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 Volume 48, Number 3, Sept. 1983

 FORCING CLOSED UNBOUNDED SETS

 URI ABRAHAM AND SAHARON SHELAH

 Abstract. We discuss the problem of finding forcing posets which introduce closed
 unbounded subsets to a given stationary set.

 Introduction. A very interesting phenomenon, described by Baumgartner, Har-

 rington and Kleinberg [B, H, K], shows that the notion of stationary set is not ab-
 solute: a stationary S c 81 can become nonstationary in a generic extension which

 preserves 81. More -precisely, given any stationary T c 81, there is a poset P such
 that forcing with P does not add new countable sets to the ground model, but

 produces a closed unbounded subset of T. Our aim is to generalize this result and

 to present new problems. The paper is divided into three sections, each presenting

 a different approach for a generalization of [B, H, K].

 I n ? 1, 81 is changed to an arbitrary regular uncountable cardinal K, S is a station-

 ary subset of a, and we want to find a generic extension which adds a closed un-

 bounded subset to S, without adding new sets of size < A. As it turns out, S has to

 befi7t (this will be defined in 1.1) if such a generic extension can be found. In this
 part, we do not care about cardinals above X-they might collapse. The definition
 of fat-stationarity (1.1), Lemma 1.2, and Theorem 1 (which deal with the case

 K = a i, [Ai = p, or X is strongly inaccessible) are due to J. Stavi. (See [N, S] where
 this material is applied to get results about the nontransitivity of the notion of

 potential isornorphism applied to models of Loo.) Independently, several other
 mathematicians were aware of some form of Theorem 1: Baumgartner, Fleissner

 and Kunen, Gregory and Harrington. In fact, the terminology fat set is adopted

 from [F, K] (p. 238, where x-Baire spaces are discussed). Theorem 2, which deals
 with the case X-, ,=u, singular, is due to Shelah. The argument used in the proof
 is further investigated in [S1, Chapter Xlii].

 In the second section, we concentrate on the requirement that no cardinals are

 collapsed, even those above K. On the other hand, we allow new bounded subsets

 of K. The posets described in ? 1 and the one in [B, H, K] work well if GCH
 is assumed. But if 2xo > 81, for example,. then the forcing poset of [B, H, K]
 does collapse $2, so we need something else. Theorem 3 shows how to force a
 closed unbounded subset to a stationary S c (01 without collapsing any cardinal.

 Baumgartner found how to force a closed unbounded subset of Woi with finite
 conditions; Shelah used this poset (restricted to a stationary set) to prove Theorem

 3; the conditions used in the proof of Theorem 3 are a simplified version, due to
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 644 URI ABRAHAM AND SAHARON SHELAH

 Abraham, of Baumgartner's original ones. Theorems 4 and 5 are due to Abraham.

 In ?3 we try to replace x1 by P11(82)-the collection of all countable subsets of
 X2. From our point of view (the absoluteness of the notion of "stationary set"),

 little is known about the club filter over P,1(82) (see below). It is not clear even what
 should be the right generalization of [B, H, K] in this context. Theorems 7, 8 are
 due to Abraham, Theorems 6, 9 to Shelah.

 Notation. For cardinals i < a, i regular, SI = {ca E KI cf(a)

 Closed unbounded is shortened to club.

 -up {=f I for some a < pa, f: a --* 1}. H(.) is the collection of all sets hereditarily
 of cardinality < A. If we say that we work in some universe W, then H(X), as any
 other concept, is to be interpreted in W. Jech [J] and Kueker [K] introduced the

 notions of club set and stationary set in P11(82). Kueker's theorem will be used
 frequently in ?3: If C C P,,(82) is club then there isf: [82]<w0 P~l(82), a function
 taking finite subsets of 82 as arguments and countable subsets as values, such that

 if X E P~l(82) is closed under f then X E C. (X closed under f means that f(a) c X
 whenever a c X.) It is not difficult to ask forf(a) to be a singleton.

 Acknowledgement. We wish to thank Jonathan Stavi for initiating this research
 and providing us with the basic material and questions. We learned about the
 subject from his unpublished [St], and some material from there is published here
 with his kind permission.

 ?1 Fat sets.

 1.1 DEFINITION. Let K be a regular cardinal. A set S c K is called fat iff for every

 club C c K, S n C contains closed sets of ordinals of arbitrarily large order-types
 below K.

 1.2 LEMMA. Assume ua < X, K regular, and S c K has the property that for every
 club C c K, S n C contains a closed set of ordinals of order-type 1u + 1. Then
 for any v < ua+ and every club C c K, S n c contains a closed set of order-type
 v + 1.

 PROOF. The case K = 81, due to H. Friedman [F], says that every stationary sub-

 set of x, is fat.
 Given a club C c X the proof of the lemma is by induction on e. S being station-

 ary, the case v is successor is obvious. So assume v is a limit ordinal and the lemma
 is true for ordinals below v. We can easily find a club D c X such that for any

 a E D, j3 < a, and C < x, there is a closed subset of S n c of order-type C + 1,
 contained in the open interval (j3, a)). Put v = Zi<,f, Ci, where 1u' ?< u and Ci < v.
 Then find a closed subset E of S n D n C of order-type 1u' + 1. In the i interval
 of E pick a closed subset of S n C of order-type Ci + 1. Putting everything to-
 gether including E) we get the desired closed subset of S n C of order-type v + 1.

 A club subset of X is surely fat. A fat S c X is said to be nontrivial iff X - S
 is stationary. In many cases nontrivial fat sets are easily obtained. For example, if
 X = i+ and A is regular, or if X is Mahlo. For X = A+ we use the theorem that any
 stationary set can be decomposed into two disjoint stationary sets. (See [JI].)

 Clearly, if S c X contains a club set in some extension of the universe which
 does not add new bounded subsets of X then S is fat in the ground universe. So fat
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 FORCING CLOSED UNBOUNDED SETS 645

 sets are the only possible candidates for acquiring a club subset, if we make the
 requirement that no new bounded subsets of X are added in the extension. The

 following theorem shows that in many cases fatness is all that is needed to obtain

 a club subset.

