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ABSTRACT 

We prove that suitable iteration does not collapse R, [and does not add reals], 
i.e., that in such iteration, certain sealing of maximal antichains of stationary 
subsets of to~ is allowed. As an application, e.g., we prove from supercompact 
hypotheses, mainly, the consistency of: ZFC + GCH + "for some stationary 
set S c_ to1, ~(tol)t(D,o, + S) is the Levy algebra ~ (i.e., the complete Boolean 
Algebra corresponding to the Levy collapse Levy (Re, < R2) (and we can add 
"a variant of PFA") and the consistency of the same, with "Ulam property" 
replacing "Levy algebra"). The paper assumes no specialized knowledge (if 
you agree to believe in the semi-properness iteration theorem and RCS 
iteration). 

§0. Introduction 

By Foreman,  Magidor  and Shelah [FMS 1 ], CON(ZFC + r is supercompact)  

implies the consistency o f Z F C  + "Do,, is .R2-saturated" [i.e., i f ~  is the Boolean 

algebra P(ogt)/Do,,, "Do, is R2-saturated" means "~  satisfies the R2-c.c."]; see 

there for  previous history. This  in fact was deduced f rom the Mart in  Maxi- 

mum  by [FMS 1] whose consistency was proved  by RCS iterat ion o f  semi- 

proper  forcings (see [Sh 1]). Note  that [FMS] refutes the thesis: in order  to get 

an e lementary embedding j o f  V with small critical ordinal,  into some 

transit ive class M of  some generic extension V p o f  V, you should start with an 

e lementary embedding o f j  o f  V' into some M '  and then force over  V'. 
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This thesis was quite strongly rooted. Note that it is closely connected to the 
existence of normal filters D on 2 which are 2 +-saturated or at least precipitous 
(use for P the set of non-zero members of ~(2) /D ordered by inverse inclusion, 
j the generic ultrapower). See [FMS 1 ] for older history. 

In fact, it was proved directedly that M M  ÷ ~ S P F A  +. Much later we prove 
that M M  is equivalent to the Semi-Proper Forcing Axiom (in ZFC) 

[Sh 5]. 
Following [FMS 1, §1, §2] much activity follows. Woodin proves from 

CON(ZF + ADR + 0 regular) the consistency of ZFC + "~ t S is R~-dense", 

for some stationary S _c o91. 
By Shelah and Woodin [ShW], if there is a supercompact cardinal, then 

every projective set of reals is Lebesgue measurable (etc.). This was obtained 
by combining (A) and (B) below which were proved simultaneously: 

(A) The conclusion holds if there are weakly compact cardinal x and a 
forcing notion P, I e l  = x, satisfying the x-c.c., not adding reals and 
I~-e "there is a normal filter D on o9~, B = ~( t~) /D satisfying the 

~2-C.C." 

(B) There is a forcing as required in (A) (see [FMS 1, §3]). 

This was improved to using cardinals x satisfying: Pr~(x) def = X is strongly 
inaccessible, and for every f :  x ~ x there is an elementary embedding j : V--* 
M (M a transitive class), x the critical ordinal o f j  and H(j( f ) (x) )  c_ M,  or at 

least Prb(r)* do__=f x is strongly inaccessible, and for every f :  x ~ x there is x~ < r ,  
( ' ¢c t<x t ) f (a )<x~  and for some elementary embedding j :  V--,.M (M a 

transitive class), x~ is the critical ordinal o f j  and H((j(f))(Xl)) C_ M (S cc__ o91 

stationary, co-stationary). 
For the Lebesgue measurability of every projective set, we use approxima- 

tely n such cardinals for sets En. 
By [Sh 2] "2~0 < 2~,=*D,o, is not Rj-dense", and i f D  is a layered filter on 2 

then ~(2)  is the union of  2 filters extending D. 
The work presented here was done then, but was mistakenly held as 

incorrect for quite a time. Only we here replace part of the consistency proof  of 
the Ulam assertion ( ~ ,  090 is the union of R~ R~-complete non-trivial mea- 
sures, by a deduction from a strong variant of layerness. We prove, from some 

t Now usually called Woodin cardinals. After this work was written, the results of Martin Steel 
and Woodin clarify the connection between determinacy and large cardinals and Woodin has 
some consistency proofs for larger ideals on w~; very interesting among them is ~D,o, + S is 
R~-dense ~ from a huge cardinal. 
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supercompacts, that we can force, for a stationary co-stationary S __ tot, 
that GCH + ~(tol)/(Do,, + S) is the Levy algebra, i.e., the completion of  
L e v y  (•0, ~ R2) (or  S -- tot, but 2 ~0 = R2) and related results. The method is 
(RCS) semi-proper iteration, hence it can be used, e.g., to prove consistency 
with additional statements. Relative to the progress of [ShW], we improved 
some results to the use of K's satisfying Prb instead of supercompact; this is not 
written now as [ShW] hasn't materialized yet, hut as a result we do not try to 
"save" in the use of  large cardinals (one such 2 suffices for D~ol R i-saturated), t 

Note that the r supercompact is seemingly necessary if we want a suitable 
variant of MA. Those points (i.e., using smaller large cardinals and getting also 
variants of MA (mainly without adding reals)) will be dealt with in a sequel 
paper. Around the time this was reasserted Woodin proved, from some r ' s  
sat is fying Prb, that CON(ZFC + 2 ~o = R 2 + ~'(toi)lDo,,) is the Levy algebra, by 
methods related to Steel forcing. 

Also in Spring 1983, Foreman proved (in [FMS 2]), from the consistency of 
almost huge cardinals, CON(ZFC + GCH + on 3. + + there is a layered ideal) 
for arbitrary regular/ l .  This was interesting as by [FMS 2], we can get a 
uniform ultrafilter D on 3. which not only is not regular but even 3.~*/D -- 3.+. 
Note that some years ago Magidor [Mg] proved the consistency of ZFC + 

GCH + "for some uniform ultrafilter on N2, N~o2/D -- R2". Another result of  
[FMS 1 ] is that we can get "for every 3., D~ is precipitous" and we can get this 
even to Chang filters. Later Gitik, for 3. a supercompact cardinal, gave a proof  
which does not use a supercompact above 3.. 

Much later the author proves, for D a layered filter on 3., that (if 2 x = 3. +, 
3. =3.<~) there is a homomorphism h from ~(3.)/D into ~'(2), A/D = 
[h(A/D)]/D; see [Sh 6]. 

Note that S-completeness is used for convenience; weaker notions can be 
used as well (see [Sh 1, VIII, §4], [Sh 4, §2]). We can also make that set of 
ordinals in which something nice occurs, a name. 

Note that instead of  one S, we can change it getting the result for a maximal 
antichain of  S's. 

Note that we can use 2.13 (3) much more extensively, e.g. in 2.19. Suppose s: 

is strongly inaccessible (~:i, i < r } increasing continuous, ~i + t is supercompact 

* For "ZFC + D~ is Rz-saturated + MA(semi-proper)" one 2 suffices. 
For ~ZFC + GCH + (D,~ + S~) is layered + MA~ (S2-complete semi-proper forcing of 

power < R2) ~ ($1, $2, $3 a partition of to~ to a stationary set) it suffices to use {2 : A < ~, A satisfies 
Prb} is stationary. 

Similarly for the Levy algebra (with a suitably stronger assumption). 
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for i non-limit, x = t..Jt<~x~ (P,  Q~, t;, B~: i < x )  an RCS iteration, IP,I < 
xi+t, for i non-limit, (2,. = S SeaI( ( B e~ + ~ : j + 1 < i ) , S,  x~ + t). 

NOTATION AND BASIC FACTS. 

(I) ~ ( A ) i s t h e p o w e r s e t o f A , S < a ( A ) =  { B ' B  C A ,  IBI <2} ,  <~'isawell  
ordering of H(2), extending < *  for/t < 2. 

(2) Da is the club filter on a regular ). < R0 and D<a(A) is the club filter on 
S<AA). 

(3) (a) ~ is the Boolean Algebra ~(o91)/Da; we do not distinguish strictly 
between A ~ #(A)  and A/Do,,. 

(b) ~ of course depends on the universe, so we may write ~3v' or ~[ V ~]; 
instead of ~[ V e] we may write ~e or ~[P]. 

(c) If  V 1 _c V 2, oJ~ = co~, then ~[ V t] is a weak subalgebra of~[ l/z] (i.e., 
maybe distinct elements in ~[ V t] are identified in ~[ Va]). 

(d) I fP  ~ Visa forcing notion preserving stationary subsets ofco~ then 
= ~[ V] is a subalgebra of ~e (identifying (A/Do,,) v and (A/Do,) r., 

for A ~ ~(o9~) v). If Q = (Pi, Qj: i < a )  is an iteration (with limit 
P~, so i < j  < o t ~ P i < P j ) ,  welet  B_ a = I,.J~<~B e,÷,. 

(4) (a) Let us, for Boolean algebras Bt, B2, say Bt <B2 if BI c_ B2 (i.e., BI is a 
subalgebra of B2) and every maximal antichain of B~ is a maximal 
antichain of B2. 

(b) Note that BI <Bt,  i f f  Bi, B2 are Boolean algebras, B~_ B2 and 
(V x ~ B 2 -  {0}) ( 3 y E B ~ -  {0}) (V  z ~ B t ) [ z  N y ~ O ~  z N x ÷ 01. 
However Bt < B3, Bi --_- B2 _c B3 implies Bt < B2. 

(c) Hence, the satisfaction of "B2,~B2" does not depend on the 
universe of set theory, i.e., if V~B~ ,~B2, V c_'V t then V 1 ~B~ ,~B2. 

(d) By Solovay-Tenenbaum [ST] < is transitive, and if (B~ : i < a) is 
<-increasing and continuous then Bi < 1,1J~<, B~. 

Also, if (Be : ~ < ~) is a _ -increasing sequence of Boolean algebras 
and B0 < B~ for ~ < ~, then B0 "~ ~ <¢ Be. 

(5) Also, if in V Pt ,~/)2,~/)3, in V e~ $e, ,~ ~e,, and in V e, ~8 t', < $P, then in V t', 

(6) For a set a and forcing notion P, .Ge is the P-name of the generic set and 
a [.Ge] = a U {.x[ .Gp]: x ~ a a P-name}. So a [.Gel is a P-name of a set, and 
for G c_ P generic over Vits interpretation is a[G] = a U {x[G]: x ~ a  a 
P-name} (x[G] is the interpretation of the P-name V). 

(7) We sometimes do not strictly distinguish between a model and its 
universe. 
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(8) P, Q, R denote forcing notions, ~ p  denotes the minimal element of P 
(i.e., I k--e ". • ." iff ~ I k-e " ' ' ' ) ;  without loss of generality it exists. 

(9) If2 > Ro is a cardinal, N a countable elementary submodel of (H(2), E ), 
P E N ,  G c. P generic over V, then N[G] < (H(2) v', E)  (as H(2) v" = 
{[[G]: ~ H ( 2 )  a P-name} and if tk-r"(H(2) v', E)~xC(xa)" then for 
some P-name r EH(2)I k--e"(H(;t) v,, ~ )  ~ ¢(~, a)"). See [Sh 1]. 
Also (N, G) -~ (H(A)v,~, G) (i.e., G is an extra predicate, so you may 
write (N, G n IN I)). Also, ifR is any relation (or sequence of relations) 
on H(2) v, N < (H(A)v,~, R) (and P E N ,  G ___ N generic over V) then 
(N, G) -~ (H(2)v,~,  R, G). Usually we use a well ordering <*  of H(2). 

(10) Let N < ~ M  mean M __. M and N O x is an initial segment of M n x 
and M < N; if we use it for sets (rather than models), the last demand is 
omitted. Note that i fN -~ M < (H~) ,  ~), x < ~ ,  N n x = M n xthen 
N <,,+ M. 

