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MODELS OF PA:
STANDARD SYTEMS WITHOUT MINIMAL ULTRAFILTERS

SAHARON SHELAH

ABSTRACT. We prove thal, the standard model of arithmetic, has an uncount-
able elementary extensid such that there is no ultrafilter on the Boolean Al-
gebra of subsets &f represented it which is minimal (i.e. as in Rudin-Keisler
order for partitions represented ).

1. INTRODUCTION
Enayat [1], Question Ill, asked (see Definition 1.4(1)):

Questionl.1 Can we prove in ZFC that there is an arithmetically cloged P (w)
such that4 carries no minimal ultrafilter?

He proved the existence of examples, for the stronger né8dRamsey ultra-
filter”. In [9] we prove that there is an arithmetically clasBorel setB C P(N)
such that any expansidd’ of N by any uncountably many membersihas this
property, i.e. the family of definable subsetsNof carries no 2-Ramsey ultrafilter.

We deal here with Question 1.1, proving that there is sucmayaof cardinality
(11, this implies the version in the abstract; (since it it waibwn that every arith-
metically closed family of cardinality at most; can be realized as the standard
system of some elementary extensionNgfas shown by Knight and Nadel [3]).
We use forcing but the result is proved in ZFC. On other proisiérom [1] see
Enayat-Shelah [8] and [7], [9].
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Notation1.2

1) Let proox @ — w be the standard pairing function (i.e.(pm) = ("5™) +n, so
one to one onto two-place function).

2) Let 4 denote a subset @f(w).

3) Let BA(A) be the Boolean algebra whichu [w]<"° generates.

4) Let D denote a non-principal ultrafilter ad, meaning thaD C 4 and there
is a unique non-principal ultrafiltdd’ on the Boolean algebra B&) satisfying
D =D’N 4, notice that in Definition 1.4 below the distinction betweanultrafilter
on 4 and on BA 4) makes a difference.

5) 1 denotes a vocabulary extendingy = Ty = {0, 1, +, x, <}, usually countable.
6) PA(T) is Peano arithmetic for the vocabulary A modelN of PA(7) is called
ordinary if N[tpa extendsN; usually the models will be ordinary.

7)d(N,a)is {b: N = ¢[b,a]} wherep(x,y) € L(ty) anda e ‘SYN.

8) Sym(A) is the set (or group) of permutations Mdf

9) For setsy, v of ordinals let OR,, “the order preserving function fromnto v’ be
defined by: ORy(a) =Biff B € v,a € uand otgvN ) = otp(uNna).

10) We sayu,v C Ord form aA-system pair when ofp) = otp(v) and OR, is
the identity onunv.

Definition 1.3. 1) For 4 C P(w) let ar-cl(4) = {B C w: B is first order defined in
(N,Ag,...,Ay) for some < wand A, ...,Ay € 4}. This is called the arithmetic
closure of4.

2) For amodel N of PA) let the standard system of 8SYN) be{¢(M,a) "N :
d(x,y) € L(t) anda e "9YM} so C P(w) for any ordinary model M isomorphic
to N, see 1.2(6).

Definition 1.4. Let 4 C P(w).

0) Letcdy : H (Do) — wbe one to one, and interpreting (Ho) insideN it is (first

order) definable by a bounded formulalf i.e. {cdy(x,y) : x€y e H(Oo)} is,

and it mapsN x N into N. For h e “wlet cd’h) = {pr(n,h(n)) : n < w}, where pr
is the standard pairing function @b, see 1.2(1) and generally for B # (Oo) we
letcd(H) := {cdo(x) : x € H}; this applies, e.g. to k [ e,

1) D, an ultrafilter on4, is called minimal whenif h € “w andcd(h) € 4 then
for some Xe D we have hX is constant or one-to-one.

2) D, an ultrafilter on4, is called Ramsey wherif k < wand h: [w]* — {0,1} and

cd(h) € 4 then for some X D we have h[X]* is constant. Similarly k-Ramsey.
3) D, a non-principal ultrafilter on4 is called a Q-point whenf h € “w is in-

creasing and cth) € 4 then for some increasing sequen¢e : i < w) we have
i<w=h(2) <n <h(2i+1)and{n; ;i < w} € D.

Remarkl.5. In [9] we also use the following notions: B
1) D is called 2.5-Ramsey or self-definably closed whénh = (h; : i < w) and

hi € “(i+1) and cdh) = {cd(i,cd(n,hi(n)) : i < w,n < w} belongs ta4 then for
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someg € “wwe have: cdg) € 4 and(Vi)[g(i) <iA{n<w:hi(n)=g(i)} € D]
this follows from 3-Ramsey and implies 2-Ramsey.

