LOGIC COLLOQUIUM 78
M. Boffa, D. van Dalen, K. McAloon (eds.)
© North-Holiand Publishing Company, 1979

 for any stationary $\mathrm{S}_{1} \leq \mathrm{S}^{\boldsymbol{L}}$. A solution of a related problem - which stationary subsets of λ^{+}
 appear in a paper by U. Avraham, J. Stavi and the author. We also prove a result related to the title but not to the rest of the paper, improving a result of Gregory [Gr]: assuming G.C.H.
 which we can find which stationary subsets of λ^{+}can be stopped
 ON SUCCESSORS OF SINGULAR CARDINALS Saharon Shelah

108

Introduction Institute of Mathematics,
The Hebrew University,
Jerusalem, Israel. limit singular cardinal λ. We find a special subset $S^{*}\left(\lambda^{+}\right)$, from this for successor λ^{+}of regular $\lambda=\lambda^{<\lambda}$). For $\lambda=\aleph_{\omega+1}$ we succeed in continuing an induction construction done
for a λ^{+}-free not λ^{++}(abelian) group, and similar things for transversals; on those problems see history and references in [Sh 2].

References . HILBERT and Berlin ${ }^{2} 1970$.
. C. KLEENE, 1952 , Introduction to Metamathematics. Amsterdam.
. LUCKHARDT A, Conservative Skolem Functors. Unpublished, 51 pp ,
Quantifiers in Sequential Calculi. Soviet Math. Dokl. 7966 , Skolem's Method of Elimination of Positive
861-864.
. E. MINC, 1974 , Heyting Predicate Calculus with Epsilon Symbol, Quantifiers in Sequential Calculi. Soviet Math. Dokl. 7,
861-864.
G.E. MINC, 1974 , Heyting Predicate Calculus with Epsilon Symbol,
J. Soviet Math. 8 (1977), 317-323.
G.E. MINC, 1977 , Review of Osswald 1975 . Zentralblatt für Math.
325, O2021.
H. OSSWALD, 1975 , Über Skolem-Erweiterungen in der intuitionistle
Schen Logik mit Gleichheit. In : Proof Theory Symposion,
Kiel 1974 (ed. J. Diller, G.H. Müller), Berlin, $264-266$.
 Quantifiers in Sequential Calculi. Soviet Math. Dokl. 7,
861-864.
G.E. MINC, 1974 , Heyting Predicate Calculus with Epsilon Symbol,
J. Soviet Math. 8 (1977), 317-323.
G.E. MINC, 1977 , Review of Osswald 1975 . Zentralblatt für Math.
325, O2021.
H. OSSWALD, 1975 , Über Skolem-Erweiterungen in der intuitionistle
Schen Logik mit Gleichheit. In : Proof Theory Symposion,
Kiel 1974 (ed. J. Diller, G.H. Müller), Berlin, $264-266$.
 Quantifiers in Sequential Calculi. Soviet Math. Dokl. 7,
861-864.
G.E. MINC, 1974 , Heyting Predicate Calculus with Epsilon Symbol,
J. Soviet Math. 8 (1977), 317-323.
G.E. MINC, 1977 , Review of Osswald 1975 . Zentralblatt für Math.
325, O2021.
H. OSSWALD, 1975 , Über Skolem-Erweiterungen in der intuitionistle
Schen Logik mit Gleichheit. In : Proof Theory Symposion,
Kiel 1974 (ed. J. Diller, G.H. Müller), Berlin, $264-266$. Quantifiers in Sequential Calculi. Soviet Math. Dokl. 7,
861-864.
G.E. MINC, 1974 , Heyting Predicate Calculus with Epsilon Symbol,
J. Soviet Math. 8 (1977), 317-323.
G.E. MINC, 1977 , Review of Osswald 1975 . Zentralblatt für Math.
325, O2021.
H. OSSWALD, 1975 , Über Skolem-Erweiterungen in der intuitionistle
Schen Logik mit Gleichheit. In : Proof Theory Symposion,
Kiel 1974 (ed. J. Diller, G.H. Müller), Berlin, $264-266$. Quantifiers in Sequential Calculi. Soviet Math. Dokl. 7,
861-864.
G.E. MINC, 1974 , Heyting Predicate Calculus with Epsilon Symbol,
J. Soviet Math. 8 (1977), 317-323.
G.E. MINC, 1977 , Review of Osswald 1975 . Zentralblatt für Math.
325, O2021.
H. OSSWALD, 1975 , Über Skolem-Erweiterungen in der intuitionistle
Schen Logik mit Gleichheit. In : Proof Theory Symposion,
Kiel 1974 (ed. J. Diller, G.H. Müller), Berlin, $264-266$. Quantifiers in Sequential Calculi. Soviet Math. Dokl. 7,
861-864.
G.E. MINC, 1974 , Heyting Predicate Calculus with Epsilon Symbol,
J. Soviet Math. 8 (1977), 317-323.
G.E. MINC, 1977 , Review of Osswald 1975 . Zentralblatt für Math.
325, 02021.
H. OSSWALD, 1975 , Über Skolem-Erweiterungen in der intuitionistle
\quad Schen Logik mit Gleichheit. In : Proof Theory Symposion,
Kiel 1974 (ed. J. Diller, G.H. Müller), Berlin, $264-266$.都 -
65ε
$\operatorname{Gcf}(\lambda)=\{k: k$ is a good cofinality for $\lambda\}$
$G(\lambda)=\{k: k$ is good for $\lambda\}$

