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THE SPECTRUM OF CHARACTERS OF ULTRAFILTERS ON w

BY

SAHARON SHELAH (Jerusalem and Piscataway, NJ)

Abstract. We show the consistency of the statement: “the set of regular cardinals
which are the characters of ultrafilters on w is not convex”. We also deal with the set of
m-characters of ultrafilters on w.

0. Introduction. Some cardinal invariants of the continuum are actu-
ally the minimum of a natural set of cardinals < 2% which can be called
the spectrum of the invariant. Such a case is SpX, the set of characters x(D)
of non-principal ultrafilters D on w (the minimal number of generators). On
the history see [BnSh:642]; there this spectrum and others were investigated
and it was asked if Sp,, can be non-convex (formally 0.1(2) belcw).

The main result here is 1.1, it solves the problem (starting with a mea-
surable). This was presented at a conference in honor of I. Juhéasz, quite
fitting as he had started the investigation of consistency on x(D)). In §2 we
note what we can say on the strict m-character of ultrafilters,

The investigation is continued in [Sh:915] trying to get more ‘disorderly”
behaviours in smaller cardinals and in particular answering negatively the
original question, 0.2(2).

Recall
0.1. DEFINITION.

(1) Sp, = Sp(x) is the set of cardinals @ such that § = x(L') for some
non-principal ultrafilter D on w where

(2) For D an ultrafilter on w let ¢ = x(D) be the minimal cardinality 6
such that D is generated by some family of § members, i.e. Min{|e|
& C Dand (VBe D)(3A e #)[A C* B]}; it does not matter if we
use “A C B”.
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Now, Brendle and Shelah [BnSh:642, Problem 5] asked the qQuestion for-
mulated in 0.2(2) below, but it S€ems to me, at leagt now, that the question
Is really 0.2(1)+(3).

0.2. PROBLEM.

(2) In Particular, doeg N, Rg e Sp(x) Imply N, Sp(x)?
(3) Are there any restrictions on Sp(x) N Reg?

We thank the referee for helpful Comments and ip barticular 2.5(1).

Discussion. This relieg on [Sh:?OO, §4]; there ig no point to repeat it
but we try to give a description, Let 8y < <u < X be regular cardinals
and x be 3 Imeasurable carding]

Let § = {a < ). cf(a) # &} or any unbounded syhget of it. We define

SR =

i < 1), s0 it is g Pt +1 Satisfying 4 strong version of the c.c.c. and fori e S,

also D a Pt-name of @ non-principa] ultrafilter op (, from which Qfis nicely
defined, and Af, a Qt-name (so P! +1-Dame) of 5 pseudo-intersectiop (and @,
¢ € S, nicely defined) of D} such that ; < JES= Ate D} So{4;:ie S}
Witness y < K in VP o do not necessarily have to use nicely defined Q;,
though for ; ¢ S we do.

The order <gis the natural order; we Prove the existence of the so-called
Canonical limjt.

Now a major point of [Sh:700] is: for S € &, letting @ pe 4 uniform x-
complete ultrafijter on £ (or just R1-complete N) < g < K), we can consider
t=s5"/9. by the Eog theorem, more exactly by Hanf’s Ph.D. thesis, (the
paralle] of) the Log theorem for Ly, applies; it gives that ¢ € R, well if
A= )e/ Z; and moreover 5 <z ¢ under the canonicg] embedding.

is not necessarily preserved, and setg of cardinality > K are increased, Ag
0 is the cofinality (not of g linear order, but) of a partial order, there are

of sets, this helps in [Sh:?OO], hoting that as we deal with ¢.c.c. forcing, nameg
of reals are represented by w-sequences of conditions, the relevant things are
preserved. So we uge 5 < #-increasing Séquence (t, : o < A) such that for
unboundedly many a < X\, is essentially )~/ 2.

