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DENSITIES OF ULTRAPRODUCTS OF BOOLEAN ALGEBRAS 

SABINE KOPPELBERG AND SAHARON SHELAH 

ABSTRACT. We answer three problems by J. D. Monk on cardinal invariants of 
Boolean algebras. Two of these are whether taking the algebraic density TTA resp. the 
topological density cL4 of a Boolean algebra A commutes with formation of ultraprod-
ucts; the third one compares the number of endomorphisms and of ideals of a Boolean 
algebra. 

In set theoretic topology, considerable effort has been put into the study of cardinal 
invariants of topological spaces, see e.g. [Jul] and [Ho], [Ju2]. In Monk's book [Mo], 
similarly a systematic study of cardinal invariants of Boolean algebras is undertaken; 
in particular, the behaviour of these invariants with respect to algebraic constructions 
like taking subalgebras, quotients etc. is investigated. One of these is the ultraproduct 
construction, well known from model theory; cf. [ChK]. Many questions on ultraproducts 
are highly dependent on set theory; among the more recent results are those in Shelah' s 
pcf theory dealing with the possible cofinalities cf(na<« Xa/D) where the Xa are regular 
cardinals, hence well-ordered in a natural way, and the ultraproduct has the resulting linear 
order. 

Monk's book contains a list of 66 problems, three of which are answered (consistently) 
in this paper. 

PROBLEM 9. Does there exist a system (A/)/G/ of infinite Boolean algebras and an 
ultrafilter F on I such that dOLe/A,/F) < | Uiei d(A/)/F|? 

PROBLEM 12. Is it true that always ir(UieiAi/F) = | Utei 7r(A/)/F|? 

PROBLEM 60. Is there a Boolean algebra A such that | End A\ < | IdA|? 
Here TTA and d4 are the "algebraic" and the "topological" density of A, defined by 

6A — min{|F| : Y a dense subset of the Stone space of A} 

7rA = min{|X| : X a dense subset of A} 

(for more definitions and matters on cardinal functions, see [Mo]). Note that we are 
dealing only with infinite algebras and that, trivially, UJ < 6A < TTA, d(n,e/A//F) < 
\Uieid(Ai)/F] and 7r(n,-e/A//F) <\Uiei^(Ai)/F\. 
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DENSITIES OF ULTRAPRODUCTS OF BOOLEAN ALGEBRAS 133 

In Problem 60, End A is the set of all endomorphisms, Id A the set of all ideals of A. 

In Section 1, we give a positive answer to Problem 12 under SCH. Here SCH is the 

Singular Cardinal Hypothesis: if 2c tA < A (so À is singular), then Acf A = A+. However, 

-i SCH gives a negative answer to both Problems 9 and 12: 

THEOREM A. Assume we have cardinals n, \i, and (Xa)a<K and an ultrafilter D on 

K such that: n < /i = cf p, p^ < Xa = cf Aa, and the cofinality of the ultraproduct 

Yla<K ^a/D is less than its cardinality. Then there is a forcing notion R such that 

(a) R is p-complete and satisfies the (p<flT-chain condition; hence forcing with R 

preserves all cardinalities and cofinalities outside the interval [p+, p<fl) 

(b) for K Ç R R-generic over V, the following holds in V[K]: there are Boolean 

algebras (Aa)a<K such that Xa = \Aa\ = irAa = dAa, but for the ultraproduct A = 

d(A) < TT(A)=cf ( n K/D) < I n K/D\ = I n MAa)/D\ = i n ^ « V D I . 

Note that SCH is known to be independent from ZFC, modulo some large cardinal 

assumption (see [Ma]). And the assumption of Theorem A is a consequence of -i SCH, as 

follows from pcf theory. A particularly easy case is the classical one for -> SCH: assume 

A is strong limit and singular, n = cf A satisfies 2K < A, but XK > A+; let [i be regular 

such that E < p < A. Then there are (see [Sh, Chapter II, 1.5]) regular Xa such that 

A = supa<KXa, Tla<K ^oc/Jb
K

d has true cofinality A+ (J^d the ideal of bounded subsets of 

/<c), hence any uniform ultrafilter D on K gives cf(na<«; Aa/£>) = A+ < | ria<K A a /D | . 

More generally if A violates SCH, i.e. for some «, we have 2K < X and XK > A+, let A' be 

minimal such that A/K = \K (i.e. \'K > A); so for every cardinal p < X\ we have pK < X'. 

Now take \x = K+ and find, by [Sh, Chapter II, 1.5], an appropriate family (Xf
a)a<K with 

limit X' and cf(Ua<K A ^ / ^ ) = A/+. Moreover we can replace A/+ by any regular cardinal 

in the interval [A/+, A/K]; similarly for the strong limit case; see [Sh, Chapter VIII, §1]. 

Theorem 1.1 below and Theorem A show that the answer to Problem 12 is independent 

from ZFC. However, it has recently been shown in [RoSh 534, 2.6, 2.7] that Problem 9 

has a positive answer even in ZFC. 

Problem 60 is solved in Section 8 by 

THEOREM B. Assume p is a strong limit cardinal satisfying cf p = UJ and 2M = /i+. 