 cf $1 \in \operatorname{Gcf(\lambda))}$ (note that we use cf not cr)

$$
\tau: \frac{}{\text { प०TचTuTFəव } \cdot 乙}
$$

k, not necessarily onto k), so if the value of k is not clear we
whall write $S(d, k)$. In the definition of $S_{1}(d), k$ has no role.
2) If $k<\infty$ is good for λ then k is good for λ^{+} good for each λ_{i} then k is good for λ
4) If $\left(\forall \mu<\mathbb{N}_{\alpha}\right) \mu^{k}<\mathbb{N}_{\alpha}, \beta<c \mathrm{fk}$, cf ${ }_{\alpha} \neq c \mathrm{fk}$ then k is good fon $\mathbb{N}_{\alpha+\beta}$
I in fact $\left(\forall \mu<\aleph_{\alpha}\right) \mu^{k} \leqslant \aleph_{\alpha+\beta}$ suffice ।
5) if λ, k are regular,k good for λ then k is a good cofinality
for λ, provided that $2^{<k} \leqslant \lambda$
$\quad<k$

 6) If λ, k are regular $\lambda=\lambda$ then k is a good cofinality for λ 7) If $k<\infty$ is a good cofinality tor λ then k is a good cofinality for λ^{+}.
 increasing, and $k<\infty$ then $k \in \operatorname{Gcf}(\lambda)$

$x \in \operatorname{Gcf}\left(\mathbb{N}_{\alpha+\beta+1}\right)$ [in fact, $\left(\forall \mu<\aleph_{\alpha}\right) \mu^{<k} \leqslant \mathbb{N}_{\alpha+\beta+1}$ suffice]. $\alpha+\beta+1 \quad \alpha+\beta+1$

 unbounded $A \subseteq \xi$ on which d is constant $\}$
 $\left(\left[{ }^{0}>\left(q^{\text {c }} \mathrm{E}\right) \mathrm{P} \leftarrow \mathrm{q}>\mathrm{E}\right]\left(\forall \ni \mathrm{E}^{\mathrm{E}} \mathrm{A}\right)\left(\lambda>{ }^{\mathrm{D}} \mathrm{E}\right)\left(\mathrm{a} \ni \mathrm{q}^{\mathrm{G}} \mathrm{A}\right)\right.$
 Remark : Note that d determines (as Dom d) but frot k(as d is into
by $i, j, \alpha, \beta, \gamma, \xi, \zeta$ limit ordinals by δ, natural numbers by m, n, r, p, q. Let \bar{N} denote a sequence $<N_{i}: i<\lambda>$ where for some $\mu, \stackrel{\lambda}{X} \leqslant \mu$, Let N denote a sequence $\left\langle N_{i}: i<\lambda\right\rangle$ where for some $\mu, \underline{X} \leqslant$ $\mathbb{N}_{i} \prec{ }_{i}, N_{i}<\lambda, N_{i} \prec N_{j}$, and for limit $\delta, N_{\delta}=\underset{i<\delta}{U} N_{i}$. We call this a λ-approximating sequence (for μ). We denote by d a two-place function from one cardinal to another; cfo is the cofinality of $\delta ; \mathrm{cf}^{*} \delta$ is cfo if cf $\ll \delta$ and is
∞ otherwise. D_{δ} is the filter over δ generated by the closed unbounded subsets of δ (so we assume cf $>\boldsymbol{N}_{\mathrm{o}}$). If D is a filter over $I, A \subseteq B$ mod D means $I-(A-B) \in D ;$ similarly $A \equiv B \bmod D$ means $I-[(A-B) \cup(B-A)] \in D$. If $A \not \equiv \phi \bmod D, D+A$ is the Let $\operatorname{CF}(\delta, \kappa)=\{i<\delta: \operatorname{cfi}=k\}$, similarly $C F(\delta,<k)=\underset{\mu<k}{\cup} C F(\delta, \mu)$ $\operatorname{CF}(\delta, \leqslant \kappa)=U \quad \operatorname{CF}(\delta, \mu) \quad D_{\delta}=D_{\delta}+\operatorname{CF}(\delta, \kappa)$ etc. $\quad \mu<\kappa$ $C F(\delta, \leqslant k)=L_{\delta, k}=D_{\delta}+C F(\delta, k)$ etc. $\mu \leqslant \kappa$ 1. Definition : 1) We say κ is good for λ if $\lambda=\lambda^{<\lambda}, k=\infty$ or there is a family ${\underset{X}{X}}^{\circ}, k$ such that 1. Definition a family $\frac{P}{-} \lambda, k$ a) $\left|\underline{P}_{\lambda, k}^{\circ}\right|$
c) every subset of λ of cardinality κ contains a member of $\underline{P}_{\lambda}^{\circ}, k$ 2) We call k a good cofinality for λ if $\lambda=\lambda^{<\lambda}, \kappa$ is ∞ or if λ and k are regular and there is a family P_{X}, such that and k are regular and there is a family $\frac{P}{-}, k$ such that
a) $|P \quad|=\lambda$ a) $\left|\underline{P}_{\lambda, k}\right|=$ b) every member of $\underline{P}_{\lambda, k}$ is a subset of λ of cardinality $<k$
c) every subset of λ of cardinality κ has a subset $\left\{\alpha_{i}: i<\right.$ such that α_{i} is increasing and for every $j<k,\left\{\alpha_{i}: i<j\right\} \in \underline{P}_{\lambda}$, d) $\lambda=\lambda^{<k}$ or $2^{\mu}<\lambda$ for every $\mu<\kappa$
\bar{m}
on successors of singular cardinals