What doeg “nice” Q = Q(D) mean, for D 4 non-principa] ultrafilter
over w? We need that
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(@) Q satisfies a strong version of the c.c.c.,
(B) the definition commutes with the ultrapower used,
(7) if Pis a forcing notion then we can extend D to an ultrafilter D+
for every (or at least some) P-name of an ultrafilter D extending D,
and we have Q(D) <P« Q(D) (used for the existence of canonical
limit).
Such a forcing is combining Laver forcing and Mathias forcing for an ultra-
filter D on w, that is: P € Diff pis a subtree of w with trunk tr(p) ¢ D
such that for 7 € p we have Ig(n) < lg(tr(p)) = (Jn)(n"(n) € p) and
18() 2 lg(tr(p)) = {n: n"(n) € p} € .

1. Using measurables and FS iterations with non-transitive
memory. We use [Sh:700] in 1.1 heavily. We use measurables (we could
have used extenders to get more). The question on Rp, Ry, N3, i.e. Problem
0.2(2) remains open.

1.1. THEOREM. There s a c.c.c. forcing notion P of cardinality \ sych
that in V¥ we have g = Ab=0=y y= By {p, A} C Sp,, but iy ¢ Sp(x) if

® K1,k2 are measurable and Ri<p=cf(p) < kg < X= )¢ = AR2 =
cf(A).

Proof. Let 9, be a normal ultrafilter on Ky for I =1,2. Repeat [Sh:700,
§4] with (ky, u, A) here standing for (k, u, A) there, getting t, € & for o < \
which is < g-increasing,. Letting P = Pi we see that Q" = Pg:e<p)
is a <-increasing continuous sequence of c.c.c. forcing notions, P =P =
Py, == Lim(Q*) = ULP2 : e < p}; in fact (P2,Q%: ¢ < p) is an FS iterated
forcing etc., but we add the demand that for unboundedly many o < A,
Xl potl jg Isomorphic to the ultrapower (P)s2 /g, by an isomorphism
extending the canonical embedding.

More explicitly, we choose ta by induction on o < A such that

®1 (a) t, € A (see [Sh:700, Definition 4.3]), so the forcing notion P for
t < p is well defined and is <-increasing with 1,
(b) (ts:8< a)is < s-increasing continuous, which means that:
(@ y<pB<a= ty <&t (see [Sh:700, Definition 4.6(1)]), so
IP’Z-ty <1P’itﬁ for i < p,
(B) if a is a limit ordinal then ¢, is a canonical <g-u.b. of (ts
B < a) (see [Sh:700, Definition 4.6(2)]),
(c) ifa=8+1and cf(B) # Ky then t, is essentially t3' /9 (i.e. we
have to identify IP’;B with its image under the canonical embed-
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ding of it into (]P’;B )™ /Dy, in particular this holds for ¢ = I, see
[Sh:700, Subclaim 4.9)),
d) ifa=8+1 and cf(8) = k, then t is essentially tgz /Ds.

So we need

®2 [Sh:700, Subclajm 4.9] also applies to the ultrapower t;z /D.
[Why? The same proof applies as 2 /D2 = p, Le., the canonical
embedding of 4 into 1%/ Dy is one-to-one and onto (and A\*1 /9, —
A®2 [Py = ), of course).]

Let P¢ = P& for ¢ < Ko P = | J{P2: ¢ < p}and P=PA 1t is proved in
[Sh:700, 4.10] that in VP by construction,

FESP(X), a<A u=yg gt

By [Sh:700, 4.11] we have a > A, hence a = ), and always 280 ¢ Sp(x),
hence A = 2R ¢ Sp(x). So what is left to prove is ry ¢ Sp(x). Assume
toward a contradiction that p* I+ “Dis a non-principal ultrafilter on w and
X(D) = k2, and let it be exemplified by (A4, : ¢ < Ka)".

Without loss of generality p* IFp “for each € < K2, 4. € D does not
belong to the filter on ¢ generated by {A:: ¢ < e} U {w\n:n< w}, and
trivially also w \ 4; does not belong to this filter”.

As X is regular > k2 and the forcing notion P> satisfies the c.c.c., clearly
for some o < A we have PreEP¥ande < K2 = A, is equivalently a P®name.
So for every 8 [, A) we have

Sh:846

IZ% P* Ikps “for each i < K2 the set 4; € [w]™ is not i the filter on w
generated by {4; : j < YU{w\n:n < w}, and also the complement
of 4; is not in this filter (as D exemplifies)”.