Then there is a Boolean algebra B such that \B\ = | End#| = p+ and \ldB\ = 2^+. 

The organization of Sections 2 to 7 is as follows. In Section 2, we introduce a first order 

theory T for Boolean algebras with some extra structure which allows (e.g. in ultraprod-

ucts A = Ua<K AajD of models of T) to easily compute TTA. In Section 3, we construct 

canonical models A(p) of T from what we call valuation functions p. In sections 4 to 6, 

we consider the forcing notion P of valuation functions, determine its completeness and 

chain conditions, and compute dA and TTA for the canonical algebra A = A(P) constructed 

from a generic valuation function P. In Section 7, we prove Theorem A. 

For definitions and results on set theory, see [Je]; for Boolean algebras, [Ko]. 
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134 S. KOPPELBERG AND S. SHELAH 

1. Problem 12 under SCH. We give here a positive answer to Monk's Problem 12 

under SCH. Given an ultraproduct A = HieKAi/D of infinite Boolean algebras, we let 

A/ = 7rA/, so LU < A,. For simplicity of notation, we will denote, in this section, by 

Yiien A//Z) both the ultraproduct of the A; and its cardinality. 

Note first that the answer is easy if A/ < 2K for D-almost all / G K (i.e. if {/ G K : 

A/ < 2K } is in D) and D is regular. For in this case, each A; has an infinite set of pairwise 

disjoint elements, so A has cellularity at least 2K and, on the other hand, HieK A//D < 2K, 

hence 2K < cA < irA < HieK Xi/D < 2K. Thus Theorem 1.1 covers the interesting case: 

2K < A/ for D-almost all /. 

THEOREM 1.1 (SCH). Assume 2K < A; = irAifor all i G K and D is an ultrafilter on 

K; let A = n G K A//D. Then TTA = He* V D -

PROOF. We know that TTA < UieK Xi/D. Let 

A = D — lim(A/ : / G K), 

i.e. A is the least cardinal p such that A/ < p holds for all D-almost all /. Without loss of 

generality, A, < A holds for all / G n. 

CLAIM 1. If 6 < A, then 6K < A. 

To see this, pick i such that 0 < A,. Now if 9 < 2K, then 0* = 2K < A, < A. Otherwise, 

AC < 2* < 0 < 9+ < A/, (0+)K - 9+ by SCH, so 6K < 6+ < A/ < A. 

CLAIM 2. IT A > A. 

Otherwise pick a dense subset 7 of A of size p, where p < A, say F = {ya/D : a < p} 

with y a = (y a(0) in HeK A/ and ya(i) ^ 0. Since p < A, we may assume without loss 

of generality that p < A/ for all /. So we can pick, for i £ K, ai ÇL A/ \ {0} satisfying 

ya(i) ii aj, for all a < p. The sequence a = (tf/)/^ is such that y a / ^ i a/D for a < p, 

a contradiction. 

The theorem now follows immediately from the next three claims. 

CLAIM 3. If TTA > A+, then the assertion of the theorem holds. 

For in this case, X+ < TTA < UieK Xi/D < XK/D < XK < A+, where the last inequality 

follows from SCH and 2K < X. 

CLAIM 4. If nA = A, then every function/ G ELGK Xi/D is bounded below A, mod
ulo D. 

For the proof, work as in Claim 2: fix a dense subset Y of A, Y = {ya/D : a < A}, 

ya = Cy«(0)/ec>;ya(0 7̂  °- G iven / G ri/e* A/, we know that Yt = {ya(/) : a < / ( / ) } 

cannot be dense in A/, since |F/| < [/*(/)| < A,- = 7rA/. SO pick a = (tf/)/GK where a, G 

A/ \ {0} is such that ya(i) ^ a,, for all a < / ( / ) . Since Y is dense in A, pick a < A such 

that ya/D < a/D. It follows that: ya(i) < ai, for D-almost all /; a if(i) for these /, so 

/ ( / ) < a ; i.e. / ( / ) < a for D-almost all /. T h u s / is bounded by a < X. 

CLAIM 5. If TTA = A, then the assertion of the theorem holds. 
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DENSITIES OF ULTRAPRODUCTS OF BOOLEAN ALGEBRAS 135 

For Claim 4 says that for every / G UieK A;,//£> = f/D for some/7 : K —> v and 

some v < A. By Claim 1, Ri(EK A//D < Y,v<K \v\* < A. It now follows from Claim 2 that 

A < 7 r A < n / e K A / / D < A . • 

2. The theory T. We sketch here a first order theory 7\ Its relevance for solving 

Problem 12 of [Mo] lies in the fact that the models 91 of T are enlargements (A,...) of 

a Boolean algebra A; the extra structure of 21 allows to easily compute 7r(A)—see Re

mark 2.1. below. Since every ultraproduct U = (£/,. . .) of models of T is again a model 

of r , we can then similarly compute it(U). 

Let T be the first order theory (in an appropriate language) saying that, for every model 

% = (A, + , - , - , 0 ,1 , L, <L , ~ , v, JC) of r , the following hold true. 

(a) (A, +,-,—, 0,1) is a Boolean algebra. 