 and this finishes the proof of the theorem.
8. Definition $: S^{*}(\lambda) S \lambda$ is defined as $\left(\lambda-S_{2}(\bar{N})\right) \cap \operatorname{gcf}(\lambda)$ for
\bar{N} any λ-approximating sequence for λ^{+}, where λ is regular. (so
S^{*} is uniquely defined mod D only).
9. Definition : For λ singular, a two-place function d from λ^{+} to $k=$ cf λ is called normal if for every $i<k, \alpha<\lambda^{+}$, the set $\{B<\alpha: d(B, \alpha) \leqslant$ i\} has cardinality $<\lambda$. It is called subadditive if for $\gamma<\beta<\alpha<\lambda^{+}, d(\gamma, \alpha) \leqslant \max \{d(\gamma, \beta), d(\beta, \alpha)\}$ 10. Claim : For every singular λ, there is a normal subadditive
two-place function d from λ^{+}to cf λ; moreover, if $\lambda=\sum_{i<c i}^{\sum} \lambda_{i}$
$\left(\lambda_{i}\right.$ increasing), then $|\{\beta<\alpha \quad d(\beta, \alpha) \leqslant i\}| \leqslant \lambda_{i}$.
Proof $:$ Lasy.
 order type cff (and generally replace them by unbounded subsets), 3) $\operatorname{CF}(\delta, \leqslant k) \subseteq$
4) If $\ell=0,1, \xi \in S_{\ell}(d), C f \xi>N_{0}$, then there is $C \in D_{\xi}$ such that
$c \subseteq S_{\ell}(d)$.
6. Definition : For a λ-approximating sequence \bar{N} (see notation) let
 of order type $c f \xi$ such that $(\forall i<\xi)\left\{A \cap i \in N_{\xi}\right]$ and $\left.N_{\xi} \cap \lambda=\xi\right\}$ 7. Claim : 1) If λ is regular, $\bar{N}^{\circ}, \bar{N}^{1}$ are λ-approximating sequences for μ_{0}, μ_{1} respectively, and $\mu_{\ell}>\lambda$, then $S_{2}\left(\bar{N}^{1}\right)=S_{2}\left(\bar{N}^{\circ}\right) \bmod D_{\lambda}^{g}$. Proof :' Let $\bar{N}=\left\langle N_{i}^{\ell}: i<\lambda\right\rangle$, where $N_{i}^{\ell}<\left(H\left(\mu_{\ell}\right), \in\right)$, and let
 (we do not distinguish strictly between a model N and its universe) It is easy to check that C is a closed unbounded subset of λ.
By transitivity of equality we can assume $N_{\alpha}^{\circ} \prec N_{\alpha}^{1}$. By transitivity of equality we can assume $\mathbb{N}_{\alpha}^{\circ} \prec N_{\alpha}^{1}$ Now suppose $\xi \in C$, and $c F^{*} \xi \in \operatorname{Gcf}(\lambda)$. We shall prove $\xi \in S_{2}\left(\bar{N}^{\circ}\right)$ iff $\xi \in S_{2}\left(\bar{N}^{1}\right)$, thus completing the proof. The "only if" part is now trivial, so we concentrate on the "if" part. Also the case $c f^{*} \xi=\infty$ is easy, so we assume $c f^{*} \xi=c f \xi<\xi$. $=\infty$ is easy, so we assume $c f^{*} \xi=c f \xi<\xi$.
Let $k=c f \xi<\xi$. We have just assumed $k \in \operatorname{Gcf}(\lambda)$, so the appropriate $\underline{P}_{\lambda, k} \quad($ as in Definition 1.2$)$ exists, hence belongs $H\left(\mu_{1}\right)$, hence $w . l . \circ \cdot g$ it belongs to N_{\circ}°, and hence, by assumption to N^{1}.