§1. Preliminaries 

1.1. DEFINITION. 

(1) A forcing notion P is semi-proper if: for every 2 regular> 2 lel, any 
countable N -~ (H(2), E)  to which P belongs, and p E P n N there is 
q, p < q EP,  q (N, P)-semi-generic (see below). 

(2) For a set a, a forcing notion P and q EP,  we say q is (a, P)-semi-generic 
if: for every P-name a E a  of a countable ordinal, q II---e".aEa"; i.e., if 

qlt--"a[qe] n cot = a n  cot". 
(3) We call W c_ S<~,(A) (where cot C_ A) semi-stationary in A if for every 

model M with universe A and countably many relations and functions, 
there is a countable N < M, such that ( 3 a ~ W)[N n co~ c. a c_ N] 
[equivalently, {a ES<z,(A): ( 3 b E W)[a n cot c_ b c_ a]} is a stationary 
subset of S<z,(A) (i.e., ~ ~ mod D<~,(A))]. 

1.2. CLAIM. 
(1) If W C_ S<~,(A) is stationary then it is semi-stationary. 
(2) Ifah c_ A _C B, and W _c S<~,(A) then: Wis semi-stationary in A iff Wis 

semi-stationary in B (so we can omit "in A'). 
(3) If Wt C_ W2 C_ S<g,(A), Wl semi-stationary, then W2 is semi-stationary. 
(4) If IAI--~t, A-- U,<~, a,, ai increasingly continuous in i, with ai 

countable, then W c_ S<~,(A) is semi-stationary iff Sw = 
{i: ( 3 b E  W)i c b c_ a~ } is stationary (as a subset of col). 
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(5) If pEP  is (b, P)-semi-generic, b O 0.) I ~. a C_ b then p is (a ,P)-semi-  
generic. 

(6) If Wc_ S<~,(2), # > , l ,  N < (H~u), E), WEN, and for some aEW,  
NAo91C_aC_N then W is semi-stationary [if not, some M =  
(2 . . . .  , F,  . . . .  ) exemplify W is not semi-stationary, so some such M 
belongs to N, hence N n ,t is a submodel of M, contradiction]. 

1.3. CLAIM. A forcing notion P is semi-proper iff 

We = {a ES<~,(P U e(o91 + 1)): for every p E P  n a there is q, 
such that p < q E P  and q is (a, P)-semi-generic} 

contains a club ofS<s,(P U e(Ogl + 1)) where h : P ---, (o91 + 1) is interpreted as 
a P-name .ah by: 

ot°[G] = Min{h(r): rEG}, 

a h[G ] is a°[G] i fa°[G]  < o l  and zero otherwise. 

1.4. CLAIM. The following are equivalent for a forcing notion P: 
(1) P is semi-proper. 
(2) P preserves semi-stationarity. 
(3) P preserves semi-stationarity of subsets of S<~,(2 tet). 

PROO~. (1)=*(2). Let o91 _ A, W C_ S<~,(A) be semi-stationary. Suppose 
p E P, p I F-e" W is not semi-stationary". So there are P- names of functions F,  
(n < o9) from A to A, 17 n-place, and p IF- " i f a  c_ A is countable closed under 
F,  (n <09) then -1(3 b)[a n wl ___ b c_ a ^ b E  W]". 

Let 2 be regular large enough. Let N < (H(2), E)  be countable, let A, 
(F, : n < co), p, P belong to N, and there is b E W such that N n o91 __. b __. N 
(which is possible as W is semi-stationary). Let q be (N, P)-semi-generic, 
p < q E P .  So q l~e"N[G] n o91 = N n oJl and N c_ N[G]" hence for the b 
above 

q I t---e "N[G] n o91 __. b ___ N[G]". 

Also q I ~j ."N[G] o A is closed under the F, ' s"  (as N[G] -~ (H(A)[G],E), see 
Notation (9) in §0), contradictory to the choice of the F, 's.  

(2)=, (3). Trivial. 
7(1)=*n(3). Let W = S<s,(P U P(o. )  I "3 I- 1)) - We (We from 1.3). As 7(1), 

We is stationary; for each a E W choose Pa E P n a which exemplifies a ~ Wp. 
By normality for some p(.)EP, WI={aEW:pa  = p ( . ) }  is stationary. 
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Hence W~ is semi-stationary. But easily p( . )  I F-- "W~ is not semi-stationary" so 
(3) fails. 

1.5. DEFINITION. 

(1) Rss(x, ).) (reflection for semi-stationarity) is the assertion that for every 
semi-stationary W C_ S<R,(2) there is A _C 2, o~ C_ A, IA I < x such that 
W O S<R,(A) is semi-stationary. 

(2) Rss(x) is Rss(x, 2) for every ). ~ x. 
(3) Rss+(x, 2) means that for every semi-proper P of cardinality < x, 

IF-e "Rss(x, ;t)". 
(4) Rss+(x) is Rss+(x, 2) for every 2 > x. 

1.6. CLAIM. 
(1) In Definition 1.5(1) we can replace 2 by B, when t B I = 2, col_ B. 
(2) If x < xl ___< ;h < 2 and Rss(x, 2) then Rss(x~, 20; and if x < ;h < 2, 

Rss+(x, 2) then Rss+(x, 20; lastly if Rss+(x,-,2) ( i < a )  then 

Rss+(supi<~ x~, 2). 
(3) If x is a compact cardinal then Rss(x). 
(4) If x is a compact cardinal then Rss+(x). 
(5) I f x  is measurable, W~ c_ S<~(A) and U g<~ w, is semi-stationary then 

for some a < x, Ui< ,  W~ is semi-stationary. 
(6) If x is a limit of compact cardinals, then Rss÷(x). 

PROOF. (1) Trivial. 
(2) Use 1.2(2). 
(3) Let x __ A, W C_ S<~,(A), W _C S<s,(A), W n S<~,(B) not semi-station- 

ary forB_CA, ]B[ < x .  
Define the set of sentences F: 

1--__ l"a u I ' b  ol"c 

where 

F a = {c~ 4:c2 : q,  c2 are distinct members of A }, 

F ~ = (R(co ,  C, . . . . .  c ,  . . . .  )~<~: c ~ A ,  ( c t : l < o ~ } E W } ,  
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f 
~[(V Xo, x ,  . . . .  , x .  . . . .  ).<~, 

if {x0, x, . . . .  } F,(n to) is closed under then 

7(  :1 y0, yl . . . .  )(R(Yo . . . . .  Y, . . . .  )A{XI:I <to, V Xl=i} 
i <to1 

Every subset of F of power < x  has a model (if it mentions only c ~ B ,  
I B I < x, then use a model witnessing "W A S<~,(B) is not semi-stationary"). 
A model M of F exemplifies W is not semi-stationary (in I MI hence in A by 
1.2(2)). 

(4) As forcing notions of cardinality < x preserve the compactness of x. 
(5) Let F", 1TM be as in the proof of 1.6(4), 

F, = (R(c0, c, . . . .  ): c, A, (c,: 1 < to}  W,}. 

Now F a U r v u LJi<~ F~ has no model, hence (using the Los theorem) for some 
a < x, F a U F c Ui<~ F/b has no model. 

(6) Easy. 

1.7. CLAIM. 
(1) If Rss(x, 2 let), p not semi-proper, then P destroys the semi-stationarity 

of some W___S<~,(A), IAI d r  [use (1)*~*(3) from 1.4, then 1.5(1), 
1.2(2)1. 

(2) If P destroys the semi-stationarity of W c S<~,(A), IAI = R ,, then P 
destroys the stationarity of Sw c_ to, [Sw defined in 1.2(4), which says 
that it is stationary in Vbut not in VP]. 

(3) If Rss(R2, 2 le~) and P does not destroy stationarity of subsets of to,, then 
P is semi-proper [by parts (1), (2) above]. 

(4) If W c_ S<~,(A) exemplifies the failure of Rss(R2, IA I), then there is a 
forcing notion P of power I A I ~o, not semi-proper but not destroying 
stationary subsets of R,. 

(5) Rss(R2) is equivalent to: every forcing notion preserving stationarity of 
subsets of to, is semi-proper. 

1.8. DF.FINITION. (P~, Q j: i <= a , j  < a )  is a semi-proper iteration if: 
(1) it is an RCS iteration [see [Sh 1, Ch. X, §1]; 
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(2) if i < j  =< a are non-limit, then I F~,, "P/P~ is semi-proper"; 
(3) for every i, I Fp,+, "(2~') v' is collapsed to R~" (we can use another variant 

instead). 

1.9. THEOREM. Suppose 2 is measurable, (P~, Q~ : i < 2) is a semi-proper 
iteration, IP;I < 2  for i <,;t, and { i < 2 :  Q~ semi-proper} belong to some 
normal ultrafilter D on 2. Then in V e`, Player H wins G m =  Gm({Rt}, to, R2) 
(see below). 

1.9A. REMARK as in [Sh 1, Ch. XII, Def. 1.1]. 
(1) The game last to moves; in the nth move Player I chosef~ : R2--" co~ and 

Player II chose ~,<COl. In the end Player II wins if A de=f 

{i < •2 : An Vmf.(i) < ¢,~} is unbounded in R 2. 

(2) We can modify the game by demand A ~ ~5 mod E for a filter E on CO2. 
We then denote the game by Gm({R~}, to, E). The result is true for 
E = D .  

(3) If  Player II wins Gm({Rt}, co, R2) , /~ :> 2 ~, N a countable elementary 
submodel of (H(2), E ,  <*), then for arbitrarily large i < o92, there is 
N'  < (H(2), E ,  <*), N'  countable, N _ N', i EN~ and N O co~ = N'  n 
o9~ (hence N <o~ N', see Basic Fact (10) in §0). 

If  Player II wins Gm({R~}, o9, E) (E a filter on o92) then the set of such i 
is ~ 5  m o d E .  

(4) Can we demand in (3) N'  O i = N O i? If  {5 < o92 : c f5  = Ro}EE the 
answer is No. If {5 < 0.) 2 : cft~ = R l}  ~ E  the answer is Yes if Player I is 
also allowed to choose regressive function F, : N 2 --~ R2, and Player II 
also ~' < o92, and in the end Player II wins if S = {g < R 2 • for n < to, 

5 > ~,, f,(g) < U m  ~m, F'(3) < U,,  ~ '}  * ~ mod E (or just S is non- 
empty). 

(5) If in the theorem I~-e "{3 < R 2 • c f ~  = R l}  ~ ~ mod D" then Player II 
wins also in this variant (from (4) above), hence we can demand in (3) 
that N' O i = N n i. 

(6) We can replace R~ by any regular O, N0< O < 2 ,  and use the game 
Gm((O},/t ,  E), E a normal filter on 2, (Pi, Qi : i < 2 ) is a ( <O)-revised 
support iteration, such that, i: in V~ in 15GU(p, Pa/P~, O), the second 
player has a winning strategy. 

PROOF Or 1.9. Let D be a normal ultrafilter on 2 (in V), A ~ D  a set of 
(strongly) inaccessible cardinals, such that: ( ~' r CA) [( V i < r )  I Pi [ < ~:) A Q~ 
is semi-proper]. 
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For each r EA, Px/P~ (in V e,) is a semi-proper forcing, hence in the following 
game, PG'°(p, PflP~, Ri) Player II has a winning strategy which we call 
F(PflP~)(E Ve.): [by [Sh 1], Ch. XII, 2.7(3), p. 403, Definition 2.4, p. 401] a 
play of the game lasts to-moves, in the n th move Player I chooses a P~/P~-name 
~. of a countable ordinal and Player II chooses a countable ordinal ~.. 