(b) L Ç A is totally ordered by <i and has no greatest element. (We do not require 

any connection between <L and the Boolean partial order of A, except the one 

stipulated by (e) below.) 

(c) v is a map from A to L; for / G L, A/ = {a G A : v(a) <L 1} is a subalgebra of A. 

(Hence (A/)/GL is an increasing sequence of subalgebras of A whose union is A.) 

(d) ~ is an equivalence relation on L and its equivalence classes are convex, with 

respect to <L. 

(e) x is a map from L into A (we write JC; for JC(/)) such that / < / implies JC; ^ JC/. 

Moreover for / G L, the set {*/ : / <~ /} is dense for A/ in the sense that for every 

a G A/ \ {0} there is some / ~ / satisfying 0 < JC,- < a. (Hence {JC,- : / G L} is a 

dense subset of A.) 

REMARK 2.1. Let 91 = (A,...) be a model of T, p the cofinality of the linear order 

(L, < L ) and assume that all equivalence classes in L have cardinality at most p. Then 

7T(A) = p. 

PROOF. TO see that 7r(A) < p, fix a cofinal subset M of L of size p. The set 

{xi : i ~ m, for some m G M} 

has size p and is dense in A, by (e). Assume for contradiction that A has a dense subset 

X of size less than p. Without loss of generality, X Ç {x, : / G L}; pick / G L such that 

xi G X implies i < l.X being dense in A, there is JC; G X such that 0 < JC,- < x/. So / < / 

which is impossible by (e). • 

In Sections 3 and 4, we will construct "standard" models % — (A,.. .) of T which will 

roughly look like this, for some regular cardinal A: \A\ = A, so without loss of generality, 

A Ç A; we let L = A and <L its natural well-ordering. A will be generated by a sequence 

(JC/)/6A; we then let A/ be the subalgebra of A generated by {x{ : i < 1} and define v(a) to 

be the least / such that a G Ai+\. Finally we will have an infinite cardinal p < A and define 

/ ~ I iff / < / < i + p and I < i < l+p (ordinal addition); thus the equivalence classes will 

have size p . Satisfaction of condition (e) above will be guaranteed by a careful choice of 

the generators JC/—see Proposition 5.1. In particular, TTA will be A = |A|. 
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136 S. KOPPELBERG AND S. SHELAH 

3. Valuation functions. We construct Boolean algebras A(p) from certain functions 
p, the so-called valuation functions. Later the Boolean algebras A(P), where P will be a 
generic valuation function, provide the counterexample for Problems 9 and 12 in [Mo] 
looked for. 

We denote the three-element set consisting of the symbols >, _L, u — "undefined" by 
3. For any set w with some linear order on it (later w will be a subset of some cardinal A, 
hence well-ordered), recall that [w]2 = {(ij) : i <j in w}. 

Given a Boolean algebra A and a family (x/)/Gvv indexed by w in A \ {0}, we can assign 
to (xi)iew the function p: [w]2 —-> 3 defined by 

I > if xi > Xj 

_L if X[ _L Xj, i.e. x, • Xj• = 0 

u otherwise. 

Clearly p has then the following properties: 
(1) if p(iJ) = > and p(j,k) = > then p(i,k) = > (where i <j < k) 
(2) if i < j < k and {p(i,j),p(i, k)} = {_L, >}, then p(j, k) = _L; similarly if i < j < k 

and p(ij) = ±,p(j,k) = >, then p(i,k) = _L. 
Let us call a function p satisfying ( 1 ) and (2) above a valuation function and w its 

domain. 
Conversely, given a valuation function p: [w]2 —• 3, we construct a Boolean algebra 

A — A(p) from p as follows. Let Fr w be the free Boolean algebra on the set {w, : / G w} 
of independent generators and let N(p) be the ideal in Fr w generated by the elementary 
products Uj • ui where p(ij) — JL resp. Uj • — ut where p(ij) = >. Let then A(p) (or 
A, for short) be the quotient algebra Fr w/N(p) and let c: Fr w —> A(p) be the canonical 
homomorphism. Setting JC£- = c(w;), for / G w, we find that the xi generate A. By the 
very choice of the ideal N(p), p(ij) = > implies that xt > Xj and p(ij) = _L implies 
that Xj .1 Xj. To see that no other relations than those imposed by p hold for the JC/, note 
the following general principle on construction of Boolean algebras via generators with 
prescribed relations. 

REMARK 3.1. Let £ be a set of finite partial functions from w to {0,1} and let, for 
e G E,qe be the elementary product Yle(i)=\ ut 'rL?(0=o — Ut m ^ r W- Assume Â  is the ideal of 
Fr w generated by the qe,e G E. Then for any function g: w —> {0,1}, there is an ultrafilter 
of Fr w/N including {xt : g(i) = 1} U {-*/ : g(i) = 0} (i.e. {xt : g(i) = 1} U {-xt : 
g(i) = 0} has the finite intersection property) iff no e G E is extended by g. 

This gives the following properties of the xt in A = A(/?), where p is a valuation func
tion. 

REMARK 3.2. x/ is not in the ideal generated by {XJ : j > /}. In particular, JC* ^ 0, the 
xi are pairwise distinct, and / <j implies that xf ^ Xj. 

