A if for every
model M with universe 4 and countably many relations and functions,
there is a countable N < M, such that (3a€EW)N Nw, Ca CN]
[equivalently, {a €ES_x(4): (3bE W)[a N w, C b C a]} is a stationary
subset of S_x(4) (i.e., #* & mod D_x(A))].

1.2. CLaM.

(1) If W C S_x(4) is stationary then it is semi-stationary.

(2) fw, €4 C B,and W CS_y(A4) then: W is semi-stationary in 4 iff Wis
semi-stationary in B (so we can omit “in 4”).

(3) If W, C W, C S_g,(4), W, semi-stationary, then W, is semi-stationary.

(4) If |4| =R, A= U, a, a; increasingly continuous in i, with g
countable, then W CS_y(4) is semi-stationary iff Sy =
{i:(IbEW)i Cb C a;} is stationary (as a subset of w,).
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(5) If p€P is (b, P)-semi-generic, b N w, C a C b then p is (a, P)-semi-
generic.

(6) If WCSx(@A), u>4, N<(H(u), €), WEN, and for some aE W,
Nnw, CaCN then W is semi-stationary [if not, some M =
A,...,F,,...) exemplify W is not semi-stationary, so some such M
belongs to N, hence N N A is a submodel of M, contradiction].

1.3. CLaiM. A forcing notion P is semi-proper iff

Wp = {aES_x(P U P(w, + 1)): for every pEP N a there is g,
such that p =< g €P and ¢ is (a, P)-semi-generic}

contains a club of S_x (P U *(w, + 1)) where h: P — (w, + 1) is interpreted as
a P-name g, by:

27[G]=Min{A(r): r€G},
a,4[G] is 2f[G] if ¢f[G] < w, and zero otherwise.

1.4. CLAIM. The following are equivalent for a forcing notion P:
(1) P is semi-proper.
(2) P preserves semi-stationarity.
(3) P preserves semi-stationarity of subsets of S_x (2'?).

PROOF. (1)=(2). Let w, C A4, W C S_x,(4) be semi-stationary. Suppose
PDEP, p|p“W is not semi-stationary”. So there are P-names of functions F,
(n <w) from Ato A, F, n-place, and p |- “if a C A is countable closed under
F,(n<w)then "(3b)lanw, ChbCarbEW].

Let A be regular large enough. Let N < (H(1), €) be countable, let A,
(F,:n<w), p, Pbelong to N, and there is bE Wsuchthat NNw, CbC N
(which is possible as W is semi-stationary). Let g be (N, P)-semi-generic,
P=q€EP. So q|Fp“N[G]Nw,=NNw, and N C N[G]” hence for the b
above

gl “N[G]Nw, € b C N[G]".

Also g |5 “N[G] N A4 is closed under the F,’s” (as N[G] < (H(A)[G],€E), see
Notation (9) in §0), contradictory to the choice of the F,’s.

(2)=(3). Trivial.

(1)="(3). Let W =S_x(P U "(w, + 1)) = W, (W, from 1.3). As (1),
W, is stationary; for each a € W choose p, € P N a which exemplifies a & W,,.
By normality for some p(x)EP, W,={a€EW: p,= p(*)} is stationary.
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Hence W, is semi-stationary. But easily p(x) |t “W, is not semi-stationary” so
(3) fails.

1.5. DEFINITION.

(1) Rss(x, A) (reflection for semi-stationarity) is the assertion that for every
semi-stationary W C S_x (4) thereis 4 C 4, w, C A4, |A| <k such that
W N Scx(A) is semi-stationary.

(2) Rss(x) is Rss(x, A) for every 4 2 k.

(3) Rss*(x, A) means that for every semi-proper P of cardinality <k,
—p “Rss(x, 4)”.

(4) Rss*(x)is Rss*(x, A) for every 4 Z k.

1.6. CLAIM.

(1) In Definition 1.5(1) we can replace 4 by B, when |B| =4, w, C B.

(2) If k=K, <A, =4 and Rss(x,A) then Rss(x;, 4)); and if k =4, =4,
Rss*(k,A) then Rss*(kx,4); lastly if Rss*(x;,4) (i <a) then
Rss*(sup; <, ki, 4).

(3) If k is a compact cardinal then Rss(k).

(4) If k is a compact cardinal then Rss™* (k).

(5) If k is measurable, W; CS_,(4) and U ,_, W, is semi-stationary then
for some a <k, U, ., W, is semi-stationary.

(6) If x is a limit of compact cardinals, then Rss* (k).

Proor. (1) Trivial.

(2) Use 1.2(2).

(3) Letk CA, W CS_y(4), W CS_x(4), WN Sx,(B) not semi-station-
aryforBCA, |B| <k.

Define the set of sentences I':

F=reulturr
where
I = {¢, # ¢, ¢}, C, are distinct members of 4},

[ = {R(Co Cs - -+ s Cny - - D= QG EA, {1 I <w}EW],
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IT = {(ony xl’ cees Xpy oo -)n<w
[if {Xo, Xy, - - .} is closed under F,(n < w) then

-1(3y0,y,,...)<R(yo,...,y,,,...)A{x,:1<w, \ x,=i}

i<y

g{y,:l<w}g{xm:m<w})]}.

Every subset of I’ of power <k has a model (if it mentions only cEB,
| B| <k, then use a model witnessing “W N S_x (B) is not semi-stationary”).
A model M of I exemplifies W is not semi-stationary (in |M | hence in A by
1.2(2)).
{4) As forcing notions of cardinality < k preserve the compactness of .
(5) Let I'*, I'* be as in the proof of 1.6(4),

I ={R(cp,C1,...):QEA, {¢: l <w}EW,).

Now I'* U T* U U, .. I has no model, hence (using the Los theorem) for some
a<wk, IPuTI U, I'’ has no model.
(6) Easy.

1.7. CLAIM.

(1) If Rss(x, 2'71), P not semi-proper, then P destroys the semi-stationarity
of some W CS_g(A4), |[4] <k [use (1)=(3) from 1.4, then 1.5(1),
1.2(2)1.

(2) If P destroys the semi-stationarity of W CS_x(4), |4| =R |, then P
destroys the stationarity of S, C w, [Sy defined in 1.2(4), which says
that it is stationary in ¥ but not in V*].

(3) If Rss(R,, 27!y and P does not destroy stationarity of subsets of w,, then
P is semi-proper [by parts (1), (2) above].

(4) If W C S_x(4) exemplifies the failure of Rss(X,,|A4 |), then there is a
forcing notion P of power |4 |™, not semi-proper but not destroying
stationary subsets of X,.

(5) Rss(R,) is equivalent to: every forcing notion preserving stationarity of
subsets of w, is semi-proper.

1.8. DEFINITION. (P, Q;:i =, j <a) is a semi-proper iteration if:
(1) it is an RCS iteration [see [Sh 1, Ch. X, §1};
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(2) if i <j = a are non-limit, then |}—p, “P;/P; is semi-proper”;
(3) forevery i, |5, “(2%)" is collapsed to R,” (we can use another variant
instead).

1.9. THEOREM. Suppose 1 is measurable, {P;, Q;:i <A) is a semi-proper
iteration, |P;| <A for i <A, and {i <A:Q, sem)‘-proper} belong to some
normal ultrafilter D on A. Then in V%, Player II wins Gm = Gm({R,}, @, R,)
(see below).

1.9A. REMARK as in [Sh 1, Ch. XII, Def. 1.1].

(1) The game last w moves; in the nth move Player I chose f, : X, — w, and
Player II chose ¢, <w,. In the end Player II wins if A4 o
(i <Ry: AV, f,(i) <&, } is unbounded in R,.

(2) We can modify the game by demand 4 # & mod E for a filter F on w,.
We then denote the game by Gm({R,}, w, E). The result is true for
E=D.

(3) If Player II wins Gm({R,}, w, R,), 4 > 2%, N a countable elementary
submodel of (H(A), €, <¥), then for arbitrarily large i < w,, there is
N’ < (H(4), €,<¥), N’ countable, NCN’, iEN,and NNw,=N'N
w, (hence N <, N’, see Basic Fact (10) in §0).

If Player Il wins Gm({R,}, w, E) (E a filter on w,) then the set of such i
is # & mod E.

(4) Can we demand in Q) N'Ni=NNi?If {6 <w,:cfd =R }EE the
answer is No. If {§ <w,: cfd = R} EE the answer is Yes if Player I is
also allowed to choose regressive function F,: X,— R,, and Player II
also &, < w,, and in the end Player Il wins if S = {d <R, : for n < w,
§z¢&, ()< U,¢&,, Fid)< U, &,} # & modE (or just S is non-
empty).

(5) If in the theorem |, “{d <R,:cfd = R,} # & mod D” then Player 11
wins also in this variant (from (4) above), hence we can demand in (3)
that NNi=NnNi.

