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§0 Introduction

This paper was originally part of [Sh 8] . It was separated for
technical reasons and partly extendend, particularly in §§5,6. However
we do not require knowledge of the first part.

Let us first deal with the combinatorics. In [Sh 2], [Sh 5] we

useful for proving the existence of many non—isomorphic structures as
rigid indecomposable systems. We applied this in [Sh 3] for separable
(*) The author would like to thank the United States Israel Binational

Science Foundation for partially supporting this research.

. pointed out that combinatorial proofs from [Sh 1], chap.VIII, should be
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p-groups illustrating the impossibility of a characterization of -such
groups by reasonable invariants. In [Sh 2] we built a rigid Boolean
algebra in every X\ > ¥, ; see also [Sh 7] for more results and
details. The main idea of the following proof is taken from [Sh 1] ,
chap.VIII, Th. 2.6. We will continue with the combinatorics of [Sh 4],
which has been utilized by Dugas and GBbel in [DG 1], [DG 2] and by
GBbel and Shelah in [GS]. The nicest feature of these proofs was the
fact that they were carried out in_ZFC. Their main drawbacks.were:

(i) The algebraic objects had strong limit singular cardinal numbers
of not small cofinality..

(ii) The combinatorics was not separated from the proof; so analogous
proofs have to repeat it.

(iii) The combinatorics contained things specific for modules, so that
it is not immediately applicable to other structures.

The combinatorics in this paper is designed to overcome these
drawbacks without using extra axioms of set theory. In section 1l we
deal with the combinatorics for )\ with uncountable cofinality. This is
accompanied with explanations for the case of the endomorphism riﬂgs of
separable (abelian) p-groups.. This is, in fact, repetitions of [sh 8].
In section 2 we deal with the combinatorics for )\ with cofinality }Q
and end with conclusions for all ). In section 6 we point out some
improvements.

Let us turn to abelian group theory. The existence of
indecomposable and even endo-rigid groups was stressed in Fuchs [Fu] ;

see there for previous history. Fuchs [Fu], with some help of Corner,




Sh:227
A Combinatorial Theorem 39

proved the existence of indecomposable torsion-free abelian groups in
every cardinal less than the first strongly inaccessible cardinal.
Later .Fuchs replaced the bound by the first measurable cardinal and
Shelah [Sh 3] proved the existence of such groups in every cardinal.
Eklof and Mekler [EM] proved, assuming V=L and ) regular, not weakly
compact, the existence of strongly M\~-free indecomposable groups of
power A . 'Irhey used Jensen’s work on L, more specifically the diamond
on non reflecting (=sparse) stationary subsets S of { S<Nicf S = Ho }s
The main algebraic fact they used was as follows.

(*) 1f G = H"@H" and G = Ucn, GS G ., .» with G, and G,,,/G,  free
(abelian) groups, then for some group G’ extending G, G'KG“ is free -
for each n; but the decomposition of G does not "extend" to one of G’
or even one of G’ @ G" (G" free).

Dugas improved [EM], replacing indecomposable by endo-rigid. Hence
his algebraic tool was like (*), replacing rl@n? by an endomorphism
of G. Then Shelah [Sh 6] proved the existence of strongly MA-free
endo-rigid abelian groups of power X\ for A=, under the hypothesis

e o

&2 or more generally for \ satisfying Vl\ . The set theory
used rested on Devlin and Shelah [DS] . Note that 3IX Vy is not
probable in ZFC. The main algebraic fact needed was as follows.

(**) 1f 6 =UG6, with G and G, /G free, a,b € G and bgaZ,
then there are groups HL,Ha extending G with H"/G“ free, and thewe

i

are no endomorphisms hi of H such that hi(G)_C..G g hil‘ G = 15_!‘ G and
hl(a) = b.

Earlier Corner [C] dealt with a stronger problem, asking which
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rings can be represented as End(G). He proved that every reduced

torsion-free. countable ring R is representable. Dugas and G8bel [DG],

‘following [Sh 6], used Y& and removed Corner’s countability restriction

and added the very natural condition that ''the p-adic integers cannot be
embedded into the additive group of R". The combinatorics was as in
[Sh 6], but the groups G in (**) were replaced by R-modules. The

algebra rests on the notion cotorsion-free . Later Dugas and Gibel

[DG 2] proved this result in ZFC, but as they use the method of [Sh 4]
they obtain R-modules of strong limit A with c¢f A >|R|. More details
on the history can be found in [Ful, [DG], [DG 1], [DG 2]; The
following papers are now based on the combinatorial result developed in
the following sections: Corner and GYbel [CG], GBbel and Shelah [GS 11,
[GS 2] and [Sh 10].

In section 5 we will apply the combinatorial proposition to obtain

the following

0.1. Theorem: Let R be a ring whose additive group RY s
cotorsion-free, i.e. R+ is reduced and has no subgroups isomorphic to
Z/pZ or to the p-adic integers. For A=>\'% >|R| there is an abelian
group G of cardinalit& )\ whose endomorphism ring is isomorphic to R énd

as an R-module it is Hl-free.

We can relax the demands on R* and may require that G extends a
suitable group G, such that R is realized by End(G) modulo a suitable

ideal of "small" endomorphisms.
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Let us turn to p-groups. Here we merely complete [Sh 8]; see the
histor& there. We refer to Pierce [P] and Fuchs [Fu] for End(G) of a
separable p-group G, small endomc;rphisms and ES(G), cf. also [Sh 4] and
see Dugas and G8bel [DG 1] for the representation of all suitable rings

R as End(G)XES(G) in the case of strong limits X\ with cf \>IR]|. In

[Sh 8] we proved the following theorem for A of cofinality > %, and in

section 3 we will complete this for any A\ lelH" .

0.2. Theorem: Let R be a ring whose additive group is the completion of
a direct sum of copies of the p-adic integers. If )\&?“Z;Rl then there
exists a separable p-group G with basic subgroup of cardinality N and

R = End(G)KES(G). As usually we get End(G) = E4(G) @ Rr.

In section 4 we will show the necessity of the cardinality
restriction.  If 2”"3}( 3™ and G has essential power M , then
En_d(C)/Es(G) has power .2)". For A< 2% the problem is independent.

We should like to fulheartedly thank Rlldiger GHbel and Luigi Salce

for taking care of the typing of this paper.

Notation: Groups are always abelian. The 1letters G,H and sometimes
K,L,M are reserved for abelian groups, or modules. Let R be a ring and
R* its additive group. We fix h for homomorphism and f,g for general

functions. Let Z denote the integers, ® the rationals, I_ the p-adic

P
numbers, where p is a prime, Z =Z/nZ and oo the quasi-cyclic
n

divisible p=-group. We use )\,/A,K for infinite cardinals, n,m,k,l (and
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sometimes i,j) for integers and i,j,d,p,y,é,g,; for ordinals ( @ usually

limit). Further @ 1is the first infinite ordinal. Let A €'B denote .

that A-B is finite.
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&1 The combinatorial principle

1.1 Context: Let X\>% be fixed infinite cardinals. We shall deal with
x

the case cf A\> ¥, )g%= A and usually % -HB. Let L be a set of

function symbols, each with {X places, of power 5,\. Let TE be the

>
L-algebra freely generated by I def ¥ A=

{ " : M a sequence of length
<k of ordinals < A}. We could replace I by a set of urelements and let
MG be the family of sets hereditarily of cardinality <X built f;;om those
urelements. For M €T U “\ let orco(q) = {'vl(n): K@}, for a
sequence 'T'L=<'Vli:i< r5> let orco(‘l'i) aili)p orco('vli}, for a = t(@em let
orco(a) = orco('i), and orco(<ay :i<{p>) =_LE} orco(ai), and similarly for

a set. Now g is naturally a tree and we consider the members of "")\ as

its branches.

1.2. Explanation: We shall explain here how this is used for the

construction of a separable reduced p-group with a predetermined ring of
endomorphisms modulo the small endomorphisms.
So let R be a ring with R* the p~adic completion of a direct sum of

copies of the p-adic integers [; Let B be with plf"l).*"'xfo,

@ _ Rx
: nel :
i.e. B is an E-module freely generated by xn(ﬂle__'}‘.) except that

A
Let B be the torsion—completion of B; we can represent

Q‘Tplhﬁ);ma%xﬁl , where m<{&@, each antbelongs to R,

{'t[.: pl("l)"maﬁxﬂf‘Ofl(nl)sk} is fiﬁite for each .k, and nI; m =. max{0,n-m}

pl{"".)+ l qu=0 .

its elements as

with the natural equality and addition.
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Identify x"l with 4 and the sum above with appropiate members of
; A - N
ML, hence B is a subset of MT. Note that each y €B 1is a countable

1(m)=m

sum of p "!.x"?.’ hence it depends on only countably many members of

I'

Our desired group G will be an R-submodule of g containing B. So
there is a natural embedding of R into End(G) and we identify agR with
the endomorphism x|~—>ax . As we want R = End(G)/ES(G) , we will need
for every endomorphism h of G some aé&R such that h-a is small.