 THEOREM 1. Let K be either a strongly inaccessible cardinal or the successor of a

 (regular) cardinal fl such that fu 1afl. Let S c X be fat. Then there exists a poset P
 such that the following hold.

 (i) Forcing with P adds a club C c S.

 (ii) Forcing with P does not add new sets of size < X (hence cardinals and cofinali-

 ties < X remain unchanged in an extension by P).
 (iii) Cardinality of P is 26, so if 26 = X cardinals above X are not collapsed.
 PROOF. Given a fat S c X, define the following poset P. p E P iff p c S is a

 bounded and closed set of ordinals. P is partially ordered by end-extensions: p <

 p' iff p = p' n (sup(p) + 1). (Note that if p E P then sup(p) = Up E p asp is
 closed.) It is clear that 26 is the cardinality of P and that if P is a V-generic filter

 over P then C = U {PI E P} is a club subset of S. We have only to prove that
 no new sets of cardinality < X appear in V[P]. In other words, given a regular car-

 dinal v < k and a sequence D = <Di I i Ec > of dense open subsets of P, it has to be
 shown that ni<f Di is dense in P. Well, let p E P be given; we wish to find an ex-
 tension of p in this intersection.

 Let A be big enough so that H(G) (the collection of all sets of cardinality heredi-
 tarily less than A) contains P. Let M = <H(A), E>. Define a sequence <MaIa < K>
 of elementary substructures of M such that:

 (i) P, p, D E MO, and some fixed well-order of I PI -the universe of P-is in MO.
 Also v + 1 ' MO.

 (ii) Ma is of cardinality <K. If a < j3 then Ma c M: and for limit a, MA =

 UV<M7.
 (iii) ca = Ma n K (the intersection of the universe of Ma with i) is an ordinal

 and <caIca < i> is a continuous and increasing sequence cofinal in K.
 The Ma are easily defined. As Ad < X was assumed for all j3 < K, we get that for
 < a < K, Ma contains each subset of j3 of cardinality < Ii3I.
 Now, E = {ala =Cal is a club subset of K. S is fat; hence S n E contains a

 closed subset of order-type z + 1, which we call A. Let a = sup(A); then, even if

 A 0 Ma, A f) eE Ma for each e < x. Now we construct in Ma an increasing
 sequence in P of length a, <pi I < z>, such that P,+, E Di n Ma. Begin with
 Po p. if P, E P n AMa is defined then pi+, is the first member of Di (in the fixed
 well-order of IPI) extending pi, such that the ordinal interval (sup(pi), sup(pjj1))
 has a nonempty intersection with A. For limit s < a, put simply

 Pa= U Pi U {sup(U Pi

 As only a proper initial segment of A is used in the definition of pa, one can con-
 clude that pa E Ma, and pa c S follows from the fact that A c S is closed. Finally,

 P= Uis< Pi U {a} is in ni< Di as required. R
 1.3. When one tries to apply the proof of Theorem 1 to the case x = 4u+ and 4u

 is a singular cardinal, difficulties arise even if GCH is assumed. For example, in the
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 646 URI ABRAHAM AND SAHARON SHELAH

 case S c +, is a fat set: if we take structures Ma (as in the proof of Theorem 1)

 of cardinality sX, then we cannot demand that the Ma's should be closed under
 unions of countably many members of P (in case cf(x) > x1), because WX0 >

 C The same problem occurs when wzr> 2X for some z < a, even if X is a successor
 of a regular cardinal or is a regular limit cardinal.

 For the case X = a+, ,u singular strong limit, there is a satisfactory answer that
 we exemplify with K = X,+,.

 THEOREM 2. Assume <,, is a strong limit and S c X,,+ is fat. There is aforcingposet
 P which adds a club subset to S without adding new subsets of size ?8! t. The car-
 dinality of P is 2KQ'.

 PROOF. Let S be a given fat subset of M+ Assume, w. .o.g., that S n x0, = 0. P
 is defined, just like in the proof of Theorem 1, as the set of all bounded closed sub-

 sets of S. The question is why no new sets of size < i,,, are added by forcing with
 P. It is enough to show that for every n < a) the intersection of xn many dense
 open subsets of P is dense. So let dense open sets <Di I i < Fxn> and p E P be given,
 we will find an extension of p in (i<>N Di. Fix a function F(x, y) such that for N,, <
 ar < M@,:+ F(y, 3), < a, is a one-to-one function of a onto xd. Now pick a
 sequence < Mafrx < xt+> of structures of cardinality s,,,, like in Theorem 1, requiring
 also that Fe MO and Id c Mo. Let Ca= Ma n x+ and C = {xfx = ca} is a club
 set. Say 2H-1 = i. < x,. Use the fact that S is fat and obtain a closed B c S n c
 of order-type A+ (B is closed in sup(B) but, somewhat inconsistently, we don't

 need sup(B) e B). Define a function h: [B]2 -+ c as follows: for a, b e B. a < b,
 let h(a, b) = k iff k is the least integer such that F(b, a) e Sk. Using the partition

 relation (2H1-n)+ (,4J2 _, (see [W]), find A c B of order type xn which is homo-
 geneous, say for the color k. Put a = sup(A). We construct now an increasing

 sequence <pili < sn>, just like in Theorem 1. As every ordinal which is limit of or-
 dinals in A is in S, pa e P for limit a < sx. Why pa E Ma? Because every bounded
 subset X of A is in Ma, as we show now. Pick b e A bigger than all members of
 X; then F(b, x) < Sk for x e X. But the set {F(b, x)lx e X, x < b}, as any other
 subset of Xk, is a member of Ma. Hence Xe Ma. The proof ends just like that of
 Theorem 1. LI

 1.4. Now, in case GCH is not assumed, very little is known about forcing notions
 which introduce a club subset to fat S c X without adding new sets of cardinality
 <X. In case X = x1, [B, H, K] gives a positive answer to that question; but for
 K = X2 even a simpler question is unanswered.