To see this, consider the function g: w —> {0,1} such that g(k) = 1 iff A: = / or (/: < / 
and p(k, i) = >). By Remark 3.1, let s be the ultrafilter of A induced by g. Thus JC, G s 
but, for 7 > /, Xj ̂  .s, which shows the claim. 
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DENSITIES OF ULTRAPRODUCTS OF BOOLEAN ALGEBRAS 137 

REMARK 3.3. xt is not in the subalgebra of A generated by {XJ : j < i}. 

For consider the functions g and h from w to {0,1} where g is defined as in the proof of 

Remark 3.2, h(k) — g(k) for k ^ /, but h(i) = 0. Let s and t be the corresponding ultrafilters 

of A, </> and i/j the homomorphisms from A to the two-element algebra corresponding to s 

and t. Now </> and t/> coincide on Xj for all 7 < /, but not on X(. 

4. The partial order of valuation functions. For the next sections, fix infinite car

dinals A and p such that /x</z = /x, /x < A, and A is regular. We shall choose A and 

p somewhat more carefully in Section 7. Let P(A, /x) (or P, for short) be the notion of 

forcing 

P = {p : p is a valuation function and dom/? Ç A has size less than /x} 

ordered by reverse inclusion. 

REMARK4.1 . Pis /x-closed. 

We now build up some machinery for constructing elements of P with prescribed prop

erties. Given a set r of relations of the form JC,- > Xj, xt _L Xj (where ij G A; the relations 

may be thought of as being formulas in some formal language in the variables xt,i G A), 

we define when a relation p can be derived from r and we write r h p: if p has the form 

Xk > xt, r \- p iff there are i\,..., im G A such that the relations xk > x^, xi] > xi2,..., 

Xim > xi a r^ all in r (in particular, r h JC/ > JC/); if p has the form xk _L x/, r h p iff there 

are a, /? G A such that xa J_ x^ is in r and r h x« > xk, r h x^ > x\. 

Call r consistent if no relation of the form Xj > xi where / < j and no relation of the 

form Xk _L xk is derivable from r. Given /? G P, define rel/?, the relevant part of/?, by 

rel/? = {x, > xj : p(/j") = > } U {xt J_ x7 : p(i,j) = ± } . 

PROPOSITION 4.2. 7/" |r| < /x, r / î^ r is consistent iffrC velpfor some p G P. 

PROOF. Assume first that/7 G P and r Ç rel/? where dom/? = w Ç A. Then in the 

Boolean algebra A(p) constructed in Section 3, all relations in r and hence all relations 

derivable from r are satisfied by the canonical generators {JC, : / G w}; moreover, these 

generators are non-zero. Hence no relation x^ _L x^ and no relation of the form Xj > JC,, 

/ < j , can be derived from r. 

Conversely, if r is consistent, let w be any subset of A such that |w| < p and {/ G A : JC, 

occurs in r} Ç w. Define p\ [w]2 —> 3 by 

I > iff r h xi > Xj 
_L iff r h xi A. Xj 
u otherwise. 

p is a well-defined function (i.e. r does not derive both */ > JC7 and JC,- ± JC7, for / < 7 G 

w) since otherwise, r h j j l JC,, contradicting the consistency of r. By the above definition 

of derivability from r, p is a valuation function. • 
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138 S. KOPPELBERG AND S. SHELAH 

For further reference, call p G P defined from a consistent set r and w Ç À as in the 
proof above the canonical extension of r over w. 

We give one trivial and one not-so-trivial application of this machinery. If G Ç Pis 
P-generic over our universe V of set theory, then clearly Pc = \JGisa. valuation function 
with dom Pc = \Jpec dom/?. 

REMARK 4.3. If G is generic, then dom PG = A. 
To see this, we have to make sure that, for / G A, the set D,- = {/? G P : / G dom/?} 

is dense in P. But given q G P, let w Ç A be such that \w\ < \i and dom q U {/} Ç w. 
Now by Proposition 4.2, relg is consistent; let/? be the canonical extension of rel q over 
w. Then /? G A and q Ç p. 

PROPOSITION 4.4. Ifp, q G P coincide on domp H dom g, f/zen /̂2<?y are compatible 
in P. 

PROOF. This follows from a number of claims. We write/? h • • • instead of rel/? h • • • 
and we say that a relation, e.g. x, > xy, is in p if p(i J) = > eft:. 

CLAIM 1. If/? h x, > Xj where / <j, then / J G domp and the relation x,- > xy is in p. 
Similarly for q and for relations of the form x/ _L x,.—The claim holds because rel/?, for 
p G P, is closed under derivations. 

By Proposition 4.2 we are left with showing that the set 

r = rel/?Urel<7 

is consistent. 

CLAIM 2. If r h x,- > x/, then p h i,- > xy or q (- x,- > x7- or, for some a, (/? h x,- > xa 

and ^ h i a > x7-) or, for some a, (g h x, > xa and p \~ xa > Xj). 

CLAIM 3. If r h x/ _L xy, then /? h x,-1 xy or q h x,- _L xy or, for some a, (/? h x,- _L xa 

and g h xa > Xj) or, for some a, (q h x/ _L xa and /? h xa > xy) (or similarly with / 
interchanged with/). 