[^0] $\triangle \subseteq$ of order-type $c f \xi$, such that for every $\zeta<\xi, A \cap \zeta \in N_{E}^{1}$

	uotzounf pue ${ }^{\text {ºx }} \mathrm{x}$

$$
\text { : smottof se }{ }^{\text {II }}
$$

\qquad
$\left(x>x>{ }^{H}\right)\left(x>{ }^{H} A\right)$
and d is a normal two-place function from λ^{+}to k. Then for some λ^{+}-approximating sequence \bar{N} for λ^{++}, 2) Suppose λ is singular, $k=c f \lambda$, x is regular and is a good cofinality for λ^{+}, and d is a normal two-place function from λ^{+}to k Then for some λ^{+}-approximating sequence \bar{N} for λ^{++},

$\operatorname{CF}\left(\lambda^{+}, \chi\right) \cap S_{0}(d) \subseteq S_{2}(\bar{N})$

Proof : 1) Choose a $\lambda^{+}$$d \in N_{o}, N_{i} \in N_{i+1} . \quad$ Clearly $C=\left\{\delta<\lambda^{+}: N_{\delta} \cap \lambda=\delta\right\}$ is closed and unbounded. So for every $\alpha<\lambda^{+}, i<k, N_{\delta} \cap \lambda=\delta$, the set closed $\%-\{\beta<a, 1,1, k$, the se Hence $P_{i}^{\alpha}=\left\{B: B \subseteq A^{*},|B|<\chi\right\}$ belongs to N_{i+1} and has cardinality $<\lambda$, hence $P_{i}^{\alpha} \subseteq N_{i+1}$. So suppose $\delta \in S_{o}(d)$, and $A, B \subseteq \delta$ are witness to it (i.e. they are unbounded in δ and have order-type cfo and for every $b \in B$, for some $i(b)<\kappa,(\forall a \in A)(d<b \rightarrow d(a, b) \leqslant i(b)))$. Suppose further $\delta \in C, \operatorname{cf\delta } \leqslant x$. Then $A, B \subseteq N_{\delta}\left(\operatorname{as} \delta \subseteq N_{\delta}\right)$ and for every $b \in B, \quad\{a: a \in A, a<b\}$ belongs to $\underline{P}_{i}^{b}(b)$, hence to N_{i+1}, hence to N_{δ}. So A witnesses that $\delta \in S_{2}(\bar{N})$. We have just proved $\delta \in C F\left(\lambda^{+}, \leqslant x\right) \cap S_{0}(d) \Rightarrow \delta \in S_{2}(\bar{N})$, thus finishing the proof of , the claim.
2) A similar

¥ooud uet?uTs V (z

 If $\ell \leqslant k+n$, this contradicts 19.3 . But if $\ell>k+n$, then
 tion by 19.1. So in all cases we get a contradiction; hence - Kueuotfeqs qou st $\left(\left(^{T+m} N\right)_{*} S\right)_{u^{3}}$

 hence, by $19.1, F(S) \subseteq \operatorname{CF}\left(\aleph_{\omega+1}, \leqslant \kappa_{k+n}\right)$, where
 $\delta \in F^{n+1}(S)$ implies $c f \delta \leqslant N_{k+n}$, and by $17.2 \quad \delta \in F^{n+1}(S)$ implies cf $\delta \geqslant N_{k+n+1}\left(\right.$ since $\left.\delta \in S \Rightarrow c f \delta=N_{k}\right)$, so we get that there is no $\delta \in F^{n+1}(S)$, i.e. $F^{n+1}(S)=\phi$. Since $F^{\circ}(S)=S$ is stationary, for some $\ell, F^{\ell}(S)$ is stationary but $F\left(F^{\ell}(S)\right)=F^{\ell+1}(S)$ is not; $F^{\ell}(S)$ is as required. Theorem 20 : Suppose $S \subseteq \lambda$ is stationary, and $S \subseteq \operatorname{gcf}(\lambda)-S^{*}(\lambda)$, $S \subseteq \operatorname{CF}(\lambda, \mu) . \quad$ If P is $a \mu^{+}$-complete forcing (i.e. if $<p_{i}: i<\mu>$ is an increasing sequence of elements of P then some $p \in P$ is $\geqslant P_{i}$ for every i), then S is stationary even in the universe V^{P}.