 PROBLEM 1. Let S c St be stationary. Is there a forcing notion which adds no
 new sets of cardinality s1 and adds a club C c S U St?

 A positive answer to this problem follows from the existence of [ ,. In fact,
 Jensen's weak square sequence Li * (see 5.1 in [Jen]) is sufficient assumption to get
 the conclusion of Theorem 1 for fat S c A+, even in case , is singular.

 ?2. In the previous section we did not care about cardinals above X; if the
 GCH is assumed then the posets described in ?1 do not collapse cardinals. But
 if 2Ho > sx then the poset of all bounded closed subsets of a stationary S c K
 does collapse x2. In an earlier version of this paper we asked the following question:

 Let S c s, be a stationary set. Is there a forcing notion that adds a club subset to
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 S, does not add reals and does not collapse any cardinals? A negative answer was
 provided by Todorcevic [T]: assuming the consistency of ZFC + there is an in-

 accessible cardinal, he provides a model in which any poset which adds a new sub-

 set of co, collapses s1 or $2.
 PROBLEM 2. To what extent is the inaccessible necessary in the above? (compare

 [D, K].)
 Concerning this problem, Abraham has shown that an inaccessible is not

 needed to get the consistency of: Every poset of cardinality t1 which adds a new

 subset to co, collapses x1. (A subset of co, is new if its intersection with every ca < co,
 is in the ground model.)

 If we drop the requirement that no new countable sets are added, then, even if

 CH does not hold, it is possible to introduce a club subset to a stationary without
 collapsing cardinals.

 THEOREM 3. Let S c s1 be stationary. There is a poset P such that forcing with
 P adds a club subset to S, does not collapse t1, and P is of cardinality t1 (hence no
 cardinals are collapsed).

 PROOF. Define p E P iff p is a finite collection of closed intervals in X1 such that:

 (1) [ca, it] e p => ca E S, (2) if [ca, i], [ca' P3'] e P then either c = c' or [ca, p3] n ra[, P3]
 = 0. The intuitive meaning of [ax, it] e p is that aX is a member of the generic club
 subset of S and that the closed interval [ca, it] contains no other members of that
 club. So the partial order on P is simply inclusion: p' extendsp iffp c p'.

 If P is a V-generic filter over P, define C l{( I for some P and p E P, [ix, i] E p}.
 2.1 LEMMA. C c S is a club set.

 PROOF. We check only that C is closed. Suppose p IF- "C is a limit point of C".
 If [G. 3] ep for some: ("c appears in p"), then p IF- "C E C". If C does not appear
 in p, let ca be the maximal ordinal appearing in P below C (or any ordinal in S
 below C if no ordinal below C appears in p). Let p' = p U {[ca, C]}. Then p' E P
 extends p and p' IF "C is not a limit point of C, in fact no point of C is in the inter-
 val (ca, C]". Contradiction. i

 2.2 LEMMA. Forcing with P does not collapse 1.

 PROOF. Assume p F "f: Xo -+ ti". We want an extension of p which forces f to
 be bounded. Let N -< H(x2) be a countable elementary substructure of the set of

 all sets of cardinality hereditarily < X2, such that P, p, f E N, and such that N n
 Wi = aES. Letp' =p U {[[,a + 1]},p'eP.

 CLAIM. p' F "Range(f) c ca".
 PROOF OF CLAIM. Suppose p" extends p' and p" IF "f(n) = v". If [a, b] ep" then

 either b < a or a ?c a. Look atp*, which consists of all pairs in p" which are below

 ca; then p* E N. Find p** E N extending p* such that p** IF- "f(n) = a2*" for some
 y* (which is necessarily < a). As all pairs of p** are below aX, p" U p** E P. Hence

 -1 = asop"f VF "f(n) <cx". L]
 This theorem and proof can be easily generalized to the case X = +, , =

 (but 2P is not restricted) and S c S," and we wish to force a club subset to S U Sp
 without adding sets of size <,u and without collapsing cardinals. But in the case
 S c X is an arbitrary fat set we need a different method. See [Al] for other ap-
 plications of this method.

 THEOREM 4. Suppose K = u+, y = pu, and S c K is fat. There is a poset such that
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 forcing with it introduces a club subset of S, does not collapse any cardinals and does
 not add new sets of size <ia.

 PROOF. Again, the point is that 2u > u+ = K and we do care about cardinals above
 X (otherwise Theorem I can be applied). The idea of the proof is to take only a
 limited amount of conditions so that the x+-antichain condition is satisfied; yet to
 make them rich enough so that no sets of size < a are introduced. For this, we
 have to make a preparatory extension first, with the Cohen poset Q. Details follow.

 Pick A c X such that in L[A] X is the successor of , and any subset of X of size
 < , belongs to L[A]. The assumption that S is fat means that for every club C c X
 there is a closed D c S F C of order-type , + 1. There might be 2/u such sets D,
 but we make now a stronger assumption, (*), about S and A and later on show how
 to obtain this stronger assumption.
 (*) For every club C c X there is a closed D c S n c of order-type ,a + I

 such that D E L[A].
 First we cultivate the ground and define a poset Q. f E Q ifff is a partial function

 on X of cardinality <,u such that, for a E Dom(f), f(a) E Ppu. In other words, Q
 adds X many functions from ,u to ,u with conditions of size <,u. The ordering of
 Q is defined by: f < f' iff a E Dom(f) -+ a E Dom(f') andf(a) c f'(a). Q isp,
 closed, satisfies the K-antichain condition (as u/Az = u), and Q e L[A].

 Let Q be a V-generic filter over Q. V[Q] does not collapse cardinals or change
 cofinalities and does not add- new sets of size <,u. Let W = L[A, S, Q]; observe
 that ,01 = and 2/ = X hold in W.
 Next, define P in W as the poset of all bounded closed subsets of S, partially

 ordered by end-extension. As IPI = K, if we force over V[Q] with P, cardinals above
 X are not collapsed. It is also clear that Q*P (the iteration poset of Q followed
 by P) introduces a club subset to S. To show that no cardinals < X are collapsed
 and at the same time to prove that no new sets of size <,u are added by Q*P it
 is enoughlto establish the following.

