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A NOTE ON THE NORMAL MOORE SPACE CONJECTURE 

KEITH J. DEVLIN AND SAHARON SHELAH 

F. B. Jones (1937) conjectured that every normal Moore space is metrizable. 
He also denned a particular kind of topological space (now known as Jones' 
spaces), proved that they were all non-metrizable Moore spaces, but was 
unable to decide whether or not Jones' spaces are normal. J. H. Silver (1967) 
proved that a positive solution to Jones' conjecture was not possible, and 
W. Fleissner (1973) obtained an alternative proof by showing that it is not 
possible to prove the non-normality of Jones' spaces. These results left open 
the possibility of resolving the questions from the GCH. In this paper we show 
that if CH be assumed, then Jones' spaces are not normal (Devlin, Shelah, 
independently) and that the GCH does not lead to a positive solution to the 
Jones conjecture (Shelah). A brief survey of the progress on the problem to 
date is also included. 

1. Introduction. For topological background, we refer the reader to any 
standard text on general topology. The metrization problem asks for necessary 
and sufficient conditions on a topological space X in order that the topology 
on X be determined by a metric on X. (A metric is said to metrize a topological 
space if the open balls determined by the metric form a base for the topology 
on X.) An early solution to this problem was supplied by Alexandroff and 
Urysohn in 1923. They proved, in [1]: 

THEOREM 1.1. [1]. A Hausdorff space is metrizable if and only if there is a 
sequence \Gn) of open covers of the space such that: 

(i) Gn+1 refines Gn; 
(ii) If U is an open neighbourhood of the point p, then for some n, 

U k f Gn\p e g} QU; 
(iii) IfH,Ke Gn+i and H H K ^ 0, then for some G £ Gn, H U K C G. 

One half of the the proof of 1.1 is easy. Let Gn consist of all open balls of 
radius 1/2" (relative to some metrization of the space). This indicates the 
motivation behind the formulation of 1.1. 
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242 K. J. DEVLIN AND S. SHELAH 

Of course, this solution is not a "good" solution, since condition (iii) above 
is not a standard topological condition, and is, indeed, a way of obtaining a 
"triangle inequality" from which one may recover a metrization. A better 
solution was found by Bing, Nagata and Smirnov in 1951. This is the solution 
which is given in most texts. Bing proved that a topological space is metrizable 
if and only if it is T% and has a ©--discrète base. (A collection of subsets of a 
space X is discrete if every point of X has a neighbourhood which intersects 
at most one member of the collection, and is a-discrete if it is the union of 
countably many discrete subcollections.) 

However, 1.1 already suggests an alternative solution to the metrization 
problem. Let us call a sequence {Gn} of open covers of a space satisfying 
property (ii) of 1.1 a development of the space. (One may also demand 1.1 (i) 
here, but this is not important, and so we shall not do so.) 1\ spaces which 
possess a development were studied extensively by R. L. Moore, [12] and 
have become known as Moore spaces. Moore spaces resemble metrizable spaces 
to some extent, but not every Moore space is metrizable. (We shall see a 
counterexample in § 2.) In 1937, F. B. Jones [10] proved the following result: 

THEOREM 1.2. [10]. Assume 2H° < 2Xl. Then every separable normal Moore 
space is metrizable. 

Jones conjectured that every normal Moore space is metrizable. This became 
known as the "normal Moore space conjecture". Perhaps the most significant 
partial solution to this problem is due to Bing in his 1951 paper [2]. 

A space X is collectionwise normal if, whenever % is a discrete collection of 
closed sets there is a disjoint collection {IL|^4 Ç %) of open sets such that 
A C \\A for all A Ç g. (We call {UA\A £ %} a, separation of g) . 

THEOREM 1.3. [2]. A topological space is metrizable if and only if it is a col
lectionwise normal Moore space. 

In view of 1.3, the normal Moore space conjecture may be reformulated as: 
every normal Moore space is collectionwise normal. Assuming V — L (the 
axiom of constructibility), one may obtain a partial result in this direction. Wre 
require a définition. 

