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A BANACH SPACE WITH FEW OPERATORS

BY
SAHARON SHELAH

ABSTRACT

Assuming the axiom (of set theory) V = L (explained below), we construct a
Banach space with density character N, such that every (linear bounded)
operator T from B to B has the form al+ T, where I is the identity, and T, has
a separable range. The axiom V = L means that all the sets in the universe are
in the class L of sets constructible from ordinals; in a sense this is the minimal
universe. In fact, we make use of just one consequence of this axiom, O,
proved by Jensen, which is widely used by mathematical logicians.

Notation. Let i, j, a, B, v, 6 be ordinals, @ the first infinite ordinal, w, the
first uncountable ordinal. Let k, I, m, n, p be natural numbers, and let a, b, ¢, d
be reals, and x, y, z elements of a {vector, or norm, or Banach) space.

THE MAIN THEOREM. Assume the axiom V = L holds. Then there is a Banach
space Z, and an element of the space z, (i < w,), such that:

(1) span{z, :i < w\} isdense in Z, ||z;|| = 1, and there are projections P.(a < w,)
of norm 1 of Z into itself, Po(z.) =0 for i = B, Ps(2:) = z; for i < B. So the density
character of Z is w, and it has a basis {z;:i < w,}.

(2) If T: B — B is (linear, bounded) operator, then for some real a, Tz, = az, for
all but countably many i’s. So T — al is an operator with a separable range.

ReMaARks. (1) We can prove similar theorems for higher cardinals, i.e., if
O{8 < AT:cf8 = A}), we can construct a space with density character A ™ such
that every operator T of the space is al+ T;; T, has range with density
character A.

(2) We can choose our space so that for every uncountable set of z;’s, there is
a countable set which generates an l.-Banach space and an I/-Banach space.

The construction

STAGE A. Let {z;:i <w)} generate freely a vector space H over Q (the
rationals). For a set I of ordinals let H; and also H(I) denote span{z,:i € I}
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(= the subvector space spanned by z, i € I). As an ordinal i is {j:j <i}, H; is
the vector space spanned by {z,:j <i}.

Let I7 (m < w, i < w,) be finite subsets of i, increasing with m, and i = U, I™".
For subsets A, A,,--- of H, (A, Az, - )u is the span of A;UA,U---. We
usually omit H and write y instead of {y}.

StaGE B. A subset I of w, is called closed if for each limit ordinal i < ,
which satisfies (Vj <i) (3a) (j <a <iAra €I) belong to I. I is unbounded if
Vi<w)@j<w)(i<jajeEI). Asetof ICw iscalled stationary if it has a
non-empty intersection with every closed unbounded subset of w,.

Stage C. By Jensen [1],if V = L then there are sets D;, functions fi (i < @)
and r, € {0, 1} such that

(i) f. is a two-place function from H; into the reals, D; a subset of i.

(ii) For every subset D of o, and two-place function from H into the reals,
andre€{0,1},{i<w,:D Ni =D, f|H = f, r. = r}is astationary subset of w;.

From now on f; are as above.

StaGE D. In a norm space Z, for z € Z, X C Z, we say z is good over X if
(Vx €X) [z +x|zllz|, llx] and | z]/=1.
If 2o, ", 2« € Z, X C Z we say (zo, -, 2 ) is good over X if ||z, = 1 and for
any reals g, and x € X
|

k
> az +x
=0

k
Z aziff, ”x ” .
i=0

.

Note that (a) (2,) is good over X iff z, is good over X; (b) if (zo," "+, z:) is good
over X then so is every sequence from (zo,- -, Zx).

Stace E. Suppose Y, Z are norm spaces, Y N Z = X, and let W be a vector
space such that Y, Z are subspaces of it, and W = Y + Z (as vector spaces). We
can define a norm on W which extends the norms on Y and Z, and get a norm
space, as follows:

Iwil=inf{llyl|+]z|:y € Y; zE€Zw=y+z}.

In this case the unit ball of W is the convex hull of the unit balls of Y and Z. We
call this N;-amalgamation. Note that

(a) if y €Y is good over X, it will be good over Z; and

(b) if also z € Z is good over X then ||y +z|=2.

Stage F. Suppose that in Stage E,
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Y=(Xay0""ay1<>, Z=<Xa205“.7zl>a

(¥o,* ", yx), (20,-*+,z1) are good over X. Then there is another way to define a
norm on W extending the norms on Y and Z: for x € X

i b.y. + i CuZn + X
n=0 n=0

We call this N.-amalgamation (unlike N;-amalgamation, it apparently does
not depend only on Y and Z, but also on span{yo, - -, y«} and span{zo,- -, z:}).

