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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 43, Number 3, Sept. 1978

 ON THE NUMBER OF MINIMAL MODELS

 SAHARON SHELAH '2

 Abstract. Answering a problem of Fuhrken we prove that for every K, 1 ?< K ? Ho

 there is a (countable) complete theory T, with no prime model, and exactly K

 minimal models (up to isomorphism).

 ?0. Introduction. We restrict ourselves to countable complete theories T.

 M is minimal if it has no proper elementary submodel, so necessarily M is

 countable and let m (T) be the number of such models. M is weakly minimal if
 N < M a' N -M so M is countable, and let wm(T) be the number of such
 models.

 The first to deal with this was Vaught who notices that prime models are

 weakly minimal. It was, probably, Engeler who raised the question of converse

 implication. Fuhrken [1] constructed theories with the following qualities:

 (i) a theory T every model of which contains a minimal model but the

 theory has no prime model and m (T) = 2Ho.

 (ii) a theory some models of which contain and some models of which do not

 contain a minimal model.

 He also noticed that if T has a prime model, then it is either the unique

 minimal model or m (T) = 0, and posed the problem whether a theory having
 just one minimal model has a prime model. However he stated for some To,
 m(To)= 3, but as Morely (in Mathematical Reviews) and Marcus [2] note,
 m (To) = 2Ho. Marcus [2] also dealt with m (T) and proved that if (a) M l= T is
 minimal, if it omits each p E F (F countable) and (b) T has no prime models,

 then m (T) = 2Ho. Remembering Morley [3] and analysing minimality, it is clear

 that mr(T)>N1 X ' m(T)= 2go.
 Problem. Is m (T) = Xi possible?
 REMARKS.(1) The language used to construct the example is infinite. This fact

 is not essential and can be overcome in the following manner: Rename the

 P, Q,'s as Rn (n <co). Let

 M*I = MKI U{(a, n, k): a E IMK IandMJ l= Rn[a] ] k < 2n,

 MK l=-I Rn[a] z> k < 2n + 1}.

 Take F:F((a,n,k))=a and F(a)=a for aEIMKI.

 Received March 13, 1977.

 'The author would like to thank the United States-Israel Binational Foundation for partially
 supporting this research by Grant 1110.

 2I thank full heartedly S. Satat for writing this paper from notes, and Fuhrken for helpful

 remarks.
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 476 SAHARON SHELAH

 E ={((a, n, k), (a, n, k')): a, n, k, k'},

 M*# (I (M *#C, P. Q. F. G. H. H-%,E)

 T*= Th(M*)
 which is a complete theory, in a finite language, with exactly K minimal models.

 (2) The theory constructed below is not finitely axiomatizable. The question
 whether a finitely axiomatizable theory with the desired properties exists is
 open.

 (3) The result was announced in [4] and notes were distributed in the Fall of 1975.
 (4) In fact in our example also wm (T) = K, the only change we need for this

 is in (E) (at the end). There define N** as the submodel of N with universe

 I NI -{b': b', b realize the same type in N}.
 (5) In fact we can get more. Clearly 0? m(T) - wm (T) 2"o; now if

 0< K*< K, K,K*E w U{o, 2go} then for some T with no prime model
 m(T)= K*, wm(T)= K. For this we should change the T in ?1 as follows (we
 concentrate on the case K CNo). Let B = {q E A: for some 1 < K*, v E E,

 (Vm)[l(v) m<c-<>F,(mn,)rmEA] and i1=F,(n1q)rm,mpl(v)}andwe
 redefine Q by using B, instead of A.

 Now in the definition of M we omit the QT's and instead add for n < GO

 Rn = {((, v1, c1), (r1, v2, C2)): (r, vi, c,) E Q for I = 1, 2

 and one of the following occurs:

 (a) (71 t n) 0 (A - B), (m v1, c) E Qn and (m, v2, c2)E8 Q
 (b) (71 [n)EA -B, and (m v1, C1)E Qn 0 (m 1, V2,C2)E QnJ- Now NK

 (1 < K *) will be minimal and NK (K * ?1< K) will be weakly minimal.

 ?1.

 THEOREM. For every K, go ? K 2 1 there is a theory TK which has no prime
 model and has exactly K minimal models.

 Notation. For any ordinal a, a 2 is the set of sequences q of zeroes and ones
 with a length of 1('q) = a. `2 = Ua,>,p2. 71(i) will denote the ith element of r1.
 En= {71 E -2: Vi 2 n, 7)(i) = 0) and E = Un,(sEn. There is a natural corres-
 pondence between E and `'2, and we shall often not distinguish between
 them. For each vEE we define a function Fv:'w2-*'>2 by (Fv(rq))(i)=
 v(i)+ 71(i) mod 2 for q E8 w2, i E co. - is the relation of being an initial
 segment. For r1 E `2, P, ={r E8 w2: q < r}. We shall deal with models related
 to

 M =(w2, ... .,Fv, ... P, .,.. .vE - 2

 It is not difficult to verify that T = Th(M) satisfies:
 (i) It has elimination of quantifiers. (This fact is, essentially, proven in the

 proof given below.)
 (ii) Each of its elements generates an elementary submodel which is minimal,

 and in this method 2"o nonisomorphic minimal models to T can be obtained.