A subset F of a space X is closed discrete if and only if {{3/} \y £ Y\ is a discrete 
collection of subsets of X, i.e. if and only if every point of X has a neighbourhood 
which contains at most one member of F. (Notice that if Y C X is discrete, then 
Fcan have no limit points, so any subset of F will be closed. We shall make great 
use of this fact in what follows.) We say X is collectionwise Hausdorff if every 
discrete subset of X has a separation (i.e. a family {lly\y G Y) of pairwise 
disjoint open sets Uy such that y £ Uy). Collectionwise normality implies 
collectionwise Hausdorff. 

Clearly, any Moore space is first countable (consider the neighbourhood 
bases provided by the development). Hence the following result goes part way 
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MOORE SPACE 243 

to resolving the normal Moore space conjecture positively (see [8] for further 
details): 

THEOREM 1.4. [8]. Assume V = L. Then every first countable TA space is col-
lectionwise Hausdorff. 

Some assumption such as V = L is necessary here, in view of the following 
result (see [14] for detai ls) : 

T H E O R E M 1.5. Assume MA (Martin's Axiom) together with 2H° > Ki. Then 
there is a normal Moore space which is not collectionwise Hausdorff. 

Of course, one immediate consequence of 1.5 is: 

COROLLARY 1.6. If ZFC is consistent, then so is ZFC together with "there is a 
normal Moore space which is not metrizable." 

Hence, in order to resolve the normal Moore space problem positively one 
must assume extra axioms of set theory. In view of 1.2, one might expect G C H 
to be enough. In § 3 we show tha t this is not the case. 

A recent result of P. Nyikos shows tha t relative to the consistency assump
tion of the existence of a strongly compact cardinal, it is consistent to assume 
tha t every normal Moore space is metrizable (with 2^° very large). 

Let. us go back to Jones now. Jones (in [11]) constructed an example of a 
non-metrizable Moore space which became known as Jones' space. (In fact, 
wha t we have here is a class of spaces: Jones1 spaces.) Even assuming CH, 
Jones was unable to show whether these spaces were normal or not. (And, of 
course, normali ty cf such a space a t once resolves the normal Moore space con
jecture negatively.) Wi thou t put t ing too fine a point on it, Jones ' spaces are 
jus t special Aronszajn trees with the tree topology. In § 2 of this paper we 
investigate Jones spaces, and prove tha t if we assume 2**° < 2 X l , then no 
Jones space is normal. This complements the following result of Fleissner 
(which also provides us with an al ternative proof of 1.5): 

T H E O R E M 1.7. [8]. Assume MA together with 2X° > Ki. Then every Jones space 
is normal. 

Finally, a word about notation, etc. We shall work in Zermelo-Fraenkel set 
theory, inclusive of the axiom of choice, and denote this theory by ZFC. We 
use the usual notations and conventions of current set theory. A set E C coi 
is stationary if and only if E Pi C ^ 0 for every closed unbounded set (club) 
C C coi. F odor's theorem says tha t if E C coi is s ta t ionary and / : E —» coi is 
regressive (i.e. f(a) < a for all a Ç £ ) , then there is a s ta t ionary set E' C E 
such t h a t / is constant on E''. If a is an ordinal, 2a denotes {/(/ : a —> 2} and 

2a = U 2^ 

We set 12 - {a G «i | lim (a)}. 
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244 K. J. DEVLIN AND S. SHELAH 

2. Ni-Trees a n d t h e Tree T o p o l o g y . A tree is a poset f = (T, ^ T) such 
t ha t for each x £ T, x = {y Ç r|;y < 7 -x} is well-ordered by < r . T h e order-
type of the set x under <T is called the height of x in T, ht(x). T h e set Ta = 

{x Ç T\ht(x) = a} is the a ' th fe^/ of 7\ We set T H « = U W ^ / 3 , and write 
r T ^ for (T r « , ^ T n (T H a ) 2 ) . (In practice, we often do not bother to 
distinguish between a tree T and its domain T, writ ing jus t T for both, accor
ding to context. And if T is some fixed set, say coi, we even use T to refer to the 
ordering, rg r , of the tree.) 

Let r be a tree. A branch of T is a total ly ordered initial segment of T. If a 

is the order- type of a branch b of 7\ we say b is an a-branch. An antichain of 
r is a pairwise incomparable subset of 7\ (For instance, every level of T is an 
antichain of T.) 