2) D is weakly definably closed whenif (A :i < w) is a sequence of subsets
of wand{pr(n,i) : ne A andi < w} € 4 then{i: Ai € D} € D, (follows from
2-Ramsey).

Definition 1.6. 1) L(Q) is first order logic when we add the quantifi€ where
(Qx)¢ means that there are uncountable many x’s satisfging
2) Ly, (Q) is defined parallely.

See on those logics Keislgt]. We shall use Laver forcing in the proof of Theo-
rem 2.1, so let us define this forcing notion.

Definition 1.7. Let T C “wbe a subtree. For & T letsucr(a) ={a(i) e T:i e
w}. The trunktr(T) of T is a maximal elementaT such that a<t borb<t a
forevery be T.

Such a tree T will be called a Laver tree iffsstr(T) and for every t= T such
that s<t, the sessucr(t) is infinite.

We define the forcing notia@ (= Laver forcing) as follows. A condition € Q
is a Laver tree. If ST € Q then S<gp T iff SO T. If G C Q is generic, then
N(G] :={ac“® w: 3T € G,ais the trunk of T will be called a Laver real.

Claim 1.8. If X thentH where:
X (a) Q= (Py,Qp:a<a(x),p<a(x)isacCSs iteration
b) k(x) <wandB(k) < a(x) < wy for k < Kk(x)
c) eachQyq is a Laver forcing (invFe) and Na its generic
d) he (Yw)V
e) pePqu
f) p Mg, “Bk C wand 1Bk N [N (N+1),Npwy (N+2))|
< h(ng(n)) for every n large enough” for k< k(x)
B for some p, p> and B; for k < k(x) we have
(@) Py = "p<p” foré=1,2
(b) B* C w (from V)
(c) prl-“Bx C*BY”
(d) p2IF“Bx C* (w\By)".
Proof. 1.8 Clearly lettindB, = U{Bx : k < k(*)} we have
() plrp,,, “for every large enougim the setB. N [o(n+ 1),No(n+2)) has
< no(n) members”.

N N N N /S
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Now by the properties of iterating Laver forcing ([4] or séeCh.VI]), we have:
(x) if G C Py is generic oveV andn = no[G4] then

Fpy. /6, if BC wand inBA[n(n),n(n+1))
there are< n(n)) elements for everp large enough
then for someB’ € V[G1],B' C w,B C B' and
B'N[n(n),n(n+1))) has<(n(n))" members for evern large enough”

Now this applies in particular tB = B, gettingB’. Hence without loss of gen-
erality a(x) = 1 so we can replacg; by Qo, Laver forcing; also for a dense set of
p € Qo we have: ifn € pis of lengthn+ 1 so an increasing sequence of natural
numbers, therp := {v € p:v <n orn < v} forces a valudy, to B'N[0,n(n))
so necessarilyb,| <n(n—1) whenn > 1.

By thinning p, without loss of generality ifj € p andu, = {n:n"(n) € p} is
infinite (equivalently is not a singleton) th&b, ~n~ : N € uy) is aA-system.

The rest of the proof should be easy, too. O

2. NO MINIMAL ULTRAFILTER ON THE STANDARD SYSTEM

Theorem 2.1. Assume thal, is an expansion oN with countable vocabulary
or N, is an ordinary model of PA for some countableé O tpa such thatN, is
countable. Therthere is M such that

(@) N, <M

(b) [M[[ =01

(c) SSYM), the standard system of M, see Definition 1.3, has no minimal
ultrafilter on it, see Definition 1.4; moreover

(d) there is no Q-point oI8SYM)
(e) SSYM) is arithmetically closed.

Proof. 2.1
Stage A

Without loss of generalityy, is the Skolem Hull o as we can expand it By g
individual constants.

We shall choose a sentenge= Ly, ,(Q)(t*) with T* D 1(N,) and prove that it
has a model, and for every modél of ), the modeM* |1(N,) is as required. By
the completeness theorem fog, ,(Q) it is enough to prove thap has a model
in some forcing extension; of course it is crucial tijatan be explicitly defined
hencec V.

Stage B
Recall cd= cdy : H(Op) — w be one-to-one onto and definable fhby a

bounded formula in the natural sense; see 1.4.
LetVo=V andA = (270)*,
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LetRo = Levy([1,2"0), let Gg C R be generic oveV and letV; = Vo[Go,
i.e. inV,° we have CH.