A
Remember that h is small iff h maps B into B. We shall try to "kill"

the other endomorphisms by the right choice of G.

1.3. Definition

1) Let L, be fixed vocabularies (=signatures), 1Ll <%, LMEL“_‘_‘I .

(with each predicate function symbol finitary for simplicity),

Pm € Lmﬂ-L“ monadic predicates.

2) Let J, be the family of sets (or sequences) of the form
{<f1,N1> : 1<n} satisfying

a) f1:12Kﬂ>_T_ is a tree embedding, i.e.

(i) fl is length preserving, i.e. fl(rol) has the same length as
>
‘VLGIY;

(ii) fl is order preserving, i.e. for 't[ y V elzk ,‘\L<v iff
f]_('q_) < fl(\?).
b) f'.L*-'l extends fJ. (when 1+1<n).
c) Ny is an Li~m§de1 of power <k, le. Trr , where Li = Ll «

d) Ll*in Ll = Ll and N1+1 I*Ll extends N].
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5 N,

e) If B e Loicy and m<l<n , then P - IN I.

f) Rang (fl) -thlRang (£, is incl}uded in INlI -nglmwh

3) Let J,, be the family of pairs (£,N) sets (or sequences
{ (fl’Nl) : 1< w} such that {(EI,Nl) : 1<n} belongs to J_ for n{@.

4) Let Jt,:) be the family of (f,N) such that for some {{fl,Nl_) : 1< w}

£ R N=UN, (1.e.m|=“l_<)a|u“|, L(N) = h) L(N,) and

= U
l<w 'L
N L(N ) = N L(N )).

3 " 115E§iw “J\ ) :

5) For any (f,N) € J;, let (ﬂh,Nh) be as above (it.is easy to show that
(ﬁ“,NM) is uniquely determined, - notice d), e) in 2)).

6) Let J, = {(f,,N ): for some (fl’Nl) (1<n), {(fl’NL):lin}&'Lh }, and
we adopt the conventions of 4).

7) Usually we identify J; and J; (for iK®).

8) A branch of Rang(f) or of f (for f as in 3)) is just " € QA such

that for every n<®, 'vLP n &€Rang(f).

1.4. Explanation of our strategy

We will obtain W = { (fd',N“') : o <a*}, so that every branch "VL of
fi converges to some 3(«), : Z(d.) &cf A non-decreasing. We have a free
object genmerated by T (B in ‘our case) and by induction on &« we define

elements a and structures E

o 4 (p—~groups in .our case) 1increasing

continuously such that B, 4 extends B, and a, € Bg. As usual Ba{-rl is

"generated" by B, and a,, and a, is in the completion of B,. Every
al o ol 0

_element will "depend" on few (<X) members of T, and a, is specially

0 4 0
; . n "
chosen: The set Yd = E on which a, depends” is Y“ Uy, where Y, is

1

o is a

. w>
bounded below 3(1) (i.e. Y: < ; for some Z( 3(«.)) and Y
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branch of £% (or something similar). See more in 1.8.

1.5. Definition of the game:

We define, for W & Jco a game Gm(W) (W), which lasts @

G
=) %

moves:

In the n—-th move player I chooses f“, a tree—embedding of “2'4: into

nz
X\ , extending l%fl such that Rang(f)“) - l.kf.J“ Rang(fl) is disjoint to
() IN,I. Then player II chooses N_ such that { (f,,N.): 1<n}e J .
1<m 1 1’1 = L%
At the end player Iwins if (U £ , U N JeW. '

m<w M p<w ™
1.6. Remark: We shall be interested in W such that player I wins the
game, but W is thin. Sometimes we need a strengthening of the second
player in two respects: he can force (in the n-th love) Rang( 1) -
Rang{f_“) to be outside a '"small" set, and in the zero move he can

determine an arbitrary initial segment of the play.

1.7, Definition: We define, for W €J,, a game G’m(W) which -lasts @

moves (but in the context of §2 we make a small change). In the zero
move player I chooses f,, a tree embedding of 92y into 05,\ and player

II chooses k<@ and { (fl,Nl): 1<k} € J . 1In"the n-th move (n>0)

Kim)>
player 1 chooses fk*h’ a tree embedding of (k*h)zk intot } =X, with
Rang (f, ) _J Rang (f ) disjoint to U N, U \UZX. and player II
* K KKem wl Im1
' : : + T g
chooses Nkwn such that { (fl' 1) 1<k+n} & Jk*“ and Xm" T, IXM|<,\

1.8. Remark: What do we want from W? Adding an element for each (£,N)
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we want to "kill" every undesirable endomorphism. For this W has to
encounter every possible endomorphism, and this will follow from "W a
barrier'". For this W = J, 1s good enough, but we also want W to be thin

enough so that various demands will have small interactions. For this

serves disjointness and some further restrictions.

1.9. Definition:

1) We call W g.{n a strong barrier if player I wins in é?m(w) and even

g{nﬂﬂ); which just means he has a winning strategy.

2) We call W a barrier, if player II does not win in Gm(W) and even does
not win in G m(W).

5o @ s 1.1 L 2
3) We call W disjoint if for any distinct (f ,N )eW (1=1,2) £  and f

have no common branch.

1.10. Explanation: What is the aim of W being a barrier or disjoint?

Suppose h will be an undesirable endomorphism of G. If W is a barrier,
for some (f,N)&W N FLy= CiMl,h M INI) and (INL,hMNNI) is a "good
approximation" of h. This is true as otherwise we can describe a
winning strategy for II in gF(W). If for each such (f*,N*) there is no
y €C satisfying the equations h(%‘) should satisfy, then h [ |N]
cannot extend to an endomorphism of G. This follows already for W =.%d.
But we want a tight control over the elements in G, this is done using
disjointness, (l1.4) and more. In order to derive the existence of a
strong disjoint barrier, we first define a strategy for player I and

only then define W. We note
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1.11. Observation:

1) If ,\“ =)\ then there is a one-to-one function cd from Jﬂ onto N .
2) 1f W = )\Ho , then there are functioms cd, from J,, into )\ such that
a) if m<n we can compute Cdﬂn(<(fl'Nl): 1<m >) from
cd“(<(f1,Nl): 1<n >),
b) if <(f:,N;): 1<W> # ((fi',-N;'): 1<wW> are from Jm, then for every
large enough n cdm(<(ff,N:): 1<n >) # cdﬂ(<(f;.',N ): 1<n >),

[l

’ x
c) if A =X then cd, 1is one-to-one.
3) There is a function pr: ) =—>\ which is onto and for every oL <\ there

are A\ many p()\ with pr(f)=«.
Remark: We shall use the functions ch only when cf,\>.H' .
X
Proof: We should only note that |J,| =) for o <@.
x M . . )
1.12. Lemma: If A\ =\ » then there is a strong disjoint barrier W,

Proof: First we define the winning strategy for player I and later W.
*

In the strategy we code the play. Suppose XH°=X _hence )\ =X for the

moment. For n=0 player I has no choice. Let n>0 and <(fl,Nl): 1<n > be

the play so far. Then playef I defines his move f,“, a tree embedding

7

m2 "
from “X into T such that it extends \J f_ . For € ¥ let £ (m) =
= Ikm 1 g m

Ey (NP (n—l))A<X;f such that
@ fopd Y

(ii) pr()"‘g = Cdﬁ(<<f1’N ): 1<n >)i

1
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'.(iii)“"!-!é vex implies x;lf‘[g.

- This is possible as by 1.11 (3), condition (ii) has ) many solutibns,

whereas ]XLI < A for 1<n and for (iii), define X:'L by induction on n for

some well-ordering on "\(; so £ X many ordinals are excluded. Now let

7]

W= {< E)f i L1JN1.> : <(£,N) : 1K@> is a play of G, in which

player I uses the strategy defined above}. Trivially W is a barrier.
Why is it disjoint? If " is a branch of f for (f,N) & W, then by (ii)

above we can reconstruct the play from -

1.13. The existence lemma:

~d) Every branch of Rang(fd') is an increasing sequence converging to

1) Suppose )\H°=)r , cEA>X and C* @ \ closed unbounded. Then there is
- ety ' -
W= {(f,N ):d<a*} g Jw and a function ;:ut*-->C* such that
a) W 1s.a strong disjoint barrier.

b) For d¢<¢* 3 ?u) L E@P.

c) cf('{(u)) =, for e<ol*.