 2.3. If P is V[Q]-generic over P, then any set of ordinals of size ,u which belongs to

 V[Q][PI is in fact in V[Q].
 PROOF OF 2.3. Let t be a name in V[Q]P and p E P such that p I-SP "t: p -* ordin-

 als", in V[Q]. We seek p* E P extending p which decides all values of t. We work in
 V[Q]. Pick a cardinal A such that A > 2T and t E H(A). Define an increasing and
 continuous sequence Mi, i < K, of elementary substructures of H(A) of cardinality
 ,u such that
 1. 1 + 1 ' MO, and P, p, t,Q E Mo.
 2. If we denote ai Mi n K then C = {aili < K} is a club subset of K.
 3. Mji+ contains all subsets of Mi of cardinality < j.
 Let C' = {aJ} = aue; then C' is a club set. Q satisfies the K-a.c., so every club

 subset of X in V[Q] contains a club set which is in V. So does C', and since (*)
 holds in V, there is D E L[A] such that D c S f C' is closed and of order-type
 ,u + 1. Let : be the last member of D. Let ir: Mp -+ M be the Mostowski col-
 lapse of Mp onto a transitive structure M. It is easy to check the following facts:
 z(x) =3, z(A) =A An A, y(S) = s n A, z(Q) = Q r p = {f r p if e Q}, ir(Q)
 Q r p Q n (Q r j3), z(P) = P n M, = P', and P'e L[(A), z(S), ir(Q)] (be-
 cause P' is defined in M as a member of LMAOrd [zr(A), z(S), ir(Q)], just like P was
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 FORCING CLOSED UNBOUNDED SETS 649

 defined in L[A, S, Q]). Pick r c ,f such that P' E L[A, S, Q r ri and M E V[Q t
 P' is of cardinality 1u in L[A, S, Q r r] (as M is of such cardinality and X

 in L[A] too). Let h: u -+ P' be a one-to-one correspondence there. Let g: 1U .u
 be the --generic function in Q, i.e., g = U{f(r)IfE Q}. Then g is the V[Q r 7+
 generic function over the poset R of all functions from an ordinal <,U into 1U.

 Always in V[Q], define by induction on v < u an increasing sequence pp, E P'
 such that the following hold.

 1. PO = p is the condition we want to extend.
 2. If as < ,u is limit then

 Pi U Pi U {sup(U Pi)}

 3. Given v < 1u, if (i) p, < h(g(v)) = q, and (ii) some member of D is in the
 interval (sup(p,), sup(q)), then P,+i = q. If those demands do not hold, then
 P?+1 = PP.

 Let us check that it is possible to construct such a sequence. By induction on

 v < u we shall prove pp E P'. If v is a limit ordinal then the sequence <pili < V>
 is in M n W, since each pi E M n W, i < v. (Any subset of M of cardinality <,U
 is in M. Also W contains all bounded subsets of ,u and P' has cardinality 1u in W.)
 SoPS E M n W, where

 PV - U Pi U {sup(U Pi)}.

 Moreover, pp is a closed subset of S(by (3) the interval (sup(p^), sup(pc+1)) contains
 a member of D, if nonempty). Hence p,, E P as ps e W. Even p, E P' because
 pp E M. Now the case v is successor is obvious.

 Finally set P* = Uv<Spp U {j}. The sequence <pKI v e/u> is definable in
 L[A, S, Q1r + 1 ] using g, h, D, p as parameters. (We did not use t in the definition
 of the sequence!) Hence p* E W. Also p* is a closed subset of S, so p* s P.
 Why does* decide all values of t? The answer is a density argument for R forcing
 in V[Q~r] (R = A-1u)

 CLAIM. For every a < j the following subset of R defined in V[Qj r] is dense in R.

 { f E R If HR "p* extends some p' E P' such that, in M, p'
 decides the value of z(t)(ac)"}.

 PROOF OF THE CLAIM. Given f E R let Dom(f) = v < A. There exists p E P'

 such thatf lI- "p, = p". (Because p, depends only on the first v values of the generic
 function.) Find p' ? p in P' such that D n (sup(p), sup(p')) # 0 and such that,
 in M, p' decides the value of zr(t)(a) (this is a dense set in P'). p' = h(e) for some
 s < 1u. Define f ' extending f by setting f '(v) = A. Then f' OR "h(g(v)) = p', and
 hence p' = P,+i".

 Now that the claim is proved, observe that if in Mp' decides the value of ir(f)(a)
 then, by elementarity, z-l(p') - p' decides the value of f at l-1(a) = a in V[Q].
 Hence p* decides t(a) for all a < ju. This proves 2.3-but not yet Theorem 4,
 because we have to show why the special assumption (*) can be made.

 The following poset was defined by Jensen and called "the club set forcing"
 in [D, J].
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 2.4 DEFINITION. Z = {<S, A> IA C 1u is club and v < 1a}, partially-ordered as
 follows: <v, A> < <v', A'> iff < v' and A' c A andv f A =v n A'.

 As the intersection of <,u many club subsets of ,u is club, Z is clearly ,u closed.

 Also, because gA = ju, Z satisfies the K-a.c. Let Z be a V-generic filter over Z
 and set E U{=w f nA I <v, A> E Z}. E c ,u is club, and for every C e V club in
 ,u there is ,3 < ju such that E - c C. Also V[E] = V[Z]. See [D, J] for all of this.

 2.5 LEMMA. Let S E V be afat subset of A+ = x; let A E V, A c X, be such that
 (a+)L[A] = x; and let E be as above-a generic club set. Then for every club C X
 in V[E] there is D c S fn c, closed of order-type ,u + 1, such that D e L[A, E].

