COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1973.

SOME THEOREMS ON TRANSVERSALS

E.C. MILNER* - S. SHELAH

1. INTRODUCTION

Let $\mathscr{F}=\langle F_i | i\in I \rangle$ be a set system with index set I. We write $|\mathscr{F}|$ to denote the cardinality of the system, i.e. $|\mathscr{F}|=|I|$. We call \mathscr{F} a (κ,λ) -system, and write $\mathscr{F}\in S(\kappa,\lambda)$ if $|\mathscr{F}|=\kappa$ and $|F_i|=\lambda$ for every index $i\in I$. $S(\kappa,<\lambda)$ is defined is an analogous way. \mathscr{F}_0 is a sub-system of \mathscr{F} , $\mathscr{F}_0\subset \mathscr{F}$, if $\mathscr{F}_0=\langle F_i|i\in I_0\rangle$ and $I_0\subset I$. A transversal of \mathscr{F} is a function with domain I such that $f(i)\in F_i$, $(i\in I)$ and $f(i)\neq f(i)$ if $i\neq j$. We denote by Trans (\mathscr{F}) the set of all transversals of \mathscr{F} . If $f\in \operatorname{Trans}(\mathscr{F})$ we call the system of elements $\langle f(i)|i\in I\rangle$ a system of distinct representatives of \mathscr{F} , and we call the set of elements $\{f(i)|i\in I\}$ a transversal set of \mathscr{F} .

A fundamental theorem of transversal theory asserts that, if either of the finiteness conditions

 $(1.1) \qquad |\mathscr{F}| < \aleph_0$

^{*}Research supported by Canadian National Research Council grant #A. 5198.

OF

$$(1.2) |F_i| < \aleph_0, (i \in I)$$

holds, then a necessary and sufficient condition for the existence of a transversal of the system $\mathscr{F}=\langle F_i | i \in I \rangle$ is that

$$(1.3) | \mathscr{F}(K)| \ge |K| for every finite set K \subseteq I,$$

where

$$\mathcal{F}(K) = \bigcup_{i \in K} F_i$$
.

This result was proved by P. Hall [1] in the case that (1.1) holds (and also by D. König [2] in a different form), and by Marshall Hall [3] in the case that (1.2) holds. Combining these, an equivalent formulation of Marshall Hall's theorem is that, if (1.2) holds then

$$(1.4) \qquad \operatorname{Trans}\left(\mathscr{F}\right) \neq \phi \Leftrightarrow (\forall \mathscr{F}_0 \subset \mathscr{F})(|\mathscr{F}_0| < \aleph_0 \Rightarrow \operatorname{Trans}\left(\mathscr{F}_0\right) \neq \phi).$$

We are interested in possible extensions of this result to systems having infinite members.

For an infinite cardinal number μ we write $\mathscr{F} \in T(\mu)$ if and only if

Trans
$$(\mathcal{F}') \neq \phi$$
 whenever $\mathcal{F}' \subset \mathcal{F}$ and $|\mathcal{F}'| < \mu$.

Using this notation, Marshall Hall's theorem (1.4) asserts that, for any cardinal κ ,

$$\mathscr{F} \in S(\kappa, \langle \aleph_0) \wedge \mathscr{F} \in T(\aleph_0) \Rightarrow \operatorname{Trans}(\mathscr{F}) \neq \phi$$
.

Our question then is whether there are other triples (κ, λ, μ) such that

(1.5)
$$\mathscr{F} \in S(\kappa, <\lambda) \wedge \mathscr{F} \in T(\mu) \Rightarrow \operatorname{Trans}(\mathscr{F}) \neq \phi$$
.

A special case of (1.5) $(\kappa = \mu = \aleph_2, \lambda = \aleph_1)$ is stated as an unsolved problem in [4], and it appears again in this form (Problem 42C) in the collection of problems [5]. Erdős and Hajnal attribute this formulation of the question to W. Gustin. In a more recent paper [6] (which

(1.6)
$$\mathscr{F} \in S(\aleph_2, \aleph_0) \wedge \mathscr{F} \in T(\aleph_2) \wedge \operatorname{Trans}(\mathscr{F}) = \phi$$
.