Let X ^ o?i. A tree T is a \-tree if and only if the following conditions are met : 

(i) | r 0 | = 1; (by convention, 0 always denotes the unique element of T0) 

(ii) ( V a < X ) ( r a ^ 0 ) ; 

(iii) 7 \ = 0; 

(iv) ( V a < X ) ( | r t t | ^ K o ) ; 

(v) (Va,p<\)(Vxe Ta)[(a<p)-+Qye Tp)(x<Ty)]) 

(vi) (Va < x)(v* e r„)[(« + i < x) -> (3yi, ^ e ra+1) 
(yi 9e y<i A x <Ty\ Ax <Tyi)~]', 

(vii) ( \ /a < X)(\/x, y ë r a ) [ l im (a) —> (x = y <-> x = 3/)]. 

Let 7" be an coi-tree. If a, 6 £ T, a <T b, we set: 

[a, 6] = {x 6 r | a ^ r x ST b] (we call [a, b] a closed in terva l ) ; 

[a, 6) = {x G r | a ^ T ^ < r ^ | (we call [a, &) a half -open interval) ; 

(a, b] = {x £ r | a < r x ^ r &} (we call (a, 6] a half-open interval) ; 

(a,b) = {x G 7"|a < r x < ^ M (we call (a, 6) an open interval) . 

W e make T into a topological space by taking as an open basis all sets of the 
form (a, b) for a <T b and all sets of the form [0, a) for a £ T. This topology 
is the tree topology on T. 

Let T be an coi-tree with the tree topology. T h e following facts are easily 
verified : 

1. To is open. 
2. If x G Ta+i, then {x} is open. 
3. Any branch of T is open. 
4. Let A C T. A point x £ T will be a limit point of A if and only if ht(x) is 

a limit ordinal and A Pi x is cofinal in x under <T. 
5. Any maximal branch of T is closed. 
6. An antichain of T is a closed, discrete subset of T. 
7. r is first countable. 
8. T is a Tz space. 
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MOORE SPACE 245 

By a tree space we shall mean an wi-tree with the tree topology. An Aronszajn 

tree (AT) is an wi-tree with no coi-branch. An Aronszajn tree is special if it is 

the union of a countable collection of antichains. We write SAT for "special 

Aronszajn t ree" . T h e following result is proved in [9]: 

T H E O R E M 2.1. There is a SAT. 

Indeed, it is known from work of Kunen, Baumgartner , et. al. t h a t a non-
special AT cannot be constructed in ZFC. And by later work of Jensen, even 
if G C H be assumed, a non-special AT cannot be constructed. (See [5] for 
details.) 

Suppose T is an «i-tree, A C coi. We set 

T H A = U Ta. 

T H E O R E M 2.2. Let T be an wi-tree. T is special if and only if for some club set 
A C OJI, T r A is special. 

Proof: (->) Take A = coi. 
(<—) Let (av\v < coi) enumerate A \J {0} in order of magnitude. For each v, 

let (an
v\n < X") enumerate {£\av ^ ? < ap+i], where X" ^ co. Let An, n < co, 

be antichains of T T i4 such tha t I T ^ = Un<« ^n- F ° r n, nt < u, let 

^n,m = {y 6 T | ( 3 x e -4W)(3^ < «Of* € r a , a n d ; y G T ^ a n d x g ry]} 

(where we set am
v = 0 if m ^ X", for convenience). Clearly, the ^4n>7n sets are 

antichains of T, and Un,m<uAntm = T. 

T H E O R E M 2.3. Let T be an wi-tree. T is a SAT if and only if T is a Moore space. 

Proof. Let T = Un<o> An, where each An is an antichain of T. For each n, 
e a c h * G T,setUn(x) = {y ST x\[y,x) H [ U ^ K Ak] = 0}. Clearly, x Ç £/»(#)• 
And it is easily seen tha t each Un(x) is open. Set Gn = { Un(x)\x £ T}, an open 
cover of T, for each w. We show tha t {Gn}n<u is a development of T. Let £/ be 
open in T} p £ £/. Pick n < œ with £ G ^4W. Clearly, if m ^ w and >̂ G Um(x), 
then x = p. Pick g <T p so t ha t (g, £] C [/. Let q £ Ak. Set m = max (w, &). 
Then U {£ € GTO|£ 6 g] = Un(p) Q (g, £] C C7. 