CLAIM 4. If r h xi > Xj and ij G dom/?, then /? h x,- > xy. Similarly for g and for 
relations of the form x/ _L xy. 

The proofs are easy but require consideration of a number of cases. We give two typical 
examples. In Claim 3, assume e.g. that /? h x7 JL x ,̂ q h x7 > x, and g h JC$ > xy. Then 
7 and 6 are in dom/? Pi dom q, x1 _L x̂  is (by Claim 1) in /?, hence in q, because /? and q 
coincide on dom/? Pi dom q, and g h JC,- _L Xj. 

Similarly in Claim 4, assume e.g. that/? h x/ > xa and g h xa > xy where ij G dom/?. 
Since a is in dom/? Pi dom qy it follows that xa > Xj is in /?, hence /? h x, > xy. 

CLAIM 5. r is consistent.—For otherwise by Claim 3, we may assume that, e.g., for 
some a, /? h xk _L xa and g h xa > x .̂ Then /: and a are in dom/? Pi dom q, xa > xk is in 
q and x* J- *k is in /?, a contradiction. • 
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PROPOSITION 4.5. P satisfies the ̂ -chain condition. 

PROOF. If X is a subset of P of size /i+, then by /x</z = p and the A-lemma there are 
p and q in X coinciding on domp D dom q. So we are finished by Proposition 4.4. • 

5. Computing 7r(A(F)). In this and the following section, let G be a P-generic filter 
over V and P the resulting generic valuation function (see Remark 4.3). Write A for A(P). 
We prove condition (e) of Section 2 for A, thus being able to compute TT(A) in V[G]. 

PROPOSITION 5.1. The following holds in V[G]. Let a < X be an ordinal, a Ç a 
finite, e:a —> {0,1} and 

y = n xi n ~xi > ° (in ^)-
e(i)=\ e(i)=0 

Then there is i* G [ot,a + fi) (ordinal addition) such that x/* < y. - In particular, the set 
{xi* : /* G [a, a + p)} is dense for the subalgebra of A generated by {x, : / < a}. 

PROOF. We do not distinguish notationally between elements of V[G] and their P-
names; in particular since a and e, being finite, are in the ground model. Pick p E G such 
that 

phy= I] xr I] - ^ > 0 ; 
e(i)=\ e(i)=0 

it suffices to prove that 

D = { f G P : / < p , and t lh JC/* < y for some /* G [a, a + //)} 

is dense below p. To this end, let q < p be arbitrary. By Remark 4.3, we can fix r < q 
such that a Ç dom r. Then fix /* G [a, a + /i) \ dom r; this is possible by | dom r| < /x. 
We define a function s with domain a U {/*} by putting 

•srM2 = r rM 2 

* f > if / G « and e(i) = 1 
^ ' ^ } ~ \± ifieaznde(i) = 0. 

CLAIM, S G P, i.e. s is a valuation function. 
Let us check just one case. Note that, for u G P, M(/J) = > implies that u lh JC,- > x7 

and similarly for _L instead of > since for any generic H Ç P containing u, u Ç PH and 
thus xi > Xj will hold in A(PH). Assume e.g. i < j in a, s(ij) = > and s(j, /*) = >; 
we have to show that s(i, /*) = >. The assumptions say that r(ij) = > (since ij G a) 
and e(j) = 1 ; we have to show that e(i) = 1. But if e(i) — 0, then: p lh 0 ^ —x, • x, 
(because /? lh 0 < _y < — xt • x,), r lh 0 ^ —JC/ • x/ (since r < p), r lh x, > x7 (by the above 
assumption), r lh —x/ -x, = 0, a contradiction. Now r and s coincide on a = dom rHdom s, 
so by Proposition 4.4, pick t G P extending both r and s. Then r < q and 5 lh x,* < y, by 
the very definition of s above, so t G D. m 
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COROLLARY 5.2. TT(A) = A (in V[G]). 

PROOF. This follows from Remark 2.1 and the sketch of the model 11 = (A,...) \= T 
following it, plus Proposition 5.1. Let us remark that Theorem 6.1 gives another proof, 
since dA = A, dA < TTA holds for all Boolean algebras and 7rA < \A\ = A. • 

EXAMPLE 5.3. Our construction of A = A(P) and Proposition 5.1 above give a coun
terexample to the assertion in Theorem 4.1 of [Mo], in V[G]. For this, let Aa be the sub-
algebra of A generated by {JC/ : / < a} ; so if a G / = {a < A : cf a — p), then by 
Remark 2.1 and Proposition 5.1 above, we have ixAa — fi. Moreover A = \JaeIAa and 
TTA = A where A can be larger than p+.—In fact, the argument given in [Mo, 4.11 depends 
on the assumption that the chain (Aa)aei is continuous which is not the case here. 

6. Computing d(A(P)). Our single theorem here is the following. 

THEOREM 6.1. In V[G], A = A(P) satisfies d(A) = A. 

PROOF. Otherwise, the cardinal a = d(A)V[G] is less than A. There are a P-name u 
and a condition p G P (in fact, p G G) such that 

p lh u is a sequence (uv)v<a, each uv is an ultrafilter of A, and A \ {0} = (J uv. 