Note that

(@) (zo,"--,2:) is good over Y,

(b) forn =1, m =k, z, +y, is good over X and in particular ||z, + y.[ =1,

(c) if I(1) < I, and we first amalgamate X, (X, yo,* ", Y&, (X, Zo," -, Z1qny) in the
above-mentioned way and then amalgamate X' = (X, Zo,** *, Zigy) (X', Yo, ** % Y )»
(X', Ziyer, * +*, 21), We get the same norm.

k
= max{ > by +x
n=0

»

!
Z CnZn T X
n=0

Stage G. We shall define by induction on i < w, norm spaces Z;, increasing
with i, such that Z; as a vector space is H,, and for some i’s, infinite sets $; Cw
and elements y7, y"€H (for m <w) when r,=0, and y] (m<w,
1=1=p(m,i)) when r,=1, such that (not distinguishing strictly between
subspaces of H; and of Z,)

(*) f ySa<a<--<a =i, w=i k a natural number, r, =0, y$ is
defined, then for infinitely many m € §,

(I) the amalgamation of the triple

H(I:)s (H(I';)7 y;")v <H(I;”), Zogs ™" '7Zak>

is by the N.-amalgamation, i.e., for x € H(I")

ay"+x

’

k
ay+ ‘E_;)b,za, +x

k
E b[Z,,, +x
=0

= max{

(II) the amalgamation of the triple

<H(I';)7.Y:>’ <H(I'3)7Y':7)”;>» <H(I’:)’y’;"zam»zak>

is by the N,-amalgamation.

So in particular

(*¥) z,isgoodover H,,andif y S ag = - = a4 then (2,,, ", 24, ) is good
over H,.

We also demand

(xx) fysSaj<a,;<- - <ax =i w =ik anatural number, r, = 1, then for
infinitely many m < w the amalgamation of the triple
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H(I:‘)9 <H(I';)’ y:ﬂl "7 y:,r;v(m,v)>’ (H(I:‘)$ Zogy * 7y Lo >

is by N.-amalgamation.
For i limit Z, = U,., Z, for i < w, ||Zi<i @z | = max,<, |a/].

Stace H. Now we do the induction step, so we suppose the norm on H; is
defined, i = w, and we call the norm space Z.. In this stage we shall define y ", y!”
(m <) and S;, and in the next stage we shall define the norm on H,,,.
Remember that f, is a two place function from H; to R given by the Jensen
diamond (see Stage B).

If there is a (bounded) operator T on Z such that for every x,y, € H,
fi(x,y)=|Tx —y||, it is unique, and we call it T..

If T; is not defined we do not define S;, y", y". So suppose T, is defined.

(a) If Y is a Banach space, T an operatoron Y, H C Y asubspace, then let

¢(H,T,Y)=sup{d(Ty,(H,y)):y € Y,y good over H},

where d(y:, H,) is the distance between y, and H,, i.e., inf{]|y,— x|:x € Hy},
and let

o.(H,T,Y)=sup{d(Ty,H):d(Ty,(H,y) Zc(H,T,Y)~ ¢
and y is good over H}.

Note that ¢(H,T,Y)=| T| and it decreases with H.
Now if r, =0, choose y[", y" in H, such that:
®) () d(Ty", (HUD), yr)Z c(HUT), T, Z)=1/m,
(ii) yy is good over H(IT"),
(iii) d(Ty7, HID)Z cym (HUD), Ti, Z)—1/m,
iv) | Ty?"—y.’"ll<_ 1/m.
Clearly ¢y (H(I?), T., Z) is a real number of absolute value <||T'|, hence there
is an infinite set S; C  such that
(c) for k<m#n in S, 1/k > |cym (HIT), Ty Z)— cvu(HUIT), Ti, Z)|.
(d Ifr,=1chooseap=p(m,i)<w and y[ 1€ {z, maxI"<a <i, a € D}
such that:
(i) for every x € H(I),

pi{m)
2 a,y,{",+x

=1

= supflayli+x|

(notice each y!i is good over H(I)),
(ii) if among the p’s satisfying (i) there is a maximal one, this will be our p;
otherwise choose p = m.
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StaGE 1. Now we have to define the norm on H.., (after we have defined it
on H,), and define, if necessary, y[", y"(m < w) or yiI.

We have to satisfy the requirements (*) and (**) from Stage G; when a, <i
they are satisfied by the induction hypothesis. Clearly there are only countably
many appropriate requirements, so we can find a list of them of length w, each
appearing infinitely many times.