Conversely, Let {Gn}n<<» be a development of T. Clearly, if Gn' is an open 
cover of T which refines Gn for each n, then {Gn)n<w will also be a development 
of T. Hence we may assume tha t the elements of each Gn consist of basic open 
sets. Indeed, we may assume tha t for each n, Gn consists of all sets {x} for x a 
member of a successor level of T together with sets (fn(x), x] for x a member of 
a limit level of T, where fn(x) <Tx. By taking refinements again if necessary 
we may assume further t ha t for each x on a limit level of T, fo(x) <T f\(x) 
<rfi{x) <T . . . <Tfn(x) <T • • • 

Recall t ha t Q = {a £ a>i| lim (a)}. Define h : T H Û -> co thus: ft (a) is the 
least w such tha t wherever y £ 2" H ̂  a n d x < r y, it is the case t ha t x ^Tfn(y). 
We show tha t h is well-defined. Let U = [0, x], an open set containing x. Pick n 
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so that U k £ Gn\x Ç g) C [/. Suppose that for some y >Tx it is not the 
case that x ^Tfn(y). Since fn(y) <Ty, it must be the case that fn(y) <Tx-
Thus x £ (fn(y), y]- So we must have (/n(y), y] £ £/, giving y (z U, which is 
absurd. It follows that A is well-defined. For n < w, set 

£„ = {*,£ r PS2|ft(a) - n\. 

Claim. No £ n contains a chain of type co + 1. 

Proof. Suppose (av\v ^ co) is a <T-chain in En. Set 7 = sup„<Jit(a„), and 
let x be the unique predecessor of aw on Ty. For each v < co, /&(a„) = n and 
a„ <r#> so av ^Tfn{x). Hence ht(fn(x)) è 7, contrary to /«(#) <Tx f Ty. 
The claim is proved. 

By Theorem 2.2, we are done if we can show that T P 12 is special. Well-order 
T P 12 as (x„|y < coi) so that v < r—»ht(x„) ^ ht(xT). We define disjoint 
antichains En>m of T by recursion. At stage v we decide which antichain will 
receive xv. We pick n with xv 6 £n . By the claim we can find an m such that 
[T < v and xr Ç En and xT < r # J —» [#r ? -Êw.m]- We put xv into £n>m for such 
an m. Clearly, T P 0 = Un,m<« ^n,m partitions T T 0 into disjoint antichains. 

Fleissner proved that if we assume V = L (or more generally, if we assume 
4), then no SAT space is normal. Devlin and Shelah (independently) strength
ened this to obtain the result from 2X° < 2Hl, The key to the result lies in the 
following two results, proved in [6]. 

THEOREM 2.4. Assume 2K° < 2*1. Let F : 2"1 -» 2. JTœw there is a g e T 
such that for any f £ 2e01, {a G coi\F(f P a) = g (a)} is stationary in coL. 

THEOREM 2.5. Le£ / £>£ /Ae set of all sets S C coi swe/z / t o Jfeere exists an 
F : 2"1 —> 2 swc& that for all g £ 2"1 /Aere is an f £ 2e"1 /or which 

{a£S\F(f r « ) = g (a)} 

is W0£ stationary. Then I is a normal ideal on coi. 

Using these results, we may now prove the main new result of this section: 

THEOREM 2.6. Assume 2*° < 2Xl. Let T be a SAT (with the tree topology). 
Then T is not normal. 

Proof. Let T be identified with coi so that a <T 0 —> a < (3 and lim (a) —» 
htr(û:) = a. Let ^4n be disjoint antichains of T with T = Un£« ^L- Let / be as 
in Theorem 2.5. Suppose An £ I for all w. Then, as 7 is a countably complete 
ideal, T £ I, i.e. coi £ 7. This contradicts Theorem 2.4. Hence for some n, 
An & I. Let A = An for such an n. Let £ = {a £ A\ lim (a)}. Clearly, E £ I. 