In V1 we haveA = [ and letR; be Py, wherePy,, = (Pq,Qp : 0 < 6y, B <
wy) is a CS iteration, eacl)y is a Laver forcing; there are many other possi-
bilities, let ng € “w (increasing) be thé, 1-name of theQq-generic real and
Va = (cd(Na[Nn) : n < w)). Let Gy C Ry be generic ove¥; andV; = V;[G,] and
letng = Na[G1],Va = (cd(NaN) : N < W) = Va[Gy].

Let D? be a non-principal ultrafilter ow in the universe/.

M1 In the universe/; let M = N®/D?, letay = g /D? € My
and note
M, SSYM;) = P(N)Vz hence is arithmetically closed

M3 let f; € V be the function from\ = wy* = w32 into M; defined byf; (a) =
ag.
Stage C
In V1 (yes, not inVy) let the forcing notiorR, := ]Pj)z and the seK be defined
as follows (saB € V1 below, which is equivalent t8 € V, similarly for u; so in
Ha(a),Als aPy,-name):
B4 (o) K:={(a,u,A):uCA\iscountablegt € u,A=B(...,Ng,...)geu
B a Borel function fronP™®(Y (“e) to P(w) such that
Fp,, “ANMNa(N+1),Na(N+2)) has< nq(n) members; more-

"}

0= limy(JANNa(n+1),na(nN+2))/Na(N)

a) p=(p.h)=(pp,hp)
b) pePy,
h a function from some finite subsik}, of K to w,
if (GI)7UZ7AK) S Kp for/ = 1,2 andh(al,ul,Al) = h(C(z,Uz,Az)
andu; C ap then p ”_]sz “ALN A is finite”
(v) Pg, Ep<qiff:
(@) Puw, = Pp<pg
(b) hy Chg.
Now
(%)o if p€Pg,,a <wpandpl-“AC w satisfiesAN [Na(N+1),Na(N+2))
has< nq(n) members for every large enough and & Iim<|,§ﬁ Na(n+
1),gq(~n+2))|/ga(n) :n < w)” then we can find a triplg(q, u,A7) such
that

(@) P, =p<d’
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(B) Dom(q) =u
(y) ua countable set of ordinats A (in V1 equivalently inV)
(8 al-"A=A"
(8) A =B(...,Na;;--)i< otp(u) Whereq; is thei-th member ofl, for some

Borel functionB from °P(Y) (“w) to P(w) soB € V; equivalentlyV
(Q) q(ai) =Bi(...,Naj,---)j<i for everyi < otp(u) for some Borel fucn-
tion B; from'(“w) to Laver forcing, of courseB; is from V.

[Why? Standard proof.]

(¥)1 Py, satisfies thél»-c.c.

[Why? We need a property of the iteratigity, Qp : o < wp,3 < wp) stated
in Claim 1.8. In more detail, given a sequeng® : o < wp) of members of
P, for eacha < wy, let py = (pa,ha); and without loss of generality for each
(a3,ui, A) € Kp, for someut, AL, the tuple(py, u, At) is like (g,u, A') in (x)o, (B) —
(¢) and(a,u,A) € Dom(hy) = uC Dom(py). Lettinguy = Dom(py), we can
find a stationans C {8 < wy : cf(d) = 01} andp.,y(*) such that:

e UsNd=u, forde Sandu, Cdfora<deS
psld< p. € Psforde S
without loss of generalityps [0 = p. ford € S
otp(us) =Yy(x) ford e S
if 81,02 € Sthen the order preserving function QzPual from us, ontous,
mapsps, to Ps,.

Let 8(x) = Min(S) anng(*) C P,y be generic oveV; such thatp, € G%(*)'
Now we apply the conclusion of Claim 1.8, /Gs(.), the rest should be clear.

Ford € S letas = otp(us\d. ), hs be the order preserving function fromg onto
Us\& and(pg, hs) € Pq, be such thahs maps(pg, hi) to (ps, hs). Clearlyas, pg, h
are the same for all € Sso call themu (), p',h’ and applying 1.8 withp', ({a, A):
for someu the tuple(a, u,A) belongs to Dorth)} here stands fop, { (o, Bk) 1 k <
k(x)} there and gep, p, as there.

Let &, < &, be fromS, let g5, behs, (p}),ds, behs,(p5). Easily ps, < gs, and
0s, U0s, is @ common upper bound @, p5, in ]P’\TVZ/Gé(*).]

(%)2 P, collapseswy to Oo.
[Why? Easy but we can also uBg, x Levy(Oo, 1) instead ofPf;, ]
(*)s the functionp — (p,0) is a complete embedding Bt,, into P;},.
[Why? Should be clear.]
Stage DLetG,=G; C PP, be generic oveV1, V3 = V1[G,] and by(x)s without

loss of generalityG1 = {p: (p,h) € G2}. SoV3 = V1[G, is a generic extension
of Vp and letf; = U{h: (p,h) € Gz}.