;(ot).

e). For every n{® for some ,g(g(&.), ofc‘b(N:)sf e

f£) If ¢l+\_<%_<_r,<d.* and M is a branch of Rang,{fﬁ), then ~LP k ¢ N

~some k<@w.

g) .- If k A e can demand- if nlis a branch of Rang(t‘() and nlr k € Na.-
for all k<w(where o, r,<a£*) then N enf .

2). We can demand also: .

h) For every stationary SQ{:S().IcfS 5}, {c£* N‘) d<d.* ;(o&)GS} is

a dlS_‘]Olnt barrier.
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1.14. Remark: By (e) the ordinal F(2) is the "infinity" of N* and by
(d) the branches of Ra'ng(f") converge to infinity. Conditions (If) and

(g) strenghten disjointness..

Proof: 1) Again we first define the strategy of player I, using (1.11)
and the functions bdﬂ(n(a) from there. For n=0 player I has a unique
choice. So suppose n>0 and <(£L’N1)= 1<n > is the play so far. We have "

to define 'f_“ extending f __, . Let <X for M¢€ " , be such that

| £ ©
(i)-(iv) below hold and then let fm(ﬂl) = fm-l ("IU' (n=1) <X.,L>) for
'VLE”?K .
The requirements are
W gopf X
(i1) pr(x;‘) = cd,, (<(f1’Nl)-: 1<n >);
(1ii) if »19&\::.“«, then x‘.l#ﬁ;
(iv.) T>SUP(OYCOINM_1_I), moreover there is a member of C* in the
interval.
Note that sup(larcole‘il)O\.as we have assumed cf A\>x and orcoIN“_Ll is
a set of power <% (as Il.NMII <x, definition of _"m',' and of orco (see 1.1)').
The requirement (ii) has ) solutioms, (i), (iv) exclude less than A of
them, and (iii) requireé that we have "w distinct ordinals satisfying
(i), (ii), (iv). So we can carry on the definition, and then let W be
as in the proof of 1.2, Clearly W is a strong disjoint barrier and (a)
holds.
We define a function Efrom W to A: 3(_(f,N))=sup(orco(R&ng(f))).

By (iv) above, 3((f,N))eC*, and for every branch " of Rang(f),
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sup(orco('vL)-) =';((f',N)). Now we define by 1pduction on i (<lWl+) for

wfs.wz dof (£N): (£,M) €W, 3¢(5,8)=3)

each ordinal "?’e_C* a set Wf s

such that:

() w;?'_ = 9;

(f&} W?_’ is increasing continuous (in i);
.(x) Wil = Wf has cardinality _<_\<Ha;

(8) If (f,N)ewi , (£f°,N)e w?, v a branch of Rang(f’) - and

i
s : . are ¥ .
{nt!‘ k: k{w} &N, then (£f’,N )Gwhi’

? H
_-(£I) If W# We o, then Wioi

#ul |
This is straightforward-; only (iv) requires the following nbservétian:
. IN] contains at most KH"branchgs of I. By (g), W? = &) Wg .

To finish the proof of 1.13 (1), choose for every g ,i a
well-ordering <% : of W? of order type £ \c%. Define a well-ordering
R I 3C(£%,8%) < ?((f'{',NL)) implies (£2,8%) <* (£%nh
and (f”,No)éw? , (fL,NL)eWJ?, i<j implies (£%,8%) <* (£1,8%) e
%1%, (f‘,N‘)ewf, £%8% <+ (£48Y) 1f and only 1f (£°0%) %
(fi,Ni). Now let {(fd,Nd):1i<d?} be a list of the members of-H such
that for a<pear, (£%,%) <x (£f,xnby, and let 3() dek JETND).  Now
we have already c.heeked (a), and (b) is trivially satisfied. We have
already observed that a  branch M of Rang(f“) converges to
_%(d.) = 3((f‘,N‘)), hence (c) and (d) hold. The demand (iv) above
g.;ia.rantees- (e), and the coﬁdition' (&) (and the choice of <% to h&__ve

34

~order type ensures (£). For (g) use (1.11)(2)(c). 1In case 2
" the same construction works. It can also easily be proved by taking

.  elementary submodels Hﬂ of (H‘(,_\),e). which contains all relevant
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informati§n, X large enough, M, € M"‘*i.’ sup( A N ‘.MJMN_) €S.

N

1.15 Remark: We may also want to build 2 objects of power X“" §

-each one like G, with no homomorphisms from one to the other, except the

necessary ones. 'I‘hi_s can be done altérnatively as follows.

1) Together with G we also build G’ extending G and elements
a; € 6" (i< )tu;) and let for A& AH?-’ - GA = <BU{a;: ieA}'>_. We .then try
to guarantee that A ¢ B implies that there are only necessary
.homomorphisin's from G, to G.B' This clearly suffices.

2) For each As""); we build GA. We use W not only to approximate
endomorphisms of G'A, but also look for N% which is a submodel of
(6®,c® 1) where A # B€®\, h a homomorphism from G2 to G°. For (N%,f%)
we try to add an element y to GA and omit the corresponding type from G:B

which ‘prevents h to map y into ¢®. Note that N® "knows" ANN%

BNN™Y, but A,B themselves.
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;’-32 The combinatorial principle for X\ of cofinality Hp

1If we want to get a p-group (or similar algebraic objects) of deﬁsity
character XA, the combinatorics of §1 does not help us. Here we shall
deal with this case. We also formulate a conclusion which holds for

I every ), L%=)\K thus enables us to give a uniform proof.

_';_2.1.. Context: As we want to deé_l not only with the main case,
X)-Ho* cf)\, but also with A= Hp we will have two possibilities

(1) X = Ag=X,, and X% = n! for each n. : _

(2) A> He , cfd=5p K<>\ A 'b\z(:ca)\ o )\,“n)\*_ regular -and
e KN

In both cases let D be a non-principal ultrafilter on @, T = U _ITX”
B - <L ma<m

| and let L, T be as in 1.1.

In the definition of g’m(w) we make a change ' and demand
B X 1 <) and stipulate Y = 1.

B - l i Ak'l“l 0.1

2.2, Definition: For f,g e ""Ord (i.e. a function from wto the class

'of ordinals) let f<bg iff {n: f(n)<g(n)} €D (and similarly -<—I)'

b 2.3, Claim: There are a regular cardinal)& A(}W( A %and functions

. 3{_ .
“in T )\ for §<}nsuch that:

mLcd ;
- (a) for E<y<m, g'f -
: (.b) for-every ge Tr).m for some § e <g s

.Df
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(c) gp(n) is divisible by N, , -

f

Proof: It is well known that the ultraproduct 'I:I‘ ( )\‘,<)/D is a- linear

'o_rde'r,. and let <gf: §<ﬂ> be an increasing unbounded sequence i

‘regular). Néw,; is at most the power of the ultraproduct which is - -,\39 5

and as D is non-principal easily M >\. Taking care of (c) is easy.

2.4. Remark: If }.>28’° we can choose D the filter of co-bounded subsets 4

of @, and (2.3) still holds; see [Sh 9].

2.5, Remark: The g, are needed to slice -IT}MID similar to the range
o e S f mlw

of the function 31:‘:_1 The: 1,13

2.6. Notation: We identify any set a €W with the function Iae “ora,

xd(n) = sup(hmn orco(a)) using Q‘D.

x
2.7. Observation: 1) If )\Ko*')\ there are functions Cdm from JM to

X: N such that:

(a) If min then we can compute - cdh(:<(f1-,Nl): I<m >) = from
ed (K(£,,N)): 1<n D).

: pll B 7 I P : - L

(b) If ((fl,Nl). Kw> # <(fl,N1). Kw> are in - J, Fhen

: 0 1%. 1.4y, 2 _

Cdm(<(f1’N]_)’ I<w> # cd“(<(f1,N_1). 1<w?>) for every large enough n.

(2) There are functions pr‘;‘ from AM to ‘\fw-i such that for every ¢{<)\M

divisible by )‘:_1 5 r<>¢h-1 there are A‘“ ordinals {3 satisfying

2 <f<ot X, prl (A= ¥ .
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'2.8. The éxistence theorem: Suppose )\m=\.'