Define F : 2^ -» 2 as follows. Given/ 6 2a, a < coi, set F( / ) = 0 if and only 
if there is any 7 <Ta such that / (5) = 0 for all ô such that 7 < r ô <7-ai; and 
let £( / ) = 1, otherwise. 

Since £ £ I, there is a g G 2"1 such that for all / £ 2% the set 

K W / r«) = g(a)} 
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is stationary. Set 

ff=M E\g(a) =0},K= \a Ç E\g(a) = 1}. 

Since E is an antichain of T, it is closed discrete. Hence H and K are disjoint, 
closed subsets of T. We claim that / / a n d i£ cannot be separated. Suppose, on 
the contrary, that there are disjoint open sets U, V C T with H Q U, K C F. 
Define / G 2e01 by 

/0 if a 6 F, 
U otherwise. 

By choice of g, E! = j a f E\F(f Ha) — g (a)} is stationary, hence non-empty. 
Pick a G £ ' . 

Suppose first that g (a) = 0. Thus F ( / Ha) = 0 . So for some y <Ta, 
f(è) = 0 wherever 7 <r<5 < r a . So, by definition of /, (7, a)T C F. But 
g (a) = 0, so a G H Ç. U, so for some y' < r a , (7 ' ,a) ' r C {/. This is a contradiction. 

Now suppose that g (a) = 1. Thus a £ K C F. So for some 7 < r a , 

( 7 , « ) r £ F. 

Thus 7 <r<5 < r a implies/(<5) = 0. Hence by definition of F, F(f H a) = 0. 
But then g (a) 9^ F(f H ex). This is a contradiction and the theorem is proved. 

Hence, assuming CH, Jones' spaces are not normal. For completeness we 
prove finally that they are not collection-wise Hausdorff. We need a simple 
lemma, whose proof we leave to the reader. 

LEMMA 2.7. Let T be a SAT. Then T has an antichain A such that 

E = {ht(a)|a Ç A] 

is stationary in coi. 

THEOREM 2.8. No SAT space is collectionwise Hausdorff. 

Proof. Let T be a SAT. By Lemma 2.7, we can choose an antichain A of T 
such that, if A = {aa\a Ç E\ and aa G T«, then E is stationary in cox. We may 
assume that E C 12. 

Since 4. is an antichain of 7", it is clearly a discrete subset of T. Suppose we 
could separate the elements of A by disjoint open sets. Then we could separate 
the elements of A by disjoint basic open sets. Indeed, we may define a function 
/ : A —» T such that f(a) <T a for all a and {(/(a), a] \a £ A} is a separating 
set. Define h : E —> a>i by h (à) = h t( / (a a)) . Then /z is regressive, so by Fodor's 
theorem there is a stationary set E' C E on which A is constant, say with value 
5. Let A' = {a«|a £ -E'}. Now, for each a £ A', f(a) t T8, so there is a unique 
member of (f(a), a] on 7Yj_i, saY g(a)- But A' is uncountable and T^+i is 
countable, so for some #i, a2 € -4', ai 5̂  a2, we must have g(a\) — g(0,2)- Thus 
(f(ai), a J H (/(a2), a2] 5̂  0, a contradiction. 
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We make a final remark. The reader may well wonder, in view of Theorem 
2.6, if any Aronszajn tree space is normal. This question is investigated fully 
in [7]: it turns out that the normality of tree spaces is connected with the 
degree to which the tree is "Souslin". In particular, any Souslin tree space is 
normal. (But since any Souslin tree space is also collectionwise Hausdorff, this 
does not help us with the normal Moore space problem.) 

3. Ladder Systems and LS Topologies. As before, 12 denotes the set of all 
countable limit ordinals. If 5 £ fi, a ladder on 8 is a strictly increasing 
w-sequence cofinal in S. A 2-colouring of a ladder r? on 5 is a function k : co —> 2. 
We might say that k assigns to rj(n) the "colour" k(n). If E C 12, a ladder 

system on £ is a sequence rj = (r75|<5 £ E) such that rjt is a ladder on 5 for each 
<5 £ E. A 2-colouring of 77 is a sequence k = (k^S £ £ ) such that ki 

is a 2-colouring of 773 for each 5 £ £. A uniformisation of fe is a func
tion h : coi —» 2 such that for each 5 £ £ there is an w £ co such that m ^ n 

implies ki(rn) = h(rn(ni)). The basic question is: given a ladder system on a 
set E, does every 2-colouring possess a uniformisation? 