Let{B.:n < w}bealistof i ={j:j <i}. Now we define by induction on n < @
a finite set J, C i, and a norm space Z " which as a vector space is H(J, U {i}) (we
shall not distinguish) such that

@ J.C T,

(i) Z7 is a subspace of Z"',

(iii) i = Unca T,

(iv) in Z, z; is good over H(J,).

For n =0 let H, be the empty set, and the norm Z¢ is ||laz || =|a|.

Suppose we have defined Z7 for n, and let us define Z7''. Let
(k,v,a0," ", a.-) be the n-th in the list of cases of (*) and (**) from Stage G.
Assume for now that r, = 0 (the case r, = 1 is just simpler). If {ao, ", au-1} £ Jn
we let J,.. = J, U{B.}, and we define the norm of Z"' by N,-amalgamation of
H(,), Z?, H(J,.,) (see Stage E).

Now if {ag, -, a1} C oy let J, =y = {Bo, -, B} (as ¥ = ap < - - necessarily
{ato," *, -1} C{Bo, - -, Bi})- By the induction hypothesis, (*) of Stage G holds for
v = Bo= -+ = B, hence there is an m € S, satisfying

(1) J.Ny CI7 (possible as (*) says ‘‘for infinitely many m’s” and y =
U.,. I™, I7 increase with m, and J, is finite),

(2) the amalgamation of the triple

is an N.-amalgamation,
(3) the amalgamation of the triple

(H(I;n),y;">, <H(I';)7y’;’y’:>9 <H(I’;),y';,250,‘>

is an N;-amalgamation.

We choose a finite J,,, such that J, CJ,.. Ci, B. € Jomiand y7,y7 € H(J..1)
(this is trivial). Now we define Z]*' by successive amalgamation.

(@) We make an N,-amalgamation of the triple H(J,), Z7, H(J, UI}):z is
good (in it) over H(J, U I’) by (a) of Stage E.

(B) We make an N.-amalgamation of H({J, U I7), H(J, U I7U{i}) (defined
ina),and (H(J, UI7), y7) (possible as z, is good over H(J, UI7)by (a)and y7
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is good over H(J, U I7) by the choice of m to satisfy (2) and (a) of Stage F). By
(a) of Stage F, z; is good over (H(J, UI}), y5) in the amalgamated space we
have just defined.

(v) We make the N;-amalgamation of

(H(J,UIT),y7), H(..), (HUT.UIT Ui}, y7)

(with the norm defined in (8)) and call it Z{*". By (a) of Stage E z; is good over
H(J...) in Z7*

It is easy to check that (I) and (II) of (*) hold for ¥y, ao, - - -, ax and m (by (c) of
Stage F).

So Z7 is defined for every i, and let Z.,, = U,., Z7. Clearly Z.., as a vector
space is H;., (as B, € J,.1). Each requirement y = o< -+ < e, =i appears in
our list infinitely many times so for every n big enough {ay,---,ax}C J., so
clearly (*) holds for i +1.

STaGE J. We have defined Z, for i <w,. Let Z = U,.., Z: (so as a vector
space it is H), and Z, its completion, is the Banach space which exemplifies our
theorem.

So let T be an operator on Z, and we shall prove it is as mentioned in the
theorem, i.e., for some a, for every large enough i, 7z, = az.. We define a two
place function f from H into R:

fxy)=ITz =yl
By Stage B
I={i<w:f|H =fr=0}

is a stationary subset of w, (see Stage B).

Stage K. For each finite-dimensional subspace G of Z and m < w there is
y&E Z good over G such that

d(Ty2, G,y = c(G, T,Z)1~-1/m) d(TEy,H)Z c\m (G, T,Z)—1/m.

For each x € Z there is i(x) < w, such that x, Tx € Z.x,. Now for each a < w,,
A, ={i(x):x € H, or x = yg for some finite-dimensional G C H,,,m < w} is
countable, hence i(a)=supA. < w,. Now A ={j <w,:(Va <j)i(a)<j}is a
closed unbounded subset of w, (closed-trivially by the definition, unbounded
because i(a) increases with a, so if jo = j, ju+1 = i(jn), then jo= U, j. < @ and
U, j. is in this set). As I is stationary (see Stage B for definition, and Stage J for
the fact) there is y € A N I (I from Stage J). Clearly T maps Z, into Z,, hence it
maps Z, into Z,, and
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c(HU?), T,Z)=c(HUI7), T, Z,) and

cym (HUIY), T, Z) = cum (HUT), T, Z,)

(asy€EA)and T,=T|Z, (as y €I).

Stace L. Now we shall prove that for every i >vy, Tz; €(Z,z;) (v is as
chosen at the end of Stage K, and will remain fixed).