The hypothesis V=L is not in fact needed here. It can be verified (essentially as in the proof of Theorem 1) that the system* $\mathscr{F}=\langle F_{\alpha\beta}|$ $\omega \leqslant \alpha < \omega_1 \leqslant \beta < \omega_2 \rangle$ satisfies (1.6), where

$$F_{\alpha\beta} = \alpha \times \{\alpha,\beta\} = \bigcup_{\nu < \alpha} \left\{ \langle \nu,\alpha \rangle, \langle \nu,\beta \rangle \right\}.$$

We will prove the following theorem and corollary which is more general. κ^+ denotes the successor cardinal of κ .

Theorem 1. Let κ , λ be infinite cardinal numbers, κ regular and $\lambda > \aleph_0$. If there is a system \mathscr{F} such that

(1.7)
$$\mathscr{F} \in S(\kappa, <\lambda) \wedge \mathscr{F} \in T(\kappa) \wedge \operatorname{Trans}(\mathscr{F}) = \phi,$$

then there is a system F₁ such that

(1.8)
$$\mathscr{F}_1 \in S(\kappa^+, <\lambda) \wedge \mathscr{F}_1 \in T(\kappa^+) \wedge \operatorname{Trans}(\mathscr{F}_1) = \phi$$
.

If, in addition, $\mathscr{F} \in S(\kappa, \lambda_1)$ where $\lambda_1 \geqslant \aleph_0$, then $\mathscr{F}_1 \in S(\kappa^+, \lambda_1)$.

Corollary. For $\alpha \ge 0$ and $1 \le n < \omega$, there is a system F such that

$$\mathscr{F} \in S(\aleph_{\alpha+n}, \aleph_{\alpha}) \wedge \mathscr{F} \in T(\aleph_{\alpha+n}) \wedge \operatorname{Trans}(\mathscr{F}) = \phi.$$

The corollary is an immediate deduction from the theorem. Consider the system $\mathscr{F} = \langle \xi | \omega_{\alpha} \leq \xi < \omega_{\alpha+1} \rangle$ where, as usual, the ordinal number ξ is the set $\{\eta | \eta < \xi\}$ of all smaller ordinals. Clearly, $\mathscr{F} \in S(\aleph_{\alpha+1}, \aleph_{\alpha})$ and $\mathscr{F} \in T(\aleph_{\alpha+1})$. Also, by a theorem of Alexandroff and Urysohn [7] on regressive functions, we have Trans $(\mathscr{F}) = \phi$. The corollary now follows from the theorem by induction on n.

^{*}This is a modification of an example communicated to us by J. Truss, Leeds University, England.

We do not know if the assumed regularity of κ is necessary for the validity of Theorem 1. The simplest open question is whether there is a system \mathscr{F} which satisfies

$$\mathscr{F} \in S(\kappa, \aleph_0) \wedge \mathscr{F} \in T(\kappa) \wedge \operatorname{Trans}(\mathscr{F}) = \phi$$

when $\kappa = \aleph_{\omega}$ or $\aleph_{\omega+1}$.* Hajnal pointed out to us that the remark in [6] regarding Problem 42C applies more generally, and that Jensen's result actually leads to the following theorem.

Theorem 2. If V = L and κ is a regular cardinal which is not weakly compact and $\kappa > \lambda \geqslant \aleph_0$, then there is an \mathscr{F} which satisfies

(1.9)
$$\mathscr{F} \in S(\kappa, \lambda) \wedge \mathscr{F} \in T(\kappa) \wedge \operatorname{Trans}(\mathscr{F}) = \phi$$
,

The condition that κ not be weakly compact in Theorem 2 is essential. It is easy to prove the following.

Theorem 3. If κ is weakly compact, then $\mathscr{F} \in S(\kappa, < \kappa) \wedge \mathscr{F} \in T(\kappa) \Rightarrow \operatorname{Trans}(\mathscr{F}) \neq \phi$.

By way of contrast with the negative results in Theorems 1 and 2 we will establish the following positive Hall-type theorem. A special case of this has been used in [8] to settle a conjecture of Nash-Williams.

Theorem 4. Let λ be an infinite cardinal number and suppose that $\mathscr{F} = \langle F_i | i \in I_0 \cup I_1 \rangle$ is a set system with

- (i) $I_0 \cap I_1 = \phi$, $|I_1| \leq \lambda$,
- (ii) $|F_i| < \aleph_0$, $(i \in I_0)$,
- (iii) $|F_i| \leq \lambda$, $(i \in I_1)$.