Then there are w={(fd,Nd): d< %} &J  and a function 3:_&‘—)}& such
: .that:
W is a disjoint barrier.
b) For 4<fm, @) < I(B).
cf(%(d_-))_=,'h"o for every oLot*,
For every branch ~ of Rang(fd), "1_% g;ﬁd but for every f(;(m‘.)
SES -
 For every n{®@ for some §< 3(0(), orco(ll‘l::'il)<:’> gf -
1f 3(&.) =3([§), d+KHa£F,, M a branch of Rang(f's), then for some
ko, mPkdNy . |
' F.o;' every stationary set S.C.{ckr: cfd= HB} {(f“‘,N‘): at otk | ?(d)‘ S}

" is a disjoint barrier.

Proof: We first define for every ordinal ?(f‘ of cofinality X, a
subset w? of J,. w? is the set of (f,N)e& J, satisfying:
med ’ ;
(i) for me ¥, pr, (£, () (n) = Cd"\(«fl'Nl)' 1<n >).
'({1) conditions (d) and (e) of 2.8. (1) hold with 3 taking the place

i’ - of 3(&.). _

Now we let w 9¢ o W . The choice of the list {(£%,N%):&<w*} of W
aqa_ thé function is just as in the proof of l.l3; except for the proof
"_'of one half’of (a): W is a barrier, and to this the rest of the proof
s : decilicatéd-. Folr notational simplicity we shall deal with the game

m(W) only.' Suppose St* is a winning strategy for player II in gui(w).

: et V' be a large enough regular cardinal. We can choose elementary
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submodels M, of (H(A), £), such that St*, Mg, J, <g$: {(214) belong to
each M, {i.f i<x} QlMMI, Mme Mm-a-:l. E_md ilHMll =%¥. Let 3(n)=sup(|MMIﬂ/¢)
and 3=m'\(jw ?(n)- As M e MM;-L (and Ml =K<}<}¢, M regular) clearly
3(:1) €M . i» hence %(n)( g_(n+1)_. Also the functionlf'“, Dom(£™) =0,
.fﬁ(l.cl) = sup(IM_IN }\k) belongs to M, .5 and as by 2.3 for some f i

r.

clearly fﬂl <:D g

m ) ; : '
£'< g, there is such § ¢ M_ ., hence (as F<3(m), B D53 auet))

Z(mel)”

Now we shall define a play <(fl,Nl): 1{w> of the géme Gm. We
shall define fm’Nm by induction on n so that
(*) <(f,,N): m<n > form an initial segment of a glay of gm(w) in which
player II uses the strategy St*, and it belongs to M.
For n=0 player I has a unique choice for f,» and clearly fo [ Mo' As
St* ¢ Mo clearly No € MO'

So suppose <(fm’Nm\): m<n > satisfies (*). Let k:=}‘lax{l: 1<n+l and

1=0 or e (n)(g,s } (k:‘ is well-defined as the set is

(n
85 (o) 301) .
finite and non-empty). We shall define feq sSuch that for ﬂ{ém x,

FetD = E(qI<Y, vhere 330‘*)( Py +Ax <A, (1) above

holds and Yﬂli‘fv if "[)‘*l?. By 2.7. this is possible. Moreover we can

choose fm+1eMm+2. as M‘m_i €M, 2 (and ((fl,Nl): 1<n >, T belongs to
Mm+2) also Nm+i belongs to M__,.

So <(f1’N.I.): I{w>eJ, is the resulr; of a play of gm(w) in which

player II wuses his strategy St*. However we shall show that he loses

* the play, i.e. (‘(fJ.’NJ.): I{w>eW, thus getting the desired
contradiction.

In fact <(fl,N1): 1((-\))6“?; the least trivial part is why
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condition (d) holds. Now hf-%g'}(u} as for each branch ’VL'of Réng(UfM),

" for every n, ﬂl(n)(g?cuw) (n_)+)\':‘_£; now if k(n))Q g‘ffk(ﬂﬂ)(n) +.'
i

L Sg?('n) (see 2.3) and {n:ﬂ(n)’(g?(n)}e D ‘as required.
On the other  Thand for each m<®, s {n<@: n>m and
g 3@m)‘(n) < g}(n)} .6 D, hence ' m?l A €D, and for each e Qlﬁm,

Szu)(n)ig% (k.) (n) but n(n)>g,§(hm)(n), hence {mn: g?a)ﬁf\'én)}aﬁl%,
hence 33{'1)(»'\1. i

2) The proof is similar except that we can demand 3& S.

2.9. Remark: 1) In 2.8 (1)(d) we can demand (¥n) ﬂl(n) <'g¥@)(n) as
w.l.0.g. 33(11) > 0 for every 3and n, and in the proof when k“=0 use 0
instead g,% (k:‘)(n).

2) In the proof we could have chosen an infinite A*sw, A*¢D, and
restrict (i) to n-€A*, 1In thislcase we can demand only IX.LI< 'Xlnl-l in
the present variant of the definition of gm‘(W).

In fact we can conclude from 1.13, (2)-(8) an assertion, which is

the one we shall use in §3, thus getting a uniform proof of Th. 3.5 for

all A. So here we are in the context common to §l and $2.

2.10. Conclusion: Suppose A% = )\Hii AOK, Then there is

W =.{(fd',Nd):eL<d*} such that:

(a) W is a disjoint barrier (for X ,%x).

(b) For every dif&(i* and branch fvl-of Rang(fB) and n<®, for every large
enough k, NL]" k¢N:',

(c) If d.+v.H-°£ r&(«.* and '115 a branch of Rang(fﬁ), then for every large.
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" enough k, '\'L!' k¢N°" .

Proof: If (1.13) or (2.8) apply, this is immediate. The remaining case

is ¥ <cf A< (but the main case is anyhow %= Ho). For them note

2.11. Fact: 1) If RSN, (X*)%=')\K, we can repeat 1.13 (and

everything else in §1) letting T, ML be defined using )\, by letting
player II choose embeddings into kzj M(}.*) (with the obvious changes).
. ’ m e ’

2) The same holds for 2.8.
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§3 On separable p-groups.with predetermined endomor-phism ring

We prove here that for suitable R, R=End(G)!ES(G) for some G of
density character A\, |G|= ).H".

It might be possible to predetermine dim p"G[p]=);li). with

A=lim supX,, . Replace B in (3.5) by B’ using

pk(M}""'x:‘ié 0 for
3 p"‘*ix-“',,‘L- 0 with some sequence k(n) such that )\“5){“’“) . Extend B’ to

obtain the right G; but we have not checked the details.

3.1, Definition: A separable p-groups G is an abelian p—group such that

every element belongs to a finite direct summand. We will deal with

separable groups in $§3 and 4.

3.2, Definition: A map h from G into G, is called small if for every m
and for every large enough n h(p'G[p™])=0 (where p"G[p™] =

{p*x:x €G,p"*"™x=0}).

3.3. Definition: For an abelian group G let End(G) be the ring of

endomorphisms  of G and let Es(G) be the set of all small endomorphisms

of G.

Trivially

3.4. Lemma: ES(G) is an ideal of End(G).
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3.5. Theorem: Let R be a ring such that R¥ is the p-adic completion of
a free p-adic module. Suppose A2IRI.

‘1) There is a separable p-group G with End(G) isomorphic to R&® ES(G)
" and |G|.=)° and G has a basic subgroup of power A.

. A%y o ' o
2) There are groups Gi(i<2 ) as in (1) such that homomorphisms. from -

G; to G, i#j are small. ' '

3.5.A. Remark: We can replace ) 2IRI by )‘H")IRI .(or . even

Ym X%IR*fani-i) , A Ny, without change in the proof. If

).H°=|R+fp~‘R+l we get (1) and with more care, also (2).

Proof: By [Sh 5] we can restrict ourselves to the case cf A=H. We can :
choose regular A< N Hb()\a‘()\m‘ such that };=“§w M - Let k=5, We
shall use freely the notation of §2 in general and of (2.8) in

particular.

Stage A: Let B be the R-module freely generated by {x,;l: "€ I} with
1)+ 4 - : -

—0. So  every beB is of the form .2  r,x,(r, €R) where

4 i ¥ wer TUT M

{v: 1;{0} is finite. Let H be the torsion-completion of B so that any

beH is a formal infinite sum Twm él(‘);mx% such that for every 1o
{-1:_.'116. g, 1(1)5 1 and rnp]'(ﬂ)"' ™ }gl#O} is finite. This implies that
4 ;

d(b) J*‘J {NLG;: r,lplw')"wx,,l#()} is ) countable. We have
b pl("z)_-..rm(t) x’."L = % r%. Pl("z)-‘-m(?. Xy ifE Eor every m

r# plh}""“u')- r,.zl puﬂ)“‘“"(n is divisible by plcn)"i , and we can

define H as the set of those sums with the obvious addition (see [Ful).
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Note that r,\l is not uniquely determined by b, but r,.lp i x,‘L is.