For this it suffices to prove that for any real ¢ >0, d(Tz;, (H(I7), z:)) = 5¢ for
some m <w. So let ¢ >0 be given. Now Tz is in the closure of Z =
span {z, :a < w}, so for some [(0)< @ and a; € R, and distinct B(!) < w, (for
I=10):

@) | Tzi — Zisi Mizow|| < e
So we can choose k <o, and ap< *+* < a, < w1, ¥ = o such that

{LB0),-, BUON} vy Clao, "~ au}.

Now by (*) (from Stage G), for infinitely many m € S,, I and II from (*) hold
(for our k, y, a, * * -, @ ). So we can choose some m for which {8(0),---, B({(0))} N
v CI7 and 1/m < e. Clearly

(b) z. =""Zis10 @zZe)y € HIT U{ao, " - -, au})
and by I of (*) and Stage F

(c) z, +y7 is good over H".

Now we shall write a series of inequalities which will prove
d(Tz,(H(IT™), z.)) = 5¢; for notational convenience let x range over H(I7), and
a, b range over R.

(d) c(HUID), T, Z)= [as y € A, see Stage K]
c(HUI?),T,Z)=z [by ¢’s definition, and (c) above]
d(T(z: +y7),(H},zi +yy))= [by d’s definition]

lPxf” Ti+y3)+ta(z+y7)+xl|z [as||Tz,—z||<e TyT=Ty7 and
IT.y7—y7]l=1/m as mentioned in (b)

of stage H]
i:le”z.+y2‘+az.~+ay’,"+x”—1/m—ez [by II of (*)]

inf (Jly7+ayy+x+(byr+x)|[+

ab.x.x
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+lz+ az = (yT+ w)l- Um =)= jnf_(Ily7+ays+bys+ i+
+|lzi +azi— by  +x2|—1/m — €)=

inf [yT+ay7+byy+xif+ ;nf lz: + az, — by T+ x2f|—1/m —e =

a,bx1,x2

[as | Ty7 —y7ll < Um, || Tz — | <]

Cinf [Ty +ay7 + by + x|

—1m + inf | Tz +az, - by + x.l—e—1/m—¢e= [by d’s definition]
d(Ty',",(H?,yi,"))+irgf | Tz: + azi — by 7+ x||=2/m —2e =
[by (b) of Stage H]

c(H(IT), T, Z)— 1/m + inf || Tz, + az; — by + x| - 2/m — 2.

Comparing the first and last elements we see that

(e) inf.s, || Tz + az; — byy +x |=3/m +2e¢.
Now by the choice of m

) 1/m<e.
Combining we get d(Tz, (H7"', z;)) = d(Tz, (Hy, y7)=3/m +2¢ <Se.

StaGE M. For each B < w, we define an operator Ps on Z:Py(z,)=0 for
i Z B, and Py(z;) = z; for i < B. It is easy to check that:

(a) P;is well defined and is a projection with norm 1 onto Zg;

(b) for B <a, PeP,=P,Py=P,.

(c) If P,(x)#0, a limit, then for some B < a, Ps(x)#0.

StaGE N. Let T,y be as in Stage L. So for every i =y, Tz, € (Z, z), so
Tz, =dz + x5, x%€ Z,.

We shall prove that for some 8,y =8 < w,, and for every i =34, x=0.
Suppose not, so A; ={i <w;:i = v,||x? | # 0} is uncountable. For each i € A,
choose a minimal B; =y such that Ps(x?) # 0 (it exists as P,(x?) = x{, because
x! € Z,). By (c) of Stage M B is a successor ordinal, so for some B <y,
A,={i € A,:B =B +1} is uncountable. So for each i € A,, for some real
di#0, P(x?)=d' z5. So for some a >0 and s €{1, — 1}, A;={i € A,:sd: > a}
is uncountable. So for each i € A;, P12z, =dix,, sd; > a.
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By Stage B, I'={i < w,:r. =1, f|H, = f, AsN i = D} is a stationary subset of
w;. Let
A ={i < w,:i is limit, i > v, and A;Ni is unbounded below i,
and in (d) of Stage H, if we ask yfiin {z, :maxIT < a, a € A3}
the value of p = p(m,i) does not change}.
As in Stage K, we can prove A is closed and unbounded so I N A # J, and
choose in it an element 8 Now for infinitely many m <w,p(m,8)=m.
Otherwise choose m,< w such that
@ mzme=>pm,8)<m
and choose i € A,,i >8. By (*+) of Stage G, for some m >m, H(I3),
(H(I3), z:), (H(I3), Y5.1," * *, ¥ 5pmy have N.-amalgamation. Now checking (b) of
Stage H, we see that z, was an appropriate candidate for being y 5,(m.s)+1 hence
p(m,8) = m, contradiction.
So for m, I, y5,€ {z.:a € A}, hence PsTy;. € {sbx, : b > a}. Now for every
m, (see (*#*) of Stage G)