U P l a y e r l I w i n s a p l a y i f ( 3 q ) ( p ~ q C P f l P ~ ^ q I F - " A . [ ~ . <  m<o~m] ); 
without loss of generality the ~. are strictly increasing. 

Let us describe a winning strategy for Player II in Gm({R1}, col, R2) in V[Gd, 
G~ _ P~ generic over V. 

In the nth move Player I chooses f . :  ta2---tol, Player II, in addition to 
choosing ~. < oJi, chooses A., f . ,  a .  such that: 

(0) a . < o t . + l < A ;  in stage n Player II works in V[GJ, so D is still an 
ultrafilter; 

(1) A.CD,  A.+I CA.  CA (andA.CV) ;  
(v~ c.4.) (~. <6); 

(2) [ S-v "jr.: to2--* tol", 
(3) f.[Ga] = f.;  f ,  is the first such name; 
(4) t'or r CA,,  (fl(~:), ~.) : l _-< n is (a P~-name of) an initial segment of a 

play of PG°'( Z; v,, Pa/G,~, RI) in which Player II uses his winning strategy 
F(PflG,~) and some condition in G=. forces this. (Remember P~ ~ ~-c.c., 
so some p C G=. force this.) 

Why can Player II carry this strategy? Suppose he arrives at stage n and 
Player I has chosen f.  C V v,, jr. : 2 ~ to1. He chooses f .  E V, the first Pa-name f 
such that f.[Ga] = f.. Now for every r CA., working]n V[G,~] he continues the 
play (f~(~), ~o). l < n of PG°'(~ j,, PflG,~, R0, letting the first player play 
f.(r), and let ~o(~) be the choice of the second player according to the strategy 
"F(PflG,~). Really ~°(r) is a P~-name. Now for every p CP~ and ~CA.  there is 
q~ C P~ compatible with p and forcing a value to ~o (~:), hence for some ~ < to1, 

~ 0 A "+1CD, A.+I C A. and q, ( V r C A ;  +~) [q~ = q and q lt-p. ~ ( r )  = ~']. So - = p  - = p  _ _  ~ 

there are such q C Ga, and ~ (which we call ~o) and a set which we call A. + 1. It is 

easy to choose a..  
Still we should prove that this is a winning strategy. We shall consider one 

play and work in V, so everything is a P~-name (as we are using RCS, no 
problems arise). 

Now P~ satisfies the 2-c.c., so we have a bound a( . )  < ;t on the a.'s (forced by 
). Work in V[G~.)]. D is (essentially) an ultrafilter in V[G~.)]. Each A. has a 

P~-name so really there are < 2 candidates so we have Ao, c_ n . A . ,  Ao, c_ A., 
Ao, CD (really we can compute n A. in V[G~.~]). Now for r CAo,, ~ > a( . )  the 
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sequence (f~(x), ~t) : 1 < co is a play of PG ~'( ~ p, P,JPa, R ~) where Player II 
uses his winning strategy (this is a P~-name, but fortunately (~t : l  < co)~ 
V[G,~.)]). So there is q,~ EPa/P,~ a P~-name, so that 

q,ct[--ede, " A f t ( r ) <  U ~m" 
I ~ n 

(more exactly: 

q~ It-(e,~,.,y~ej~,.,~" A#(x)  < U ~ "  
I n 

q~ a P~/G,~,)-name of a PJP~-condition). 
We can consider q~ as a P~-condition with Dom q~ __ [x, 2), because we use 

RCS-iteration. Now easily (q~" r ~A,o ) ~  V[G~,)], 

II-p,/~..,"{x~A" q EG~} is unbounded in 2" 

as every rEPa/G~,) has domain bounded in 2, so q~, for x large enough, is 
possible, i.e., compatible with it. 

1.10. CLAIM. Suppose x is measurable, (~ a semi-proper iteraction, 
lg((~) = x, l e a  < x for i < x and {i: Qi semi-proper} belong to some normal 

ultrafilter on x. Then: 
(1) Rss+(x, 2) implies IF-p Rss(x, 2). 
(2) If Q is a P~-name of a semi-proper forcing notion, I F-p,+, "(PJPi + t * Q) 

is semi-proper for i < x" then I F-p. "Q is semi-proper". 
(3) We can replace measurability of x by: x strongly inaccessible 

IF-p, "Player II wins Gm({Rt}, col, R2)" and P~ satisfies the x-c.c. 

PROOF. (1) Let W be a P~-name, p~P~, plF-p ".W___S<~,(2) is semi- 
stationary". 

Let for i < x ,  W i = { a : a E V  P,, aES<~,(2),  and for some qEGp,, 
q ll'--e. "a ~ W"}. So .Wi is a P-name.  

Let p be regular and large enough, < *  a well ordering of H ~ ) v .  
Let p E G __C_ P~, G generic over V and G~ = G fl Pi for i < x. In V[G,~], as 

W[G~] is semi-stationary, there is a countable (N, G, n N) < 
(H(p) v, E, <*, GK), such that for some a E W[G~], N N cot _ a c_ N N 2, and 

p, W, 2, x, O belongs to N. 
So there are q E G~ and P~-names N, a such that q I I--e. "N, a are as above", 

and without loss of generality p -__< q. As N, a are countable subsets of H ~ ) v ,  2 
respectively and P~ -- I..l~<~ p~ satisfies the x-c.c. (by [Sh 1] 5.3 (3), p. 336), for 
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some i < x, N, a are P~ -names, and q EP~. Now by 1.9, in V e., for arbitrarily 
large 0 < x, N ~°l n to~ = N ¢3 o9~, and Qo is semi-proper, where we let: 

Nt01 def Skolem Hull (N O (0}) 

(in (H(/~)z,E, < * ,  G~) working in the universe V[G~]). 

Choose such a 0 > i. Now as 0 E N  t°], (N t°], Go) < (H(~) V, ~ ,  <~', Go). Clearly 
W.o[Go]EN t°l, a.[Go]E .W0[G0], tOl tq N 1°1 C_ a.[Go] c_ Nl01, hence by 1.2(6), 
V[Go] ~ "W.°[Go] is a semi-stationary subset of S<~,(2)". 

As Rss+(x, 2) dearly V[Go] ~ Rss(r, ;t), hence in V[Go] for some A c ;t, 
IA I < x ,  W. o[Go] t3 S<~,(A) is semi-stationary, deafly V[G,:]~"A E V[G~]" 
and as P, JPo is semi-proper (see the choice of 0) it preserves the semi- 
stationary of A, hence V[Go] ~ "A is semi-stationary". 

(2) Similar: suppose p I~e. "N < (HQ~) v, E, <*, G p,) and q E 0 tq N are 
counterexample to semi-properness of Q". 

Let G~ ___ P~be generic over V, p ~ G~.'Let 0 < r ,  0 > sup(N[G] n x) be such 
that N[G t°l N o9~ =N[G~] O oJ~ (and N is a P0-name). Now work in 

V[G,~ N Po+ i] and use I ~e,+, (P,,/Po+ 1) * Q is semi-proper. 
(3) In the proof of (2) we use this only. In the proof of (1) choose 0 a 

successor ordinal (so Q~ is semi-proper). It preserves the semi-stationarity of A, 
hence V[Go] ~ "A is semi-stationary". 

1.11. CLAIM. Suppose Rss(x, 2~), x regular and: x - -R2  or ( V / z < x )  
/ t s , < x ,  then for 2 > 2 ~ for every countable N < (H(2) ,E,  <~*) to which x 
belongs, for arbitrarily large i < x ,  letting N 1;1 = Skolem Hull (N U {i}), 
N < ~  N til (see below), N f3 r. ~ N" t3 x. 

1.12. REMARK. (1) The "x = R2"  ." can be omitted if we replace "for 
arbitrarily large i" by "for some i < x, i > sup(N O x) ' .  

(2) We can replace "x = R2, or ..." by " i fa  < x, then there is CES<aI(a  ) of 
power < x" (see the proof). It even sutfices to assume "for every stationary 
W c_ S<~,(a), (a < x) there is a semi-stationary W' _ W of cardinality < x ' .  

(3) If we want in the conclusion to get N <~ N t~j we have to replace in the 
definition of semi-stationary, "N~ O to~ = N2 N to2" by N~ <~ N2. 

PROOF. Let  

W = { INI: N < (H(x+) ,~ ,  <*+), Ncountable and 

for some iN < x for no i E [iN, x), N <~/~il}. 
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Assume W is a stationary subset of H(x÷). So, as Rss(x, 20  holds (and 
In(x+) l  = 2 0  there is A C_H(x+), ogiC_A, Ia l  < x  such that: WA= 
{a E W: a ___ A } is a semi-stationary subset of  A. Without loss of  generality 
(see 1.2(2)) 

M clef (A, ~ tA, <*÷ tA) < (n(x+), ~ ,  <*÷). 

As for N~ _ N2 countable elementary submodels of (H(x +), E,  < p ) ,  N~ E WA, 
N~ n tot -- N2 n to~ implies N2 ~ Wa, clearly WA is stationary. We know by 
assumption that for some closed unbounded C _ S<~,(A), C has cardinality 

< x .  So 

def sup{i~ ' lNI  E C  n W} < x .  

Now for some club C 1 ~ C, for every a ~ q ,  a tq : Skolem Hull of  a U {(}, 
satisfies a tq n A -- a, hence a <~ at¢], but some a ~ q n Wa, contradiction. 

So W is not stationary and let C* _ S<~,(H(x+)) be a club disjoint to W. 
Let 2 > 2 ~, so H(r+) ,  WEH(2),  and let x E N  < (H(2), E ,  <*)  be coun- 

table. So H ( x + ) ~ N h e n c e  W ~ N a n d  without loss of generality C* ~ N .  Hence 
N n H(K+)~C *, and for arbitrarily large i < x there is NI < (H(x+) ,E ,  <*÷), 
countable, i ENI,  N n H(x  +) < ~  NI. Let N / be the Skolem Hull of N U 
(Nt n x). We can easily check that N i n x : N~ n x, so N ~ is as required. 

1.13. DEFINITION. A forcing notion P satisfies the (S, S)- condition (S a set 
of regular cardinals, S __ to1 stationary) if there is a function F (domain 
implicitly defined in (c)) so that: 

Suppose 
(a) T is an S-tree, f :  T--- P, g :  T -*  tot. 
(b) v <~ ~/in T implies f(v) < f(ri) in P, and g(v) < g(rl) ( < toO. 
(c) There are fronts J ,  (n < to) of  T such that every member  of J .+l  has a 

proper initial segment from J.  and t/EJn implies (~/is splitting node of Tand)  

(Sucr(tl),((f(v),g(v)) : v ~sucr(r /)))  = F(r/, w[r/], (( f(v) ,g(v))  :v <~l)) 

where w[t/] = {k: ~ / l k E  Ut<,o Ji}. 
Then for every T', T <* T' there is p ~ P such that p I F-e "there is ~/~ lim T' 
such that if sup{g(~/I k) : k < to} ~ S  then { f ( t / I  k) : k < to} c_C_ .Ge". 

1.14. NOTATION. We say "P is (*, S)-complete" if f satisfies the ({R : 
regular > R t}, S)- condition. 
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1.15. THEOREM. The natural generalization of  the theorems from [Sh 1, ch. 
X1] (and Gitik-Shelah [GSh]) holds for the (S, S)-condition. 

1.16. REMARK. We use 1.13, 1.14, 1.15 only in 2.16; we can alternatively 
use pseudo-(S, S)-completeness (see [Sh 1, X]) but use Nm(D), or use 2.16 
A(3). 

§2 

2.1. DEFINITION. We say Q=(P~,Qj ,  tj:i<-_a, j < a )  is S-suitable 
(S ___ tot stationary) if: 

(A) it is an RCS iteration; 
(B) we denote I I,.Jj<iej+ll = xi = x~ so ~ =  1, xi increasing continuous. 