For a < A, fix pa G P and i/a < a such that pa < p and 

Pa II" Xa G UVa 

(xa the (name of the) a-th generator of A). In the next steps, we construct stationary subsets 
S\ ^S2 ^S3 DS4of A. 

STEP 1. S\ = {a G A : cf a = p} is stationary in A because p < A and A is regular. 

STEP 2. Since a < A = cf A, there are u* < a and a stationary S2 Ç 5j such that 
^a = ^*, for all a G S2. 

STEP 3. Write wa = dompa, for a G A. We find a* G A and a stationary S3 Ç S2 
such that for all a G S3, a* < a and vva D a Ç a* hold. To this end, note that cf a = p, 
for a G S2 and \wa H a\ < /i; so pick j a < a satisfying wa P\ a Ç j a . Apply Fodor's 
theorem to obtain S3. 

STEP 4. We find a stationary set S4 Ç S3 such that a < f3 in S4 implies wa Ç /3. To 
do this, define by induction/: A —->• A strictly increasing and continuous such that, for all 
a ' Uz/<« NV ̂ / ( a ) an(l tel 4̂ = S3 H C where C = {a :f(a) = a} is closed unbounded. 
Then S4 is stationary and, for a < (3 in S4, we have wa C/(/3) = /3. 

Now n+ < \ and P satisfies the /i+-chain condition. So we can find a < (5 in S4 such 
that /7a and p^ are compatible in P. Let r be the following set of relations: 

r = rel(pa) U rel(/^) U {x^ ± xa} 
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(see the machinery in Section 4). 

CLAIM, r is consistent. 

By the claim and Proposition 4.2, pick then g G P such that r Ç rel(g). This q will 

force the following statements: 
xp -L xa 

*a € uVa = uv* and xp G uV0 = uv* 

uv* has the finite intersection property (being an ultrafilter), 

and this contradiction finishes the proof. 

PROOF OF THE CLAIM. Clearly no relation X( > Xj where j < i can have a derivation 

from r, since such a derivation would not use the relation xp _L xa\ hence jt/ > Xj would 

be derivable from rel(pa) U xz\(pp), contradicting the compatibility of pa and pp. 

Now assume r h JC* l i ^ , for some fcGA.A derivation witnessing this starts, without 

loss of generality, with the relation xp -Lxa. So in pa Upp there are relations 

**o — x/i ' • • • 'x/r~i — •*/, where ÎQ = a, /r = k 

xjo > xj],... ,xjs_x > xjs where 70 = /?, j s = fc. 

Note that a = /Q < M < • • • < ir = k (since if x, > *,• is inpa Upp, then 7 < /); similarly, 

i8=7o <7 i < • " <js = k. 
We prove by induction on t G { 0 , . . . , r) that it £wp = dom pp\ for t = r this gives a 

contradiction because then k = ir tfi wp, so k £ wa and k > f3, but w a Ç /3. First, /Q ^ w/5-

otherwise, by Step 3, ÎQ = a G wp D/? Ç a*, contradicting a* < a for a G S3. If /, ^ w^ 

but /r+i G wp, then the relation jt;, > xtl+] must be in/?a. But then it+\ ÇîwaÇ(3 and again 

h+\ G w^ H /3 Ç a* < a, a contradiction. • 

7. Proof of Theorem A. 
1'. 1 Proof of Theorem A. Fix «, /i, Aa and D as given in the theorem; R will be the iteration 

of two forcing notions. In the first step, collapse p^ to p with Q = Fn(p, p<fl, < /1) in 

Kunen's notation ([Ku]). This forcing is /i-closed and satisfies the (/x</z)+-chain condition; 

in the resulting generic model V[H], p<fi = p holds. The notions of ultrafilters on «, the 

cartesian product Ua<K Aa <?fc. are absolute for this forcing by /x-closedness of Q and 

« < p\ thus all assumptions of the theorem continue to hold in V[H]. 

Working now in V[H], let, for a G «, P a be the forcing notion P(Aa,/z) defined in 

Section 4; let P be the full cartesian product P = Ua<K ^a with the coordinate-wise par

tial order. For G Ç P generic over V, Ga = pr a
_ 1[G] is Pa-generic over V[H] (pra the 

a-th projection). P is clearly /i-closed, moreover, as in the proof of Proposition 4.5, the 

A-lemma implies that P satisfies the /x+-chain condition since p<fi = p. Thus the assump

tions of the theorem, as well as /i</x = p, continue to hold in V[//][G]. 

In V[//][G], Pa = U Ga : [Aa]
2 —• 3 is a generic valuation function. Let Aa = A(Pa) 

be its associated Boolean algebra; by Sections 5 and 6, 7r(Aa) = d(Aa) = Aa. In the stan

dard model %a = (Aa,...) of T (see Section 2), the predicate L is interpreted by Aa and 

the equivalence classes of ~L have size p. So in the ultraproduct ÏÏ = n«<K ?!<*/A £ is 
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interpreted by I\a<K Xa/D and the equivalence classes of ~L have size < \pK /D\ — p (by 
K < \i and /x<M = [i). Now Remark 2.1 says that 7r(A) = cf Yla<K Xa/D and hence d(A) < 
TT(A) - cf(na<« K/D) < | na<K Xa / D\ = | Y[a<K 7r(Aa) / D\ = \ Ua<K d(Aa)/D\. • 

We can prove a little more: 

REMARK 7.2. In V[H][G], let A = Ua<K Aa/D be the algebra constructed in subsec
tion 7.1 and let A = cf Y[a<K Xa/D. Then d(A) = A. 