Then a necessary and sufficient condition for the existence of a transversal of F is that

(1.10) Trans
$$(\mathcal{F}') \neq \phi$$
 whenever $\mathcal{F}' \subset \mathcal{F}$ and $|\mathcal{F}| \leq \lambda$.

^{*}Shelah has since proved this is false for $\kappa = \aleph_{\omega}$ (see his paper in Volume 3 of these proceedings). More generally, he has now proved that if cf $\kappa < \kappa$ and $\lambda < \kappa$, then $\mathscr{F} \in S(\kappa, \lambda) \wedge \mathscr{F} \in T(\kappa) \Rightarrow \operatorname{Trans}(\mathscr{F}) \neq \phi$.

If A is a set of ordinals, then $\sup A$ denotes that the least ξ such that $\alpha \leq \xi$ for all $\alpha \in A$. B is a cofinal subset of A if $\sup B = \sup A$. A is closed if $\sup B \in A$ whenever $B \subset A$ and $\sup B < \sup A$. S is a stationary subset of A, $S \in \operatorname{Stat}(A)$, if and only if $S \cap B \neq \phi$ for every closed, cofinal subset B of A. The function f on A is regressive if $f(\xi) < \xi$ for all $\xi \in A - \{0\}$. The cofinality of ξ , $\operatorname{cf}(\xi)$ is the least ordinal α for which there is a function $g: \alpha \to \xi$ such that $\sup \{g(\sigma) \mid \sigma < \alpha\} = \xi$.

We use the following well-known facts. Let κ be a regular cardinal, $\kappa > \mu \geqslant \omega$.

- 1. If $S \in \text{Stat}(\kappa)$ and f is regressive on S, then f is not 1-1; in fact there is $\theta < \kappa$ such that $|f^{-1}(\theta)| = \kappa$;
 - 2. $\{\xi \in \kappa \mid cf(\xi) = \mu\}$ is a stationary subset of κ (see [9]).

3. PROOF OF THEOREM 1

We may assume that the system \mathscr{F} which satisfies the hypothesis (1.7) is indexed by κ , i.e. $\mathscr{F} = \langle F_{\nu} | \nu < \kappa \rangle$. Let $C = \{\rho | \kappa \leq \rho < \kappa^{+}, \text{cf } (\rho) = \kappa \}$. For each $\rho \in C$ there is an increasing sequence of ordinal numbers $\beta(\rho, \sigma)$, $(\sigma < \kappa)$ such that

$$\rho = \lim_{\sigma < \kappa} \beta(\rho, \sigma) .$$

Put

$$G(\rho,\sigma) = (\{\rho\} \times F_\sigma) \cup \{\beta(\rho,\sigma)\} \qquad (\rho \in C_\Lambda \sigma < \kappa) \; .$$

We will prove that (1.8) holds with

$$\mathcal{F}_1 = \langle \mathit{G}(\rho,\sigma) | \, \rho \in \mathit{C}_{\Lambda} \sigma < \kappa \rangle \, .$$

Clearly, $|\mathscr{F}_1| = \kappa |C| = \kappa^+$ (here we use the fact that κ is regular; if κ is singular we would have $C = \phi$). Also

$$|G(\rho,\sigma)| = |F_{\sigma}| + 1 < \lambda \qquad (\rho \in C, \ \sigma < \kappa) \ ,$$

and

$$|G(\rho, \sigma)| = |F_{\sigma}|$$
 if F_{σ} is infinite.

It remains to show that

$$(3.1) \in T(\kappa),$$

and

$$(3.2) Trans (\mathscr{F}_1) = \phi.$$

In order to prove (3.1) it will be enough to prove that

(3.3) Trans
$$(\mathscr{F}_1(\alpha)) \neq \emptyset$$
,

where $\mathscr{F}_1(\alpha) = \langle G(\rho, \sigma) | \rho \in C_{\Lambda} \rho < \alpha_{\Lambda} \sigma < \kappa \rangle$ and $\kappa^2 \leq \alpha < \kappa^+$. For, if $\mathscr{F}' \subset \mathscr{F}_1$ and $|\mathscr{F}'| \leq \kappa$, then $\mathscr{F}' \subset \mathscr{F}_1(\alpha)$ for some α with $\kappa^2 \leq \alpha < \kappa^+$.