We demand that x~ is strictly increasing; 
(C) for i successor x~ is strongly inaccessible; 
(D) for i < j  < a non-limit, P/P~ is semi-proper; 

(E) Q~ satisfies the x~+t-c.c., R2 v'+' = Xi+l; 
(F) ift~ = 1, i < j  <-_ a , j  successor, then Se, r S , ~ e ,  [ S. 

We may allow L to be defined. We may but do not use tp which are names. 

N O T A T I O N .  Ct 0 ----- or, e~  = Pi, Qjatj a = tj. 

2.2. CLAIM. 
(1) Suppose Q = ( P~, Q j, tj : i < a, j < a) is a semi-proper iteration (see 1.8 

for definition). Then: 
(a) If  i < a is non-limit or Q~ is semi-proper or Q~ preserve stationarity of  

subsets of tot from Ve,'then every stationary subset of co~ in V e, is 
stationary in V e- too (i.e., ~[P~] is a subalgebra of  $[P~]). 

(b) 
(c) If  a is strongly inaccessible ( > co), and I Pil < a for i < a, then P~ 

satisfies the a-c.c, and so 

~(toO V''= [.J ~(co0 Vr', Ve-~"2 ~ = R2". 
i<gt  

(d) If cot - Sis  stationary, each Q~ is (cot - S)-complete [Sh 1, oh. V], then so 
is P~, hence forcing by Pa does not add co-sequences of ordinals (hence 
V r. ~ CH). 

(e) If  (_)ENt ~ N2 < (H(2), E),  N 2 countable, Nl <~N2, a inaccessible, 
- >  I e, I for i < a  and q is (Nt, P~)-semi-generic, then q is 
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(N2, Pi)-semi-generic where i = Min(a ¢q N2 - N~) is strongly inaccess- 
ible. 

(2) Any S-suitable iteration Q is a semi-proper iteration and 
[t~ = 1 =* ~[P~] I S ,~ ~8[Pj] l S] when: j > i, i successor, j successor or strongly 

inaccessible. 
(3) If  (in (1)) x < a is strongly inaccessible, l e v i <  x for i < x, and 

IF--e, "Rss(R2)" then Q~ (and P/P~ when x < j  < a) are semi-proper. 

PROOF. Left tO the reader. For instance: 
(1)(c) I f / ~  N2 is a maximal antichain ofP~, then by [Sh 1] X 5.3(3) for some 

j < i, I __. Pj, hence there is such j  in N2, hence j  ~N~ and also the rest is easy. 
(3) By 1.7(3) it is enough to prove that forcing with Q~ does not destroy the 

stationarity of  any A c_ col, A ~ V e,. However, by 2.2(1)(c) (and 2.2(2)) for 
s o m e / / <  a,A EVe,.  CleaflyA E Ve, and is a stationary subset of cot in Ves+,. As 
P~ + ~/Pp +1 is semi-proper, A is stationary also in (VPP+') e'~+'le'+l = V P~+, ~- (VP,  c)q ,~ 

as required. 

2.2A. REMARK. So if x is strongly inaccessible, and I P~ I < x for i < x, 
then ifA is a stationary subset of  COl in V e. then A is a stationary subset ofco~ in 
V e. for every large enough a < x. 

2.3. CLAIM. 
limit 

(l) 
(2) 

(3) 

(4) 

Suppose Q = (Pj, Qi :J <= a, i < a )  is an RCS iteraction, a a 

ordinal. 
If  Q r/ / is  S-suitable f o r / / <  a, then Q is s- suitable. 
If f o r / / <  a, Q I / / i s  a semi-proper iteration, then Q is a semi-proper 
iteration. 
In (2) if i < a ,  M a Pi -name then: Ik-e " M < ~  a" if and only if 
o~ = sup{j <o~ :lF-ej+l , ,~<~ej+~,}  if and only if for arbitrarily large 
j < a  i~-ej+l "M,~BeJ +l r~e, ". 
In (2) i f a  > I Pi I for i < a, and a is strongly inaccessible, then ~ a  = ~e .  

PROOF. 
(1) For (D) use the semi-proper iteration lemma. The others are obvious 

too. 
(2), (3), (4) Easy, too. 

2.4. DEFINITION. Let ~[ = (92¢: ~ < ~ )  be a sequence of  subalgebras of 
~( = ~v), S C_ col stationary. 

(1) Sm(~, S) = {A _C S: for some ~ < ~, {x ~ 9/¢ : 92~ ~ x ~ 0, x N A = 
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(2) 

modDo,,} is predense in PI¢} (we should have written x/D,o,~9@ 
x C O)l}. 

We define the sealing forcing Seal (~, S) = {e : e a partial function from 
Sm(~l, S), with countable domain, and for A E Sm(~, S), ifA = N then 
G is a function from some u < o9~ to 2 ~,, and if A ~ ~ then dA is a 
continuously inceasing function from some countable 7 + 1 to o)t - A }, 
the ordering is defined by: 

~ ' < d  2 iJ2 A E D o m C '  i m p l i e s A E D o m ~ 2 a n d t ~  __.eJ. 

(3) I f ~  = (~)  we write in (1), (2) above ~ instead of~ .  
(4) We define, for x strongly inaccessible ( > R0), the strong sealing forcing 

SSeal(~I, S, x) as P~, where ( Pi, Qj" i < x, j < x) is an RCS iteration, 
with Qj = Seal(~I, S)e,, 

(5) For I c ~v let seal(I) = {(ai: i < a) :ai~S<~,(H((2~,)+)), ai (i < a) is 
increasing continuous and a~ N o9, is an ordinal which belongs to 
I,.J aetna, A } and is order by the inverse of being an initial segment. 

(6) We call I ___ ~v semi-proper i f  seal(I) is a semi-proper forcing notion. 
(7) WSeaI(S) is the product, with countable support, of seal(l), I semi- 

proper, O~l - S E I. 
(8) We define, for x not strongly inaccessible, but 
(,) (V/t < x)[#~0< x], x = cfx,  xl~d = xfor  ~ < ~ ,  and ~ -<_ x, x > Rl 

the strong sealing forcing SSeal(~/, S, x) as P~ where (P~, Q j" i < x j  < x) is an 
RCS iteration; Qj = seal(/~, S) v'~, L is a maximal antichain of 9~w) for some 
(U) < ~ (in Vr) and every maximal antichain / of some ~¢ from V e. is 6 for 
some j < to. 

We call x ~-inaccessible if it satisfies (,) above, and call it R0-inaccessible if 
(V/t < x)(p~0< x = cfx). 

(9) If I _ {I: I c_ ~} then seal(I) is the product, with countable support of 
seal(l) for I E I. 

2.5. REMARKS. 
(1) We could have used CS iteration for SSeal. 
(2) If every maximal antichain o f ~  v is semi-proper, the difference between 

WSeal(S) • Levy(R, 2~,) and Seal(~ v, S) (defined in 2.4 (7), (2), respec- 
tively) is nominal. 

(3) If 92¢ t s a r 8  v FS/br ~ < ~ ,  then Seal(~, S) is equivalent to the Levy 
collapse of 2 ~, to R, by countable conditions. 
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2.6. 

inaccessible. We omit S when S = to~. We write 9~ instead of (9~). 
NOTATION. We omit x in SSeal(~, S, x) when it is the first strongly 

2.7. CLAIM. If in V, 

9Jr= (9~: ~ < ~t) for l = 1, 2 and 

(v  ¢'t < 3 q < 

Sm(~l t, S) = Sm(~ 2, S), and then Seal(~ t, S, x) = Seal(~F, S, x), 
SSeal(~ t, S, x) = SSeal(~ 2, S, x). 

PROOF. Easy. 

.(4) 
(5) 

2.8. CLAIM. 

(1) Let I __ ~ v be predense. Then I is semi-proper i f f  for 2 regular large 
enough, N < (H(2), E)  countable I E N ,  there is N ' , N  < N ' <  

(H(2), E), N'  countable, N n tot = N'  n to te  UA~nN, A. 
(2) I)-~a](1) "I --- ~[seal(I)] is predense". 
(3) WSeaI(S) is semi-proper and I}--ws~alCS)"iflE V is semi-proper in ~v, 

(tot - S)  E I, then I is predense in ~[WSeal(S)]". 
seal(l) is A-complete for A E l ;  so WSeal(S) is (COl - S)-complete. 
I f / i s  predense in ~ ( O ,  then seal(l) preserves stationarity of subsets of 

tol. 

(6) Seal(~¢, S) is (tot - S)-complete; S Seal(~¢, S, x) is (to~ - S)-complete 
and if x > R0 is ~¢-inaccessible it satisfies the x-c.c. 

PROOF. Check. 

2.9. CLAIM. Suppose seal(I) is semi-proper for every maximal antichain of 
~v to which to~ - S belongs, and x > R0 is ~V-inaccessible. 

Then P dej SSeal(~V, S, x) is semi-proper and (tot - S)-complete. 

PROOF. The (tot - S)-completeness is trivial by the definition of P and 
[Sh l, Ch. V, Def. 1.1, p. 154]. 

Now let 2 be regular and large enough, and N < (H(2), E ) countable, P E N, 
p E P  n N. Applying repeatedly 2.8(1), there is N', N < N '  < (H(2), E),  N n 

tot = N'  n tot, N '  countable, and for every maximal antichain I ___ ~ (or just 
predense I C_ ~ v): 
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I E N ' ,  N O t o ~ E S = = , N n t o ~ f N ' O t o t E  U A. 
A~.I AN" 

Then we proceed as in the proof of 2.10 below (using N' instead of N and the 
choice of N'  instead of (**)), i.e., using 2.10A. 

2.10. CLAIM. If ~I = (9./~ : ( < ~), 9./¢ , ~ v  for ( < ~, each t/c satisfies the 
N2-C.C. (or just has power < Ni) and x > N0 is strongly inaccessible, then 

(1) P~ d,f SSeal(~, S, x) is proper; 

(2) I l-J,, " ~  r S ,~ ~P, I S for ( < ~"; 
(3) in fact, P~ is (to~ - S)- complete and strongly proper satisfying the x-c.c.; 
(4) if to~ - S is stationary, P~ does not add to-sequences of ordinals. 

Proving 2.10(1), we really prove the following, which in fact is used several 
times (the only difference is that (**) becomes an assumption). 

2.10A. CLAIM. Suppose ~ = (92~: ( < ~), x > N0 is strongly inaccessible, 
~I, x E N < (H(2), E), N countable, P = SSeal(~I, S, x) and 

i f l E N i s  a predense subset of 9~¢, to~ - S E l ,  then N n to~ E UAetntcA. 

Then for every p E P  n N there is q EP,  (N, P)-generic, p _< q. 

PROOF. (1) Let 2 be regular large enough and N < (H(2), E)  countable, 
Q E N  (hence P~EN) and p EP~ N N. We have to find q, p < qEP ,  which is 
(N, P)-generic. Now 

(.) if ~, / E N are P- names, I l-e "./a predense subset of 9~", p E N n P, then 
for some 17 2, p =<_ p2 E N O P, 17 21 ~-- "for some A E / n N N ~¢ (so P forces that 
d E V), N A to~EA". 

PROOF or  (.). We can find pO, p < pOEN n P, and (, p ° l t - " (  = ("  (so 
necessarily ( E  N). Next define 

J = {A E92~ : for some p~, p < p~ EP ,  P~I l- "A E/"} .  

Clearly J E N ,  J E  V, and J is a predense subset of 9~¢, ( EN.  We now have: 
(**) if ( E  N n ~, J c_ ~ is predense, (J E V)J E N then for some A E J n N, 

N O to~ ~A.  