16. Definition : 1) For a set $S \subseteq \lambda$ let

2) Define $F^{n}(S)$ by induction on n :
$F^{\circ}(S)=S, F^{n+1}(S)=F\left(F^{n}(S)\right)$.

 then $\delta \in \mathrm{F}^{\mathrm{n}}(\mathrm{S})$ implies cf $\delta \geqslant \mathfrak{K}_{\alpha+\mathrm{n}}$ 4) If $\alpha \leqslant \min \left\{c f \delta: \delta \in \cup S_{i}\right\}$ $F^{*}\left(\cup S_{i}\right)=U F\left(S_{i}\right) \bmod D_{\lambda}$. $i<\alpha$ Proof : 1) Easy
3), 4) Easy.
18. Lemma

> Then for some $C \in D_{\lambda^{+}}$, for every $\delta \in C$, letting $<\alpha_{i}: i<c f \delta>$ be increasing, continuous and converging to δ, the following holds \{i: $\left.\alpha_{i} \in S^{*}(\lambda)\right\} \supseteq S^{*}(c f \delta) \bmod D_{c f \delta}$ Proof : Let d be as in 10 . Then by 13 , for some
 Now define a two-place function d^{*} from cfo to k by $d^{*}(i, j)=d\left(\alpha_{i}, \alpha_{j}\right)$. It is easy to check that $\left\{\alpha_{i}: i \in S_{o}\left(d^{*}\right)\right\} \subseteq S_{o}(d)$. But by $10, S_{o}\left(d^{*}\right) \subseteq c f \delta-S^{*}(c f \delta)$ finished.

 in V, for some $N_{\delta} \cap\left\{B_{i}: i<\lambda\right\}=\left\{B_{i}: i<\delta\right\}$, and there is no unbounded $A \subseteq \delta$ of order type cff, such that $\xi<\delta \Rightarrow A \cap \xi \in N_{\delta}$. But there is such an A namely $\left\{\alpha_{j}: j<i\right\}\left(\left\{\alpha_{j}: j<j \ll i\right\}\right.$ belongs to N_{δ} since it is $\left.B_{j}+1-\left(j_{\circ}\right\}\right)$, contradiction. So we are finished when $\lambda=\lambda<\lambda$. If $\lambda<\lambda^{<\lambda}$, let Q be the collapsing of 2^{λ} to λ, i.e. $P=\left\{f: \operatorname{Dom} f=\xi<\lambda\right.$, Range $\left.f \subseteq 2^{\lambda}\right\}$. Note that V^{P} may have a different $g \subset f(\lambda)$, but $S^{*}(\lambda)^{V} \cap g \operatorname{Vg}(\lambda)^{V}=S^{*}(\lambda)^{V}$. Now in V^{Q} define P as before, and $Q * P$ (the composition) is as required. 22. Conclusion : Suppose λ is regular, $\mu<\lambda$ regular, $S \subseteq g c f(\lambda)$. There is a μ-complete forcing P such that in V^{P}, S is not stationary iff $\left(S-S^{*}(\lambda)\right) \cap C F(\lambda,<\mu)$ is stationary. 23. Lemma : Suppose λ is regular, $S \subseteq \lambda$ stationary, but $F(S)=\phi$ and for every $\alpha \in S, A_{\alpha}$ is an unbounded subset of α of order-type Then for every $S^{\prime} \subseteq S$ with $\left|S^{\prime}\right|<\lambda$, the family $\left\{A_{\alpha}: \alpha \in S^{\prime}\right\}$ has a transversal (=one-to-one choice function): Moreover we can tind $A^{\prime} \subseteq A_{\alpha}\left(\alpha \in S^{\prime}\right),\left|A_{\alpha}^{\prime}\right|<c f \alpha$, such that the sets $A_{\alpha}-A_{\alpha}^{\prime}$

369
ON SUCCESSORS OF SINGULAR CARDINALS

if $\alpha<\beta$ then $d^{\prime}(\beta, \alpha)=d(\beta, \alpha)$ if $(\exists i)(\beta \geqslant \alpha,>\alpha)$, and otherwise
$d^{\prime}(\beta, \alpha)=\min \left\{d(\beta, \alpha), \min \left\{\zeta: \alpha, \beta \in A_{\zeta}^{i}\right\}\right\}$. It is easy to check
that d ' is ds required. For showing that every $i \in A$ is a successor use subadditivity.
Stage B
For any $\alpha<\lambda^{+}$the family
$\underline{P}_{\alpha}=\{A \subseteq \alpha:|A|<$