 PROOF. First, it is clear why this lemma permits us to assume (*). Now, every club
 subset of x in V[E1 contains a club set in V, because Z satisfies the X-a.c. So it can
 be assumed that C e V. As S is fat, there is D' ' S n C in V, closed and of order-

 type ,u + 1. Say c = sup(D'); then cf(ac) = in L[A]. Letf: ,u ca be an increas-
 ing continuous and cofinal function such thatf e L[A]. Put B ={tepIf(t) E D'}.
 Then B c ,u is club and B e V. Hence for some < , E - ' B. So {fl()I
 E E- 3} U {ca = D e L[A, E] is as required. D

 2.6. Now that we have dropped the requirement that no new bounded subsets of
 x appear in the extension, it is conceivable that a stationary subset of X acquires a
 club subset even if it is not fat. We do not know of any characterization of those
 stationary sets which contain a club set in some extension. Let us only show that
 such a phenomenon is possible. We deal with the case x = X2. First, we generalize
 the club set forcing 2.4.

 2.7 LEMMA. Assume 28o =1 and let D be a normalfilter over (01. There exists a
 poset P. satisfying the x2-a.c., such that forcing with P adds no new countable sets
 and does introduce a club C (-- o) with the property that for any E e D there is r c (01
 such that C - r C E.

 PROOF. Define P = {<a, E>IE r D, a (-- o) is closed and countable}. P is partially

 ordered by: <a, E> < <a', E'> iff E' c E, a = a' n (sup(a) + 1) and a' -
 (sup(a) + 1) c E. (Remark that sup(a) e a, as a is closed.) The meaning of a con-
 dition <a, E> is that a is an initial segment of the generic club set C and C -

 (sup(a) +1) c E.
 It is obvious that <a, E n E'> lies above <a, E> and above <a, E'>; hence P

 satisfies the $2-a.c. It is also clear that in a generic extension a club C as required
 is readily obtained. Why are no new countable sets added? In case D is the filter
 of club sets, P is countably closed; but in general we need a different argument.

 Let H = <H~In < 0> be a sequence of dense open sets of P and p e P. We shall
 find an extension of p which is in nn< H,. Take A so that D, P, H e H(4). Con-
 struct an increasing and continuous sequence of countable elementary substruc-
 tures Ma -< H(A), a < wl, such that D, P, H, p e Mo. Of course {Ma, n fl a < (0i}
 is a club subset of 01.

 SUBLEMMA. There exists a < ()1 such that Ma nl o = a and a e n{E I E e
 Mf nD}.

 The proof of the sublemma clearly follows from the normality of D and the

 continuity of the sequence of the M. (which means that M3 = Ui<3 Mi for limit 6).
 Now pick ca as in the sublemma. Let <tn I n e (lw> be an increasing sequence co-

 final in a. Define inductively p,, e P n M, such that (i)-(iii) hold:
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 (i)pO = p-
 (ii) en E Hn_1 for n ? 1,
 (iii) pn = <a,, E.> satisfies sup(aj) 2 tn.
 Finally define p* = <a*, E*> by a* = Un<o an U {a}, E* nn<En Then

 P* e P. P* > Pn for all n, andp* Enl<,.Hn. El
 2.8 DEFINITION. Given S ' W2, we say that the initial segments of Sform a normal

 filter over i iff S1 = S fl S1 is stationary and for every a e S1 there exists a club
 C a of order-type ci such that if f.: i), - Ca is order-preserving onto Ca,
 then the collection {fi-l(Ca n S) I a e SI) generates a normal filter over cot (i.e.
 this collection is included in a nontrivial normal filter).

 We shall see later on (2.9) that such an S need not be fat. But the converse is

 true, in the sense that if S is fat, then for some S1 c S the initial segments of S1
 form a normal filter over wi: the club sets filter.

 THEOREM 5. Assume CH and let S ' W02 be such that the initial segments of Sform
 a normalfilter over cl. There is a cardinal preserving generic extension which adds
 no new countable sets in which S contains a club set.

 PROOF. It is enough to find an extension which adds no new countable sets, col-
 lapses no cardinals, and in which S is fat; for then we can use Theorem 1. We let

 D be the normal filter over K, generated by the initial segments of S. Introduce a
 generic club C c co) which is almost included in each set of D (Lemma 2.7).
 Observe that S1, as well as any other stationary subset of W2 in the ground model,
 remains stationary in the extension V[C]: P of Lemma 2.7 satisfies the x2-a.c. It is
 not difficult to see that S is fat in V[C].

 2.9. We still have to show that the initial segments of a nonfat S s ()2 may
 form a normal filter over ol. Such an example is found in a generic extension
 of a universe that satisfies the GCH. For each a E SS1 pick Cj cz 3, club of
 order-type wi, and fj: Woi - Cj, order preserving onto C3. Let Z c (01 be some
 stationary co-stationary subset of w1. Denote Zj = fj[Z]. Then Zj is a stationary
 co-stationary subset of J. Our aim is to find T c SS2 with the following
 property.1

 2.10. For every 3 E SR2 there is an a < a such that Z - a = Tn cj - a.
 For if we find such T, then S= Sl2 U T is a stationary nonfat subset of x2

 whose initial segments form a normal filter-the filter generated by Z. To obtain

 T, define a poset P by p E P if p: S2 -> x2 is a countable partial pressing-down
 function such that for every (3, 3'e E Dom(p) and for every r E (Ca, - p-P')) n
 (C - p(G3)) we have r E Zj, if r E Zj. P is partially ordered by inclusion. The
 meaning of p((3) = a is that the generic T will satisfy Zj - a = T n C- a. It is
 clear that for anyp E P and 3 E Sal there isp' E P such that p c p' with 3 E Dom(p')
 (find a < a with the property that Ca, n (a, 3) = 0 for any 3' E Dom(p); then
 set p'(3) = a). Hence there are x2 dense sets such that if P is a filter generic with
 respect to those dense sets, then g = UP is a function defined on St, and then

 T = U {Zj - g(3)j( e S11} satisfies 2.10. So it remains only to check that P is
 countably closed and satisfies the X2-a.c., in order to conclude that 2.10 holds in a

 IS. Todor6evi6 has pointed out that an argument of M. Magidor can show the existence of
 such T, assuming Elk01.
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 generic extension which adds no reals and collapses no cardinals. This is not

 difficult, and we leave it to the reader.