[PRooF OF (**). As II II =< N,, or clearly without loss of 
generality IJI < R~, so let J = {A~: i < co~} (as J ÷ ~ this is possible). Since 
9~¢ , ~ v ,  clearly J is predense in ~v, hence we know {~: c~E U~<~A~}EDo,, 
(otherwise the complement contradicts the predensity), so there is a closed 
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unbounded C __. ¢o~, C __ {J : 6 ~ Ui<6 Ai }. As J ~ N without loss of generality 

(A~:i <tol)EN and without loss of generality C~N. As N < (H(A), E) 

clearly C n Nis unbounded in N n co~, hence N n to~ -- sup(C n N n ¢o~)E C, 

so Nnto~E U{A~:iENntol}, so for some j~N n to~, NAto~EAj. But 
(A,: i < to~) EN so Aj EN, as required.] 

CONTINUATION OF PROOF OF (*). By (**) there is A ~J n N, N n to~ CA. 

By the definition of J there is p2, p0 __< p~ E P, p21 I-- ",4 E [". As p0, A, / are all in 
N, we can choose such p2 in N, thus finishing the proof of (.). 

Now we prove 2.10(I). Wc define p, for n < co such that: 

(a) Po-- P, Pn+l ~ pn, 
(b) p. n N; 
(c) for every dense subset J of P~ which belongs to N for some n, p, + ~ E J; 
(d) ifj EIc n Nand !, { are Pj-names from N, I F-p~ "{ < ~, ! - ~ predense" 

then for some n < to and B E ~  v n N, 

P,+l I j l t -p ,"BE[,  N n tolEB". 

This clearly suffices, as (using the notation of Definition 2.4(4)): ( U ,  <o, P,)(]) 
is in Qjby (d), and U.<~ p. is (N, P)-generic by (c). So we can assign the tasks, 
and for satisfying (b) and (c) there is no problem. For (d) use (.). 

(2) If A ~ ~(toz)v,. then as P~ satisfies the ~c-c.c. (see 2.2(1)(c)) for some 
a < x ,  A ~ ~(co~) v'. and so by the definition of Seal(~I, S, to), if A/Do,, is 
disjoint to a dense subset of x ~ ~c, A c_ S, ( < ~ then we "shoot" a club 
through its completion in the (fl + 1)-th iterand in the iteration defining 
SSeal(~[, S, ~c) for fl ~ (a, ic) large enough. Why? As V P, ~ I ~c I --< R ~ (or P~ 
collapse 2 ~,) there is fl, a < f l  <~c such that for every x ~ ,  i f x  AA is not 
stationary in V ~,, then it is not stationary in VP~. 

(3), (4) Easy. 

2.11. CLAIM. Suppose Q = ( P ~ , Q j ,  t y : i < a + l , j < a + l )  is an RCS 
iteration, Q I a is S- suitable, ~c > I P, I strongly inaccessible. 

(1) Ift~ = 0, Q~ = SSeal((~[P~]:j < a ,  tj = 1), S, to) then 0 is S-suitable. 
(2) If ~I ='(~[c : ~ < ~), a limit and for every ~ < 

II-e. "{i < a  : ~Ic ~ S < ~[P~] IS} is unbounded below a", t, = 0, Q, -- 
SSeal(~, S, ~c) then O. is S-suitable. 

PROOV. (1) For a non-limit this holds by Claim 2.10(1) for Definition 
2.1 (D) and 2.10(2) for Definition 2.1 (F) (the other parts of Definition 2.1 hold 
trivially). I fa  is limit, the proof is similar, using 2.13; see proof of 2.11(2). 
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(2) By 2.13(1) below it suffices to show: if ./is a P~-name of a maximal 
antichain of ~I~ ( (  < ~) then / ~ I (I of 2.13(1)). For this we apply 2.12: (a) is the 
desired conclusion so it suffices to verify (b). W.l.o.g. ~I~ _ ~5~. Now (b) is 
proved (with N ~ = N) as in the proof of (**) in 2.10(1). 

2.12. CLAIM. Let Q = ( P~, Qj, tj" i =< x, j < a) be a semi-proper iteration, 
a limit. 

Suppose I t-e. "!  - ~o is predense"; the following are equivalent: 
(a) (P~/P~) • seal(./) is semi-proper (in Ve,) for non-limit i < a, 
(b) If2 is regular large enough, Q E N  < (H(2),E, <~'), N countable, . /EN, 

p E N  N P~, i E N  t~ a, i non-limit, q EP~ is (N, Pi)- semi-generic, p t i _-< 
q then there are N t, p,, q,, A a n d j  such that: 

(i) N < N' < (H(~),~), 

(ii) N t is countable, N' M tot = N M tot, 

(iii) p < pl E N  t fl P, 
(iv) i < j  < a, j non-limit, 
(v) j E N  t, 

(vi) q _-< ql EPj, 
(vii) qt is (N I, Pj)-semi-generic, 
(viii) 'p' [j < q', 
(ix) A is a Pj-name, 
(x) qll~- "A ~. /and N t M tol ~A".  

PROOF. Easy. 

2.13. CLAIM. Let Q = (Pi, Qj : j  _-< a, i < a )  be a semi-proper iteraction 
and a is a limit ordinal. 

(1) If I =  { / E V V . : /  a maximal antichain of ~B a, and for every i < a ,  
(P~/P~ + t) * seal(/) is semi-proper} then (P~/Pi + ,) * seal(I) is semi-proper 
for every i < a. 

(2) If ( .)(PJP~+,).seal(l) is semi-proper for every i < a  and maximal 
antichain antichain [ of ~a (from V v-) to which to, - S belongs, 
then (PJP~+,) .SeaI (~Q,S)  is semi-proper for every i < a ,  as is 
(P~/P~ + t) • SSeal(~ Q, S, x) for x > I P~ I strongly inaccessible. 

(3) The hypothesis (,) of (2) holds if for arbitrarily large i < a: 

Qi is semi-proper and It-p, "Rss(•2)". 

PROOF. (1) Use Claim 2.12. 
(2) Use 2.13(1), and for the SSeal case, also 2.10A. 
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(3) By 1.7(5) Rss(R2) implies that semi-properness and not preserving 
stationarity of subsets of cot are equivalent. Suppose i < o~, Q~ is semi-proper 
and I~-e, "Rss(R2)". As (by 2.8(5)) seal(l) (I _ ~a a maximal antichain) do not 
destroy stationarity of subsets of co~ from V ~, (and this property is preserved by 
composition (though not by iteration)) and P~/P~ = Qi *(PJP,-+t) is semi- 
proper, we get that (P~/P~) • seal(l) is semi-proper (in V e, of course). This holds 
for arbitrarily large i < a, hence (by the composition of semi-properness) for 
every non-limit i which is the assumption of (2). 

2.14. CLAIM. Suppose Q = ( Pi, Qj" i -_< x, j < x) is semi-proper, x 
strongly inaccessible and x > I P, I for i < x, S _c col stationary. 

If 
(,) (a) for i < x ,  in V e,, Player II wins Gm({Rl}, co, D~ +E~ ÷) where 

E~ + = {5 < x : t~ > i, 8 strongly inaccessible and I }-e,~e, "Q6 is semi- 
proper"}, see 1.9A(2). 

(b) E* = {i < x:l}-e, "Rss(R2), Q~ semi-proper"} is unbounded, 

then Ri+t d~M (PJPi+O , N m '  • SSeal(~iP~], S) is semi-proper for every i < x. 

2.14A. REMARK. (1) Nm' = { T: T _c ,o > R2 is closed under initial seg- 

ments, is non-empty, and for every ~/E T I {v : r /<  v E T} I = R2}. 
(2) We can use Nm'(D) instead of Nm'  and even Nm, Nm(D). 
(3) We can replace Nm' by any forcing notion satisfying, e.g., the I- 

condition or is S-complete (see [Sh 1, X, XI]) where I ~  V is a family of 
x-complete normal ideals. 

(4) Instead of (,)(b) we can have "largeness" demands on x. We need it to 
make (P~/Pj) • seal(l) semi-proper for j eEi÷ , / a maximal antichain of ~* 
from Ve,. 

PROOF. We work in Ve,,,. Let 2 be regular and large enough, N < 
(H(2), ~ ,  <*)  countable, i ~ N ,  x E N ,  Q ~ N  and (pa, pb, POeRi+I  f~ N. 

We now define by induction on n, T,, N~, q~ (r/~ T,), such that: 
(A) T, _ "x. 

(a) To = {( )}. 
(C) (VveT.+,)[v tneT.]. 
(D) (V r/E T,)[{i : r/^ (i) E T,+ I} has power x]. 
(E) N < ~  N< >; p~ _-< q~ ~. 
(F) For ~/~ T,+l the model N, < (H(2) ,~ ,  <~) is countable, extend N,~., 

and N, N col -- N tq col; moreover N,t ,  <~N, .  
(G)  eg,. 
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(H) q, ~ P~/P~ + ~ is (N~. PJP~ + ~)-semi-generic. 
(I) For v/~ Tn + ~. q, I Min(N, N x - N. t~) = q, ~. 
(J) If , / is a P../ Pi + ~- name of a dense subset of $( P~). , /~ N,. ~i ~ T~. then for 

some natural number k = k(,/. ~/) for every v: if ~l ~ "  v ~ T~+k then: 

q~lk- ( ] A  ~N,)[A ~ !  ^A a PJP~_rname AN N o)~A] .  

(K) E ° has cardinality ~:, where 

E ° ~ {j < ~: N~ <~ N,j  where N,j  is the Skolem Hull ofN,  U {j} in 
(H().) ,~,  <~') and j = Min(N~j f1 ~¢ - N,) and j is strongly 
inaccessible and (Yi  <J)[Ie~l < J ]  and It-e/e,"Q~ is semi- 
proper"}. 

Now in carrying out the definition, (J) involves standard bookkeeping. 
For n = 0 our main problem is satisfying (K). Fo r j  < r let N/be the Skolem 

Hull of N in (H(/~), ~ ,  <*). By ( , ) ( a )  

E ~ = {j < ~: N <o~ N/, c f j  > Ro, l I-e/e, "Q~ is semi-proper"} 

is a stationary subset of ~¢. So by the Fodor lemma [as O ~ E  ~ =~ c f J  > R0, and 
# < K =*/zao < ~] for some stationary E 2 _ E ~, (N~ : j  E E  2) form a A-system, 
and let fl { N j : j ~ E  2} be called N< ~. So N< ) < (H(A),~, <~'), and let q< >~ 
PJPi + l be (N< ), PJPi + ~)-semigeneric, p~ < q< ). 

For n > 0 assume N~, q~ are defined. By (K), E ° has power ~¢, where for j  E E ° 
Min(t¢ M N , j  - N , ) ~ E i  + . IE°l = ~ and we let 

T~)+I C[ {v:t/<IV ~(n+')!¢} = {tl^(j)  : jEE°} .  

So T~)+t is really constructed as required. 
For y E E  ° let N~,y be the Skolem Hull (in (H(A),E, <~)) of N~ U {y}. By 

2.2(1)(e) q~ is (N~,~, Py)-semi-generic and y = Min(~: N N~,y- N~). Let our 
bookkeeping give us ./6 EN~(EN~,~), a P~-name of a predcnse subset of ~[P~]. 
Let i(0) ( ~:. We can find y* ~E* ,  y < y *  <~:, so 

I}-P,. "Rss(R~"), Q~. semi-proper". 