(6) We can replace X, by any regular ¥, X, <98 <4, and use the game
Gm({38}, u, E), E anormal filteron 4, (P;, Q;: i <A4) is a (< 0)-revised
support iteration, such that, i: in V% in ﬁG“(p, P,/P,, 9), the second
player has a winning strategy.

PROOF OF 1.9. 'Let D be a normal ultrafilter on A4 (in V), A€D a set of
(strongly) inaccessible cardinals, such that: (Vk€EA) (Vi <k) | P;| <K)AQ,
is semi-proper].
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For each x €4, P,/P,(in V<) is a semi-proper forcing, hence in the following
game, PG“(p, P,/P,, R,) Player II has a winning strategy which we call
F(P,/P )Y€ V*): [by [Sh 1], Ch. XII, 2.7(3), p. 403, Definition 2.4, p. 401] a
play of the game lasts ww-moves, in the nth move Player I chooses a P,/P,.-name
{, of a countable ordinal and Player 1I chooses a countable ordinal &,.

" Player II wins a play if (3¢) (p SGEP/PAGIF“N [Cr < Upco &al?);
without loss of generality the &, are strictly increasing. )

Let us describe a winning strategy for Player Il in Gm({R, }, w,, X,)in V[G,],
G, C P, generic over V.

In the nth move Player I chooses f,: w,— w,, Player II, in addition to
choosing &, < w,, chooses A4,, f,, a,such that:

©0) a,<a,,,<4; in stage n Player II works in V[G, ], so D is still an
ultrafilter;

(1) A,€D,A4,,,CA4,CA(and 4,EV);

(Vo €4,) (a, <),

(2) ks “~n: W, W,

(3) f.[G:] = f [ is the first such name;

(@) for k€4, (fi(x), &, : ] =n is (a P,-name of) an initial segment of a
play of PG“’(b > Pi/ Gy, R;) in which Player II uses his winning strategy
F(P,/G,) and some condition in G, forces this. (Remember P, F k-c.c.,
so some p €G,, force this.)

Why can Player II carry this strategy? Suppose he arrives at stage n and
Player I has chosen f, € V%, f,: A — w,. He chooses f,E V, the first P,-name f
such that f,[G,] = f,. Now foreveryx €4, working~in V{G,] he continues the
play ( f,(i?:), Ey:l<n of PGUD p, Pi/G,, R, letting the first player play
[0, and let £%(x) be the choice of the second player according to the strategy
F(PA/G,‘). Really £%(x) is a P.-name. Now for every p € P, and k €4, there is
4. € P, compatible with p and forcing a value to £ (k), hence for some ¢ < w,,
AT €D, A} CAyand q, (VKEA) ) [g.=qand ¢ “—P,“§3(’C) =¢”]. So
there are such g € G,, and & (which we call £) and a set which we call 4, . ,. Itis
easy to choose a,,.

Still we should prove that this is a winning strategy. We shall consider one
play and work in ¥, so everything is a P,-name (as we are using RCS, no
problems arise).

Now P, satisfies the 1-c.c., so we have a bound a(x) < A on the «,’s (forced by
D). Work in V[G,,)). D is (essentially) an ultrafilter in V[G,)]. Each 4, has a
P;-name so really there are <A candidates so we have 4, C M, 4,, 4, C 4,,
A, €D (really we can compute () A4, in V[Gyw)). Now for k €4, k > afx) the
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sequence {f{k), &) 1l <w is a play of PG p, P,/P,, X)) where Player II
uses his winning strategy (this is a P.-name, but fortunately (&:/<w)€
V[G ). So there is g, € P,/P, a P,-name, so that

G 1 pye, "i\fl(’c)< Ué¢,”

(more exactly:

G |y GayPiGuny /\fl(’c )< U¢,”
1] n

4. a P,/Gyname of a P,/P,-condition).
We can consider g, as a P;-condition with Dom g, C [k, 4), because we use
RCS-iteration. Now easily (g,: kK E€A4,,) E V|G

Ib-ry6., “(KEA:q G} is unbounded in A”

as every r € P,/G,,, has domain bounded in 4, so g, for x large enough, is
possible, i.e., compatible with it.

1.10. CLamM. Suppose x is measurable, ¢ a semi-proper iteraction,
18(Q) =k, | P:| <k for i <k and {i: Q; semi-proper} belong to some normal
ultrafilter on x. Then:

(1) Rss*(x, 1) implies |I-p Rss(x, A).

(2) If Q is a P,-name of a semi-proper forcing notion, |, “(P/Pi}, *Q)

is semi-proper for i < k” then |5, “Q is semi-proper”. )

(3) We can replace measurability of "k by: x strongly inaccessible

|-, “Player II wins Gm({R,}, w;, R,)” and P, satisfies the k-c.c.

PROOF. (1) Let W be a P.-name, pEP,, p|i—p “W CS_x,(4) is semi-
stationary”.

Let for i<k, W,={a:a€Vh, a€S_y(4), and for some gEGs,
q|p “a€W™}. So W, is a P-name.

Let u be regular and large enough, <}* a well ordering of H(u)".

Let pEG C P,, G generic over Vand G, =G N P, for i <x. In V[G,], as
W[G,] is semi-stationary, there is a countable (N,G,NN)<
(H(u)", €,<%, G,), such that for some a € W[G,], NNw CaCNN4A,and
p, W, A, k, Qbelongs to N.

So there are ¢ €G, and P,-names N, g such that g |5 “}, a are as above”,
and without loss of generality p < q. As N, a are countable subsets of H(u)", A
respectively and P, = U, _, P, satisfies the k-c.c. (by [Sh 1] 5.3 (3), p. 336), for
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some i <k, N, g are P,-names, and g € P,. Now by 1.9, in V-, for arbitrarily
large 8 <, NN w, =N N w,, and Q, is semi-proper, where we let:

Ne! & Skolem Hull (N U {6})
(in (H(n)",€, <}, G,) working in the universe V[G,]).

Choose such a @ > i. Now as § € N®! (N, G,) < (H(u)", €, <¥, G). Clearly
WslGs1ENY, a[GolE€ Wy[Gel, @, N NIC a[G,] C N, hence by 1.2(6),
V[G,]F “W?[G,] is a semi-stationary subset of S_y(4)”.

As Rss*(k, A) clearly V[G,]ERss(x, 4), hence in V[G,] for some A C 4,
4| <k, WylGe]l N Sx(4) is semi-stationary, clearly V[G,]F“4€EV][G,]”
and as P./P, is semi-proper (see the choice of ) it preserves the semi-
stationary of 4, hence V[G,]F“A4 is semi-stationary”.

(2) Similar: suppose p |5 “N < (H(u)",€,<} Gp) and gEG NN are
counterexample to semi-properness of Q. )

Let G, C P, be genericover V,pE€ G,‘.~Let 0 <k, 6 > sup(N[G] N k) be such
that NG Nw, =N[G]Nw, (and N is a Ps,-name). Now work in
VIG, N Py,,] and use |-p,,, (Pc/Py+y) » Q is semi-proper.

(3) In the proof of (2) we use this oflly. In the proof of (1) choose 0 a
successor ordinal (so Q; is semi-proper). It preserves the semi-stationarity of 4,
hence V[G,]E“A is se}ni-stationary”.

1.11. CLamM. Suppose Rss(k, 2*), x regular and: k =R, or (Vu <k)
ut <k, then for A = 2* for every countable N < (H(4),€, <}) to which k
belongs, for arbitrarily large i <k, letting N1 = Skolem Hull (N U {i}),
N <,, N (see below), N Nk # N’ N k.

1.12. REMARK. (1) The “k = R,---” can be omitted if we replace “for
arbitrarily large i” by “for some i <k, i > sup(N N k).

(2) We can replace “x = R,, or ...” by “if « <k, then there is C €S .y («) of
power <k” (see the proof). It even suffices to assume “for every stationary
W CS_x(a), (a <k) there is a semi-stationary W’ C W of cardinality <x™.

(3) If we want in the conclusion to get N <, NU! we have to replace in the
definition of semi-stationary, “N¥, N @, = N, N w,” by N, <, N,.

Proor. Let
W={|N|:N < (H(x*),€,<¥), N countable and

for some iy <k for no i E{iy, k), N <, N1},
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Assume W is a stationary subset of H(kx*). So, as Rss(x, 2*) holds (and
|H(x*)] =2) there is A CH(k"), w;CA4, |A| <k such that: W, =
{a€EW:a C A} is a semi-stationary subset of 4. Without loss of generality
(see 1.2(2))

def

M= (4, El4, <t 14)<(H(K"), €,<2).