 ?3. Unlike the case in [B, H, K] where every stationary S c Kl can acquire a

 club subset in some generic extension, a stationary subset of P~l(K2) may have a
 much stronger absolute character, as Theorems 6 and 7 show.

 The following theorem is much generalized in [S2].

 THEOREM 6. Let W be a transitive sub-universe of settheory such that KW =x K

 Then S = PX1(K2)W is a stationary subset of Pt1(K2) (in the real world).

 PROOF. Observe first that Kwj = K. Let C c P,,(K2) be a club set. By Kueker's
 theorem, there is a function f defined on P,0(Kl) with values in P11(K2) such that
 if x ' x2 is countable and closed under f, then x E C. One can easily find a < x2
 such that a (as a set) is closed underf. If a is countable, then as aE E W and K4w =
 Kl we get a E S f C. If a is uncountable, then there is, in W, a bijective h: K- a.
 Since a is closed underf we can find a ~ e El such that h[e] is closed under f Then

 h[e] r=s n C. a~
 In particular, if KL = x2 then S = Pt1(K2)L is a stationary subset of PK1(x2)

 Can we strengthen this and get that S contains a club set? No, as the following
 theorem says.

 THEOREM 7. Let V[r] be a generic extension of V, r c w, r ? V, obtained with

 a c.a.c. poset. Then, in V[r], Pr(K2) ln V and Pj1(x2) - V are both stationary.
 PROOF. In view of Theorem 6 we have to show only that PX1(K2) - V is stationary.

 Let C c PX1(K2) be a club set. By Kueker's theorem, there is f': P0o(x2) P-l (t2)
 such that {x E Po0(x2)fx is closed underf'} c C. Since V[r] is obtained via a count-
 able-antichain-poset-extension, one can find fe V, f: P0o(x2) -+ P,1(K2), such
 that f'(a) C f(a) for all finite a c x2. If x E PX1(x2) is closed under f then x E C.
 We want to find x, closed under f, such that x 0 V. To this end, we follow word by
 word the proof of Theorem 3.2 of Baumgartner [B, T]. Work for a while in V.

 For A c W02 let cl(A) denote the closure of A underf. Now Z = {a EC w21Ja is closed

 under ff} is club in W02. For a E Z n St, let <KnIn e co> be an increasing sequence
 cofinal in a. Put Aa cl({2jln e co}). Next, for each s e v2, we will define an
 ordinal Us E W2 and a stationary set Zs c Z nf St such that (1)-(3) below hold.

 (1) Va E Z,3n E w(= en
 (2) Zs<O> U Zs<l> c Zs,
 (3) Va E Zs<o> Vt E Zs<,>(ts<0>0 A: and ts<1> 0 Aa).
 Let us see how this ends the proof. Working in V[r], let A = cl({rt nln E co);

 then A E C. We claim:

 A 0 V and moreover: r(n) = 0 ff t(r tn) <> E A.

 The proof of this claim is easy, and we proceed to the inductive definition of the

 Us and Zs. To begin with, look at the pressing down function a F 4 defined on
 Z f sS2; by Fodor's theorem there is a fixed 20 and a stationary Z0- Z with

 20= 2c for all a E Z0. Now suppose Us and Zs are defined; we claim that

 K - {I1 for some n {a E Zs I 0 = A} is stationary}
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 is unbounded in W02. Indeed, if the set of these d's is bounded in (02 then a use of

 Fodor's theorem gives a quick contradiction. So jKJ = x2; let K' consist of the

 first a), elements of K. For every a E Zs, because Aa is countable, there is some
 $E K' such that e ? A,; hence we can pick Es=1 E K' such that tsq1 ? A. for station-
 ary many a E ZS, and we collect those a's to form Z'~o>. As ts~j1 E K' there exist n
 and a stationary set Zs<1> C Zi such that tsa1> = Zs for all 3 Ee Zs<,>. Finally by a
 similar argument we can find a stationary Zs<,> C Zs<1> and ts<O> such that ts<O> ? A:
 for all : E Zs<,>, yet for some n

 { a E Z <0> I ts<O> = n} Def Zs<0> is stationary. aI

 PROBLEM 3. Assume that there exists a nonconstructible real. Does it follow

 that PX1(x2) - L is stationary?2

 3.1. Forcing club subsets to PX1(2). By Theorem 6, if V' is a cardinal preserving

 extension of V, then P~1(X2)v' n V is stationary in Pl(x2)V'; hence any club
 subset of Pj1(x2) in V is stationary in V' (apply Kueker's theorem). Is it true that
 any stationary set in V remains stationary in V'? Well, if V' is obtained as a generic
 extension via a c.a.c. poset, then the answer is yes. This is because in a c.a.c. poset

 extension, for every club set C c P81(x2) in V', there is a function fE V such that
 if X E P,1(x2) is closed under f then X E C. To get a negative answer we need a sta-
 tionary co-stationary S c PX1(x2) in V, and a generic extension V' with a club

 C c Pj1(x2) (without collapsing cardinals), such that C n v CV S. This generic
 extension can be easily obtained as follows. Assume V = L, and let T ' x2 be

 fat and such that St - T is stationary. (In L there is a stationary R c SX0 such

 that for any a E St, Rf na is nonstationary [Jen]; put T = 2- R. On the other
 hand, in a model of Magidor [Ma, Theorem 1], no such T exists.) With Theorem
 1, find a generic extension V' which contains a club E c T. does not collapse

 cardinals and does not add new countable sets. Now, in V, S = {X e Pj1(x2) I
 sup(X) E T} is a stationary co-stationary subset of P11(82) (use Kueker's theorem
 to check this). Yet in V', C = {X E P11(82) I SUP(X) E E} is a club set and C c S.

 However, we feel uncomfortable with this easy solution: it solves the new prob-

 lem of forcing a club subset to a stationary S c P.1(x2) by recourse to the estab-
 lished method of shooting a club set to a stationary subset of C02. The "real" problem
 seems to be to do it without adding new club subsets of x2. To be concrete, let us
 require that the poset giving the extension satisfies the x2-a.c. (and then any club
 subset of x2 in the extension contains an old club set). We give two examples
 where this can occur: Theorems 8 and 9.