 For every l < K, choose 1l C8 w2 such that v EE, l < m < K E' Fv(71,)7 m.
 Next choose a set A C `2 such that:
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 ON THE NUMBER OF MINIMAL MODELS 477

 (i) each q E A has exactly one successor q A(i) in A;
 (ii) for every 1 < K, v E `>2 for every big enough n, F,(i11) t n E A;
 (iii) for any r E8 2 if (3n)(Vi > n)[r ti E A] then r= F,(i1) for some

 v 8 E, 1 <K.

 Let

 Q = {(iX, v, C): q E 02, v E '2, c E Z (the integers),

 (Vdi < a) [,q [ (i + 1) E A E> v(i) = O]}.

 P = 2. Let G: Q -P be defined by G ((q, -V, c)) = , H:Q --Q be defined
 by H((q, v,c))(= qv,c+1); For any 1E `2, QT={(Thv,c)EQ:r <V}.
 Define

 M = (PU Q PQGHH- F ,... Pt,... QT,,.E)T, -2 and

 M =(p U Q, P. Q. G. H. H-l, . .., Fr,,. .., Pro .... ., Q,. . . . ),,=- 22

 (Technically we assume G, H, H.1 are defined on P as the identity.)
 T= Th(MK) is the desired theory, and let Tn = Th(M4n). Let NK be the

 submodel of MK such that

 P(Nl) = {q E w2: q = Fv(rl), v E E},

 Q(NT) = {q E Q(MK): G(q) E P(N1)}.
 The proof of the adequacy of TK will be established by proving

 (A) TK has elimination of quantifiers and N < MK.
 (B) Each NT is minimal.

 (C) Each minimal model of TK is isomorphic to some NC
 (D) The models NK (1 < K) are pairwise nonisomorphic.

 (E) TK has no prime models.
 We shall use the following basic fact: Let S be a theory and let {0,(x): j < mi

 be formulas in the appropriate language such that S H "the family {0j(x): j <
 m } is a partition" then, in order to eliminate the main quantifier (in S) from a

 formula (3x)+i(x, Y) it suffices to eliminate it from each of the formulas
 (3x)(qi(x, Y) A OJ(x)), j < m.

 REMARKS. From T n it follows that for each term t(x) exactly one of the two
 following possibilities holds:

 (i) P(t(x)) and for some v E E, t(x) = F,(x) or t(x) = F,(G(x)) depending
 on whether P(x) or Q(x).

 (ii) Q(t(x)) and Q(x) and, for some c E Z, t(x) = Hc(x).
 (A) TK has elimination of quantifiers.
 It suffices to prove that for each n, T n= Th(N n) has elimination of

 quantifiers. The elimination is proved using the following facts about T.

 (1) {P, Q} is a partition, {Pt: q E n2} is a partition of P, {QT: r E n2),
 {PTG: r E n2} are partitions of Q. [PTG is PT(G(x))].

 (2) Pv (FT (X )) &Pv+T(mod2)(X); FVF (X) = Fv+T(mod 2)(X); HH-1(x) = H-'H(x) =
 x; if v<r then PT(x)-*PV(x).

 (3) P(x) -[H(x) = X A G(x) = x],
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 478 SAHARON SHELAH

 Q(x) [Q(H(x)) A P(G(x)) A [G(Hc(x)) = G(x)]

 A [ QT (X) ) QT (Hc (X))] A Hc (x) $ x]

 for any c E Z, c / 0.
 (4) For any q E 2 n,2 k Ew , (VyO ... yk -1) (3x) (P, ((x)A A \ *k x / y,). For any

 r, E 8 E, k E a,

 (VYO yk-1)(3X)[Q,(YO) A P(G(yO)) Q,(X) A P7(G(X))A A /X5 /y].
 i<k

 (5) P(x)-* x = F (x) iff v is constantly zero.
 (6) For any r1,,72 either i (3 y) [Q (y) A Q71(Y) A P,(G (y))] or

 (Vx)(3y)(P,(x)-* Q(Y) A QT1(Y) A G(y) = x)

 (depending on r, and 72, especially depending on whether for any i <
 1(,r), 1(72): r1(i) = 1 -->r2(i + 1) 0 A). By transforming formulas into disjunc-
 tive normal form it suffices to eliminate the quantifier from 3xo Ai <k p. where
 the up, are either atomic or negations of atomic formulas. Evidently, we can

 assume x0 appears in each 'p,. Using the basic fact and (1) it suffices to consider
 the following two cases:

 (I) 'Po = P(xO).
 (II) 'Po = Q(xO).
 Case (I). po= P(xo).