But for some such B, the statement X} holds, i.e. ®1(d) applies, so in PA+1
which is essentially 4 (PP)*2 ) 9y we get a contradiction. That is, let jg be
an isomorphism from PA+1 opt, (PP)*2 / 95 which extends the canonical em-
bedding of P# into (PP)*2 /9, Now Jg induces a map jﬂ from the set of
PP+ names of subsets of w into the set of (P?)*2 ) Dy-names of subsets of w,
and let A

A" =354 i < k3) /D),

S0 p* lkpsi1 “A* € [w]™ and the sets A%, w\ A* do not include any finite
intersection of some members of {A; : ¢ < K} U{w\n:n < w}”. So
P* lFpsis “fAc:e < K2} does not generate an ultrafilter on w”, but PA+1 <P,
a contradiction. m

1.2. REMARK. (1) As the referee pointed out, if we waive “y < a”in

1.1, we can forget & (and 21) so not take ultrapowers by D150 u =Ny is
allowed, but we have to start with t; such that ]P’f)o is adding k,-Cohen.
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(2) Moreover, in this case we can demand that QL = QDY) and so we
do not need the 7!. Still this way was taken in [Sh:915, §1]. But this gain
in simplicity has a price in lack of flexibility in choosing the t. We use this
mildly in §2, only for P;. See more in [Sh:915, §§2, 3.

2. Remarks on n-bases

2.1. DEFINITION.
(1) & is a m-base if:

(a) & C [w],
(b) for some ultrafilter D on w, o is a 7-base of D (see below; note
that D is necessarily non-principal).

(A) We say o is a m-base of D if (VB € D)(3A € &)(A C* B).
(B) mx(D) = Min{|«/| : & is a 7-base of D}.

(2) & is a strict 7-base if:

(a) & is a m-base of some D,
(b) no subset of & of cardinality < |#7] is a m-base.

(3) D has a strict w-base when D has a m-base of which is a strict m-base.
4) Sp;, = {|<| : there is a non-principal ultrafilter D on w such that
X
&/ is a strict m-base of D}.

2.2. DEFINITION. For & C [w let Idy = {B C w : for some n < w
and partition (B; : | < n) of B, for no A € o and [l < n do we have
A C* B}

2.3. OBSERVATION. For & C [w]® we have:

(a) Idy is an ideal on P(w) including the finite sets, though it may be
equal to P(w),

(b) if B C w then: B € [w]™\Id, iff there is a (non-principal) ultrafilter
D on w to which B belongs and of is a m-base of D,

(c) o is a w-base iff w ¢ Id.

Proof. (a) Obvious.

(b) “if™ Let D be a non-principal ultrafilter on w such that B € D and
& is a m-base of D. Now for any n < w and partition (B; : [ < n) of B, as
Be Dand Disan ultrafilter, clearly there is [ < n such that By € D, hence
by Definition 2.1(1A) there is A € o such that A4 C* By. By the definition
of Id it follows that B ¢ Id; but [w]<¥e C Id,, so we are done.

“only if”: We are assuming B ¢ Idy, so as Idy is an ideal of & (w) there
is an ultrafilter D on w disjoint from Idg such that B € D. So if B € D
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then B’ C w A B’ ¢ Idy, hence by the definition of Id, it follows that
(3A € &/)(A C* B'). By Definition 2.1(1A) this means that & is a 7-base
of D.

(c) Follows from clause (b). m.3
2.4. OBSERVATION.

(1) If D is an ultrafilter on w then D has a w-base of cardinality mx(D).

(2) o is a w-base iff for every n € [1,w) and partition (By: 1 < n) of w
into finitely many sets, for some A € & andl < n we have A C* By.

(3) Min{mx(D) : D a non-principal ultrafilter on w} = Min{|</| : & is
a m-base} = Min{|&/| : & is a strict w-base}.

Proof. (1) By the definition.