 3.2. Start with L. Let P = {p lp is a finite function from co, x co to w} be the poset
 for adding x1 many Cohen reals. Force with P and let ri, i E wc, be the ith Cohen

 generic-real; put V = L[(r Ii E co,)]. Let T = Pt;(12)L[ro] - L, and S = Pt4(x2)V -
 T. Now, T is stationary in L[ro], by Theorem 7; hence T is stationary in V (as
 V is obtained by a c.a.c. extension of L[ro]). S is also stationary, since S v

 P,1(x2) n L and Pt1(x2) n L. is stationary by Theorem 6. It is obvious that if
 X e Tand Y A XK(the symmetric difference) is finite, then Y e T and X is infinite.

 THEOREM 8. In V there is an X2-a.c. poset Q which is (w, oo)-distributive (forcing

 'Answered by M. Gitik-yes.
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 with Q adds no new countable sets) such that in any generic extension with Q there is
 a club subset of S.

 PROOF.3 Our aim is to force a function F: [x2]2 .> x2 such that any countable

 subset of x2, closed under F, is in S.
 3.3 DEFINITION. Define Q to be the set of allf such that:

 (I)f is a countable two-place function, Dom(f) = D ' cW2 and f: [D]2 -~ D.

 (2) For every a, i E D, a < A a < f(a, A) < p. (Call a function satisfying
 (1) and (2) a middlefunction.)

 (3) D E L (but not necessarilyf E L).

 (4) Whenever E c D and E E7 T, E is not closed underf.
 Q is partially ordered by inclusion.

 Remark that iff E Q, E c x2 and E n Dom(f) E T, then E is not closed under
 f (because f: [D]2 -~ D, so E is not closed under f if E n Dom(f) is not closed
 under f). The extension property: if f E Q and a E C W2 then a Ei Dom(f') for some

 f s f Ei Q, is easily verified. Another easy property is the following: iff is a middle
 function, D = Dom(f), then, for every a Ei cw2: fE Q ifff r cE Q andf r (2 - a)
 E Q. (Use the fact that if E E7 T then either E nf Ea T or E n (W2 - a) E T.) A
 standard application of the above is to use a A -system argument and to prove

 that Q satisfies the x2-a.c. (even Q is $2-centered). The following is the principal
 lemma showing the (co, oo) distributivity.

 3.4 LEMMA. Let {DIn EC w} be-a collection of dense open subsets of Q. Then nnflfEDfl
 is dense open in Q.

 PROOF. Given qo E Q we have to find q ? qo, q E finn> Dn. H(x3), the collection
 of all sets whose transitive closure is of cardinality < x2, is a model of ZF-. Mem-

 bers of H(x3) are T, <riji E cW>, Q, <Dn I n E Cl> and qo. Let M -< H(x3) be a count-
 able elementary substructure of H(x3) such that <r2 I i E cW>, Q, <Dn J n E Cl>, qo E M
 and M nf 2 E L. (This is possible by Theorem 6; since there are countably many

 functions (Skolem functions) such that if X E P.1($2) is closed under these functions,
 then X = M nf 2 for some substructure M as above.) Let z: M -~ M be the
 Mostowski isomorphism, collapsing M onto a transitive M. A well-known

 argument, which uses the transitivity of M and the c.a.c. of P, shows that there
 exists r < wi (r > 1) with M E L[<r2 I i E r>] = W. Of course, M is countable in

 W, so ir(Q) EA M is countable too. Let j: so -+ z(Q), j E W, be a bijection. rr, the
 rth Cohen real, is W-generic (function from w to w) over the Cohen poset of
 finite functions. Using rr and j, we will define inductively an increasing sequence

 of members of ir(Q), <4 i Ei Ew>, as follows: qo = z(qO) (qo is the given condition).
 Suppose qk is defined: if j(rr(k)) A k, set qk+l = j(rr(k)); otherwise, let qk+l = qk.
 Finally, set q = UkE i-r1(4)

 The following Claim ends the proof of Lemma 3.4, as qo r q.
 3.5 CLAIM. Dom(q) = M n x2, q E Q and q E fnls Dn
 PROOF. q is a countable function, defined on pairs, satisfying a < q(a, A) < 6

 for ca < p in its domain. Clearly q E W[rr], so the following is about members of
 W[rr]:

 3S. Todorcevi6 remarks that this is another example (see [S2, Chapter VII, ?5]) of a nonproper

 poset which does not destroy stationary sets.
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 3.6. The sequence <qJk E co> is W-generic over 7r(Q) in the sense that if D E W
 is dense in i(Q), then some qk extends a member of D.

 The proof of 3.6 is by the following density argument for the Cohen poset

 P 7r = e). In W, given arbitrary pE Pr and D dense in r(Q), we will find nEwC)
 and an extension of p which forces q EiD. Say Dom(p) = k; then for some
 f E r(Q), p 1H Pr " -k = f". Pickf' ED, f c f'; then f' = j(l) for some leoa.
 Define p' = p U {<k, 1>}, then p' IH Pr "qk+l = f' and hence qk+,1 E D"; proving
 3.6.

 Now because of the extension property (which holds in z(Q) in M), 3.6 shows

 that Dom(UlEW.q,) = iz(82) and hence Dom(q) = M n 82- So Dom(q) E L. As
 Dn E M, z(Dn) Ei Mis dense in iz(Q), so 3.6 implies that q extends some member of
 D. for each n E w. To prove q E Q we still have to check (4) in Definition 3.3;
 then q E Ad, Dn will follow.

 Before doing that, let us prove that z(Q) c Q. Although X 0 L, from the fact
 that M n82= D E L it follows that X r 82 Z r D E L. Hence, if E c D, E E T
 if E "E T. Given any fe z(Q), f= w(f) for some fE Q n M and Dom(f) =
 z(Dom(f)), so Dom(f) E L. Moreover, by what was said before, E satisfies all
 requirements (1)-(4) of 3.3, so fE Q.