As for N, C N, countable elementary submodels of (H(k*),E, <*), N\EW,,
N, N w,=N,N w, implies N,E W,, clearly W, is stationary. We know by
assumption that for some closed unbounded C C S_y (4), C has cardinality
<K.So

Cd=°f sup{iy:|IN|ECN W} <k.

Now for some club C, C C, for every a €EC,, a*! = Skolem Hull of a U {{},
satisfies a¥! N 4 = a, hence a <, a*!, but some a €C, N W,, contradiction.

So W is not stationary and let C* C S_ (H(x*)) be a club disjoint to W.

Let A > 2%, so H(k*), WEH(A), and let kEN < (H(4), €, <¥) be coun-
table. So H(x*)E N hence W € N and without loss of generality C* € N. Hence
N N H(k*)€E C*, and for arbitrarily large i <x thereis Ni < (H(x*),E, <X),
countable, iEN|, N N H(x*)<,, Ni. Let N’ be the Skolem Hull of N U
(N, N k). We can easily check that N' N k = Ni N k, so N is as required.

1.13. DerFINITION. A forcing notion P satisfies the (S, S)-condition (S a set
of regular cardinals, S C w, stationary) if there is a function F (domain
implicitly defined in (c)) so that:

Suppose

(@) Tisan S-tree, [ T—P,g: T —w,.

(b) v <\nin T implies f(v) = f(n) in P, and g(v) <g(n) (< w,).

(c) There are fronts J, (n <) of T such that every member of J, ., has a
proper initial segment from J, and n €J, implies (7 is splitting node of T and)

(Suc(n),({ f(v), g(v)) : vEsucr(n))) = F(n, winl, (( fv), g(v)) : v <\n))

where win]={k:ntke U, J}.
Then for every T', T =*T” there is p € P such that p ||, “there is n €Elim T”
such that if sup{g(n l k): k <w}ESthen { fin 1 k): k <w} C Gp".

1.14. NotaTiOoN. We say “P is (%, S)-complete” if f satisfies the ({A:4
regular > R, }, S)-condition.
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1.15. THEOREM. The natural generalization of the theorems from [Sh 1, ch.
X1] (and Gitik-Shelah [GSh]) holds for the (S, S)-condition.

1.16. REMARK. We use 1.13, 1.14, 1.15 only in 2.16; we can alternatively
use pseudo-(S, S)-completeness (see [Sh 1, X]) but use Nm(D), or use 2.16
AQ3).

§2

2.1. DEFINITION. We say Q=(P,Q,t:i<a, j<a) is S-suitable
(S C w, stationary) if: )

(A) it is an RCS iteration;

(B) we denote | U, P, | =K, = k? so i, = 1, k; increasing continuous.
We demand that x; is strictly increasing;

(C) for i successor k; is strongly inaccessible;

(D) for i <j <a non-limit, P,/P; is semi-proper;

(E) Q; satisfies the k;, -c.c., Ry =K,

(F) ift, =1, i <j = a, j successor, then 8% } § <B~ 1 S.

We may allow t, to be defined. We may but do not use t; which are names.

NotaTioN. al=a, P2=P, QP2 =1,

2.2. CLAM.

(1) Suppose Q =( P, Q;, t;: i = a,j <a) is a semi-proper iteration (see 1.8

for definition). Then: )

(a) If i <a is non-limit or Q; is semi-proper or @, preserve stationarity of
subsets of w, from V¥ then every stationary subset of w, in V7 is
stationary in V% too (i.e., B[P;] is a subalgebra of B[P,]).

(b) RV =R/

(c) If « is strongly inaccessibie (> w), and |P;| <a for i <e, then P,
satisfies the a-c.c. and so

P)" = U P)", V=R,

i<a

(d) If w, — Sis stationary, each @, is (w, — S)-complete [Sh 1, ch. V], then so
is P,, hence forcing by P, does not add w-sequences of ordinals (hence
V¥.E CH).

(e) If QEN, < N, <(H(A), €), N, countable, N, <,N,, a inaccessible,
a>|P;| for i<a and ¢q is (N, P)-semi-generic, then ¢ is
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(NV,, P;)-semi-generic where i = Min(a N N, — N,) is strongly inaccess-
ible.

(2) Any S-suitable iteration @ is a semi-proper iteration and
[t = 1=9[P,]! S <B[P;] | S] when: j = i, i successor, j successor or strongly
inaccessible.

(3) If (in (1)) x <a is strongly inaccessible, |P;] <x for i <k, and
|5, “Rss(R,)” then Q, (and P;/P, when k =< j =< a) are semi-proper.

PROOF. Left to the reader. For instance:

(1)(c) If I €N, is a maximal antichain of P,, then by [Sh 1] X 5.3(3) for some
J <i,IC P; hence there is such j in N,, hence j € N, and also the rest is easy.

(3) By 1.7(3) it is enough to prove that forcing with Q, does not destroy the
stationarity of any 4 C w,, 4 € V'*, However, by 2.2~(l)(c) (and 2.2(2)) for
some f < a, A € V%, Clearly 4 € V¥»and is a stationary subset of @, in V%, As
Py /Py, is semi-proper, 4 is stationary also in (V%) e/ = VFen = (VA) %
as required.

2.2A. REMARK. So if x is strongly inaccessible, and |P;| <k for i <k,
then if A is a stationary subset of w, in V%« then A is a stationary subset of @, in
V*. for every large enough a <k.

2.3. CLamM. Suppose Q = (P}, Q;:j = a, I <a) is an RCS iteraction, a a
limit ordinal. i

(1) If Q | B is S-suitable for f < a, then Q is S-suitable.

(2) If for B <a, Q | B is a semi-proper iteration, then Q is a semi-proper
iteration.

(3) In (2) if i<a, o a P;-name then: |, “of <82 if and only if
a=sup{j <a:llp, “o <85} if and only if for arbitrarily large
J<al|bps “o <BH B

(4) In(2)ifa > | P;| fori < a, and « is strongly inaccessible, then 82 = B7.,

PROOF.

(1) For (D) use the semi-proper iteration lemma. The others are obvious
t00.

(2), (3), (4) Easy, too.

2.4. DEFINITION. Let % = (%,: { <&) be a sequence of subalgebras of
B(=B"), S C w, stationary.
(1) Sm(#, S)={4 C S: for some { <&, {(xEU W kx#0, xNA=(
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mod D, } is predense in %} (we should have written x/D, €%,
x Cw}.

(2) We define the sealing forcing Seal (%, S) = {¢: ¢ a partial function from
Sm(%, S), with countable domain, and for 4 €Sm(¥, S), if 4 = & then
¢, is a function from some o <w, to 2™, and if A # & then é, is a
continuously inceasing function from some countable y + 1 to w;, — 4},
the ordering is defined by:

¢'=¢* if A€Dom ¢! implies A €EDom ¢? and ¢} C ¢2.

(3) If A = (B) we write in (1), (2) above B instead of .
(4) We define, for k strongly inaccessible (> &), the strong sealing forcing
SSeal(%, S, k) as P,, where (P, Q;:i =k, j <k) is an RCS iteration,
with Q; = Seal(¥, 5)"". i
(5) For 1 C®8Y let seal(l)={(a;:i Za) : a;ES . (H(2*) ")), a; ( £ a) is
increasing continuous and @ N w, is an ordinal which belongs to
U 4ernq A} and is order by the inverse of being an initial segment.
(6) We call I C 8" semi-proper if seal(]) is a semi-proper forcing notion.
(7) WSeal(S) is the product, with countable support, of seal(Z), I semi-
proper, w, — S€I.
(8) We define, for x not strongly inaccessible, but
*) (Vu<k)[uPo<k)l,k=cfk, k! =xfor{ <& and & =k, k>R,
the strong sealing forcing SSeal(.«#, S, k) as P, where (P, Q;: i = kj <k)isan
RCS iteration; Q; = seal(f;, S)"”, I, is a maximal antichain of A, ;) for some
()< & (in V”f).and every maximal antichain [ of some %, from V*«is [, for
some j <K.
We call x %-inaccessible if it satisfies () above, and call it R,-inaccessible if
(Vu <k)uh <k =cfk).
(9) If1C {I:1 C B} then seal(I) is the product, with countable support of
seal() for I €1.

2.5. REMARKS.
(1) We could have used CS iteration for SSeal.
(2) If every maximal antichain of 8" is semi-proper, the difference between

WSeal(S) * Levy(R,, 2%) and Seal(8”, S) (defined in 2.4 (7), (2), respec-
tively) is nominal.

(3) If A 1 S<BY IS for { <¢&, then Seal(¥, S) is equivalent to the Levy
collapse of 2% to R, by countable conditions.
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2.6. NOTATION. We omit k in SSeal(¥, S, k) when it is the first strongly
inaccessible. We omit S when S = w,. We write % instead of ().