 Using (1) we can assume 'pt = P,(xo) for some 7 E8 "2. Using (2) it is easy to
 see that all the 'p, of the form P,(t(xo)) are decided by (pi. Hence the only case
 left to check is when the 'p, (i > 1) are either equalities or inequalities.Using (2)

 and (3) we can assume that each 'p, (i > 1) is either x0 = t, or x0 / ti, for some
 term t,. If for some equality x0 = t,, x0 does not appear in t,, then this equation
 can be used to eliminate x0. On the other hand, equalities of the form x0 7 t(xo)

 are, using (2), (3), (5) and the fact that all functions are 1-place, either true or

 false, independent of x0. The inequalities xo0 t, are taken care of by (4).
 Case (II). 'po = Q(xo).
 Using (1) we can assume 'pt = Qf1(xo) and 'P2 = P1(G(xo)) for some Tr, 72 E n2.

 Using (3) it follows that 'P, A P2 decides all formulas of the form + PT(t(xo)) (i.e.
 the formula or its negation) and + QT(t(xo)), we assume therefore that for

 i 3, upi is an equality or inequality, i.e. of the form + (tt(xo) = t2(y)). For each
 i 3, 'p, can be either equality or inequality. A formula of the form
 + (t(xo)= t,(xo)) is either true or false, independent of x0 and should,
 therefore, not be considered. We are, thus, left with formulas of the form

 +(t (xo) = t2(y)) with y z x0.
 (a) t1(xo) = t2(y). If t' does not include G then the formula is of the form

 Hc(xo) = t2(y) or equivalently x0 = H-ct 2(y) which can be used to eliminate x0.
 Alternatively, if t' does include G, the formula is (using (3)) F,(G(xo)) = t2(y)
 or equivalently G(xo) = F, (t2(y)), i.e. of the form G(xo) = t3(y).

 (b) tl(xo)# t2(y)). If t' does not include G, then the formula is equivalent to
 X t3(Y). Alternatively, if t 1 does include G, it is equivalent to G (xo) $ t3(Y).
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 We thus have to show that the main quantifier in

 = 3X0 [ Q (Xo) A QT(Xo) A P2(G (xo)) A A G (xo) = t3(y,)
 3-i<jl

 A A xo7 t(y,) A G(xo) t(y,) 1
 jli-ij j2-i <k

 can be eliminated. This follows from (6) and (4) (considering separately
 whether ji = 2 or not). It is easy to check N' satisfies (1)-(6) hence, by the
 elimination of quantifiers N' < MK.

 We shall. henceforth refer to (1)-(6) as Sn and UnS n = SK.
 (B) Each-, N' is minimal.
 Let N < N' and choose any a E P(N). Then a = F,(m,) for some v E E;

 therefore, ql= F, (a). Hencez, {IF7(j); rT8 E} CP(N); thus P(N) = P(NK).
 What remains to prove is 0Q(N) = Q(N1). Take any b = (ii, v, c) E Q such that
 7j E P(N4). By the defining property of A, (3n) (Vm ?n) [ m E A]. Thus,
 by the defining property of Q, there is n = n, such that for any m ? n,
 v(m) = O. DefineT E E byT = v t n. Since N1 3x(Q(x) A Q,(X) A G(x) = q)
 then this formula is satisfied in N by some b'= (q, v', c') E Q. It is obvious that

 = v. By a proper choice of d E Z we get Hd(b') = b E Q (N).
 (C) Each minimal model N of TK is isomorphic to some NK, 1 < K.
 Choose a E P(N). Let 7 E 8 2 be such that for any n E w, N l= Ptrn(a). We

 shall show (3n)(Vm ? n)[rq [m EA] thus proving that 71 =Fv(1l1) for some
 I < K, v E E. If it were not so, then (Vn)(3m ? n)[4 t m A A] choose b E
 Q(N) s.t. G(b)= a and let N** be a submodel of N with universe N -
 {Hc(b): c E Z}. Since N** = Sk (notice that (6) is proved using the above-
 assumed property of 71), N** < M contradicting minimality. It follows that

 71 = F.J(r1). Using N** as above, clearly

 (V a, b E QN)(G(a) = G(b) -(3c E Z)Hc(a) = b).

 So there is an isomorphism f: No- NK, f(F7(a)) = FFv(7ql)
 (D) The models NK (1 < K) are pairwise nonisomorphic since for i < j < K,

 vEE: {TEE: P7(,qi)}${TEE: P7(F,(1;))}
 (E) For K > 1, TK has two nonisomorphic minimal models and therefore no

 prime model.

 For K = 1 -the unique minimal model is not prime since each 7q E P(N?)
 satisfies no formula which decides its type. The proof is as follows: since there is
 elimination of quantifiers it suffices to show that for each T E E the formula
 P,(x) does not determine the type of x and this follows from the fact that there
 is more than one q E P(N?) satisfying P7(i1).

 So there is an embedding f: NK -* N, such that f(F7(m,)) = F7F,(a). Clearly f
 is elementary, thus N's minimality N- N.

 REFERENCES
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