 Coming back to the proof that q satisfies (4), let E c D = Dom(q), E E T, be
 given; we will prove that E is not closed under q. Set E' = "E, E' E T. If we show

 that E' is not closed under UkEa-,qk, it will follow that E is not closed under q. In
 view of 3.6, it is enough to show that the set of f E z(Q) such that E' is not
 closed under f is dense in z(Q) (E' E Te L[r-o] c W, so this set off's is in W).
 So let fe iz(Q) be given. In case E' n Dom(f) is nonconstructible, E' n
 'Dom(f) E7 T; and so (as fE Q) E' n Dom(f) is not closed under f and hence E'
 is not closed under f. In the case where E' n Dom(f) is constructible, it must be
 that E' - Dom(f) X L; and so E' - Dom(f) e T (because Dom(f) e L). Let
 a = inf(E' - Dom(f)) and b- Sup(E' - Dom(f)). So a E' - Dom(f) and
 b 0 E' - Dom(f). Let [a, b) be the left-closed right-open ordinal-interval. [a, b) c
 Mbecause Mis transitive. We show that [a, b) - E' # 0. Well, if [a, b) -E = 0F
 then E' - Dom(f) = [a, b) - Dom(f). Hence, as E' = (E' n Dom(f)) U (E' -

 Dom(f)), E' is constructible, contradicting E' E7 T. Pick ca E [a, b) - E'. As ca 0 E'
 and a < b = Sup(E' - Dom(f)), there is E E' - Dom(f) with ca < if. Then

 we define f' e z(Q), f X f', thus: set Dom(f') = Dom(f) U {a, a, P3}; as a,
 P s E' - Dom(f) we have freedom to define f '(a, p) = a and to define, for
 other arguments not in Dom(f), f'(x, y) = max{x, y}. It is easy to check

 FE z(Q). E' is not closed underf' because a, P E E' but a 0 E'.
 This ends the proof of Lemma 3.4. To conclude the proof of Theorem 8, let Q

 be a V-generic filter over Q and put F = UQ. Then F: [82]2 x2. Now if E E T,
 then Lemma 3.4 and the extension property imply that E _ Dom(f) for some
 f e Q (E is countable). Hence E is not closed under F. C]

 The technique of using generic reals as we did here is applied in [Al], [A2] and

 [A, S], ?5.
 3.7. We turn now to L and show there a stationary co-stationary set S c P.1(x2)

 and a poset P which satisfy the x2-a.c. such that forcing with P does not add new
 countable sets to L but introduces a club subset to S.
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 To begin with, let T c SHO be a stationary set which does not reflect; i.e., T n a
 is nonstationary in a whenever cf(a) = s1.

 c T holds in L, so an equivalent from gives us a sequence fT: [o3]<w as (, 3e T,
 such that wheneverf: [x2j<w -- 2 is given, there is (s E Twithfa = f r [o]<@.

 For every 3 e T pick some countable Na ' 6, closed underf, with sup Na = ;

 moreover, we ask that if , E T f N3 then N, ' Na, and if a E T. a < a, is such that
 a = sUP(a Na) then a E Na.

 In order to prove that such a countable Na exists we use the fact that any initial

 segment of T is nonstationary: so let C, E S81, be closed unbounded, C,, c
 but C, n T = 0. Define a two-place function h on 82, such that if a < g and
 ey E SS1 then h(a, i2) is the least member of Cg above a. Now let Na be cofinal in 3,
 closed underfa, closed under h, closed under a | + Na, and closed under the function
 that takes any successor ordinal to its predecessor and any countable-cofinality
 ordinal to a countable cofinal sequence. We have to check that if a E T, a =
 sup(a Na), a < 3, then a E Na. Assume not, and let a < a < a be the first
 ordinal in Na above a. Necessarily, cf(a) = t1 and C: n a is unbounded in a.
 Hence a e Cp, so that a 0 T.

 It is not difficult to see that T* = {Nal s E T} is a stationary subset of P1(x2).
 (Just use Kueker's theorem and the property of the diamond sequence to guess

 functionsf: [82]<w - 82 which corresponds to club sets.)

 It is even easier to see that T* is co-stationary. Put S = Pj1(82) - T*.
 THEOREM 9. There exists a poset P which satisfies the 82-a.c. such that forcing with

 P adds a club subset to S, but does not add new countable sets.
 PROOF. Members of P are all pairs (B, g) where g is a countable function, g:

 B -+ B, and B c 82, satisfying the following:
 (1) If a E Tand a = sup(a n B) then s v= B.
 (2) If a EB [n Tthen N3 c B.
 (3) For every 3 E B n Tthere is a e Na with g(a) 0 N3.
 It is easy to check that for each i < 82 {(B, g) I i e B} is dense in P. It follows that

 a generic filter over P provides us with a function g on 82 such that no N3 is closed
 under g. If we show that P does not add new countable sets, then it follows that S
 acquires a club subset in any P-generic extension.

 3.8 LEMMA. Forcing with P does not add new countable sets.

 PROOF. Let v be a name in LP of a function from ov into the ordinals. Let po e P
 be given; we want to find p ? po in P which decides all values v(n), n e ao.

 Let A be a cardinal with P, r E H(A). Pick a countable elementary submodel

 M -< H(A), such that po, P, r E M and sup(M n 82) 0 T. (Since Tdoes not reflect,
 it is possible to find such an M: first find such a substructure of cardinality

 81X)

 CLAIM. If a =sup(M n a) and a E T then a E M.
 The proof, left to the reader, is like the one used to conclude that the Na

 exist.

 Now we define an increasing sequence p, E P f M, n E ao, such that for every
 D E M, dense and open in P, pO, E D for some n. Let p = Upn (i.e., if pn =
 (Bn, gn) then p = (B, g), where B = Un<w B, and g = Un<o g). Then B =
 M n 82 and p e P by the claim above, and p knows all the values of r(n). M
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