Note that H extends B and is torsion-complete. This means that Z Yo
ML

exists if (31) (¥n) plym= 0‘ and for every 1 for every large enough
n, y, 1is divisible by pI. In fact, it y.= 1%;; a:'; x"L 5
mz.co = Z(Za‘]' )x,,t and ;.a’i exists by the choice of R.
Note that
(A)(1) d(y+z) & d(y) U d(=).
A)R2) d( X y) e U dly) when 2y is well-defined.
~ e ™ miw M mic M

(A)(3) if yeH is divisible by p", then 1(1)2* n-1 for all ~med(y).

(a)(4) = 2 rx w is uniquely determined by and we say
' e 10p)+1 ! |

"x appears in y as Wi really r, + W*L R is uniquel

M PP .\l v’ Yy " P q ¥,

determined.
We shall build an R-module G, such that BSG&H. Let G* denote the
additive group of G, and homomorphisms will be Z -homomorphisms .

Stage B: Recall from [Ful:

Fact: If BSG£H, then every endomorphism h of 6% extends uniquely to
an endomorphism of g¥. 1If h is small, the range of the extension is in

et

Stage C: The construction

We now define the R-module G. Firsf identify members of H with members

of MT. If AcH, let SG(A) be the R-submodule of H generated by A. We

 define by induction on o<d* the following:
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(1) The truth value of o« €J , A €J,, &€J, so that exactly one holds.
(2) For aeJ,UJ, we define elemen;s Ay (1(&),b¢ of H.

(3) For o€ JUJ we fix a branch v of Rang(f*) such that

TR R e WSt

(4) i ™ a:'m + ai'.;w‘ (both in_"H) where a.tm 'ki:ﬁ'pk-mxodr“ so t.ha1.: ;
pa:,lvt - ae-::i::l. € B. t

(5) a:’.l €Ny | :

(6) v, ¢ \79 for p<e o

For J€J N let G* = $G(B Ulag ) B, @ € J,UJD) and let G;" -6y

(7) bﬁth;' for p(d, when {{eJo; and ap'le G; iff [36(% UJ)Na when

B <at.

ol : o '
(8) 1f Nd'=_ (|, L, hyo..), L a subgroup of GJnd.nIN | for some .

JEJind, h an  endomorphism of L, and we can find

v, ,ai'.l (i=0,1; 1<a), b,, 1(«)<ey satisfying (2)=(7) for «+l

(stipulating -LGJO) such that for every endomorphism h’ of H

extending h, h'(a, 1¢2)
I

(9) If the hypothesis of (8) fails, but we can find a,,

) = by, then «(€J,

a“,l » Wy such :

that conditions (2)-(7) hold, then 'nLEJi ; otherwise eeer.

~Remark: Really J, = @

Stage D: Claim:

1) Every element x of G (where J&J,) can be represented as

.3

1§1 rlact;,’h + b , where be B and 066“’(“‘1'

2) If k>0, ?(dl) = ?{n{k) , then Rang(\gtl) ¢*d(x) ; moreover there is

m*< G such that d(x)n {ge; :\,'*IP m*< g} is. - equal to
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{V, i : m*<ide}, and if x= 2 rox% then™=V M1, 1>m implies
dy > eT T’ Tttt 2 P

r, X, = L pl(‘qﬂ'wx .

i B "

3) The representation in 1) is totally determined by m, hence k,

R ! ! + b’
<d,, § k> depend on x only, and if éi rladvm(u b’ 1is another

m(Z)-m . m2l=m (4
representation, then rlp adv,l“(z) ;P a{-,_,m[i-) for
every large enough m(2).

Remark: The claim explains the peculiar choice of the a, : by ha'ving-

special domains for them we have specific severe restraints of the .

domain of any x &G.

Proof: 1) By the definition of G we can represent x as £ r,a + b,
FERSE % 1y

‘beB, L l*. Of course w.l.o.g. e{h<...<-’. . If k=0 we finish, otherwise

1
let m Hax{mi,...mk} As &b,l - paef,l‘l-i €B we can .easily .trang#or?n this

to a + b’.
1%- 11)
2) and 3) Easy.

' Stage E: Claim: If h is an endomorphism of H mapping B into G, such

J
1
that for no r€R with h-r a small endomorphism of GJ. » then for some

a*eH, pa{:i - ai".eB and for some 1

3 . _h(a§1)¢sc<%U{af= 1<a}) .

Proof: The proof is by cases.

Case I:. There is 1(*)<@ such that for every n{W there are r €R, "LQ =T'

satisfying 1('\1__}_>_n and d( h(plm}-l[ﬂ rxl))${1}. In this case we can
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eas;ly choose by induction on i<@ ri_eR,' Vi, '\li e";“ and ni<co such that:

_ -1(%
(1) vy € d( n( =100 Ty Xy, .
(i1)  1(Mp> ng> Max{i+1(q+1()+L(V5): 3<i} '
(111) 3 #45. g
._ Now for. every function s e “’z and k< w. we define ’
. (qa)-1(9)-K | :
2 = kszi:<ms(i)91 i3 Taage if

We shall prove that for some s, < ai: k<c> satisfies the
' Yequirements on < a*: k<@> in the claim. Note that a;'- pas €B for
i k : k+i
every k (and a; €eH).

We now define by induction on n, K“ such that

(i) K is a countable subset of GJ_ 5

(ii) K,hﬁ Km-u, . J

(iii) for i< @ , rixﬁeKo
(iv) if x__s K“ then h(x) eKM-ri
(v) . 1if x,y € Kﬂ, then x+yeKm_1, x-ye'!(_“+£

_(yi) s geg(y), ¥,z €K, oL<*, reR, §<Vy and g(z-rad,“)n
{"Le.z_: Y(“t}’@’ then rai"me K«d-' (note that ra,, is uniquely 4

determined). . Let K= {J K_and W* = U {d(y): y €K}; so clearly W*
niw ™ T
i$ countable.

We want to prove that h(a;)¢SG(G:r V) {a; : i<e}) for some s.. We
suppose : this does not hold for a given s and shall get restrictions on
s, so that this will guide us in choosing an appropiate s. i

o . . s Sy o 5.8

As aj paleGJ. for some _]s , and r’€e R, h(a'\,J ) r ausc GJ,. Hence

for every yGK{}GJ_ h(a;) - rsa; + y EGJ. , hence applying stage D(1)
5

(*) 'h(a;) - r5a§s+ y = 1:1_:1.'1.%l + rzadz S +...+rkadk’,m+ b, where
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: *
otk<...<a£1<n£ » b&B.

0f course rl,e!l_, m and b. depend on s,y. Note that by stage
D(2)(3) s and y determine k, n‘.l(l=1,..,k) uniquely, and essentially r, -
w ' : ; :
Let §§,={se Z : for ¥y we get < minimal}, S:iY =
{se &: h(a;) = rsalj‘s + rsy €B}. Our  argument will rest on the

computation of the domain. As for the left hand side

Sy _ 5% = s s -
d(h(ay) - » ajo + y) & Q(h(ao)) U d(r aj, YU d(y) &

j)= 1C* '
dh( T s(pFU=I® 0 oy Uaeta, YU &
- i<esd 5 * Ma = Js
- 1%

ice k-
d(h(rgx

i))U M i<W}V wx =

U s L dhigx, ) U W o,

g¢
Now we apply stage D(1) on the right hand side of (*). So there is
§€T in the domain of the right hand side (hence of W*) such that:

(*%) 1 i(riad;,m +euat rkail{ %4- b)N {ALE.'I;: g’iﬁz} is a branch (except the

1

first 1(§) elements). (in fact {¥ P i: 1(p)<i<@l); i
(%), . for some reR every \Je{neg:;'fg\z} appears in
“ -

r,a +...+ 1 a + b as i""""'rx "~ or Ox .
1%, m r]( oy m P v v

We can substitute the left hand side of (*) and get (**)%, (%*)%.

This is quite a strong restriction. .f‘r_om s (and remembéring
(i),(ii),(i_ii). above) we know much on g(h(.a;)—-rs'a;s ), and so get a
contradiction.