$\underline{\text { Pf }: ~ L e t ~} \alpha=\cup_{i<k} B_{i}, \mid$
 Since $A \in P_{\alpha} \Rightarrow[\operatorname{cf}(\sup A) \neq k$ and $d \mid A$ bounded $]$, and by the choice
 (for given i, $<\lambda$). Let $B_{i}^{\zeta}=B_{i} \cup \cup \cup \quad\{\gamma: \gamma<\beta, d(\beta, \gamma) \leqslant \zeta\}$. Clearly $\left|B_{i}^{\zeta}\right| \leqslant\left|B_{i}\right|+\lambda_{\zeta}<\lambda \quad$, and $A \in \in^{i_{P}^{\zeta}}{ }_{\alpha}^{\zeta}, i \quad$ implies $A \subseteq B_{i}^{\zeta}$. So $\left|\underline{P}_{\alpha, i}^{5}\right| \leqslant 2^{+\lambda_{i}}<\lambda$, so we have proved stage B. $\underline{\text { Stage } C}$:
If P is a family of subsets of A each of cardinality $<\lambda$, but $|\underline{P}| \leqslant|A|=\lambda$, then there is a set $C \subseteq A$ such that. $|\underline{P}| \leqslant|A|=\lambda$, then there is a set $C \subseteq A$ such that
(i) $|C|=k$,
(ii) $(\forall A \in P) \quad|A \cap C|<k$ This is trivial.
Stage D :
We define the A_{α}^{\prime} s by induction on α for $a \in S$. Suppose we arrive at α. Let $<\gamma_{i}: i<$ cfa $>$ be increasing with iimit $\alpha, \gamma_{i}+\lambda \leqslant \gamma_{i+1}$

 such that:

ILE

$$
\text { and each } \beta_{i+1} \text { is a successor ordinal. }
$$

$$
\text { disjoint, for } \beta \leqslant \beta_{i} \text { (possible by the induction hypothesis). }
$$

$$
\text { (q) } \left.{ }^{T+T_{g}>}\right\rangle+\Gamma_{g} \cdot 8 \cdot \circ \cdot \tau \cdot m \text { aunsse ueo } \partial m \cdot n>\gamma+T_{g} \text { əouts }
$$

$$
\text { making deletions if necessary). Let } A_{\beta}^{i} \subseteq A_{\beta} \text { be big, pairwise }
$$

$$
c f j \neq k_{0}, k, 1 \text {. Checking definitions we can see that for each such }
$$

$$
\text { among }\{i \leqslant c f \delta: i \text { a limit }\} \text { or } \beta_{j} \notin S \text {, there is no problem. (Re- }
$$

$$
\text { member for } j \text { a successor, } \beta_{j} \text { is a successor, hence } \notin S \text {). Otherwise, }
$$

$$
\text { continuous sequence of ordinals }\left\langle\gamma_{i}: i<c f \beta_{j}>\text { converging to } \beta_{j}\right.
$$

$$
\begin{aligned}
& \text { Since cf } \beta_{j} \neq \aleph_{0} \text {, there is a closed unbounded } c \subseteq \text { cf } \beta_{j} \text {, such that } \\
& i \in c \Rightarrow \gamma_{i} \in\left\{\beta_{\xi}: \xi<j\right\} \text {. We then defined } A_{\beta_{j}}={ }_{i<c f \beta_{j}}^{U} c_{\beta_{j}}^{i} \text {, }
\end{aligned}
$$

$$
\text { where } c_{\beta}^{i} \subseteq\left(\gamma_{i}, \gamma_{i}+\lambda\right) \text {, has order type } k \text {, and in particular }
$$

$$
\text { But what is } \operatorname{acc}\left(E_{j}\right) \text { ? It is just }\left\{\beta_{j}(\right.
$$

- (pautnbəu se st pfo ədא7

$$
\left\{\cup\left\{A_{\zeta}: \zeta \in \delta, \zeta \in \operatorname{acc}\left(E_{j}\right)\right\}\right] \cap c_{\beta}^{i} \quad \text { has power }<k .
$$