Now (PJP~.). seal(/) does not destroy stationary subsets ~o~ (as PJP~. is 
semi-proper, / predense hence seal(,/) preserves stationary subsets of oJ~) 
because ? * E E *  is semi-proper. As y E E °, P~./P~ is semi-proper. Hence 
(PJPy) • seal(,/) is semi-proper. Now by 2.12 applied in Ve,, there is a model 
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' ' , <r  N~.y and q~.r N¢.r, N,.r ~ (H(2),  E < * )  countable, N,.r " ' ' EP~ and j~.r < x,  

successor such that: 

q;,,EPj,,, ~ <A, ,EN;, , ,  

q;,, [ Min(N~,, f~ x - N,) -- q;,r [ Min(Nn,, N x - N~) -~ q¢, 

q;a is (N~, r, Pj,.,)-semi-generic, and 

q~.r I ~-e,,, "for some A E N;,r., 4 E1 and N M co~ E A ' .  

As in the case n = 0, there is N,^(r ~ such that (for i EE~°^(r>) N;. r <y N¢^(r ) 
(H(~),E,  <*), and N,^(r > satisfies condition (K); now we can define q,^(,> as 

required. 
Let G c_ P~ be generic over V, q( ) E G. Let T~' ~ { ~/E T. : q~ E G }. We work 

in V[G]. We now define by induction on n, for every r/E T~', a condition p~ 

such that: 
(a) p~EN,[GI. 
(b) p~ E Nm', and p~ O (~t')x) is a singleton. 
(c) P~lt < P~; and ifP~tt has a stem of length m, Ig(r/) < m, then p~ = P~tt. 
(d) If r/E T~', a is a Nm'-name of a countable ordinal, aEN~[G], then for 

some k = k~(a, q), for every v E T~+k, 

[r I <~'v~pv Ik-Nm' a < N  N col']. 

(e) If r/E T',  -/is a Nm'-name o fa  predense subset of~8(P~), -~ENd[G] then 
for some k = k t ( l ,  rl), for every pET's+k, rl<l'p, for some m =  
k2(-/, rl,p), for every v ~  T'~+k +m, 

[p <I, v ~ p~ I WNm, "for some A ENv[G], A E l ,  N f3 ~ol EA "1. 

(f) Ifp~ has a stem of length lg(q), call it v,, let hn be a one-to-one function 
from xonto  {j < x'. v~ ( j )  E p~}, h, EN,[G] and then 

(Vp E p~-(i>)[lg(p) > lg(~/)=,p(lg(q)) = h,(i)] for r/^ (i)  E U .  T~'. 

There is no problem to do this. [For (d), when we come to deal wi th/(say atp), 
we let 

I' = {A " ( 3 p)(p~ < p E N m ' ^  P II-N., "A E-/")}, 

so I'ENp[G] is a predense subset of ~(P~), and by (J) we can define m = 
k(-/', p), let p~ = pff if v <~p E T(~), lg(p) < lg(v) + m.] 
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Now let (in VP.) 
qb = {p E °'>x" p E pb, and for some r/E U ,  T' ,  p belongs to the stem ofp  b }. 

Let qa = qt ~ and assume qa E G ___ P~, G generic over V. 
We can easily see that qa _-< qb ENm' .  Also (in V[G]) qb is (N[G], Nm')-semi- 

genetic and 
qblk-Nm,"N[Gl[qNm,] ~_ U N, rt[G]", 

I < t o  

where qNm' is the (canonical name of the) generic subset of Nm', and q is the 
to-sequence in °'r which it defines naturally. [Remember that if 
N~, N2 < (H(2),E),  N~ n to~ = N2 n to1, and i EN~ n N2, i < R2, then Nt n i = 
N2 n i.] Now clearly by the above and (e) 

qO I k-Nm' "for every predense subset I of ~[P~] in N[G][ ,GNm,], 
N n tote  UAe, (A :A E1 n N[G][qNm,]}'. 

So we can apply the proof of Claim 2.10(1) (i.e., 2.10A) to get qC, which is 
(N[G][GNm,], SSeal(~[P~], S))-semi-generic. Now (qa, qe, qC) is as required 
(i.e., (R~+ t, N)-semi-generic). 

2.15. CLAIM. Suppose Q = (P~, Qi" i -<_ x, j < ~:) is a semi-proper ite- 
ration, x > ]P~ I for i < x, S __ tot is stationary: If 

(.) (a) for i < r ,  in v r,, Player II wins Gm({Rt}, to, Dr + E~ +) where 
E~ + = {~ < x : ~ > i, ~ strongly inaccessible [k-J.~e, "Q6 is 
semi-proper"}. 

(b) E = {i < x :1 k-e, "Rss(R2) and Q,-semi-proper"} is unbounded and 
in Ve., 

(c) W _c {~ < x :  V e. ¢cfO = R0} is stationary ( W a  P~-name), 
then (PJP~+O . c lub(W),SSeal(~(P~) ,S)  is semi-proper for i < x  where 
club(W) = {fl for some non-limit ~ < tot, f i s  an increasing continuous func- 
tion from 7 into W}. 

PROOF. Like the previous claim, only after defining N,, q,, for a set G C_ P~ 
genetic over V, q~ )EG,  in V[G] there is r/E°'x, A.(q [ n E T , )  such that 
q(l) > sup(N~rt n x) and sup{r/(/) : l < to} belong to to, then in V[G] continue 
with Ui N, r/[G]. 

2.15A. REMARK. Really 2.15 is just a case of 2.14(A)(3). 

2.16. THEOREM. Suppose {# < x:/z supercompact } is unbounded below x 
and x is 2-Mahlo. 

Let S c_ to~ be stationary, then for some semi-proper (., (to~ - S))-complete 
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forcing notion P (see 1.4), satisfying the x-c.c., t F--e "~[PK] t S has a dense subset 
which is (up to isomorphism) Levy(l~0, < R2)". 

2.16A. R~MAaK. (1) SO really (see introduction) from one supercompact x 
we get, e.g., P such that: I F-e "ZFC + ~ f St has a dense subset isomorphic to 
Levy(b~o, < b~2) -b MA,o, (o9~ - $1 U S2)-complete semi-proper)" (Sj ___ o9~ sta- 
tionary). 

For this use 2.18A(3). 
We should, while defining the iteration Q, ensure that: if over V e- we force 

by club~(w*), the relevant variant of MA still holds. Really we can ensure 
something like Laver's indestructibility of supercompactness holds. 

(2) An alternative way to iterate is to let x be limit of supercompacts, and: 
if [P~ [ < 2 for i < 2, ;t < x, 2 supercompact or limit of supercompacts, 

ensure in the iteration that 

~BO. ti < ~B[Pj] when i < j  < x. 

In this way we get rid of (., S)- completeness. 

PaOOF. We define by induction in i, Pi, Qi, t~ such that 
(A) 0_: = (P,, Q j, tj" i < a , j  < a )  is S-suitable; 
(B) there is no strongly inaccessible Mahlo 2, i < 2 =_< I P, I; 
(C) if i is a singular ordinal or ( 3 j < i ) [ I P j l  > i ]  then ti is 0, Qi = 

SSeal((~[Pj] : j  < i, tj = 1), S); 
(D) if i is supSrcompact, ti = 1, Q~ = SSeal0B[P,], S); 
(E) if (Vj  < i)[Iej I < i], i limit of supercompacts and i is inaccessible but 

not Mahlo, we let t~ = 1, Q~ = Nm'  • SSeal(~[Pd); 
(F) if (Vj  < i)[IPj I < i], i Mahlo and limit of supercompacts then 

Wi = {~ < i : ~ = cf ~ limit of  supercompacts and ( Vj  < t~)[ I Pj I < ~] } 

is a stationary subset of i, and we let: 

t~ = 1, Q~ = club( IV,.). SSeal(~[Pd). 

Why is O S-suitable? 
Note that the use of SSeal guarantees (F) of  Definition 2.1, as well as (E) (see 

2.10(3), 2.10(2)). So it suffices to show by induction on i that Q I i is a 

semi-proper iteration. 
We shall show below that every Qi is smi-proper (the only problematic cases 

are i inaccessible limit of supercompacts, but then Rss+(i) (by 1.6(2), 1.6(4)), 
so in V e,, every forcing notion not destroying stationary sets is semi-proper). 

Sh:253



370 S. SHELAH Isr. J. Math. 

For i = 0: trivially. 
For i limit: by Claim 2.3(2). 
For i + 1, apply (C) to i: by Claim 2.11. 
For i + l, apply (D) to i: by Claim 2.9, 2.2(3), 1.6(4), SSeal(~[P,], S) is 

semi-proper in Ve.. 

For i + l, apply (E) to i: by 2.14 (.)(a) holds as Ej + = r ,  and as said above, 
Rss+(i) (see 1.11). 

For i + l, apply (F) to i: by Claim 2.15 (and remember (5) of the Notation). 
Also each Qi is (., (tom - S))- complete, hence P, is (., (tol - S))- complete so 

when S is costationary 

I~P, "2 ~° = Rl, 2 ~' = R2". 

Let $~ = ~[Pd, so t~ = 1 = * ~  t S <~[P~] IS.  Let w* = 
{ i < r : $ ~  I S ~ $ [ P ~ ]  IS}. So in V~, (as case F occurs stationarily often): 
{t~Ew*: cft~ = R~, w* contains a club of t~} is stationary. Hence it is well- 
known that in lie,, club~(w*) = (h" h an increasing continuous function from 

some a + 1 < ~ to w*} does not add bounded subsets to K ( -- R2). So forcing 
will give us a universe as required. 

2.17. CLAIM. Suppose 6 = (P~, Qj" i _-< a, j < a) is a semi-proper itera- 
t i o n , / ~ < a  ( ~ - - 0  is alright), a n d  il---p "Rss(~2[V~])"  (e.g., i f #  is super- 
compact,  [i <gffi* IP, I < # ]  note that JJ--p "/~ = R 2" if { r < / ~ :  Q~ semi- 
proper} belong to some normal ultrafilter on g). 

Let 4 be a P~-name of  a subset of  S and B a P~-name of a member  of ~[P~] 
such that: 

I I-~o (V x ~ ~[Pu])[0 < x _-< B -~ x n A ~ 0 (in ~[P~])]. 

Then 
(.) if). is regular and large enough, N < (H().) ,~,  <~) is countable, and 6 ,  

)., P, 4 ,  B and g belong to N, p E P a n  N and q E P~ is (N, P~)-generic, p [/z _-< q 
and ql~-e"Nnto~EB." ,  then there is a countable N', N < ~ N ' <  
(H().) ,E, <*), N n to~ -- N'  n tom and q'~P~, q' rlZ = q such that q ' l~-"N n 
tom CA ". 

2.17A. REMARK. ( l )  If  6 is S-suitable, t~ = l, and 4 ~ ~ rood Do,,, 4 is a 
Pp-name for some fl < a, then we know that such B exists as t~ = 1. If  a is 
strongly inaccessible, a > I Pi [ for i < a, such B will exist. 

(2) Now, e.g., for suitable 6 ,  lg(Q) = a =  Un<~an,  an<a~+m, ta. = l, we 
can use Q~ = SSeal(~ t~, S) by new reasons. 
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PROOF. As we can increase p, without loss of generality p forces B to be 
equal to some Pz-name, so without loss of generality B is a Pz-name. 

Let us fix p, A, B,/z and work in V[Gz], Gz c_ P~ generic over V, q C G~. Let 

W = {N < (H(A),C) : N n ~o,c¢[G~], 
but thereis no r CP~/Gz such that: 
r is (N, PJGz)-semi-generic, p I [lz, a) < r 
and r I F-eja~ "N n ~o, ca"}.  

If W = ~ mod D<s,(H(A)), we can easily get the desired result (as in the 
proof of 1.11). 