(2) For the “only if” direction, assume & is a 7-base of D. Then Idy C
P(w) \ D (see the proof of 2.2) so w ¢ Id,s and we are done.

For the “if” direction, use 2.2.

(3) Easy. w4

2.5. THEOREM. In VT asin 1.1, we have {u, \} C Spy, and k2 & Spy, -

Proof. Similar to the proof of 1.1 but with some additions. Defining &
in [Sh:700, 4.1] we allow Qp = QY = P{ to be any c.c.c. forcing notion of
cardinality < X (this makes no change). The main change is in the proof of
IFp “A € Sp,”. The main addition is that choosing t, by induction on o we
also define <7, such that

@} (a), (b) as in ®; in the proof of 1.1,

(c) as in ®(c ) but only if o # 2 mod w (and & = § + 1),
(d) A, is a P§-name of an infinite subset of w,
(e) if @ # 2 mod w then IFpia Ay = w (or do not define Ay),
(f) if a <  are = 2 mod w then I- ps “Ag C* Ao,
)

(g) f B=a+1and B=2modw and Bisa ]P’tﬂ-name of an infinite
subset of w then I, “B z* Ay
n

This addition requires that we also prove

®3 if s € & and D is a Pf-name of a filter on w including all co-finite
subsets of w (such that @ ¢ D) then for some (t, A) we have

( ) 5 < SA i
(b) IFps “A is an infinite subset of w”,

(c) if B is a P5-name of an infinite subset of w then Ikp “B * A”.

[Why ®3 holds? Without loss of generality I-ps “D is an ultrafilter on w”.
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We can find a pair (P, 4') such that

(a) P is a c.c.c. forcing notion,

(B) P§ <P, moreover P! = P§ « Q(D),

(7) [P < A,

(6) IFp “A is an almost intersection of D (ie. A € [w]® and (VB ¢
D)(Ac* B)),

(¢) 7' € “w is the generic of Q[D] and A’ = Rang(n) so both are P'-
names.

Now we define t': for t <g t and P = P | we do it by defining Qf by
induction on 7 as in the proof of [Sh:700, 4.8] and we choose 7% naturally.
Let (n,: p € “>2) be a lP’g -name listing the members of A.

Now we choose ¢ such that ¢ <g t and for some P§-name p of a member
of “2 we have IFp, “p # v for any Py-name (clearly exists, e.g. when (t,t) is
like (t', 5) above, e.g. do as above with adding A\* such reals and reflect).
Now A := {n,1 : k < w} is forced to be an infinite subset of A, and if it
includes a member of P (w)VIP:! or even P(w)VP we find that p is from
(“2)VIPi] 4 contradiction. | i

(x)1 p € Spry, in VP, of course.

[Why? As there is a C*-decreasing sequence (B, : a < u) of sets which
generates a (non-principle) ultrafilter. We can use B, as the generic of Q% =
Phat1 /Phra |

(*)2 &2 ¢ Spr,.

[Why? Toward a contradiction assume p* € P and p* Ip “D is a non-
principal ultrafilter on w and {%: : € < K2} is a sequence of infinite subsets
of w which is a strict m-base of D"; so p* lFp “{%. : € < (} is not a 7-base
of any ultrafilter on ” for every ¢ < kg, hence for some (Beo : 1 < ng)
we have p* I “n; < w and (B¢ i 1 < my) is a partition of w and & <
CAl<ne= % z* B¢;”. Now, as in the proof of 1.1, we choose suitable
B < A and consider (B} : 1 < n) = jgl((l}u Pl<ing) ¢ < K)/Dy)
s0 p* Ikpsrs (B} : 1 < n) is a partition of w into finitely many sets and
€<k Al <n= % ¢* B} But this contradicts p*lep “{%: e <Ky} isa
m-base”.|

(*)3 A € Spr.

[Why? Clearly it is forced (i.e. IFp,) that (Aues2: @ < N isa C*-decreasing
sequence of infinite subsets of w, hence there is an ultrafilter of D on w
including it. Now A,,12 witness that P(w)VPuat2] s not a m-base of D
(recalling clause (g) of ®1). As X is regular, we are done.| g 5
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