 there are big $A_{\beta}^{\prime} \subseteq A_{\beta}(\beta \leqslant \alpha, \beta \in S)$, pairwise disjoint. This will Case 1 : For α a successor ordinal, it follows from the induction Case 2 : For α such that $(\exists \beta<\alpha) \beta+\lambda \omega>\alpha$: proof as in the Case 3 : For α a limit, cf $\alpha=\aleph_{0}$. Choose ordinals $\alpha_{n}<\alpha$,
 thesis there are big $A_{\beta}^{n} \subseteq A_{\beta}\left(\beta \leqslant \alpha_{n}\right)$, pairwise disjoint. Define A_{β}^{\prime}, for $\beta \leqslant \alpha, \beta \in S$ (hence $\beta \neq 0$), by
$A_{\beta}^{\prime}=A_{\beta}^{n+1}-\left(\alpha_{n}+\lambda\right)$, where $\alpha_{n}<\beta \leqslant \alpha_{n+1}$ It is easy to check that $A_{\beta}^{\prime} \subseteq A_{\beta}$ is still big, and obviously the A_{β}^{\prime} are pairwise disjoint. Note that $\alpha \in S$, so we do not have to define A_{α}^{\prime}. Case 4 : For α limit, not case 2, cfa>N。. There is $E \subseteq \alpha$, unbounded, of order type $c f \alpha$ (hence $<\lambda$) and $E=\left\{\beta_{i+1}: i<c f \alpha\right\}$ (the B increasing), such that $d \mid E_{i}$ is unbounded for $i<c f a$, where

$$
\text { So we can define } A^{*}
$$

$$
\text { are satisfied by } \lambda \quad \gamma^{\prime} \text { s, } \beta(\alpha, i)<\gamma<\beta(\alpha, i)+\lambda
$$

and
 $A_{\alpha}^{1} \cap A_{\alpha_{2}}^{1}$, then $\beta=\beta\left(\alpha_{1}, i_{1}\right)=\beta\left(\alpha_{2}, i_{2}\right)$ (it is the biggest ordinal

 ${ }^{\xi_{1}}{ }_{1} \alpha_{2} A_{2}$, as required. $B_{\beta\left(\alpha_{1}, i_{1}\right)} \subseteq A_{\alpha_{1}}$,

Now we deal with each component C of the graph separately.
By (a), all $\alpha \in C$ have the same cofinality, say μ, and by b),
$|c| \leqslant \kappa+\mu$. If $\mu>k$ note that each A_{α}^{1} has order type μ and is unbounded below α, hence $\alpha_{1} \neq \alpha_{2}=c \Rightarrow\left|A_{\alpha_{1}^{1}}^{1} \cap A_{\alpha_{2}}^{1}\right|<\mu$.
So let $c=\left\{\alpha_{\zeta}: \zeta<\mu\right\}$, and we can define $A_{\alpha_{\zeta}}^{*}=A_{\alpha_{\zeta}}^{1}-\cup A_{\alpha_{\zeta}}^{1}$,
 each $\{\gamma(\alpha, k i+\xi): \xi<k\}$ for $i<\mu, \alpha \in C$.
25. Conclusion
7 tum Buouts E ST ${ }^{m} \mathrm{~N}$ asoddns (1

Stage E : Suppose λ singular strong limit, cf $=k, \quad S$ a stationary subset of λ^{+}, and every member of S divisible by $\lambda \omega$. Suppose further $A_{\alpha} \subseteq \alpha, \quad\left|A_{\alpha}\right| \leqslant k c f \alpha$ for $\alpha \in S$, and for any $\alpha_{0}<\lambda^{+}$

 with i, (hence $\left|A_{\alpha}^{*}\right| \leqslant c f a+k(<\lambda)$) and for every $\alpha<\lambda^{+}$ there are pairwise disjoint $A_{\alpha}^{\prime} \subseteq A_{\alpha}$ (for $\alpha<\alpha_{0}, \alpha \in S$), such that for each α for some $i_{0}<c f a$ $(\forall i<c f \alpha)(\exists \zeta<k)(\forall \xi)\left(\zeta \leqslant \xi<k \& i<i \rightarrow \gamma(\alpha, k i+\xi) \in A_{\alpha}^{\prime}\right)$ Proof : For every α, choose $B_{\alpha}^{\xi} \subseteq \alpha, B_{\alpha}^{\xi}$ increase with $\xi, \alpha=\cup$ and $\left|B_{\alpha}^{\xi}\right|<\lambda$. We can define functions h_{0}, h_{1}, Dom $h_{\ell}=\lambda^{\xi<K^{+}}$, there are such that $h_{1}\left(\beta^{*}\right)=\beta_{1}, h_{2}\left(\beta^{*}\right)=A$. (We define $h_{\ell} \mid[\lambda i, \lambda(i+1))$ for each i, thempumber of possible tuples $<\beta_{1}, A, \beta, \xi, \beta>i s \leqslant \lambda$, oo the number of possible
 converging to it First note that $\left(\forall \alpha_{0}<\alpha\right) \alpha_{0}+\lambda<\alpha($ since $\alpha \in$ S) hence w.l.o.
$\beta(\alpha, i)+\lambda<\beta(\alpha, i+1)$, and $\beta(\alpha, i)$ is divisible by λ. First note that $\left(\forall \alpha_{0}<\alpha\right) \alpha_{0}+\lambda<\alpha($ since $\alpha \in$ S) hence w.l.o.
$\beta(\alpha, i)+\lambda<\beta(\alpha, i+1)$, and $\beta(\alpha, i)$ is divisible by λ. Now we define by induction on $j=i \kappa+\xi \quad(i<c f \alpha$, ordinal $\gamma(\alpha, j)$, increasing with j, such that (i) $\beta(\alpha, i)<\gamma(\alpha, j)<\beta(\alpha, i)+\lambda$, (ii) $h_{1}(\gamma(\alpha, j))=c f \alpha$,
(iii) $h_{2}(\gamma(\alpha, j))=A_{\alpha} \cap B_{\beta(\alpha, i}^{\xi}$
(iv) $\gamma(\alpha, j) \notin \quad\left\{A_{\alpha(0)}^{*}: \alpha(0) \in B_{\alpha}^{\xi}\right\}$.