2.7. Camm. IfinV,
A= (A4 { <&)forl=1,2and
(V6 <&)I L <& <A
(V& <&N(3 G <G <A

then Seal(d!, S, k) = Seal(%1%, S, k), Sm(%', S) = Sm(2?, S), and
SSeal(¥!, S, k) = SSeal(%?, S, k).

Proor. Easy.

2.8. CLAIM.

(1) Let I C 8" be predense. Then [ is semi-proper iff for A regular large
enough, N <(H(4), €) countable IEN, there is N',N<N’'<
(H(A), €), N’ countable, NN w0, =N'" N0, € U einnA.

(2) |Fseary “I € Blseal(l)] is predense”.

(3) WSeal(S) is semi-proper and |lwses) “if I €V is semi-proper in 8%,
(w, — S)€EI, then I is predense in B[WSeal(S)]”.

(4) seal(]) is A-complete for A €1; so WSeal(S) is (w, — S)-complete.

(5) If I is predense in B(V), then seal(/) preserves stationarity of subsets of
.

(6) Seal(o#, S) is (w, — S)-complete; S Seal(, S, k) is (w; — S)-complete
and if k > R, is #/-inaccessible it satisfies the x-c.c.

Proor. Check.

2.9. CLaM. Suppose seal(]) is semi-proper for every maximal antichain of
8" to which w, — S belongs, and k > X, is 8"-inaccessible.
Then P ¥ SSeal(BY, S, k) is semi-proper and (w, — S)-complete.

Proor. The (w, — S)-completeness is trivial by the definition of P and
[Sh 1, Ch. V, Def. 1.1, p. 154].

Now let A be regular and large enough, and N < (H(4), €) countable, PEN,
pEP N N. Applying repeatedly 2.8(1), there is N, N < N’ < (H(4), €), N n
w; =N’'N w,, N’ countable, and for every maximal antichain 7 C %8 (or just
predense I C B"):
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IEN, NNnw,E€S=Nnw,=Nnwe U A.

A€EINN'

Then we proceed as in the proof of 2.10 below (using N’ instead of N and the
choice of N’ instead of (x«)), i.e., using 2.10A.

2.10. CLaM. If A= (A,: ¢ < &), A, <B” for { <&, each U, satisfies the
R,-c.c. (or just has power = R,) and « > R, is strongly inaccessible, then

(1) P, ¥ sSeal(dl, S, k) is proper;

(2) |5 “UA P S <B | Sfor { <&

(3) in fact, P, is (w, — S)-complete and strongly proper satisfying the x-c.c.;

(4) if w, — S is stationary, P, does not add w-sequences of ordinals.

Proving 2.10(1), we really prove the following, which in fact is used several
times (the only difference is that (xx) becomes an assumption).

2.10A. CLaiM. Suppose % = (¥, : { <&), k > R, is strongly inaccessible,
%, Kk EN < (H(4), €), N countable, P = SSeal(l, S, x) and

@ if ] €N is a predense subset of %, @, — SEI, then N N 0, € U, ;nn 4.
Then for every pEP N N there is gEP, (N, P)-generic, p = ¢.

ProoF. (1) Let A be regular large enough and N < (H(4), €) countable,
QEN (hence P,EN)and pEP, N N. We have to find g, p = g EP, which is
(N, P)-generic. Now

(*) if {, ] €N are P-names, |-, “[ a predense subset of %,”, pEN N P, then
for some p?, p < p2EN N P, p*| “forsome 4 €I N N N U, (so P forces that
AEV), NN w,EA".

PROOF OF (¥). We can find p° p = p°€N NP, and {, p°|—“( =" (so
necessarily { € N). Next define

J={A€¥,:forsomep',p = p'EP,p'|-“AEI").
¢

Clearly JEN, JEV, and J is a predense subset of A, { EN. We now have:
(=+) if(EN NE,J C U ispredense, (JEV)JENthenforsomeAEJ NN,
NnNnw€EA.

[PROOF OF (xx). As ||, || =R,, or ¥ FR,-c.c., clearly without loss of
generality |J| S R, soletJ = {4;:i <w,} (as J # & this is possible). Since
A, <B", clearly J is predense in B, hence we know {§: 0 E U,<s4,}ED,,
(otherwise the complement contradicts the predensity), so there is a closed
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unbounded C C w;, C C {6: 6 € U, .;4;}. As J EN without loss of generality
(A;:i <w,)EN and without loss of generality CEN. As N <(H(4), €)
clearly C N Nisunboundedin N N w,,hence N N @, =sup(C "N N w,)EC,
so Nnw€U({4,:iEN N}, so for some jEN Nw,, NN w E4;. But
(4;:i <w,)ENso 4;EN, as required.]

CONTINUATION OF PROOF OF (x). By (»x)thereisA€J NN, NNw,E€A.
By the definition of J there is p?, p° < p*€P, p* |- “A €1”. Asp° 4, [are allin
N, we can choose such p? in N, thus finishing the proof of (»).

Now we prove 2.10(1). We define p, for n < w such that:

(@) po="P; Pn+1 Z Pn;

(b) p,EP.NN;

(c) for every dense subset J of P, which belongs to N for some n, p, ., €J;

(d iffjeEkNNand 1, CareP-names from N, |, “C <¢, I € A, predense”
then for some n <wand BEBY NN,

Pns1 tilFp“BEL, NNw EB".

This clearly suffices, as (using the notation of Definition 2.4(4)): (U, <. P,)()
isin Q;by (d), and U, ., p,is (N, P)-generic by (c). So we can assign the tasks,
and for satisfying (b) and (c) there is no problem. For (d) use (x).

(2) If A€ P(w,)"™ then as P, satisfies the k-c.c. (see 2.2(1)(c)) for some
a<k, AE P(w,))"", and so by the definition of Seal(¥, S, k), if A/D,, is
disjoint to a dense subset of xE€¥,, 4 C S, { <{ then we “shoot” a club
through its completion in the (B + 1)-th iterand in the iteration defining
SSeal(, S, k) for BE (o, k) large enough. Why? As VAE |%,| =R, (or P,
collapse 2%) there is B, a <f <k such that for every x €U, if x N 4 is not
stationary in V%, then it is not stationary in V7.

(3), (4) Easy.

2.11. CLaiM. Suppose @ =(P,Q;, ti:i =a+1, j<a+1) is an RCS
iteration, Q ! a is S-suitable, x > ]I",l~ strongly inaccessible.
(1) Ift, =0, Q, = SSeal((B[P}:j <a,t; = 1), S, k) then Q is S-suitable.
QI A=(A:(<&), a lxmlt and for every (<&
|, “{i <a:%.1S<B[P]!S} is unbounded below a”, t,=0, Q,=
SSeal(¥1, S, k) then Q is S-suitable.

ProoF. (1) For a non-limit this holds by Claim 2.10(1) for Definition
2.1(D) and 2.10(2) for Definition 2.1(F) (the other parts of Definition 2.1 hold
trivially). If « is limit, the proof is similar, using 2.13; see proof of 2.11(2).
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(2) By 2.13(1) below it suffices to show: if [ is a P,-name of a maximal
antichain of % ({ < &) then I €1(1 of 2.13(1)). For this we apply 2.12: (a) is the
desired conclusion so it suffices to verify (b). W.Lo.g. %A, C B%. Now (b) is
proved (with N' = N) as in the proof of (**) in 2.10(1).

2.12. CLam. LetQ = (P, Q). t;: i Sk, j <a) be a semi-proper iteration,
a limit.
Suppose |, “I C B2 is predense”; the following are equivalent:
(a) (P,/P;) xseal(]) is semi-proper (in V") for non-limit i < a,
(b) If A is regular large enough, Q EN < (H(A),E€, <¥), N countable, [EN,
PENNP,IiEN N a,inon-limit, g EP,is (N, P;)-semi-generic, p | i =
q then there are N', p!, ¢!, 4 and j such that:
(i) N <N'<(H(A),€),
(ii) N'is countable, N' N w, =N N w,,
(iii) p = p'EN'NP,
(iv) i <j <a, j non-limit,
(V) JEN',
(vi) g=q'€P,
(vii) ¢'is (N', P;)-semi-generic,
(vii) p'tj =q',
(ix) 4 is a P;-name,
x) ¢'|—“4€land N' N w, €4

Proor. Easy.

2.13. CLaiM. Let 0 =(P,, Q;:j = a, i <a) be a semi-proper iteraction

and « is a limit ordinal. )

(1) If I={/E€V":I a maximal antichain of B¢, and for every i <a,
(P,/P; ) xseal(]) is semi-proper} then (P,/P, ) »seal(I) is semi-proper
for every i <a.

(2) If (x}(P/P;,,) xseal(I) is semi-proper for every i <a and maximal
antichain antichain [ of 82 (from V*.) to which w, — S belongs,
then (P,/P,,,)*Seal(32,S) is semi-proper for every i <a, as is
(P,/P;, ) »SSeal(8?, S, x) for k > | P,| strongly inaccessible.