The above notions were introduced by Shelah in connection with the famous 
Whitehead Problem in group theory. (At least, the above is a simple modifica
tion of Shelah's concepts.) The terminology is due to Devlin. It has turned out 
that the concept has other applications. We present one here. (Another is given 
in L3].) 

The following results are fundamental, and quite easy to prove. 

THEOREM 3.1. Assume MA together with 2X° > Ki. Let E C 12. Then every 
2-colouring of every ladder system on E is uniformisable. 

THEOREM 3.2. Assume V = L. Let E C 12 be stationary. Then every ladder 
system on E has a non-uniformisable 2-colouring. 

Both of the above results are proved in [3]. This is also our reference for the 
following result, whose proof led to the formulation (and proof) of Theorems 
2.4 and 2.5. 

THEOREM 3.3. Assume 2H° < 2Xl. Let E C 12 be club. Then every ladder 
system on E has a non-uniformisable colouring. 

The assumption that E be club in Theorem 3.3 is essential. In [13] the fol
lowing result is proved. 

THEOREM 3.4. Let M be a countable transitive model of ZFC together with GCH. 
In M, let E be a stationary, co stationary subset of coi, with E Ç 12, and 
let rj = (rjs\8 G E) be a ladder system on E. Then there is a generic extension N 
of M such that: 

(i) M and N have the same cardinals and cofinality function; 
(ii) M" H M = M- H N; 

(iii) the GCH holds in N; 
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(iv) in N, both E and coi-E are stationary; 

(v) in N, every 2-colouring of rj is uniformisable. 

T h e idea behind the proof of Theorem 3.4 is to i terate (in an obvious man
ner) the obvious algebra for uniformising a given 2-colouring of 77. W h a t is not 
easy is proving tha t E remains stat ionary. The proof is given in [13]. 

Let E C Q, now, and let rj = (T7$|<5 Ç E) be a ladder system on E. W e may 

define a topology on coi as follows. 

(a) If ô G coi — E, {8} is an open neighbourhood of 8. 

(b) If<5 G £ , each set of the form Nn(8) = {rjô(m)\n ^ m < co} U {8} is an 
open neighbourhood of 8. 

This clearly defines a 1st countable topology on coi, the 77-topology. Any such 
topology is called a ladder system topology, or LS-topology for short. 

LEMMA 3.5. Any LS-topology is Td. 

Proof. Let 77 = (rjs\ô £ E ) be a ladder system on E C 12, and let X be the 
77-topology on o>i. 

I. X is 7Y T o see this, let a (z X. We show tha t {a} is closed. Let 8 9^ a. 
If 8 d E, then {5} is an open neighbourhood of 8 disjoint from {a}. Now sup
pose 5 £ E. If 8 < a then N0(8) is an open neighbourhood of 8 disjoint from 
{a}. Otherwise, if a < 8, then for some n, rjs(n) > a, and Nn(8) is then an open 
neighbourhood of 8 disjoint from {a}. Hence X — {a\ is open. T h u s {a} is 
closed. 

I I . X is regular. For let 8 be any member of X, A any closed set not con
taining 8. We find disjoint open sets £/, V with 8 £ U, A Q V. 

Suppose first t ha t 8 $ E. Let £/ = {8}. For each « U , let Va = {a} if 
a Q E, and let F a = Nn(a) if a (z E, where n is least such tha t m ^ n implies 
7)a(m) 9^ 8. (Such an n always exists, of course.) Let V = UaçA Va- Clearly U 
and V are as required. 

