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Abstract: We prove that if G is a Polish group and A a group admitting a system of generators whose
associated length function satisfies: (i) if 0 < k < w, then Ig(x) < Ig(x¥); (ii) if Ig(y) < k < w and
xK =y, then x = ¢, then there exists a subgroup G* of G of size b (the bounding number) such that
G* is not embeddable in A. In particular, we prove that the automorphism group of a countable
structure cannot be an uncountable right-angled Artin group. This generalizes analogous results for
free and free abelian uncountable groups.
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In a meeting in Durham in 1997, Evans asked if an uncountable free group can be realized as
the group of automorphisms of a countable structure. This was settled in the negative by Shelah [1].
Independently, in the context of descriptive set theory, Becher and Kechris [2] asked if an uncountable
Polish group can be free. This was also answered negatively by Shelah [3], generalizing the techniques
of [1]. Inspired by the question of Becher and Kechris, Solecki [4] proved that no uncountable Polish
group can be free abelian. In this paper, we give a general framework for these results, proving that no
uncountable Polish group can be a right-angled Artin group (see Definition 1). We actually prove more:

Theorem 1. Let G = (G, d) be an uncountable Polish group and A a group admitting a system of generators
whose associated length function satisfies the following conditions:

(i) if0 <k < w, then 1g(x) < Ig(x¥);
(ii) iflg(y) < k < wand x* =y, then x = e.

Then G is not isomorphic to A; in fact, there exists a subgroup G* of G of size b (the bounding number)
such that G* is not embeddable in A.

After the authors proved Theorem 1, they discovered that the impossibility to endow groups A as
in Theorem 1 with a Polish group topology follows from an old important result of Dudley [5]. In fact,
Dudley’s work implies more strongly that we cannot even find a homomorphism from a Polish group
G into A. Apart from the fact that the claim about G* in Theorem 1 is of independent interest and not
subsumed by Dudley’s work, our focus here is on techniques; i.e., the crucial use of the Compactness
Lemma of [3]. This powerful result has a broad scope of applications, and is used by the authors in a
work in preparation [6] to deal with classes of groups not covered by Theorem 1 or Dudley’s work,
most notably the class of right-angled Coxeter groups (see Definition 1).

Proof of Theorem 1. Let { = ({n)n<w € R be such that {, < 27", for every n < w, and
g = (gn)n<w € G¥ such that g, # e and d(gn,e) < {n, for every n < w. Let A be a set of power
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b of increasing functions 1 € w® which is unbounded with respect to the partial order of eventual
domination. For transparency, we also assume that for every 7 € A we have 17(0) > 0. For 57 € A,
define the following set of equations:

I, = {ngﬂ) =Xugn N < w}.

By (3.1, [3]), for every 17 € A, T}, is solvable in G. Let by = (byn)n<o Witness it; i.e.,

by € GY and N\ bnnJrl by n8n-

n<w

Let G* be the subgroup of G generated by {g, : n < w} U{by, : 1 € A,n < w}. Towards
contradiction, suppose that 7 is an embedding of G* into A, and let S be a system of generators for
A whose associated length function Igs = Ig satisfies conditions (i) and (ii) of the statement of the
theorem. For7 € Aand n < w, let:

mt(gn) = g;w n(bmn) =y and my(n) = lg(cﬂ,o)'

Now, m, is a function from A to w and so there exists unbounded A; C A such that for every
1 € A1 the value m. () is a constant ... Fix such a A and m, and let fi, f, € w* increasing satisfying
the following:

1) fi(n) >1g(gh);
(2) fa(n) = (me+1) + Xoey f1(£).

Claim 1. For every 17 € Ay, 1g(cyn) < fa(n).

Proof. By induction on n < w. The case n = 0 is clear by the choice of f; and f,. Letn = m 4 1.
Because of assumption (i) on A, the choice of A1, and the choice of f; and f,, we have:

1g(chn)
g(cpm8m)

lg(c,?,n) (
(

lgEC” m) +18(gm)
(

AN VAN IR VAN

fa(m) + f1(m)
fa(n).

O

Now, by the choice of Ay, we can find 7 € A and n < w such that #(n) > f,(n + 2). Notice then
that by the claim above and the choice of f; and f,, we have:

n(n) > fo(n+1) = fo(n) + fi(n) > 1g(cyn) +18(gn) > 18(cyngn), O]
n(n) > fo(n+2) = fi(n+1) > Ig(gh1)- @)
Thus, by (1) and the fact that CZ(nJ)rl = ¢y,n8), Using assumption (ii), we infer that cyn+1 = e. Hence,

n(n+1) /
Cr],n+2 = Cy, n+1gn+1 8n+1-

Furthermore, if 77(n 4-1) > Ig(g),;), then again by assumption (ii), we have that ¢, ,, 12 = ¢, and so

Z(::zl) = gy41 = ¢ which contradicts the choice of (g)n<w- Hence, n(n) < n(n+1) < Ig(g).1),

contradicting (2). It follows that the embedding 7t from G* into A cannot exist. [
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Definition 1. Given a graph T = (E, V), the right-angled Artin group A(T) is the group with presentation:
() = (V | ab = ba : aED).

If in the presentation Q)(T'), we ask in addition that all the generators are involutions, then we speak of
right-angled Coxeter groups C(T').

Thus, for T, a graph with no edges (resp. a complete graph) A(T) is a free group (resp. a free
abelian group).

Definition 2. Let A(T') be a right-angled Artin group and 1g its associated length function. We say that an
element ¢ € A(T) is cyclically reduced if it cannot be written as ¢ = hfh~' with 1g(g) = Ig(f) +2.

Fact 1. Let A(T) be a right-angled Artin group, 1g its associated length function, and ¢ € A(T). Then:

(1) g can be written as hfh ="' with f cyclically reduced and 1g(g) = 1g(f) + 2Ig(h);
(2) if0 < k < wand f is cyclically reduced, then 1g(f*) = kig(f);
(3) if0 <k < wand g =hfhVisasin (1), then Ig(hfh~ 1)k = kig(f) + 21g(h).

Proof. Item (1) is proved in (Proposition on p. 38, [7]). The rest is folklore. O
Corollary 1. No uncountable Polish group can be a right-angled Artin group.

Proof. By Theorem 1 it suffices to show that for every right-angled Artin group A(T) the associated
length function Ig satisfies conditions (i) and (ii) of the theorem, but by Fact 1, this is clear. [

As is well known, the automorphism group of a countable structure is naturally endowed with a
Polish topology which respects the group structure, hence:

Corollary 2. The automorphism group of a countable structure cannot be an uncountable right-angled Artin group.

As already mentioned, the situation is different for right-angled Coxeter groups; in fact, the
structure M with w many disjoint unary predicates of size 2 is such that Aut(M) = (Z,)“; i.e., Aut(M)
is the right-angled Coxeter group on K, (a complete graph on continuum many vertices). Notice that
in this group for any a # b € K., we have:

(D) (ab)*=1;
(i) Ig(ab) =2 < 3, (ab)® = ab and ab # e.
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