Now MZ is a topological space having the Baire property. .As W% is

countable and the fabove is necessarily in W*, it suffices to prove

: ) .
. () for every {€V , yeK the set of s € Sy for which (**)7, (**%)5 hold

is'-méa-gre'- (= of _the first category)§

" () for every y €K the 'sfet'ﬁ; is meagre. e I_ . ‘
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So let few , ue %‘)“‘2, n<eand we should find a function teU™Z
%)
w ; .
extending u such that no s € Z extends t.
' 1(y;)-109
If y +.2.  s(d h(r;
Y T &oms p (r"x‘{

(**);,  then there is k<@ such that this is examplified even if we

restrict ourselves to n[_e-'g of length <k. However Ci>k+1(*) implies
:y-1(% _ s o

l('\u)Zi>k+l(*) which implies that pl(“[:.) i )h(rix-‘(,'_) is divisible by

p‘k+1 10v;) = 1(¥)

(in H). Hence every '-Leg(p h(ri-x,t.) + r‘-x,,li;) has 1lenght

1

>k. So if n’= Max{n, k+l(*)} and t(i)=0 whenever ndi<n’, t extends s,
then t is as required. This argument is a 1little inaccurate, because
_Z T I X, is represented in the left hand side of (*), but as this
1€Doms Mi :

involves finitely many members of I it can be correct trivially.

=1 (%)
So we can assume that y +.Z s(i)pw‘[‘) 10%) h(r;x, ,) satisfies
i€Doms iTML
(**)1, (**)5 if we ignore {"B: i € Dom s}. Moreover w.l.o.g. this holds
for every t € U "Z extending s.
m<w

: o :
Now if we can find s&,sb-,s‘ egy as exemplified by distinct utﬁ_ §

o s %, o Such thats,, s, & extend s and [{d ;,% % }1> 3 let

s* e“’z be defined by s*(n) = s‘(_n) - SL(n) + s‘(n) and then t=s* M n, n
large enough, extends s a.s required. Othervise only say ,gi_’a’ d'?-,'k
appear and the contradiction is even easier.

So it remains to prove (+)2 , il.e. suppose some g; is not tﬁéager
and get a contradiction. As easily d(b)€ W%, clearly b€K, so w.l.0.g8.
b=0. Looking at "how x\,i may appear' this is trivial.

Let h(rx, ) = Xa + h, (rx,) (a &€ R). Note that h,(rx,) is not

G (RO e M i | 1 ("%

necessarily an endomorphism but a function from GJ. to GJ which is small.

i) does not satisfy . (¥%)] or:

[T
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4 . . 5 . h " i
suffices, as then h(a, 1-&)) necessarily belongs to G
£ : r

- Case II: For some 1(*) for every m>1(*) there are NLa, ~LL €I, 1(13“),

1('_‘1'})>u'1 and _r&,rl'e R such that pl(f] -1(*)3"; "ta x,‘ta +
91(11’)--1(*]8‘3 b %, 1s not an R-multiple of *x a + r]’x '.
rim® Tup e § *t

a
We can easily assume #"1,"(33 we can try a third candidate). The

proof is like case I (using rx a + r}x b instead of r;x_ . )).
. i i

N £ *"Cg “%

Case III: not case I nor case II. In this case easily for some TeR,

h-r is small. -

Stage F: Claim: If h: Gﬁ—-)GJ.' is- 'a homomorphism, then for some
i ;

reR, h-r is small.

Proof: Suppose there is no such r. We can extend h uniquely to an

endomorphism h of H. Let h( = r.x,.) = 2. h(r.x ) and 1(*), a*¢B
e T U YeT T 1 g

(1<w) be from stage E.
Now we can define a strategy for player II in  the play

om({(£%,N"): L <ol*}) (see $2). He plays so that IN_INH is closed under

. _H
nm = np IN 1, L™ = IN InG, . An (£%N%) is a barrier for

M J;
i :
some o ,'(f"”,Nd) is the result of such a play. Let 1(a) = 1(*) and ‘v be

"a branch of Ran‘g{__f'{) not in {\?F: ﬁ(d} We want to show that in (8) of

_stage C there are a:'l (l<§3),' b.(' as requ_.n'ited there (a::m is already
defined from v). Ignofin_g req_uii'ement (7) for a moment this clearly

i ,_llmt it is bd

0

dm=0, then the only thing that -can go wrong is
1

First try a
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v}
blay, 1(*)
i

) & SG(GJniU{ao : m&@}), i.e. for some m.an.d-rieR

c*
Jynet
If this fails try L) = a* and again the only thing that can go wrong

is h(a 1 0%) + a‘ 1(%) e SG(GJ nd.U{a : m<w}), so for some T, € R

(2) h(afgoy *+ ag 106)) - rz“u,;r*) J.(*)“G L N

Subtracting (2) from (1) we get

0 0 SR ¢ o<
(3) hag 1)) ~ TaPg 10t (T2 100 € g na

As a‘{o i h(a: )eN“’ , computation of the domain (using stage D)
|1 \1 0

leads to v=vf‘ for some ﬁ(d. ; contradiction.

ah?
T

be a branch of Rang(fd‘) only if @B+ 2“0 (see (f) of Th. 2.8.) all

v

We shall denote the successful try by aj’l g As \Jﬁ(ﬁ@t} can
o

except <2H° branches of Rang(f ) will do. We still have to deal with
requirement (7) from stage C. We deal with it for each §3.

If 3+ 2“" <, comparison of domains leads to a contradiction.

As |{(4:{‘,<a1<‘3 +255 };<2’q.° , it suffices to prove that for each such

ol o 1,V
, b SG(G T+ a'. o 1w} f t t ne v h 11

P (36 (JindU{adal aﬂt.l } or at mos one (as then a

branches of Rang(f*) except 20 4i11 do).

So suppose vl% vZare branches of Rang(f’t) (but ¢ {\-’r:y’d}) and for

i=1,2:
: o 10t :
bF € SG(GJ”n& 1Y) { +_ad.:1 :1<ew} ) .
So (for i=1,2) for some m: b :"( opt ot i ‘

ﬁ- r "m a".‘l‘l)e'GJ‘nd
Subtracting we get
1 i bR
v 1909 2. 0V ol
+ - .
1% E 2dm " T 2w ) € G.T,_nd.

Computing domains we get a final contradiction.

2 0\?
“u

(riao
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Proof of the Theorem

- It is easy to show that IR )\Ho. Now by stage F each Gp(J€J,)

has no = '"undesirable" endomorphisms. Let {J_f' :f<2H°} be a family of

, subsets of J, with 1af - J3I=kﬂolfor {a‘;. So it suffices to prove for

g#? that every homomorphism h from GJ’f to GJ,; is small. But by stage

F h-r is small for some r ¢R (and clearly r is unique). Let d.e.If = J.?',

and consider h(ad,:l.(d)); for every m>l ay g () - p"'"'lwa.(lau €B, and we

(h=-r)(p "u")a

know that L

) =0 for every large enough m<@, So

_(h—r)(aidw) = (h-r)(y,) for some };&B. As IJ;— J;I > XM+IR| = |B],

. for some df-"ﬁ GJ;- J? Wva e So (h*r)(a&}u.‘)‘ s 1(‘“) = 0, hence
h'{a. :

.L,l(d.) = ap,l(ﬁ)) = r(a‘*"lm) - aﬁ,l([!)). But by stage D

ey ™ 33,1(p) ) € 643 implies r=0, so h is small.
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-§£| The nec_essity'éf 3 lGiH"- |G| in the groups we have constructed

In the previous section (and in [Sh 8] we have " constructed an
abelian p-group G with a prescriBed ring R=End(G)/ES(G). For an
arbi'trar_y- X\ we build such a group of power (IR_|+)sH‘°). The restriction

IGI>IR] ~ is obvious.  The stronger restriction |G|2]R1%_is,also quite

_'necessar-y as. we shall show in (4.2).

4,1, Context: Let G be an abelian reduced p=-group. So there are

Ao X5 (1<) such that {x: i-<‘\~\’n<0} generate an abelian group freely

except that p“

4 x;‘ = 0, BEG, B is dense in G. So renaming we can
assume that G is contained in ) , the torsion-completion of B.
- " " .
So for every x€S, X (u,g'es apX x7 , where S sl(n,1): ndw, i<l
is countable, a?;'xez , and for every n {i :(n,i)eSx}-is finite.

It is known that G = c? + ¢t (direct sum), ¢t is bounded (i.e.

(@n) (¥x eGi) p*x=0) and for GO the cardinals J\msatisfies (Vn)(imm)
)\“5&'\. It is known that ess pow(G) = Min{l: for every n large

enough,) <\.

" 4.2. Theorem: If G 1is an abelian separable reduced p-group of

ess pow(G) =M\ >2’H-°_ , then End(G)/ES(C) has power ZA .

Remark: The proof will give much more explicit information.
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‘Proof: It is easy to show that for G = GO + G", e bounded,; the rings
-End(G)/ES(G)' ' ahd End(.Go)fEs(Go)' are i_s.omorphic and ess pow(G) =
ess’ pow(Go)_;.