The last condition excludes $<\lambda \quad \gamma^{\prime}$,

 then every unbounded $A^{\prime}-\alpha$ has an unbounded subset $A^{\prime}-A^{4}-\alpha-1 . A^{\prime \prime}$ is bounded.
 Let λ be the first singular cardinal $>x$. By 27 we can choose a regular $\mu<\chi$ such that $S^{*}\left(\lambda^{+}\right) \cap \operatorname{CF}\left(\lambda^{+}, \mu\right)$ is stationary. We

 S. SHELAH .

$$
\begin{aligned}
& \text { 2) Suppose } \mathbb{N}_{\omega \ell}= \\
& \aleph_{\omega n+1} \text {. }
\end{aligned}
$$

$$
s_{w n+1}
$$

and Shelah [MS].

$$
1 \text { b), } 2 \text { b) are easy }
$$

ON SUCCESSORS OF SINGULAR CARDINALS 37 the following is consistent $2 E C+G C H+" S *\left(\mathrm{~N}_{\omega+1}\right)$ -sptou HDO $(\cdot 3 \cdot 0 \cdot \tau \cdot u)$ oste pue'qoeduoviodns st X asoddns : $\overline{\text { foond }}$
 cardinality $<ふ_{w+1}$

$$
\text { free, but every subgroup of cardinality }<\mathrm{N}_{\omega+1}
$$

$$
\underline{\text { Proof }: ~} 1 \text { a), } 2 \text { a). It is easy to see this after reading Milner }
$$

 If in $V^{P} \lambda$ is still a strong limit cardinal, then

$$
\text { 26. Claim : Suppose } \lambda \text { is strong limit, cf }=\kappa_{0}, \mu<k, \mu \text { regular }
$$ are pairwise compatible. are equal (i.e., for some representation they are equal). truth value of a su(d) is ot ehaged, which is quite easy is not changed, which is quite easy 27. Claim : If x is supercompact, stationary. 4

0
0
0
4
4 u
u
0 Suppose $N<\left(H\left(\lambda^{++}\right), \in\right), \quad c f \lambda+1 \subseteq N, \quad C, d \in N, \quad\|N\|<x$ and every
subset of $N \cap \lambda^{+}$belongs to N (this is possible as x is supercompact Let $\delta^{*}=\sup \left(N \cap \lambda^{+}\right)$. Clearly cff δ^{*} is the successor of a singular cardinal of cofinality cf λ so $c f \delta^{* *}>c f \lambda$. Clearly $c \cap N$ is unbounded, hence $\delta^{*} \in C$; so it suffices to prove $\delta^{*} \notin S$ (d).

L८

STVNIa\&vo צ丬tnonis ao saossajons no
$X \cap \alpha_{i(j)}=A_{\gamma}$. So $X \cap \delta=\cup_{j<k} A_{\gamma} \in$

[^1]$\left\{A: A \subseteq A_{0} \bmod D_{\lambda}\right\}$ for some A_{0}, when $\operatorname{gcf}(\lambda)=\lambda$. Another formu-
Lation of our question is whether this always holds.
 in terms of $I^{+}(\lambda)$ instead of $S^{*}(\lambda)$ (and the changes in the proofs

(This imples $C_{1}^{\prime} \subseteq S_{2}(\bar{N})$).
We prove this by induction on B. For Einite β this was done
above, and the induction step is easy.
sh.10

LOGIC COLLOQUIUM 78
M. Boffa, D. van DaZen, K. NoAloon (eds.)
© North-Hotland Fublishing Company, 1979

Shelah, Notes in partition calculus, Proc. of Symp.
[Sh 2] , A compactness theorem for singular cardinals
Free Algebras, Whitehead problem and transversals,
cs Israel . Nath. 21 (1975), 319-349.

[^0]:

[^1]: $I^{+}(\lambda)=\left\{A \subseteq \lambda:\right.$ for some λ-approximating sequence $\left.\bar{N}, A \subseteq S_{2}(\bar{N})\right\}$