PROOF. Our proof will closely follow that of Theorem 6.1. 
Fix a sequence (/7)7GA in Ua<K Xa such that (f7/D)7(EA is strictly increasing and cofinal 

in the ultraproduct Yla<K Xa/D. By [Sh, Chapter II], the set 

S = {7 E A : cf 7 = M+> and there is g E n«<«; Aa such that g/D is the least 
upper bound of {fc/D : S < 7} and cf g(a) — /i+ for all a E «} 

is stationary; so we may assume that, for 7 G5, / 7 satisfies the requirements for g above. 
Now note that, in V[//][G], d4 < TTA = A as shown in the proof of subsection 7.1 ; so 

assume for contradiction that dA < A. Thus , in V[//][G],there are a P-name u, a < X and 
p E P such that 

p lh u = (uv)v<o is a sequence of ultrafilters of A covering A \ {0}. 

For 7 G S, fix p1 > p and z/7 E cr such that 

/?7 \\- y1/D E w^ 

where >'7 is (a P-name for) (xf (a))a<K / D and x, is (a P-name for) the /-th canonical gener
ator of Aa, for / < Xa. There is a stationary subset S\ of 5* such that v1 is some fixed z/*, for 
7 E Si (because z/7 < a < X and A is regular). As in Step 3 in the proof of Theorem 6.1, 
there exists , for 7 E S\, some f51 < 7 such that, for D-almost all a, 

domp1(a)nf1(a) Cfy(a). 

Without loss of generality (i.e. by passing to a stationary subset), /37 is some fixed /3*, for 
all 7 E Si. Now ^ = {a e K : domp1(a) nfy(a) Ç /^(a)} E D, for 7 E Si; since 
2K < A, we may assume without loss of generality that /^7 is some fixed K* E D, for 
7 E S i . 

As in Step 4 of the proof of Theorem 6.1, we may assume that 7 < 6 in S\ implies that 

Klb = {a E « : d o m ^ a ) Ç/^(a)} E £> 

because (ft/D)eeX is cofinal in na<« Xa/D. 
Now P satisfies the /i+-chain condition and Si has size A > p+\ so fix 7 < 5 in Sj such 

that/?7 and #5 are compatible in P = HatK P«» '•<?• /?7(°0 and/7^(a) are compatible in Pa, 
for all a E K. 

We conclude as in Theorem 6.1: for all a E K* (1K^, the set 

ra = rel/?7(a) U re\ps(a) U {^(a) J_ xMa)} 

is consistent; so pick qa E Pa satisfying ra Ç rel qa. Choose q E P having a-th coordinate 
qa, for a E AT* D AT7(5; then q forces that: y^/D _L y-y/D, y^/D E w,/7 = uv* and ^ / D E 
w^ = uv*, wz/* is an ultrafilter. This gives a contradiction. • 
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8. Proof of Theorem B. To abbreviate the main body of the proof, we state in ad

vance two easy lemmas. The proofs are left to the reader. 

LEMMA 8.1. Assume h:C —• D is a homomorphism of Boolean algebras, {cn : n G 

UJ} is a partition of unity in C, and also {h(cn) : n G uS\ is a partition of unity in D. Then, 

ifxn G C are such that T^EuJxn ' cn exists, we have h(52%euxn • cn) = Yl„euj h(xn • cn). 

Given a subalgebra CofD and* G D, le t /cW — {c e C : c-x = 0}, an ideal of C. Call 

x,y G D equivalent over C (and write x ~c y) if both Ic(x) = Ic(y) and Ic(—x) = Ic(—y) 

hold, i.e. if x and y realize the same quantifier-free type over C. 

LEMMA 8.2. If x,y G D are equivalent over C, then there is no c G C\ {0} disjoint 

from x + —y. 

We break up the proof of Theorem B into eight preparatory steps in which certain 

objects are constructed or notation is fixed, plus four claims. Let C < D denote that C is 

a subalgebra of D; Â is the completion of A. 

STEP 1. Take [i as assumed in the theorem, fix a set U of cardinality /i, and let A = 

Fr U, the free Boolean algebra over U. Since |Â| = \i^ > ^ = 2^, we have |Â| = n+. The 

algebra B promised in the theorem will be a subalgebra of Â, generated by A and pairwise 

distinct elements hi of À, i < /x+. So \B\ = /x+ and we know in advance that /i+ < | End/?| 

and | Id B\ <2»+. 

STEP 2. Fix an enumeration {gj : j < ji+} of all homomorphisms from A into Â. This 

is possible since |A| = \i and |Â| = fi+ = (p+)^. 

STEP 3. Fix a sequence {jin)neu of cardinals such that \i = supnEuJ\in and 2^" < iin+\. 