So we can assume G as in (4.1), and for every n there are
infinitely many m with N <A. Let \=2Z X\,
g o Mo

We know that every endomorphism of G 1s determined by its

restriction to B. Now the number of functions from B to G is

1Bl r
Le6r - L( xho))‘ = 2". So End(G)/Es(G) has power < 2)‘.

4.3. Fact: Suppose A £} , A =U {n}x4 , and let G, = @ zZzx".
m ~’ mEAN *
A sufficient condition for GA to be a direct summand of G is:

(*) For every x &G, anA is finite (on §  see 4.1)

Proof of the fact: We shall define a projection h from G onto

G,: h(x) = h( 2 a® My = X A% x™ . This is well-defined
A mESx * 1T midea

(and the result is in GA) by (*); and the checking is easy.

4.5_{. Fact: There are A“s )M s 2 IAM]=)\ such that “‘U:i)'&;[1'1}1\:;1&'”!l .sal:isfiés
(*).

This suffices for 4.2. We have already proved [End(G)/ES(G)l < ZA.
Clearly by 4.3 IEnd(G);'Es(G)I > |End(GA);’Es(GA)| and clearly

' X
IEnd(G,)/Eq(G)1 > 2° .

Proof of 4. 4.. Choose n(k)<& for k<& such that n(k) < an(k+l),

G‘}_)\ ('It 1)’ and A Z>\ ) Now we can choose by induction on k, for
"
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_every M€ TT \, , subsets A_ of }.‘“G'T such that:

<k o (om] 1

: 11y 1A = kmcu«p}

%

) for AV € TR M)y ANAYT O
e .'1‘1_1?.3 is easily dome. I__No_w for every m¢ ;I;l; kﬂi\(k)- let Ap be

- if ']_.*.-n_(k) and ﬂ._ otherwise. Cl.earl.y- -A';*:- s ).1 y Z IA}_I =
G by ; : 1l :

ke

'_ Awt = &){1}m§- '-sétisfies '(*)..' '

As the number of 'vLe le_-kmcn: XHB is >|G|+ ZH-" , it suffices to

-prove:

(**) for every x €G the number of NL'e -E_X""[i) for' which Sx(\A"l is
Ly

" infinite, is < 270 .

This is easy: for suppose - ”lie _l;l-)‘m(k) are distinct, for

i((2‘“’°)+, the number of possible Eixl'\A“‘l-F'l is 52%.(= the number. of .

subsets of Sx). Hence for some i#j Sxﬂ Aﬂﬁ = S“ﬁAnu is  infinite but
Sxﬂ({l}x )ul) is finite for each 1. Hence for no n is
ULin Abe , i

AN AR s 1%({1}){ }1). But for some n 'vb:(n) # Mj(n), hence easily

Al [8) AU c (J{1}x )\l; contradiction.
L<m :

4.5, Lemma: 1) Assume MA + 2“"_ >x . If G is  a sépérab_le (abelian)
ﬁ—group-, .}. = ess pow(G),_then Eﬁd(G'){Es‘(G) has power 2)‘ - |

2) Assume V (=the universe of set theory) is a generic extension of V'
by adding X\ many Cohen reals, Ao, Assume R is a ring, R
completion of a direct sum of copies of ;'- , IRY/p"r* =X\. Then in V

P
there is a separable p-group G, |G| =\, End(G)=Es(G) + R.
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m

- Proof: We define a forcing notion P: P = {(A,B):B,A < {x:: i<.\h,n<ﬁl} T

1

"BAA =0, A finite and for some finite YsG, B =3U_rd'(y)-c.)]; order
Y S

natural, P satisfies the countable chain condition: if (A.,_,B_l) eP for

' * ", *
A<y w.l.o.g. for some n(*) A, e s i<XM, n<n(*)}. N.Ote that

AN {x';‘: i<\, n<n(*)} is finite for each «, the rest is by the A -system
lemma.

50_§y MA we can easily get A & )\M, |Am|a)‘m satisfying (*) of Fact
4.3, and we finish as in the proof of 4.2.

2) Left to the reader (provided that he knows what Cohen reals are).

4.6, Remark: We may wonder when we can have |R|> ,\x‘.' Now

(*) there are left ideals I, (*<\) of R such that

e k@x I, = {0}

(1) if <x,:ad<A> is a sequence of members of R satisfying

(+ LN (xgt Tg) # § for every £,B<A, then FANCAR SRR Z

This seems necessary (if R=End(G)/Es(G), B€G is  basic,

B = {x;: i<)\}, let I; = {reR: r x;= 0}) and sufficient (proof as in

(1)) with B being the R-module freely generated by {x,fz: i<A,~le£} except

rx* = 0 (relj).

K
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§5 Abelian groups with predetermined ring of endomorphisms

‘What can we say about End(G)=R ?. Clearly R -is a :fing_ wicﬁi:

identity 1 and G is an R-module. If n-1=0, then n-G=0 and G is a direct

sum

of cyclic groups. So we may discard this case. Trivialiy G has a

divisible sub-group D#0 iff RY has a divisible subgroup #0. In this

s0

. case every homomorphism h of G into D extends to an endomorphism of G 5

we cannot control End(G). If G is uncountable then End(G) has

' o 16l
cardinality 2 .

Hence we assume that G is reduced, i.e. G has no nonzero divisible:

subgroup. Define the Z-adic metric d on it:

d(x,y) = Min{2™ : n! divides x-y}.

We can now define the completion G¢ of G.

5.1. Theorem: Suppose R is a ring with 1, characteristic O such that RY

is

reduced. Suppose also G, an R-module with G; reduced. Suppose

further that A0 16 1+IRI, cEX> ¥, -

1)

(a)
(b)
(c)

2)

There is an R-module K extending Gé such that:

K has cardinality xﬂh. |

KfGo is an W,-free R-module.

If heEnd(K), we find reR such that h-r=h’ is inessential, i.e. in
this context Rang(h’)g SG(G,UAUG[q]) for some finite ASG, qQeZ .
s A G, are cotorsion-free (i.e. in addition RV, Go have -ﬁo

subgroups isomorphic to the additive groups of p-adic integers),
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then h--l':'.-O“ in (c).

Proof:
Stage A: Let B be the free R-module generated by GoU{xﬂl:‘le 'g} except
the equations which hold in G4+ Let H be the completion of B; so every
: c
] = -+
y €B has the form y 155 Ty Xm mgmgm 4 3.“560 ' r,'LeR for all
but finitely many €I and n<®, (n!) divides Ty and (nl!) divides g, (in

Gy). Note that d(y) = {MeT : Ty # 0} is countable but g(y)n‘ﬂ;)\m

may be infinite. However (A)(1),(2),(3),(4) (from (3.5)) still hold

(replacing p™ by n!).

We can define d,(y) = {'ble I: is divisible by n} and use it

R

similarly.
Stage B: As.in (3.-5)..

Stage C: The construction

We identify H with a subset of M{. We define by induction on a.<{«*:
1) The truth value of d€J,.
2) For aLf.Jo ‘we t_iefine a“l € H for 1<w.
3) For «€J , a branch V, of Range(f") such that, for oLEJ,

e L ) : - '
4) B ad,wu+ a-t."lm (both in H), 3, am éﬂ(MESkl. )x\h?k and
i gk ' )
() a"hi a.‘,l & B
o i
-5) a-a,w‘“a

6) Vy #v  for (e

Let. 6% = sG(B Ufapy p 1fe, meel).




Sh:227

76 S. Shelah &

2 el
7) by G for pa.

o

8) If N = (INdl, L, h,.-..), L a subgroup of G‘f, h an endomorphism of

L, and we cannot find v"‘, af';..m (i=0,1; mdw), b‘;, 1(et)<w satisfying
(2)=(7) for &+l (stipulating «£€J,) such that for every endomrphism
h of a group G', c*sg¢’ CH, extending h, h'(ad,“_n) = b, , then
4 €J, and for every 'endomorphism h’ of a group G, Gds_-'n.G’E_H,

extending h, hl(a‘;l(—t]) = by

Stage D: As in (3.5). We can note there that cf‘n G;' = Gy -

*
Stage E: Claim: If h is an endomorphism of G=G* such that for no r&R

= i i i * *  — a%
h-r is inessential, then for some aleH % 131-&1 aleB and

h(a$) ¢ sG(GU {a% : 1<w}).
Proof: It is done by cases:

Case I: For every finite W& T and 1<w (1>0) for some % ,VET ~ W and
r€R, 6!_#9 and . \JI appears in h'(lrxnl)'.- This is handled like case I of
stage E in (3.5) (but here, in order to guarantee that V appears in the
infinite sum, we split the sum into two parts - in the first it appears,
but the coefficient is not divisible by some k, in the second it appears
with coefficient divisible by k).