So (in V[Gz]) W is a stationary subset of S<s,(H(A)). Hence there is 
u ___ H(,~), to~ c_ u, ]u I < R2 (in V[G~]) and W n S<s,(u) semi-stationary; now 
without loss of generality (u, C, <~ I u) < (H(A),C, <~). Let 

t / =  U //(, 
~<to I 

(uo c ,  <~' I u,) < (u, c ,  <~' I uc), 

u~ countable increasing continuous. So 

B~ = {~ < o~ : ( 3 NC W)(oJt n uc _c N c_ u~)} 

is stationary, it is a stationary subset of ta~, it belongs to $[P,], and obviously: 

(.) p IF- "A n Bt is not stationary". 

[Let for ( CB~, co~ n u c ___ N~ _ u~, N~ C W; let for ~ < o~1, N~ be the Skolem 
Hull in (H(2),C, <*) of { ( : ~ < ~} U { p, (u o N~: ( ~Bt)}, and 

C = (~: < o~, : N ~ [ c , . ]  n ~o, = ~}.  

C is a P,/G~-name of a club of 0.) I . clearly C n A is necessarily disjoint to Bi by 
the definition of W [if ( < o ~ ,  qCP=/G~, qlF-edG"~CC A A  A BI"  , then 
N~ C W is defined, q, is (N o PJG~)-semi-generic, q~lF- "No n oJi c A  ", contra- 
dicting "N c C W"]. Also 

P IF- "B~[G~] c B[q,]" 

[by the clause "N n ~o~ g B[G,]" in the definition of W]. So (.) holds.] 
Of course B~ C V e- and we get a contradiction to an assumption on A, B. 

2.18. CLAIM. Suppose Q = (P~, Qj" i < a ,  j < a )  is a semi-proper ite- 
ration, (& : ~ < ~) is an increasing sequence of strongly inaccessible cardinals, 
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^ [(Vi </z~)(lP~ I </t~) and I~-e. RssOz~) and II-e,,÷, "cfp¢ = R~']. 
~<~ 

Suppose further B is a Puo-name, A¢ a Pu~÷,-name of subsets of S. Suppose 
further p ~ P  and: 

p I Pol J-P~o"B is stationary", 

p I lt¢+ ~ll--e.,+, "for every x ~ [ P . , ]  - {0} if x c_ B then 4~ n x is station- 
ary" .  

Then p I t-vo "the intersection of any countable subset of {A~ : ( < ~} is station- 
a r y ' .  

PROOF. Let W be a P~-name of a countable subset of ~. So without loss of 
generality W = {((n)  : n < to} ,  I~-e. "( ,  ~ " .  

We now prove by induction on j _-< a, 
(.) i f l zo<i  < j ,  i non-limit, ;t regular, and large enough, N < (H(2) ,E)  

countable, B ~ N ,  (Pc,4¢: ~ < ~ ) E N  and i , j ,  Q ~ N ,  p <= p ' ~ N  M P~ and 
qEP~ is (N, P~)-semi-generic, p '  I i _-< q, and 

q I t-p, "N ~ t.o~ E B and for n < to [#¢~.) < i =*N A to~ ~A¢¢.)]" 

then there is q' ~ Pj, (N, Pj)- semi-generic, p '  l j  _-< q', q' r i = q and q'L~-pj "N 
to l~B and for n < t o  [iz¢t,)<j=~N A to1 ~Aet,~]". 

Clearly this is enough (apply it with p' = p, i = lZo, j = a, and those suitable 
N, q possible as B is a Pao-name of a stationary subset of S _ toO. 

Case 1. j <= P.o. Trivial. 
Case 2. j limit. As in the proof of  the iteration lemma for semi-properness. 
Case 3. j = (j - 1) + l , j  - 1 ~ {/z¢ : ~ < ~}. Trivial (use iteration of semi- 

properness of length 2). 
Case 4. j = ( j - l ) + l , j - l f p ¢ .  
As we know I b-e. "cf#~ = R~", there is an ordinal ? <p~ and condition 

p", p" < p" EP~ f3 Nsuch that: 

p" [ F- "for n < to, ifgc{. ) <pc  then ~¢{.) < ?". 

Now apply the induction hypotheses to i, ?, N, p" and get a condition q'6P~, 
p" [ 7 < q, q' is (N, PT)-semi-generic and satisfying 

q'[ k-e. "ifp¢¢.) < ~ then N N to~ EA¢¢.)'. 

By the choice of ? and p" 
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q' I b-p~c "if/~¢(,) <#¢ then N N o~ EA¢(,)". 

Now apply the previous claim (for Q t/~¢ + J. 

2.19. THEOREM. Suppose {# < x: l~ supercompact} is stationary, S c_ co~ 
stationary. Then for some semi-proper P = P, (for some S-suitable Q) which is 
(oJ~- S)-complete (and satisfies the r-c.c.) in Ve,: from any R2 stationary 
subsets of S c_ ah, there are R2; the intersection of any countably many of them 
is stationary (and ~¢[P,]  is layered, of  course). 

2.19A. REMARK. We really use just (i) {/2 < x:/2 measurable) is station- 
ary; (ii) {/, < x:/~ supercompact} is unbounded suffice. 

PROOF. (l) We define by induction on a < x, 

O"= (?,, Qj, tj" i < a , j  <a),  

such that: 
(A) Q" is S-suitable. 
(B) Each Qi is (to~ - S)-complete. 
(C) There is no strongly inaccessible Mahlo/t ,  i </z < I Pi I. 
(D) If i is inaccessible, I Pj I < i for j < i and I~e, "Rss(K2)" then Q, = 

SSeaI((~[Pj] : j  _-_ i, tj = 1), S) and ti = 1. 
(E) If not (D) then ti = 0, 

Q, = SSeal((~[Pj] : j  _-< i, t~ = 1), S). 

We can carry out the construction and prove by induction on aO that Q" is 
suitable. 

a = 0. Trivial. 
a limit. By Claim 2.3. 
a -- fl + 1, (E) applies to ft. By 2.11. 
a - - f l  + 1, (D) applies toil. By Claim 2.9 (and 2.10). 
Now suppose p EP~, (A.i : i < x) a P~-name p I~- "4i - S is stationary". 
For each # E Y = { # < x:/z supercompact} choose p~, E P~ and a P~,-name B~, 

such that 
p~ I # It-- "B, C_ S is stationary, B~ ~ SIPs]", 

P~IF-p. "for every X ~ [ P ~ ]  non-zero, i f X  _< B, then X tq A j, is stationary". 

Now that B~ E H ( x , )  for some X~ </z,  also 7 is stationary by a hypothesis. 
By Fodor's lemma for some stationary Yt --- Y, there are p and B such that 

for lz E Y~ : p~ I lz = p, 
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As each A¢ is a P~,-name for some/z¢ >/~ without loss of generality [/z¢ < &  in 
Y~'4~,  is a P~;name]. Now define for Iz~Y~:4'~ is 4~ i fPp~Qe,  and S 
otherwise. 

Note that Yt ~ Vand every countable subset of Y~ is contained in a countable 
set from V. Now we apply the previous claim to B, (A~ :/t ~ Y~ ). 

2.20. THEOREM. Suppose {2 : 2 < x, 2 supercompact} is a stationary sub- 
set of  x, S c_ to~ stationary, costationary; then in some forcing extension of  V, 
ZFC + 2 ~o = R~ + 2R, = R2 + Ulam(D,o, + S) holds, where,for a uniform filter 
D on 4, Ulam(D) means: there are 2 2-completefilters extending D, such that 
every D-positive set belongs to at least one of them (A is D-positive ifA c 2, and 

(2 - A)q~D). 

2.20A. REMARK. Of course also here we can easily (when x is supercom- 
pact) make, e.g., MAo,,((tom - S U S')-complete semi-proper) holds after the 

forcing; if S '  c_ oh - S is stationary to~ - S' is stationary. 

PROOF. Before we do the forcing, we make some combinatories, which tell 

us what will suffice. 

A. NOTATION. (1) 2 -~ ,,l <~ is a fixed regular uncountable cardinal. 
(2) W denotes a fixed class of ordinals, 0 ~  W, for every i, i + 1 ~ W, and 

R0< cf i  < 2 ~ i ~ W .  

(3) B will denote Boolean algebras. 
(4) For a Boolean Algebra B: B + -- B - (0}. 
(5) Pr(a~, a2, B~, B2) m e a n s :  B~, B2 a r e  Boolean algebras, Bt c_ B2, a ~ B  +, 

a2EB~ -, and ( V x ) [ x ~ B  + ^ x  < al-- 'x tq a2 ~ 0]. 
If the identity of  B~ is clear (when dealing with one Boolean Algebra and its 

subalgebras) we omit it. 

B. O~SERVATION. Note: 

(a) er(1, x, B0) for x ~ B~ +, I B01 = 2; 
(b) if Bo C_ Bb _ B, x ~ B~ + , y ~ Bb + , z E B and Pr(x, y, Ba), Pr(y, z, Bb) then 

Pr(x, z, Ba); 
(c) if Pr(x, y, B~, B2), 0 < x '  < x, x '  ~ B~, y < y' E B2 then Pr(x', y', B) and 

Pr(x', y N x, B). 
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C. NOTATION AND DEFINITION. 

(1) We call B l-o.k, if  B = (Bi: i < a) is increasing continuous, each Bi a 
Boolean Algebra of cardinality =<2, [ i , j~a M W and i <j=*B~.~Bj, B~ is 
2-complete]. 

(2) We call a c_ W n a closed if for every accumulation point 5 < a of a 
[5~ w ~ 5  + 1 Ca], [5~ W ~ 5 ~ a ] .  

(3) Let CSb(a) - {w: wa closed subset of W A a of power < 2 } ,  CSb,.(a) -- 

{w ~CSb(a)  : w unbounded below a).  
(4) For w ECSb(a), B -- (Bi: i < f l )  1-o.k., fl > a let 
(i) Seqw(B) = {((ai: iEw)  :a~Bi, .  a~ is decreasing; if JEw, i =~5 + 1, 

5 ~ W ,  i > M i n w  then at= j~wg~,jif JEw, i > M i n w  and 
n ( 3 5 ) [ i = 5 + l A S ~ W ]  then a~EBM~(wn~)+t, if i~w,  i > M i n w ,  
cf i  > 2 ,  then ai =ajEBj for some j E i  n W, and for i < j  in w n W, 
Pr(ai, aj, B~, Bj)}. 

(ii) Let Seq(/~) = U{Seq~(/~) : w E CSb(a)} 
when a = 5 + 1 < lg(B), a = sup w: 

Z~(B)- -~  n a," (a," i~w)ESeq~(B ,(5 + 1))~, 
t iEw J 

Z6(/~) = U{Z~(B) : w ~CSb..(5)}, if lg(B) = 5 + 1, we omit  5. 
(5) We call B a 2-o.k. if for every limit 5 < lg(B), 0 ~ Z ( B  I (5 + 1)) (and it is 

1-o.k.). 
(6) We call B 3-o.k. if it is 2-o.k. and for limit 5 < lg(B) Z(/~ I (5 + 1)) is a 

dense subset of B6 + z. 
(7) I fB  is not continuous, we identify it with the obvious correction for the 

purpose of  our definitions. 

D. FACT. Suppose B is 2-o.k., B -- (Bi: i _-< 5 + 1), c f5  < 2 :  
(0) CSb,,(5) ~ 0, and if w ~CSb,(5) ,  a < 5, then w - a E C S b , , ( 5 ) .  
(1) Z,AB) includes BMi, ,~, hence B6 _c. Z(B). 
(2) If  wt, w2 ~ CSb(5) then w~ U w2 ~ CSb(5); similarly for CSb,(5). 
(3) If  w,C_w2 are in both in CSb(5), M i n w t - - M i n w z ,  (a~:iEw~)E 

Seqwl(B) then (a~ : i ~ w2) ~ Seq~(/~) if for i ~ Wz - w~ we define a~ -- 
aM~0 n w,) exists as i >-_ Min w2 = Min w~ hence i > Min w~, and wt is 
closed. 