Suppose now tha t 8 £ E. Since A is closed and 8 (? A, there is an n0 £ co 
such t ha t NnQ(8) H A = 0, i.e. m ^ n0-+ rjt(m) £ A. Set 

U= NnQ(8), 

an open neighbourhood of 5. Suppose a £ A. If a £ E, let Va = {a}. Now 
suppose a G E. If a > 8, then for some n £ co, 77a(?z) > 5, and we 
set Va = Nn(a). Now suppose a < 5. If 770(0) > a, set F a = N0(a). Otherwise, 
let n\ be largest with t\i(n\) < a, and let n<i be least with t]a(ni) > f?«(»i). Set 

F a = JV„2(a) 

in this case. Let V = Ua^A Va. Clearly, U, V are as required. 
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Fix now some SAT T. We may identify T with coi so t h a t : 

(i) a <T$-+a < 0; 
(ii) a Ç Q - » h t (a) = a; 

(iii) a Ç 12 —> sup {/3 G a\fi <T a} = a. 

Let An be disjoint antichains of T such t h a t £ = Uwe&> An. Define h : 0 —> w by 
A (a) = w if and only if a: G An. Since h is regressive there is a s ta t ionary set 
£ C fisuch tha t fe is constant on £ , say with value w. Since E Ç ^4n, £ is an 
antichain of £ . 

By thinning dowTn E if necessary, we may assume t h a t on — E is also 
s ta t ionary. 

Define a ladder system rj = (rçgjô 6 £ ) now by picking ?i3 an co-sequence 
cofinal in 8 in the sense of <T. Let X be the 77-space. 

LEMMA 3.6. X is a Moore space. 

Proof. Now, T = U ^ -4W, where each yiw is an ant ichain of T. Let n G co. 

If 8 G coi — £ , let gra(5) = {5}. Now suppose 8 G £ . Pick m so tha t 

77«(m) ^ T < T ^ - > 7 ? UkznAki 

and set gn(5) = Nm(8). Let Gw = {g„(5)|5 G coi}, an open cover of X. We show 
t h a t {Gn) is a development of X. Let £7 be open in X, 8 G £/. Pick w with 
ô G An. If <5 G £ , then U k G Ga|ô G g} = g„(ô) - {ô} Ç U. Suppose tha t 
ô G E. Now, if m ^ n and ô G ^ ( 7 ) , then 7 = «5. Pick m so t h a t p ^ m —> 
Vs(p) G £/. Let 775 (m) G Ak. Set p = max (n, k). Then U |g G G>|ô G g} = 
gp(5) £ C/. T h e proof is complete, 

LEMMA 3.7. X is not collectionwise Hausdorff. 

Proof. Clearly,, E is an uncountable , closed discrete subset of X. But since 
E is s ta t ionary, an a rgument much as in Theorem 2.8 shows t h a t E has no 
separation. 

LEMMA 3.8. If every 2-colouring of 77 is uniformisable, then X is -normal. 

Proof. Let A, B be disjoint, closed subsets of X. Define a 2-colouring, k, of rj 
as follows. If 8 G E C\ A, let kb(n) = 0, for all n G to. If ô G £ ~~ .4, let 
&a(w) = 1 for all n G co. Let /z : 001 —> 2 uniformise k. 

Let a G ^4. If a G £ , set Ua = {a}. If a G £ , there is an n G co such t h a t 
m ^ w —> h«(m) G 5 and h(r)a(m)) = 0], so pick the least such w and set 
£/« = iVB(a). 

Set £7 = UaçA £4, an open set containing A. Let [3 G -S. If (3 G £ , set 
I^ = {/3}. If /3 G £ , let w G co be least such t ha t m ^ n —> {vp(m) G T and 
h(rj0(m)) = 1], and set F ô = Nn(f3). 

Set F = U/36S F/3, an open set containing B. Clearly, U C\ V = 0, so the 
lemma is proved. 

W e now have every tiling we need to prove: 
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THEOREM 3.9. If ZFC is consistent, then so is ZFC together with GCH and 
u There is an LS-space X which is a non-collectionwise Hausdorff, non-rnetrizable, 
normal Moore space1. 

Proof. Let M be a countable transistive model of ZFC and GCH. Define 
T, E, 7], X as above inside the model M. Obtain N from M as in Theorem 3.4. 
Since M and N have the same cardinals and since E is stationary in N, X 
retains all its relevant properties: i.e. in N, X is an LS-space which is a non-
collectionwise Hausdorff Moore space. But by Lemma 3.8, X is normal in A7, 
so we are done. 
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