Sh:944

MODELS OF PA: STANDARD SYTEMS WITHOUT MINIMAL ULTRAFILTERS 9
So
(x)a In Vzif fa(ag,up, A1) = fa(02, Uz, A2) anduy C ay, then A1[G1] NA2[G4]
is finite.

In V3 let M2 be an elementary submodel (@ (3y,), €, ...,V/NH (Jw),-..)e=012
of cardinality A = [J}® which includes the setéa : a <A} = {a : a < w}°},
{My, f1, f2,Go,G1,G2} and (the universe of(M;, see end of stage B, note that
[M2]| € [Ma|.

Let fo be a one-to-one function froi; onto Mo, let M3 be a model such that
fo is an isomorphism fronM, onto M3. Lastly, letM4 be M3 expanded byy =
A :0.)\2/1 :(x);_/s,C]'\_AA' :(»\)}I_/,Cg/|4 = |\/|;|_,d(';/7|4 :Gg,dl’g :R[g,dM"’ :N*,<d2{|ﬁl n< (x)>
list the members oN,, Q" = |N,|,eMe=eV3 [|M,|,FM = fo,F™ = foo f1, see
end of Stage BF,™ = f,,PM =V, N M, for £ = 0,1,2 (soF; is a unary function
symbol, P, is a unary predicate) and lastiyM, a linear order ofMy| = |My| of
order typew; .

We define the sentendaf it is the conjunction of the following countable sets
and singletons of sentenceslof, ,(Q) in the vocabulary (M) such thaM™ =
W iff:

(A) MT[T(N,) is isomorphic td\,, of cousreM* [1(N,) has univers&}

FM':KM" - {a:M =“aan ordinal< c;"} is as above

M* = “for every B we haveB € P(N) A P,(B) iff B= ANN for some
definable subset &k in the modek:;”.

It is easy to check that

(*)s Y€ Vo

(*)6 Mgy ): Y inVs.

Hence as the completeness theorenifgr,(Q) gives absoluteness
(*)7 Y has a model iV = Vg call it Ms.

By renaming without loss of generality

(x)g (a) if Ms = “ais then-th natural number” thea=n

(b) fMsE=“ACwthenA={n:MsE"“necA"}

(C) if Ms ’: “be®w thenb= {(nl, nz) :Ms ): f(nl) = ng}
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(x)g letN, = Ms|T(N,), so isomorphic tiN,, letN = Ms[{e}

(*)10 (a) letM} becy® naturally defined
(b) soM =Mj is amodel of TKN,) = Th(N,),N, < M} and||M1|| = O
(c) let 4 be SSyM), the standard system bf

Clearly

(¥)11 (@) N[“zC”
(b) M is amodel of TN, andN, < M

(#)12 let R} = d)? andG} = dy? and letv/, = (P}"*,Ms) for ¢ =0,1,2.

Stage E

ClearlyM is an uncountable elementary extensiomNof by clauses (A),(B) of
Stage D and without loss of generality || = O1, soM satisfies clauses (a),(b) of
Theorem 2.1. To prove clause (e) reda}l and clause (1) above henceC P(w)
is arithmetically closed; this implieq is a Boolean subalgebra. Also clause (d)
implies clause (c), anyhow to prove them, assume towardadiction thatD is
an ultrafilter on4 which is minimal or just &-point. LetX = {a: N = “ais an
ordinal< wy" }, soX is really an uncountable set. For each X define a sequence
Pa € “wby pa(n) =kiff M* |="Fi(a)(n) =K.

Clearly pa is an increasing sequence %w, hence by the assumption toward
contradiction, there iy € D C 4 such thatA; N [pa(n+ 1), pa(n+2)) has at most
one element (or just pa(n) elements) for each < w.

So for some elemer, of N,N |=“Ay, in V/, is aR1-name of a subset @b and
AdGY] = AJ". o

ClearlyM* = “for some countable subsatof oo\zll = w\1/3 from V| and Borel
function B from V) we haveA; = Ba(...,Pb, - .. )beu, (SO SOMep € G} forcesAq
satisfies this)”. So usin&zM+ there area; # a, from X such that the parallel of
clause(B)(d) of stage C holds, see clause (G) of stage D, so two membérsus
almost disjoint, contradiction. O

Remark2.2 1) Note that in 2.1 we can replaég, by any forcing notion similar

enough, see [6].

2) We can strengthen 2.1 by replacin@-point” by a weaker statement.
Similarly we can weaken the demands on how “thinBim 1.8 and in the proof

of 2.1.
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