(3) The hypothesis (*) of (2) holds if for arbitrarily large i <a:

Q, is semi-proper and |5, “Rss(R,)”.

Proor. (1) Use Claim 2.12.
(2) Use 2.13(1), and for the SSeal case, also 2.10A.
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(3) By 1.7(5) Rss(X,) implies that semi-properness and not preserving
stationarity of subsets of w, are equivalent. Suppose i < a, Q; is semi-proper
and |5 “Rss(R,)”. As (by 2.8(5)) seal(]) ( € 8¢ a maximal antichain) do not
destroy stationarity of subsets of w, from ¥”: (and this property is preserved by
composition (though not by iteration)) and P,/P;, = Q; *(P,/P,,,) is semi-
proper, we get that (P,/P;) = seal(]) is semi-proper (in ¥* of course). This holds
for arbitrarily large i < a, hence (by the composition of semi-properness) for
every non-limit / which is the assumption of (2).

2.14. CLaiM. Suppose Q =(P;,Q;:i =k, j<k) is semi-proper, k
strongly inaccessible and x > | P; | fori <k, S C w, stationary.
If
(*) (a) for i <k, in V%, Player II wins Gm({R,}, w, D, + E;*) where
E = {6 <k:d>1i,dstrongly inaccessible and |\—p,p, “Q; is semi-
proper”}, see 1.9A(2).
(b) E* = {i <x:|lp “Rss(R,), O; semi-proper”} is unbounded,

then R; ., o (P./P;,)) *Nm’ % SSeal(SBiPK], S) is semi-proper for every i <k.

2.14A. REMARK. (1) Nm'={T:T C “>R, is closed under initial seg-
ments, is non-empty, and forevery n €T |{v: n SVvET}| =RK,}.

(2) We can use Nm’(D) instead of Nm’ and even Nm, Nm(D).

(3) We can replace Nm’ by any forcing notion satisfying, e.g., the I-
condition or is S-complete (see [Sh 1, X, XI]) where IEV is a family of
k-complete normal ideals.

(4) Instead of (*)(b) we can have “largeness” demands on k. We need it to
make (P,/P;) »seal(]) semi-proper for jEE;", I a maximal antichain of B*
from V¥,

ProorF. We work in V%+, Let A be regular and large enough, N <
(H(A), €, <¥) countable, iEN, kEN, QEN and (p*, p°®, p°)ER;, N N.

We now define by induction on n, T,, N,, ¢, (1 €T,), such that:

(A) T, C "k.

®) To={( )

(C) (VvET, )V In€T,].

(D) (VneT,){i:n"(i)ET,,,} has power k].

(E) N<, N ;i p* =4

(F) For n€T,,, the model N, < (H(4),E, <}¥) is countable, extend N,;,,

and N, N w, = N N w,; moreover Ny, <, N,.
(G) nEN,.
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(H) q,E€P/P;,, is (N,, P./P,; . )-semi-generic.

(I) For n € Tn+l’ ay ern(Nn nK-— ann) =dntn-

(3) If [isa P, /P, ,-name of a dense subset of B8(P,), [ €N,, n €T,, then for
some natural number k = k([, n) for every v: if n <" vE€T, ,, then:

g, |H(34€EN,)AEIAr4aP/P,_-name AN N w, E4].

(K) EJ has cardinality k, where

E? g i<k N, <N, ;where N, ;is the Skolem Hull of N, U {j} in
(HQA),€,<}) and j =Min(N,; N x — N,) and j is strongly
inaccessible and (Vi <j)[|P;| <j] and |bp.p, “Q; is semi-
proper”}. i

Now in carrying out the definition, (J) involves standard bookkeeping.
For n = 0 our main problem is satisfying (K). For j <xlet N; be the Skolem
Hull of Nin (H(1),€, <¥). By (x)a)

E'={j<k:N<yN,, cfj>Ry, |Fpp “Q;is semi-proper”}

is a stationary subset of k. So by the Fodor lemma [as  EE'=s cf § > R,, and
p < k= pf < k) for some stationary E?C E', (N;:jEE?) form a A-system,
and let N {N;:jEEY} becalled N, ,. So N, , < (H(A),E€,<}), and let g ,E
P./P;;, be (N, ,, P/P,;,)-semigeneric, p* = q, ).

For n > 0 assume N,, ¢, are defined. By (K), E? has power k, where for j EE;
Min(x N N,; — N,)EE}*, |E}| =k and we let

Tgn+1 N {v:in <vE® Uk} = {n*(j) :JEER}.

S0 Tigy+1 is really constructed as required.

For yEE] let N,, be the Skolem Hull (in (H(A),€,<})) of N, U {7}. By
2.2(1Xe) g, is (N,,, P,)-semi-generic and y =Min(x N N,, — N,). Let our
bookkeeping give us [; EN,(EN,,), a P,-name of a predense subset of B[P, ].
Let i(0) <x. We can find y*EE*, y < y* <k, s0

|5, “Rss(R}™), Q,+ semi-proper”.

Now (P,/P,,) » seal(I) does not destroy stationary subsets w, (as P,/P,. is
semi-proper, I predense hence seal(I) preserves stationary subsets of w,)
because y*E€E* is semi-proper. As yEE}, P./P, is semi-proper. Hence
(P,/P,) » seal(]) is semi-proper. Now by 2.12 applied in V?, there is a model
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N;,, N}, <(H(A),€,<}) countable, N,,<,N;, and ¢;,EP, and j,, <k,
successor such that:

G €P,, ¥ <ipy €Ny

q;, ' Min(N;, Nk — N,) = g;, | Min(¥,, N x — N,) =gq,,
dryis (N;,, P, )-semi-generic, and

Gy g, “for some A EN; ;4 €land N Nw,E€E4”.

As in the case n = 0, there is N,~,, such that (for i EED.,)) N, =, Npryy <
(H(4),€,<}¥), and N,-,, satisfies condition (K); now we can define g,-,, as
required.

Let G C P.begenericover V,q, ,€G.LetT, = {n€T,: q,€G}. Wework
in V[G). We now define by induction on n, for every € T}, a condition p}
such that:

(a) P:’: EN,[G].

(b) pt ENm’, and p N (¥"k) is a singleton.

(¢) ply = p?; and if p?y, has a stem of length m, Ig(n) < m, then p} = pjy,.

(d) If €T}, ¢ is a Nm’-name of a countable ordinal, ¢ €N,[G], then for

some k = k'(a, 1), for every vE T}, 4,

def

[n='v=plFnw “g<NN o]

(e) If €T}, I is a Nm’-name of a predense subset of B(P,), [ EN,[G] then
for some k=k'(I,n), for every pET, ., n='p, for some m =
kX1, n,p), for every VE T, 14 m>

[p = v= pb|l-nmw “for some AEN,[G], AEL, N N w, EA").

(f) If p! has a stem of length lg(n), call it v,, let &, be a one-to-one function
from x onto {j <x: v, (j)€Ept}, h,EN,[G] and then

(Vp € pb- i, Nlg(p) > 1g(n)= p(lg(m)) = h,(i)] for n*(iY€ U, T;.

There is no problem to do this. [For (d), when we come to deal with [ (say at p),
we let
I'={4:(3p)p} = pPENM' A p | “A €I},

so I’EN,[G] is a predense subset of B(P,), and by (J) we can define m =
k(l', p), let p; = p; if v <\p € Tiy,), 18(p) S 1g(v) + m.]
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Now let (in V%)
g* = {pE“>k:pE p’, and for some n € U, T}, p belongs to the stem of p7}.

Let ¢° = g, , and assume ¢° €G C P, G generic over V.
We can easily see that g < ¢ €Nm'. Also (in V[G]) ¢° is (N[G ], Nm’)-semi-
generic and
4* |- “NIG[Grm] 2 ’L<Jw NyulGT,

where Gy, is the (canonical name of the) generic subset of Nm’, and 7 is the
w-sequence in “x which it defines naturally. [Remember that if
N, N, <(HQ),E),NNw,=N,Nw,and iEN, N Np, i <V, then N, Ni=
N, N i.] Now clearly by the above and (e)

q° |Fnm “for every predense subset I of B[P, ] in N[G][Cnm ]
NN €U {4:A€1NN[G][Gxu])”-

So we can apply the proof of Claim 2.10(1) (i.e., 2.10A) to get ¢, which is
(N[G1[Gxwl, SSeal(B[P,], S))-semi-generic. Now (g°, ¢°, ¢°) is as required
(i.e., (R, N)-semi-generic).