STEP 4. For each ordinal / < /x+, fix subsets Sjn of / such that / = \JnEuj Sin, Sjn Ç 5,-,w+i 

and \S(n\ < fin. This is possible since |/| < \i. 

STEP 5. Fix a sequence (An)neu} of subalgebras of A such that A = \JneuJAn, An Ç An+\ 

and \An\ < \in. 

STEP 6. Define a tree T = U « G ^ ^ w i t n n ' th l e v e l ^ = Mo x • • • x M«-i where 
r < s in T means that 5 extends t; so |7 | = //. The cartesian product F = fl^eo; M« n a s s i z e 

/iw = /i+; fix a one-one enumeration {ft'• : i < [i+} of F. 

Split U Ç A = ¥rU(cf Step 1) into two disjoint subsets X and Z such that |X| = \Z\ — 

/x; then split both X and Z into pairwise disjoint subsets Xt, t G T, and Z,, t G T, such that 
|X,| = /xandZ, ^ 0 . 

STEP 7. Here we define, for / < fi+, the elements b-t of A and then let 5 be the 

subalgebra of Â generated by A U {b{ : / < /x+}. bt is constructed out of certain elements 

Xin, y in, Ztn, n £ u, of U by putting 

$in Xfn "• ^m 

m<n 

&i = 2_-̂  ^ / n ' in" 
n£ui 
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To choose the xin, yin, zin, fix / < fi+ and n G UJ\ thus 

t=fi\n 

is an element of the tree T. Pick ztn £ Zt (see Step 6) arbitrarily. xin and yin are chosen 
much more carefully: we want them to be distinct elements of Xt satisfying 

(*) for all; G Sin, gj(xin) ~An gj(yin) 

(cf. Steps 4, 2, 5, and the definition of ~A„ before Lemma 8.2). This is possible since: 

there are at most 2^n equivalence classes inÂ, with respect to ~An, since there are at most 
2 "̂ ideals in An 

\^in\ _ M" 

the set {(gj(x)/ ~A„)jesin : x G Xt} has size at most 2^n 

2 " - < / i = |X,|. 

STEP 8 (REMARK). For b G A, let us denote by supp b (the support of b) the smallest 
subset of U generating b. Now for / < /i+, the supports {supps/rt : n G LU} are pairwise 
disjoint and thus EA^m = 1. It follows that the pairwise disjoint set {din : n G uo} 
is a partition of unity in Â and all dm are non-zero.—Similarly, for any homomorphism 
g: A —• Â, the sets {g(din) : n G CJ} and {g(sin) : n £ uu} have the same upper bounds in 
A resp. À. 

CLAIM 1. If j < i < //+, then {gj(dtn) : n G a;} is a partition of unity (in Â).— 
Otherwise, assume a G A+ and « • g/($,•„) = 0 for all n (cf. Step 8). Pick n so large that 
a<EAn and y G S/*. Then a • g7fen + -y /n) = 0, so a • (g/fe,) + -g /OO) = 0, contradicting 
(*) and Lemma 8.2. 

CLAIM 2. Let g be an endomorphism of B, say gfA = gj (see Step 2). Then for all 
/ > 7, (̂Z?/) = E 4 g/fcn) • gj(din) holds. Hence g is uniquely determined by its action on 
AU{bi : i <j}.—This follows from Claim 1 and Lemma 8.1. 

CLAIM 3. | End B\ < /x+.—To completely describe some g G End B, we have only /i+ 

choices for g \A (Step 2) and, for y < /i+, at most (/i+)^ < 2M = /x+ choices for (g(&/)) .<., 
so we are finished by Claim 2. 

CLAIM 4. The generators {bi : i < fi+} are ideal-independent; hence | Id£| = 2^+.— 
We prove that, for / G /i+ and J a finite subset of fi+ \ {/}, bt j£ E/e/ ty. (It follows that 
the ideals IK generated by {bt : i G K} for K Ç /x+, are all distinct, so Z? has 2^+ ideals.) 
The argument is elementary but a little tedious and we give it in some detail. Assume for 
contradiction that bt < E/e/ b}. 

For arbitrary n G u, we have the following situation. dm is non-zero and for j G 7, 
{d/m : m G u;} is a partition of unity; hence there are elements m(j) G CJ, for y G / , such 
that /? = din • UjeJ djm(j) is non-zero. Now bt • din < zm and thus bi - p < z-m\ similarly 
bj-p< Zjmij) holds for j G J. It follows from bt < E/e/ ty that zin -p<brp< Eye/ zJm(j). 
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But supp/7 Ç X and Zin, Zjm(j) are in Z; hence Z[n < HjejZjmij). So zin = Zjm<j), for some 
j G 7, since Z Ç U is independent. Since z;„ was chosen in Step 7 from Z,, where t =fi\n, 
and (Zt)ter was a disjoint family, it follows that n — m(j) and/ \n =fj\n. 

We have thus shown that for every n G LU, there is some j G 7 satisfying/ \n =fj\n. 
But then/ G {fi• : j G 7} and / G / (since the enumeration {ft : / < /x+} in Step 6 was 
one-one), a contradiction. • 
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