p(m.8)
2 Yo
=1

= max|lyl=1,

p(m.5) p(m,8)
" T( 12 st'fz) = Pﬁ+1T( “ y:s"l) [as ”PBH”: 1 by Stage M]
=1 -
p(m,5)
= Py Tys [as Ps. Ty € {sbxs:b > a}]
=1
p(m,8)
= pa (| Por1 Ty ol
zp(m,8)a
= ma.

Hence || T||= ma, as a >0, m (m < ) arbitrarily large, we get a contradiction.

StaGe P. (we omit O as a stage). We now want to show that d; (i < w,) is
eventually constant. Otherwise there are distinct reals d° d' such that

(a) forl=1,2and @ < w;,and & >0, thereisi,a <i<w;,and|d; —d'|<e;
w.lo.g. d°=0, d' =1 (otherwise, we look at the operator 1/(d' — d°) (T — d"1)
(I—the identity operator).

Let &>0 be arbitrary, & <1/100. Choose a<B<8 (Zvy)|d.|<
e,|1—dg|<e. By (*) of Stage G, for k =1, a0=a, a1 =B, i =y we can find
m(1)<m in S, such that (I) and (II) of (*) holds for m and for m(1) and

1/m()<e, 2mQ)<m.
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We now try to get a contradiction to the choice of y. We repeat Stage L with z,
for z; so (b), (c), (d) holds ((a) is trivialized—we know better), but we want to
deviate in the middle of (d):

c(H(I%), T, Z)z a’,i,}}lf‘xz(“y'; +ayy +by7 +xi
+|| Tz, + az, — by + x| — 1/m).

So for some a, b, x, x, we get this infimum up to 1/m, so

c(H(IT), T, Z)+2/m 2||yT+ayr+ by T+ x,|| + || Tza + az, ~ by +x,||=

[as [Ty —y7|<1/m and Tz, = d.z.]
[Ty7 +(a+b)y7 + xi||+ | duza + az. — by T + x| — 1/m = [by Iof (*)]

ITyT+(a+b)y7+ x:||+ max{||(d. + @)z + x:[}, | = by T + xolf} = 1/m
[as z., y& are good over H(I7)]
Z || Ty; +(a + b)y; + x,|+ max {|d. + al,|b|} - 1/m
z d(Ty3, (H(I7), y7)) + max {|d. + a|,|b[} = 1/m
2 ¢(H(I}), Ty Z,) + max{|d. +al, |b ]}~ 2/m.
We can conclude that

() |b], |da+a|<4/m,

(© I Ty +(a+b)yr+xll=d(TyT, (HIT), yT) +4/m
(for (b) look at the first and last terms in our series of inequalities, for (c), if it
fails use this in the passage from the fifth term to the sixth term, and we shall get
a contradiction).

Combining (b) and (c) we get

@) [ Ty; — dayy + x:] = d(Ty5, CH(I7), y3 ) + 12/m.

Now remember |d, | <&, 1/m < ¢ hence

() I Ty; +xif|=d(Ty3, (H(I7), y7)) + 13e.

Similarly, for B instead @, (d) holds, but |1—ds|<e hence for some
x: € H(IY)

®) [ Tyy —y7 +xil|=d(Ty3, (H(I7), y7))+13e.

By the version of (d) for (B8), for y = y7 + 25 and the choice of y7 in Stage H

(8) d(Ty, (H(I7), y) > c(H(I7), T, Z)~1/m(1).

Now z, is good over (H(I3), y%, Tyy) hence
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(h) d(Ty, H(I})) = inf | Ty + dazs + x|

= inf [| Ty} — ay + x|+ | dezs — ay7 + x2|]]

a,x1,xX2

zd(Ty7,(H(I7),y7)+1-¢
[by (e)]
= d(Ty?, HI))+1- 14¢

So y contradicts the definition of ¢ymu(H(I7), T,, Z,) and the choice of y7.

ACKNOWLEDGEMENTS

I thank L. Tzafriri for many discussions on Banach spaces, and S. Friedland
for suggesting the definition

lay + bz + x| = max {ay + x|, bz + x|}

(see Stage F).

REFERENCES
1. R.Jensen, The fine structure of the constructible universe, Ann. Math. Logic 4 (1972), 229-308.
INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM, ISRAEL