2.15. CLamM. Suppose Q =(P;, Q;:i =k, j<k) is a semi-proper ite-
ration, k> | P;| fori <k, S C w, is stationary: If
(*) (a) for i <k, in V%, Player II wins Gm({R,}, w, D, + E;*) where
Er={d<k:8>1i, & strongly inaccessible |tp,p“Q;5 1is
semi-proper”}. )
(b) E = {i <kK:|p “Rss(R,) and Q-semi-proper”} is unbounded and
in V%, )
() WC {0 <k:ViEcfd =R} is stationary (} a P.-name),
then (P./P;,.,) »club(J¥) »SSeal(B(P,), S) is semi-proper for i <k where
club(W) = {f. for some non-limit y < w,, fis an increasing continuous func-
tion from y into W}.

ProoF. Like the previous claim, only after defining N,, g,, foraset G C P,
generic over V, ¢, ,€G, in V[G] there is nE€“k, A,(n I nE€T,) such that
() > sup(N,, N x)and sup{n(/) : | < w} belong to w, then in V'[G] continue
with U, N, ,[G].

2.15A. REMARK. Really 2.15 is just a case of 2.14(A)(3).

2.16. THEOREM. Suppose {u <k : u supercompact} is unbounded below x
and k is 2-Mahlo.
Let S C w, be stationary, then for some semi-proper (x, (w, — S))-complete
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forcing notion P (see 1.4), satisfying the k-c.c., |\—p “B[P,] | S has a dense subset
which is (up to isomorphism) Levy(R,, < R,)”.

2.16A. REMARK. (1) So really (see introduction) from one supercompact k
we get, e.g., P such that: |, “ZFC + 8 | S, has a dense subset isomorphic to
Levy(R, < R,) + MA,, (@, — S; U S,)-complete semi-proper)” (S; C w, sta-
tionary).

For this use 2.18A(3).

We should, while defining the iteration Q, ensure that: if over V*- we force
by club,(w*), the relevant variant of MA still holds. Really we can ensure
something like Laver’s indestructibility of supercompactness holds.

(2) An alternative way to iterate is to let x be limit of supercompacts, and:

if |P;| <A for i <A, A <k, A supercompact or limit of supercompacts,
ensure in the iteration that

B2 «B[P] wheni<j<k.
In this way we get rid of (, S)-completeness.

PrOOF. We define by induction in i, P;, Q;, t; such that

(A) Q*=(P,Q,t:iZa,j<a)is S-suitable;

(B) there is no~strongly inaccessible Mahlo A, i <4 = | P, |;

(C) if i is a singular ordinal or (3 <i)[|P;|>i] then ¢, is 0, Q; =
SSeal((B{P,]:j <i,t;=1),S); )

(D) if i is supércompact, t; = 1, Q; = SSeal(B[P,], S);

(E) if (Vj <)[|P;| <i], i limit of supercompacts and i is inaccessible but
not Mahlo, we let t, = 1, O, = Nm’ » SSeal(B[P;]);

(F) if (Vj<DI|P| <i],i Mahlo and limit of supercompacts then

W, ={d <i:d =cf é limit of supercompacts and (Vj <d)[|P;| <d]}
is a stationary subset of i, and we let:
t,=1, Q; = club(W;) » SSeal(B[F;]).

Why is Q S-suitable?

Note that the use of SSeal guarantees (F) of Definition 2.1, as well as (E) (see
2.10(3), 2.10(2)). So it suffices to show by induction on i that Q li is a
semi-proper iteration.

We shall show below that every Q, is smi-proper (the only problematic cases
are i inaccessible limit of supercompacts, but then Rss* (i) (by 1.6(2), 1.6(4)),
so in V%, every forcing notion not destroying stationary sets is semi-proper).
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For i = 0: trivially.

For i limit: by Claim 2.3(2).

For i + 1, apply (C) to i: by Claim 2.11.

For i + 1, apply (D) to i: by Claim 2.9, 2.2(3), 1.6(4), SSeal(8B[P,], S) is
semi-proper in V..

For i + 1, apply (E) to i: by 2.14 (+)a) holds as E;* =k, and as said above,
Rss*(i) (see 1.11).

Fori + 1, apply (F) to i: by Claim 2.15 (and remember (5) of the Notation).

Also each Q; is (x, (w; — S))-complete, hence P, is (x, (w, — S))-complete so
when S is costationary

[Fp, “2% =R, 2% =R,

Let B, = B[P}], SO t,=1=%,1S <B[P]IS. Let w* =
{i<k:3B;1S<B[P]!S}). So in V* (as case F occurs stationarily often):
{6EW*:cfd = R,, w* contains a club of 4} is stationary. Hence it is well-
known that in V%, club,(w*) = {h: h an increasing continuous function from
some a + | <k to w*} does not add bounded subsets to x (= R,). So forcing
will give us a universe as required.

2.17. CLaM. Suppose Q = (P, Q;:i = a, j <a) is a semi-proper itera-
tion, 4 <a (u =0 is alright), and 'I.I‘_p‘ “Rss(R[V])” (e.g., if u is super-
compact, [i <u=>|P;| <pu] note that |p “u=R," if {x <pu:(Q, semi-
proper} belong to some normal ultrafilter on u). .

Let 4 be a P,-name of a subset of S and B a P,-name of a member of B[P, ]
such that:

-5, (VX EB[P,D[0<x <B—x N4 #0 (in B[P,])].

Then

(*) if A is regular and large enough, N < (H(4),E, <¥) is countable, and Q,
A,p,4,BandubelongtoN,pEP, N NandgEP,is (N, P,)-generic,ptu <gq
and ¢q|tp“NNw EB”, then there is a countable N, N=,N' <
(HQA),E,<¥), NNnw,=N'Nw, and ¢EP,, ¢’ u = q such that ¢’|-“N N
w€4”.

2.17A. REMARK. (1)If Qis S-suitable,t, =1,and 4 # & mod D,,, 4 is a
Pg-name for some f <a, then we know that such B exists as t, = 1. If a is
strongly inaccessible, o > | P;| for i <a, such B will exist.

(2) Now, e.g., for suitable 0, 1g(Q)=a= U, _,a, a,<a,,p t, =1, we
can use Q, = SSeal(8¢, S) by new reasons.
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PrROOF. As we can increase p, without loss of generality p forces B to be
equal to some P,-name, so without loss of generality B is a P,-name.
Let us fix p, 4, B, nand work in V[G,], G, C P, generic over V, ¢ €G,. Let

W = (N < (H(A),E):N N w,EBIG,],
but there is no r € P,/G, such that:
ris (N, P,/G,)-semi-generic, p  [u, ) =1
and r|tp6 “N Nw, €47},

If W =@ mod D_y(H(A)), we can easily get the desired result (as in the
proof of 1.11).

So (in V[G,]) W is a stationary subset of S_x(H(4)). Hence there is
uCHQ),w Cu, |lu| <R,(in V[G,])and W N S_x («) semi-stationary; now
without loss of generality (u, €, <¥ lu) < (H(A),€, <¥). Let

u=U u, (4, E,<tlu)<(u, €,<¥lu),

{<w)

u, countable increasing continuous. So

Bi={{<w:(AINEWXw, Nu;, SN Cu)}
is stationary, it is a stationary subset of w,, it belongs to B[P, ], and obviously:
(*) p|“4 N B, is not stationary”.

[Let for {€EB,, w, Nu; € N; C u;, N EW; let for £ <w,, N; be the Skolem
Hull in (H(A),€, <P of {{: { <&} U {p, (u;, N;: {EB,)}, and

C={{<o NGl N, =¢}.

CisaP,/G,-name of a club of w,. clearly C N 4 is necessarily disjoint to B, by
the definition of W [if { <w,, ¢€P,/G,, qltps,“CEC N4 N B/, then
N € W is defined, g, is (N, P.,/G,)-semi-generic, ¢, | “N; N w, €47, contra-
dicting “N, € W”). Also

pI+“Bi[G.] C B[G.I”

[by the clause “N N w, & B[G,]” in the definition of W]. So (*) holds.]
Of course B, € V'". and we get a contradiction to an assumption on 4, B

.
~

2.18. CramM. Suppose Q = (P, Q;:i Za, j<a) is a semi-proper ite-
ration, { i, : { <) is an increasing sequence of strongly inaccessible cardinals,
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A (Vi <p)(1P;| <p)and ”_P,.‘ Rss(u;) and |b-5, ,, “cf u; = R,”].

c({ (+l
Suppose further B is a P,-name, 4, a P,

«.,-name of subsets of S. Suppose
further p €P and:

P Violt—p, “B is stationary”,

p tugsilts, ,, “for every x €B[P,]1— {0} if x C B then 4; N x is station-
ary”.

Then p |5, “the intersection of any countable subset of {4, : { <} is station-

&4d

ary”.

ProOOF. Let W be a P,-name of a countable subset of £. So without loss of
generality W= {{(n):n <w}, |lp “{,€E".