So for some finite W* and 1*¢ {1,2,3,...} for every r &R, wLEI - W,

1
{.
{
|
il

for some a?;‘*l&R h(l*rx,L) = a"r"?.' x,,te SG(G‘J U{x1:~lew*}).
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Case II: Not case I, but for every finite We&T and' k<{w for some
wLa‘ ,ALL é'_I'|= - WUW% | r-a'e R, r‘be- R the following holds: 1 # lr'b.

As in (3.5). :

Case IIL: Neither case I nor case II.
Let W%, 1** exemplify the failure of case II (and w.l.o.g.

WkS W**), Clearly there is r* eR® , such that for every mLeg - WEU Wx*

and TréR, 1**1*ar'~[ = l**rx, So for M €T - Wk* h(1l**1*rx ) -
kkrk . * i £ - £
1**yr rx,.le SG(GOU{X,‘ .'-lew }), so choosing r=l (A[e_g W%*) we see that

1* divides r* and the result is in R, so let r*=l*r**, Ve can conclude

h - WEU Wh*, %% —pkk : *}1).
that for some ¥€L ~ W Uwkk, 1 1*(h(rx,,l) r* (rx,l))e SG(GOU {x,bl 'U.-w b
So (h-r**)(rx,l) € SG(GO U {x&l :»te WX} U G[1%*1%]).

We still have to prove that h’(SG(G, U {x,'[. :f»lew*} e SG(GO'UAUC(R))

for some finite A -and k, where h’=h=r**., We can choose by induction on

it % . *
n finite subsets W & E,’ UM So*  and gme SG(GOU{K“l .ﬂlew }) such that

*k
W QWMS WM UMS Um+ and

+1? L

h((nl)gM) ¢ SG(G, U {x'\[“lewm}u {ad‘l tdel ,1<10, 1}).

_ We then get a contradiction as in case I of stage E in (3.5).

Stage F: Claim: For every endomorphism h of G, for some rgR, h-r is:

inessential.

As in (3.5).

. Stage G: K/Go is an X, -free R-module. Easy.




Sh:227

|
b
f

.,_...,.,
wTragiz e

78 : Eope _ - . S. Shelah

Proof of.theorem Sals

1) As in (3.5).
2) So suppose h is inessential and nonzero. By stage G there is a

i}
finitely generated R-submodule L of K, L =@ R*, LNG,={0}, and n<w,
i= '

!

Rang(n h)&L + Gy » but as G is torsion-free, we can disregard n. Using
projection w.l.o.g. Rang(h)§G, or Rang(h)sL’, L'= rRY. Also Rang(h)
is complete. (Otherwise we can prove the conclusion of "stage E (if

* il ® = 1 y
try a ﬂz“‘rzhl.(h(am)-kx M) and also try a Z 1 illx ) and

M mcm 1= MFm

1t

then get a contradiction as in stage F).
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~ §6 Revisiting the combinatorics

. .The combinatorics in §1 and §2 can be strengthened and modified in

various. ways, which may be useful in other contexts.

"

~ 6.1. Claim: In the context of section 1 or 2 suppose X is a cardinal

séltlisfying kx =\, X > ‘K’ﬁ-!- x* ée.g. X =(x H'o)-l-) é

Then we can prove Th. 1.13 or 2.8 when weaken (b) and strengthen -

(f) to
(b’) W is a disjoint barrier (not necessarily strong).

(f') If d(f!(d*, M is a branch of Ran-g.(fﬁ), then for some k,f\ll‘ k_¢-N¢.

Proof: Let W* = {.(f:, N:): ol lal¥} $* be what we get applying (1.13) (or

. (2.8)) for M\, X (instead of (\,%). We consider only those a’s for which

@>
N: codes a tree {(f""?‘ 5 N4y :M € X} such that:

(1) NS codes (£, N9T): me™ X } and includes each 1N/,

(11) <UL g4ty 1<1(y)> € 3, for «le.“x.

'I.(.iii)' .Ran_g(fﬂ'q’-) [= R.ang(fd') 2l

(iv) if " v gtd

X, % (D) #9D), then ' Rang(£%1)n Rang(£%”) <
Rang(fd"‘zrl). |
We now def_ine by induction'or; o (of as above) a member o Of c.:x sucﬁ
l:hat. ' _ N .

s Ty
(*) if p<«.<f3+x 0 , then for every @~branch M of Rang(kU f“'g“”‘), for
<

‘some m(ﬁJ,’T(U)# kU Np’gﬁ'rk "
K <00

i
i

CREE PR

= e

S
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Why is this possible? For a given « there are less ' thanl " possible
g’s, and fsr each F, the number of "unsuccessful" fléwx is
< Iklizup’gqu] =%. So the number of unsuccessful eE wx' is
_ﬁ‘”{ﬁ:f“d <l’5+£ﬁ}'| . As X2 %% x* we finish the prddf of (*).

Now W ={ (U gtk i L N‘c’?krk):oeﬁt*, « as abovel is the

o k<w k<o

required barrier (using the same function '3*).' .

We use only some «<o*, but this is a minor point.

Why is W a barrier? Suppose player II has a winning strategy of
g“‘a,x(”) and we can easily describe one for gm;"‘Ic (W%).
6.2. Remark: 1) In (6.1), we may sometimes weaken the demand on X to
-IZ(K"’)N. We need that Wz X is nst V) {Ti; i(I%}, each T, is closed

w>,
under initial segments and |T;N X1 <%.

6.3. Concluding Remark: 1) We can let player II determine f for, say,

odd n, with no significant change.

2) We can make the games last "+ moves (\7}‘ w), which gives mno
significant change. |

3) For strong limit singular A\, we can use the theorem from Rubin,
Shelah [R Sh] to get similar theorems, weakening a little the "barrier"
condition. (E.g. 1if cf ’\=H-O’ we know that for any model with universe
of power X and X<\ operations, there is a A -system tree of
sub-models. Now we can list all such trees {Ti: _i(}\Ho = ZA} and choose
by induction a branch from each, so .that they are as disjoint as

possible. For cf }\> o, A =,<§‘AA{ y Ai increasing - continuous,
. A ¢ :
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2“’ < )‘i+1<'\ , we deal with each " }.5', cfd = HO : : see also [Sh 7] 3

. 4) Note that some of t:h-e.cdinb'inaforic_s of [Sh 4] is not used here: if
we have enough .' elements, for some large subset of them their doméin
t.aehaves.as a A -syst_.em, with the same coeffi;cient of the common parts,

'so the difference of any two has domain disjoint to the "heart", so we

can make it to be disjoint to a predescribed set.

6.4. Definition: We define the game gm"(w) as gm’ (W), but (Ta regular

’. cardinal, 2 = ’0;).\ )

(i) = the game lasts F moves.

(ii)  Dom(f,) is any subset of >X, closed under initial segments but
~ with no ‘&-.branch.

(iii) 1in odd stages o player I chooses £ -

6.5. Theorem: Suppose '3'3\{, )\C%= }.K. Then for some w={(f¢,Nd}: of al* }
and ...fu-nction ;

1) If cEAXD ), then

(a) W is disjoint, and in Gm"(W) player II has a winning strategy.

(B) For aicar, F(DLF(P). | |
(e) e£(3)) =

fo(

_('&-) Eve.ry - branch .M  of _satisfiés_: (%i<® (i)<4(«) and
: s " P

| ?(.a) “igﬁ}l(i).
' (e) for every 1<V for some §<3("‘U’ orco(H:fjsg.
() If w43 < p<a* and w is a P-branch of Rang(P), then mhign®  for

some i<'3:
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(g) 1If X:)‘r we can demand: if fvl is s"‘?‘-branch of Rang(fd) and
wtie NP for every i< (where &,B<a*) , then yenf .
2) As (1) is the parallel to (1.13)(1), so parallel to (1.13)(2),

(2.8),(2.9),(6.1) holds.

On the proof: The point is that, if ﬂrlis a ‘a'-branch, for it to 'code

the play" it is enough that for a closed unbounded set of i<1?; 'v[(i) code

<t
‘appropiate information on the first i moves. (When A<\, remember we

can split ~F to ¥ disjoint statiomary sets).

oL s

between player I and II differently, as long as for each V=branch 'iz of

j.KJ""._f:i” , {i: player II chooses 'vl(i)} belong to D, for some fixed filter
<

D on'ﬁ".

6.7. Theorem: In (6.1) we can strengthen it by replacing (b) by

(b)" W is disjoint and player II has no winning strategy in Gm"(W).
o . =

Point of the Proof: Unlike (6.5) we do not have a filter on @, but we

_can try for each ﬂz all infinite subsets of was "the set of choices of

player II".

/

R i
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