(4) If Wl c_ w2 are both in CSb,(5), Min w~ -- Min w2 then Z,,(B) _ Z~(B). 
(5) I f a  < 5, w~ ~CSb,(5)  thcn Z~,(B) _c Z,,_~(B). 

(6) If  (a~:i~wt), (b~:j~w2) are in Seq~,(B), Seqw,(B) resp, (X/i~w~) 
(~j~w2) a~ < bj then Ni~w, a,- _< Nj~,~ bj. 
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(7) Z(/~) is a dense subset of  the subalgebra it generates. 
(8) I f B  = (Bt: i < a) i s / -o .k .  7t < a (for i < i ( . ) )  is increasing cont inuous  

and [i ~ W=*Tt ~ W], then (Br, : i < i ( . ) )  i s / -o .k .  
(9) Z(B)  is closed under  non-empty  finite intersections.  

PROOF. Easy, e.g., 

(7) By (9) it is enough to show that  if  a,  b0, • • •, bn-~ E Z(/~), a - Ut<n bt 
0 then for some cE Z( B ) ,  c <-_(a - U/<~ bl). Let a = ntewai, bt = nm,,~b[, 
where ( a~ " i ~ w ) , ( b~ " i ~ ut ) ~ Seq~,( B ). 

As n i  ai ~ u t < ,  ( nteu,  b~), there are 70 ~ u0 . . . . .  7, - t E u~ _ t such that  for no 
i E w, ai <-_ Ul<~ b~,. As b~, ~Bp for some fl ~ w, fl > 71 for 1 < n. So w - fl 
CSb~(~). Let for i ~ w fl, ct d,f - = a , -  Ul<,, be,. So 

(i) c~ = a~ - Utb¢, ~ B ,  [as a ~ B t ,  b~, ~Br, c B a C_ B~]; 

(ii) for i < j  f rom w - fl, c~ _-< q [as a~ < at, clearly a~ - U~ be, _< at - U b~, ]; 
(iii) for i < j  f rom w - f l ,  Pr(c,c~,Bt). [Let O < d < c ,  d ~ B t  then 

0 < d < a ,  d ~ B t  hence (by Pr(at, aj, B,))d n aj ÷ 0 and 

d n c j = d N ( a j -  Ut b~,) 

=dnaj-dn U b~, 
I 

= d n a j - O = d n a j ( d n  U~ b : , = 0 a s d < c t )  

s o d  n c j  ~ 0 . ]  
The  other  condi t ions  are easy too. 

So (q : j  ~ w - fl) ~ Seqw_p(B) hence c ~f Utew-p c / ~  Zw-a(/~) __ Z(/~). As 
B is a 2-o.k., c ~ 0. N o w  c _-< a,  i.e., nie~_pct < ntew at as c/_-< ai, and  
c N bt = 0, i.e., ( n , e ~ _ a  ct) n ( Ate,,, b~) = 0 as ATE,,, b~ < b~,, c, n b~, = O. 

(9) Let, for l = 1, 2, wlECSbu(8)  and  atEZ,,,(B). Choose successor j  < 8 ,  
j > M i n w t  for 1 = 1 , 2 ;  let w 3 = w l u { j } ,  w 4 = w 2 U { j } ,  w s = w 3 - j ,  w6=  
W a - j .  By D(4), a~Zw,(B) ,  by D(5), alEZw,(B). By D(4), al~Z~,u,,,(B), 
similarly a2 E Z,,, u w,(B) and  we finish easily. 

E. CLAIM. I f /~  = (Bt ' i  <2  +) is 3-o.k., [ i < 2  +, c f i - - 2 = * i ~ W ]  then 
B 3  is the un ion  of  2 2-comple te  filters. 

PROOF. Note  that  
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(.)  for every x E B ~  + for some ( a ~ : i ~ w ) ~ S e q ( ( B ~ : i < a +  1)) ( 0 < )  

n ~ew as < x,  0 E  w, and w has a last element [prove this by induct ion on a, for 

a = 0 - -  trivial, for a = fl + 1, fl ~ W use (D)(7), for a = ,a + 1, ,8 ~ W, note 
that B~ > B~, hence for some x~ ~ Ba, Pr(x~, x,  Bs, B~). By the induct ion hypoth- 

esis there is (a, :  i ~ w ) ~ S e q ( ( B ~ :  i < f l  + 1)) ( 0 < )  n~ewa~ <x~,  O ~ w  and 

has a last element (note w c , a  + 1). Now let as+,---aM~x(w) n x, n x ,  u = 

w u {fl + 1} and ( a ~ : i ~ u )  is as required except when cf ,a-- -2 ,  but  the 

change is obvious. 

Now Seq(B) = U,,<~, Seq((B, : i < a)).  

It is well known that there is H :  {w c 2 + :1 w l < 2 }  --,;t such that: H ( w )  = 

H(u) ,  o t~w  n u implies a n w = a n u; also H ( w )  = H ( u )  implies w, u have 

the same order type. 

Let F~ be a one-to-one function from B,+~ into 2. We say ( a ~ ' i E w i ) ,  

( a~ " i E w2 ) E Seq(B) are equivalent if: 

(a) H(wO = H(w2) and 

(b) iffl~, a l e  w~ and,a2, a2E w2, w~ n a ~, w2 n a 2 has the same order type and 

al = Y~ + 1, a2 = Y2+ 1, then 

F~,(a~,) = F~,(a~,). 

It is enough to show that if  (a~: i  E w e ) E S e q ( B )  are equivalent  for ( <  
¢ ~ ( . ) < ; t ,  0Ewe ,  Max wcEw¢ then ncaM~w~ ~ O. Note  that if  aEw¢,  O we,, 

,at -- Min(w¢, - (a + 1)) then aJ~ aJ~. 

For  this end we prove be induction on a E W, a > 0 
( . )  (1) x~ ~°f = n¢<¢( . )  aMax(wcn(,, +l)) is not zero; 

(2) i f / / <  a (,a ~ W) then Pr(xp, x~, B~). 

Clearly x~ is decreasing (as a j  is decreasing in a for each ().  

Case l. ot = O 

Then Max(we n (a + 1)) = 0 and a~ = a0 + ~B0  + for every ~. So (.)(1) holds; 
and (.)(2) is empty. 

C a s e 2 .  a = f l  + l , f l ~ W  

I f  a = fl + 1 ~ we then aM,xt,,~nt~+¢ l)) = a~tw~nts+ o)- 
So i f a  ~ we for every ( < ~(,)  then xa = xp, so (.)(1) holds. As for (,)(2): for 

7 < fl use the induction hypothesis; for 7 = fl this is easy. 

If  for some (, aEw¢,  let v = {( < ( ( . ) "  ot~ we}. S o x , =  n ¢ ~  ¢ 

n ¢~, aJ. By the definition of  the equivalence relation for some a,  ~ ~ v ~,  a~ -- 

a or ~ ~ v =* a~ ¢ E B B . Clearly 
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xo n = aM~lw, nta+l)lN n a~ ¢=  N a~tw, nta+l)> n n n a.  

Now as fl E W, Bp is A-complete, hence xp E Bp. Now a E B~ and letting 
((0) -- Min v, 7(0) -- Max(w~t0 > n (fl + l)). Clearly a _-< a~c~ ~ and 
Pr(a~t~ ~, a, B~). As x~ ~B~, and easily a~t~ > >_- x~, clearly x~ n a ÷ 0. So (.)(1) 
holds. "As for (.)(2), by (B)(h) (and the induction hypothesis), without loss of 

generality, 7 =f t .  So let dEBt,  0<d-_<x~,  then d_-<a~t~) ) hence by 
Pr(a~t~) ), a,  B~), a N d # 0, hut a n d = d n x~ n a = d n x~, so we finish. 

Case 3. a = f l + l , f l ~ W  
Let u _/i ' ,  I u I < 2, sup u = ft. Note that 

a~ax~n(~+l)~ = n a~axt~n(r+l)). 
r<P 

[ I f a ~  w¢, as (amxtwcn<~+~)) ~' < f l )  is eventually constant and equal to 

- -  n a n ta + I)) - aMax(w e A 0' + l )) • 
r<P 

o [If aq~w¢, as (aM~twcn<~+l)) 7 < f l )  is eventually constant and equal to 

a~twc n {~ + ~)~, and if a E we, as (a~: 7 ~ we ) E Seq(B)). So 

Xa---- n a ~ , t w ,  n< , ,+ l> )=  n n a~axtw, n(r+l)> 

= n  ( n = n x,.] 
r<P C<~(*) r<P 

As B is 2-o.k. (as (,)(2) holds below fl) we know x~ ÷ 0. Similarly we can 
check (,)(2). 

Case 4. a limit 
As a E  W, necessarily c fa  = 2. But then, by the definition of Seqw(B), if 

aEw~ though M a x ( w e n ( a +  1 ) ) ~ M a x ( w ~ n ( ? +  l)) for 7 < a ,  still 

a~twcnta+~ = At< p a~,twcn<r+t>) for every large enough 7 < a. If  a ~  w~ this 
holds on simpler ground. So xa = xr for every large enough y < a, and we can 

finish easily. 

REMARK. The proof is written such that it will be easy to change it for 

/~ = (B~" i < 7), 7 < (2~) +, so I Bi [ = [ i I + 2, Bi + i is generated by Bi U B', 
I B '  I = 2; but it is not clear whether there is interest in this. 
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CONTINUATION OF THE PROOF OF THEOREM 2.20. We define by induc t ion  
o n a < K  

O.°= (P,, Qj, tj: i < a , j  < a )  

and  3'o, B ,  ~[i] for i < ~o and  W N 3'° such that:  
(A) 0 a is a suitable i teration. 
(B) Each Qi is (o~l - S) -comple te .  

(C) IPjl < ~ c f o r j < x .  
(D) 3'a is the order ing type of  the closure o f  ( j  < a : tj = 1 }. I f  i < j ,  .ti = 1, j 

non-l imit ,  then Ik-ej"~.7,-~ ~ [ V ~ ]  i S ' .  
(E) If  i is inaccessible, I Pj t < i for j < i and  I k-e, "Rss(Rx)" then t~ = 1, 

Qi = SSeal((~8[ Ve~] : j  < i, tj = 1 ), S)  and  ~r,_ ~ = ~[  Ve,]3', -- ( LJp<~ 3'p) 
+ 1, ~ , i -  l ~ W .  

(F) I f  i is not  limit,  or  a l imit  but  not  a l imit  o f  ordinals  satisfying the 
assumpt ion  of  (E), then 3' = LJp<~ 3'p and  Q~ = SSeal(($~ : j  < i, 
tj = 1 ), S)  and  t~ = 0, except  when  (G) for i - 1 decrees t~ = 1. 

(G) I f i  is a l imit  o f j ' s  satisfying the assumpt ion  of(E),  then 3'i = ( [3j<, ~) + 
2, a [ 7 ~ - 2 ] = i ,  3 ' ~ w ,  3 ' ~ + l E w ,  ~ ,_2  = Uj<~[VPJ] ,  ~y ,_~= the  
subalgebra of~8[V e,] I S which Z((~Sj : j  < i, tj = 1 ) ^ (~8[ Ve,])) generates 

(see Defini t ion (B) above)  and 

Q~ = SSeal( (~3j : j E y~ A Ire'), S). 

(H) In V e-, ( ~  : j  E y~ ) ^ (~[  Ve-]) is 2-o.k. and  every p roper  initial segment  is 
3-o.k. 

The  p roo f  is like 2.19. 
N o w  in order  to be able to prove  the Ulamness ,  we need to force (over V e,) 

with 

R -- {f :  f i s  an increasing con t inuous  funct ion f rom 
some 3' + 1 < tc to W U {J < tc: c f 6  - R0 (in Ve,)}. 
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