We now prove By induction on j = a,

(*) if up<i <j, i non-limit, A regular, and large enough, N < (H(1),€)
countable, BEN, (u;, 4;:{ <&)EN and i,j, QEN, p<p’ENNP, and
qEP,is (N, P;)-semi-generic, p’ | i < g, and

qlp“NNwEBand for n <w[pm<i=NNwEAyl”

then thereis ¢’ € P;, (N, P;)-semi-generic,p’ | j = ¢’,¢’ | i =qand ¢'|p “N N
w,€EB and for n <w [y <j=N N 0, €Ay~

Clearly this is enough (apply it with p’ = p, i = p,, j = , and those suitable
N, q possible as B is a P, -name of a stationary subset of S C w)).

Case 1. j = py. Trivial.

Case 2. jlimit. As in the proof of the iteration lemma for semi-properness.

Case 3. j=(G—1+1,j—1&{u:{ <&} Trivial (use iteration of semi-
properness of length 2).

Case 4. j=(G—-1D)+1,j—1=p.

As we know |l-p “cfy, =R,”, there is an ordinal y <y, and condition
p”, p’ = p”€P,N N such that:

p”|=“for n < w, if ) < p then g,y <y”.

Now apply the induction hypotheses to i, y, N, p” and get a condition ¢'EP,,
p” ty =gq,q is (N, P,)-semi-generic and satisfying

q’l }-p. “ifﬂc(n) < }' then N N w| EA((n)”-

By the choice of y and p”
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q’ | }—P‘c “if,uc(,,) <ﬂc then Nn w, EAC(")”'
Now apply the previous claim (for Q |y, ).

2.19. THEOREM. Suppose {u <k:u supercompact} is stationary, S C w,
stationary. Then for some semi-proper P = P, (for some S-suitable Q) which is
(w; — S)-complete (and satisfies the k-c.c.) in V¥ from any R, stationary
subsets of S C w,, there are R,; the intersection of any countably many of them
is stationary (and B"[P.] is layered, of course).

2.19A. REMARK. We really use just (i) {4 <k :pu measurable} is station-
ary; (ii) {# <k : u supercompact} is unbounded suffice.

ProoF. (1) We define by induction on a =k,

Qa=(P,-, Qj,tj:léa,_]<a),

such that:
(A) Q¢ is S-suitable.
(B) Each Q; is (w, — S)-complete.
(C) There is no strongly inaccessible Mahlo u, i <u = | P;|.
(D) If i is inaccessible, |P;| <i for j <i and |p “Rss(R,)” then Q, =
SSeal({B[P,]:j Si,t;=1),S)and t; = 1. )
(E) If not (D) thent; =0,

Q, =SSeal((B[P]]:j =i, 4, = 1), 5).

We can carry out the construction and prove by induction on ad that Q* is
suitable.

a=0. Trivial.

a limit. By Claim 2.3.

a=p+1,(E)appliesto . By 2.11.

a=p+1,(D)applies to . By Claim 2.9 (and 2.10).

Now suppose pEP,, (4,:i <k) a P,-name p |- “4; C S is stationary”.

Foreachu €Y = {y <k : usupercompact} choose p, € P.and a P,-name B,
such that

p, tu|—“B, C S is stationary, B, EB[P,]",

D, | g, “for every X €B[P,] non-zero, if X = B, then X N 4,, is stationary”.

Now that B, € H(y,) for some x, <, also y is stationary by a hypothesis.
By Fodor’s lemma for some stationary Y, C Y, there are p and B such that
foru€Y;:p, tu=rp,
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B, =B.

As each 4, is a P, -name for some y; > u without loss of generality [x; <p,in
Y,=4, is a P,-name]. Now define for u€Y,:4, is 4, if P,€Gp, and §
otherwise.

Note that Y, € V and every countable subset of Y, is contained in a countable
set from V. Now we apply the previous claim to B, (4,: 4 E€Y)).

2.20. THEOREM. Suppose {A: A <k, A supercompact} is a stationary sub-
set of k, S C w, stationary, costationary; then in some forcing extension of V',
ZFC + 2% =R, + 2% =R, + Ulam(D,, + S) holds, where, for a uniform filter
D on 4, Ulam(D) means: there are A Ai-complete filters extending D, such that
every D-positive set belongs to at least one of them (A is D-positive if A C A, and
(A —A)ED).

2.20A. REMARK. Of course also here we can easily (when x is supercom-
pact) make, e.g., MA,((w, — S U §")-complete semi-proper) holds after the
forcing; if S’ C w, — S is stationary w, — S’ is stationary.

Proor. Before we do the forcing, we make some combinatories, which tell
us what will suffice.

A. NoTaTtioN. (1) A =A<%is a fixed regular uncountable cardinal.
(2) W denotes a fixed class of ordinals, 0€ W, for every i, i + 1€ W, and

NoScfi<i=igW.

(3) B will denote Boolean algebras.
(4) For a Boolean Algebra B: B* = B — {0}.
(5) Pr(a,, a,, By, B;) means: B,, B, are Boolean algebras, B, C B,, a,€B,
a,€EB;, and (VX)[xEBAx=a,—>xNa,#0)].
If the identity of B, is clear (when dealing with one Boolean Algebra and its
subalgebras) we omit it.

B. OBSERVATION. Note:

(a) Pr(1, x, By) for x EB*, | By| = 2;

(b) ifB,C B, CB,xEB;},yEB;,zEBand Pr(x, y, B,), Pr(y, z, B,) then
Pr(x, z, B,);

(c) if Pr(x, y, B;, B)), 0 <x’ = x, x’EB,, y < y'EB, then Pr(x’, y’, B) and
Pr(x’,y N x, B).



Sh:253

Vol. 60, 1987 ITERATED FORCING 375

C. NOTATION AND DEFINITION.
(1) We call B 1-0.k. if B = (B,:i <a) is increasing continuous, each B; a
Boolean Algebra of cardinality =4, [i,j€aN W and i <j=B;<B;, B; is
A-complete].
(2) We call a € W N « closed if for every accumulation point § <« of a
[gW=06+1€a),[6EW=FEa).
(3) Let CSb(ex) = {w: wa closed subset of W N a of power <4}, CSb,(a) =
{w €CSb(a) : w unbounded below a}.
(4) For wECSb(a), B = (B,:i <fB) 1-0k., f >alet
(i) Seq,(B)={({(a;:i€w):a,EB,, a; is decreasing; if iEw, i =4§ + 1,
SEW, i>Minw then g, = ,e,Q; ;if iEw, i>Minw and
(3N =+ INGE W] then @, €Byuwni+, if IEW, i>Minw,
cfi= A, then g, =q;EB, for some jEIiNW,and fori<jinwn W,
Pr(a;, a;, B, B))}.

(ii) Let Seq(B) = U{Seq,(8) : w ECSb(a)}
whena =206+ 1=1gB), a=sup w:

Z.(B) ={ N a;:(a:iEw)ESeq. (B (d + l))},
iEw
Z%(B)= U{(Z,(B): weECSb,(d)}, if Ig(B) = J + 1, we omit J.

(5) Wecall Ba 2-o.k. if for every limit 6 <lg(B),0¢ Z(B 1 (0 + 1)) (and it is
1-0.k.).

(6) We call B 3-o.k. if it is 2-0.k. and for limit § <Ig(B) Z(B } (6 + 1)) is a
dense subset of By, ;.

(7) If B is not continuous, we identify it with the obvious correction for the
purpose of our definitions. '

D. Fact. Suppose Bis2-0k.,B=(B;:i<d+1),cfd <i:

(0) CSb,(d) # 0, and if w ECSb,(d), « <J, then w — a € CSb,(d).

(1) Z,(B) includes By, ,, hence B; C Z(B).

(2) If w;, w,ECSb(J) then w, U w,E CSb(J); similarly for CSb,(d).

(3) If w,Cw, are in both in CSb(d), Minw, =Minw,, {(a;,:iEw)E
Seq,,(B) then (a;: i Ew,) ESeq, (B) if for iEw, —w, we define q; =
Ayaxiinw,y €XISts as i = Min w, = Min w, hence / > Min w,, and w, is
closed.

(4) If w, C w, are both in CSb,(d), Min w, = Min w, then Z,, (B) C Z,(B).

(5) If a <9, w,ECSb,() then Z,(B) C Z,, _(B).

(6) If (a;:i€Ew,), (bj:jEwW,) are in Seq,(B), Seq,(B) resp, (ViEw,)
(3jEw,) a; S bjthen Nig,, a; = Nie,, by



Sh:253

376 S. SHELAH Isr. J. Math,

(7) Z(B) is a dense subset of the subalgebra it generates.

(8) If B=(B;:i =a) is l-o.k. y; = « (for i = i(*)) is increasing continuous
and [i€E W=y, €EW], then (B, :i =i(x)) is l-o.k.

(9) Z(B) is closed under non-empty finite intersections.

Proor. Easy,e.g.,

(7) By (9) it is enough to show thatifa, by, ..., b, €EZ(B),a — U, b, #
0 then for some c€EZ(B), c =(a — U, b). Leta = Ny, a;, b= Ny, b,
where (a;: i €Ew), (b} : i €u) ESeq, (B).

As N;a; 2U, ., (Niey, b)), there are ,Euy, . . . , ¥o— 1 E U, _, such that for no
i€w,a, = U,_,b.. As b} €B, for some fEW, B>y, forl<n.Sow —fE
CSb,(6). Let fori€w — 8, ¢; € a,— U, b So

(i) ¢;=a;,— U,b, EB;[as a,EB,;, b, €B, C B, C B}];

(i) fori <jfromw —B,¢; = ¢;[asa; S a;, clearlya, — U, b! =a, — U B, ];

(iii) for i <j from w—B, Pr(c,¢;, B;). [Let 0<d=c, dEB; then

0<d = a;, d€ B, hence (by Pr(a;, a;, B;))d N a; # 0 and

dnc,=dn(a,— U b;,)
1

—dna—-dn U b
I

=dmaj—0=dﬂa,-(dﬂ U bj,=0asd§ci>
)

sod N¢ #0.]

The other conditions are easy too.

So (c;: jEw — B) ESeq, _4(B) hence ¢ 4 Uiew-pC: €Z,_4(B) C Z(B). As
Bis a 20k, c#0. Now ¢ =a, ie, Mg, 3¢ = Nicya; as ¢; < a;, and
cnb=0ie,(MNic_pc) N (Nig, b =0as N, bl b, c.N b, =0.

(9) Let, for/ =1, 2, w,€CSb,(J) and g, € Z,, (B). Choose successor j <4,
J>Minw, for [=1,2; let wy=w, U {j}, wy=w, U {j}, ws=wy—j, wg=
w,—j. By D(4), a,€Z,(B), by D(5), a,E€Z,(B). By D(4), a,EZ,,,.(B),
similarly a,€ Z,, . (B) and we finish easily.

E. CLam. If B=(B;:i<A%)is 3-0k, [i <A™, cfi=A=iEW] then
Bt is the union of 1 A-complete filters.

Proofr. Note that
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(») for every x€B, for some (q;:iEw)ESeq((B;:i<=a+1)) (0<)
M e, a; = x, 0Ew, and w has a last element [prove this by induction on «, for
a=0—trivial, fora=8+ 1, & Wuse (D7), fora=4+1, BE W, note
that By > B, hence for some x, € By, Pr(x,, X, By, B,). By the induction hypoth-
esis there is (a,: iEW)ESeq((B;:i =B+ 1)) (0<) MNicwa =X, 0Ew and
has a last element (note w C f + 1). Now let ag.| = Ay N X N X, U =
wU{f +1} and (a;:i€Eu) is as required except when cff =4, but the
change is obvious.

Now Seq(B) = U, ;- Seq((B;:i S a)).

It is well known that there is H: {w C A" :|w| <A}— A such that: H(w) =
H(u), a€Ew N u implies a N w = a N u; also H(w) = H(u) implies w, u have
the same order type.

Let F; be a one-to-one function from B,,, into A. We say (a!:iEw,),
(a?: i Ew,) ESeq(B) are equivalent if:

(a) H(w,) = H(w,) and

(b) if B, a;Ew,and B,, a,E Wy, w; N ay, W, N ayhas the same order type and
ay=p+1,a;,=y,+ 1, then

F}’l(aﬂlu) = Fy;(a:f;)-

It is enough to show that if (af:iEw,)ESeq(B) are equivalent for { <
{(x) <A, 0Ew,, Max w,Ew, then ) afy, ., * 0. Note that if a€w, N w,
By =Min(w,, — (« + 1)) then acl‘ aﬁj.

For this end we prove be induction on aE W, a >0

(*) (1) Xq d=ef ﬁc<c(.) aﬁn(w‘n(a+|)) is not ZCro,;

(2) if  <a (B € W) then Pr(x;, x,, Bg).
Clearly x, is decreasing (as a} is decreasing in « for each {).

Casel. a=0
Then Max(w; N (e + 1)) = 0 and a§ = a4 € By for every {. So (+)(1) holds;
and (x)(2) is empty.

Case 2. a=8+1,8€EW

Ifa=p+ 1€ w then @@+ 1) = Btaxmen @+ 1)-

So if a & w, for every { < {(x) then x, = x;, so (*)(1) holds. As for (*)(2): for
y < B use the induction hypothesis; for y = f this is easy.

If for some {, a€w, let v = {{ < {(*): a€Ew(}. So X = Mgy Btaxweng+1y N
M (e, a}. By the definition of the equivalence relation for some a, { Ev=af =
a or { € v=a’E B;. Clearly
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Xa= N Gupng+y N N al= N ey N N ad=xNa.
{ev {ev 4 {&

Now as BE W, By is A-complete, hence x; EB;. Now a €B, and letting
{(0)=Minv, y(0)=Max(w,,N(B+1). Clearly a=a{) and
Pr(al), a, B;). As x; € By, and easily ajff) = x;, clearly x; N a # 0. So (x)(1)
holds. As for (+)(2), by (B)(b) (and the induction hypothesis), without loss of
generality, y=p. So let d€B;,, 0<d =x; then d=a'f) hence by
Pr(a;), a, Bg),and #0,butand=d NxsNa=dn x, so we finish.

Case 3. a=8+1,8&W
Letu CB, |u| <A, sup u = f. Note that

al*cdax(wcn(a-rl))‘_" N a}s{ax(w(n(y+l))-
y<p

(If a € g, as (@fgaxomni+1y - ¥ <B) is eventually constant and equal to

a?\(u+|))= N aﬁ‘lax(w(n(y+l))-
y<B

[If aEw,, as (aﬁm(wm(,ﬂ» :y<pB) is eventually constant and equal to
Ahaxowenia+ 1y, and if aE wy, as (af : y Ew,) ESeq(B)). So

x.= N amcm(wm(a+1))= n N ahcllax(w(n(y+l))
{<{® {<{(*) r<g

=N ( n arfiax(wmwl»): ﬂp x,.]
y<

y<B \N{<{™

As B is 2-0.k. (as (*}(2) holds below ) we know x, # 0. Similarly we can
check (*)(2).

Case 4. o limit

As a€E W, necessarily cf « = 1. But then, by the definition of Seq,(B), if
a€w; though Max(w, N(a+1))#*Max(w,N(y+1)) for y<e, stil
a1y = [ Vy<p Btawnp+ 1y fOr every large enough y <a. If a & w; this
holds on simpler ground. So x, = x, for every large enough y <, and we can
finish easily.

REMARK. The proof is written such that it will be easy to change it for
B=(B;:i<y), y<(@")*,so |B;| = |i| +4, B;,, is generated by B; U B/,
| B!| = A; but it is not clear whether there is interest in this.
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CONTINUATION OF THE PROOF OF THEOREM 2.20. We define by induction
ona=k
Qa= (Ph Qj,tj: l §a’j<a>

and y,, B;, ofi] for i <y, and W N y, such that:

(A) Q¢ is a suitable iteration.

(B) Each Q; is (w; — S)-complete.

(©) |P} <kforj<k.

(D) 7, is the ordering type of the closure of {j < a:t;=1}.Ifi<j,;=1,j
non-limit, then |5 “8,_, <B[V5]1S”.

(E) If i is inaccessible, |P;| <i for j <i and |kp, “Rss(X,)” then t; =1,
Q, = SSeal((B[V%]:j =i, 4, =1),5) and B, =BV = (Up<,7)
+1,y—-1€EW.

(F) If i is not limit, or a limit but not a limit of ordinals satisfying the
assumption of (E), then y= U,y and Q, =SSeal((B,:j =1,
t;=1),5)and t; = 0, except when (G) for i — 1 decrees t; = 1.

(G) Ifiisalimit of j’s satisfying the assumption of (E), then y, = (U, ., ) + '
2, afy;—2]=i, 7.&w, y,+1€Ew, B, ,= Uj<iSB[VP’]’ B, =the
subalgebra of B{V"] | Swhich Z({B,:j <i,t; = 1) *(B[V"])) generates
(see Definition (B) above) and

Q,' = SSeal((‘B,Z]Ey, N W), S).

(H) In V7., (B,;:j €y;) *(B[V"]) is 2-0.k. and every proper initial segment is
3-0.k.
The proof is like 2.19.
Now in order to be able to prove the Ulamness, we need to force (over V*<)
with

R = {f: fis an increasing continuous function from
somey + 1 <kto WU {d <k:cfd =R, (in V%)}.
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