Let α be fixed, $\kappa^2 \leq \alpha < \kappa^+$. Then

$$C(\alpha) = \{ \rho \in C | \, \rho < \alpha \} = \{ \rho_\tau | \, \tau < \kappa \}_{\neq} ,$$

i.e. $\rho_{\sigma} \neq \rho_{\tau}$ if $\sigma < \tau < \kappa$. We shall define ordinals $\sigma_{\tau} < \kappa$ for $\tau < \kappa$ so that the κ sets

$$\boldsymbol{B}_{\tau} = \{ \boldsymbol{\beta}(\boldsymbol{\rho}_{\tau}, \boldsymbol{\sigma}) \, | \, \boldsymbol{\sigma}_{\tau} \leq \boldsymbol{\sigma} < \kappa \} \qquad (\tau < \kappa)$$

are pairwise disjoint. Let $\tau_0 < \kappa$ and suppose that σ_{τ} has been defined for $\tau < \tau_0$. For each $\tau < \tau_0$ there is $\xi_{\tau} < \kappa$ such that

$$(3.4) B_{\tau} \cap \{\beta(\rho_{\tau_0}, \sigma) | \xi_{\tau} \leq \sigma < \kappa\} = \phi.$$

If $\rho_{\tau} < \rho_{\tau_0}$, then (3.4) holds with any choice for $\xi_{\tau} < \kappa$ such that $\beta(\rho_{\tau_0}, \xi_{\tau}) > \rho_{\tau}$. If, on the other hand, $\rho_{\tau} > \rho_{\tau_0}$, then the existence of ξ_{τ} such that (3.4) holds follows from the fact that $\operatorname{cf}(\rho_{\tau_0}) = \kappa$ and $|\{\beta \in B_{\tau}' | \beta < \rho_{\tau_0}\}| < \kappa$. Hence, there are ordinals $\xi_{\tau} < \kappa$, $(\tau < \tau_0)$ such that (3.4) holds. Now put

For each $\tau < \kappa$ the sub family $\langle F_{\nu} | \nu < \tau \rangle$ of \mathscr{F} has a transversal, i.e. there is a 1-1 function f_{τ} on τ such that

$$f_{\tau}(v) \in F_{\nu}$$
 $(v < \tau < \kappa)$.

Now define a function g on $C(\alpha) \times \kappa$ by putting

$$g(\rho_\tau,\sigma) = \left\{ \begin{array}{ll} \langle \rho_\tau, f_\tau(\sigma) \rangle & \text{if} \quad \sigma < \sigma_\tau \;, \\ \\ \beta(\rho_\tau,\sigma) & \text{if} \quad \sigma_\tau \leq \sigma < \kappa \;. \end{array} \right.$$

Clearly, $g(\rho_{\tau}, \sigma) \in G(\rho_{\tau}, \sigma)$, $(\sigma, \tau < \kappa)$ and g is 1 - 1 since f is and the sets B_{τ} $(\tau < \kappa)$ are pairwise disjoint. Therefore, $g \in \text{Trans}(\mathscr{F}_1(\alpha))$. This proves (3.3) and hence (3.1).

We now prove (3.2). Suppose, on the contrary, that \mathscr{F}_1 has a transversal. Then there is a 1-1 function h on $C \times \kappa$ such that $h(\rho, \sigma) \in G(\rho, \sigma)$. Suppose that for some $\rho \in C$ we have

$$h(\rho, \sigma) \neq \beta(\rho, \sigma)$$
 $(\forall \sigma < \kappa)$.

Then

$$h(\rho, \sigma) = \langle \rho, g(\sigma) \rangle$$
 $(\sigma < \kappa)$,

where g is a 1-1 function on κ such that $g(\sigma) \in F_{\sigma}$. This contradicts the hypothesis that Trans $(\mathscr{F}) = \phi$. Hence, for each $\rho < \kappa$ there is $\sigma(\rho) < \kappa$ such that

$$h(\rho, \sigma(\rho)) = \beta(\rho, \sigma(\rho)) = \theta(\rho)$$
.

Then $\theta(\rho) < \rho$ for $\rho \in C$ and, since C is a stationary subset of κ^+ (see 2), it follows that there are $\rho_1, \rho_2 \in C$ such that $\rho_1 \neq \rho_2$ and $\theta(\rho_1) = \theta(\rho_2)$. This contradicts our assumption that h is 1-1. Therefore, (3.2) holds.

4. PROOF OF THEOREM 2

It follows from a theorem of Jensen [10] that, if V = L and κ is a regular cardinal which is not weakly compact, then there is a set $A \subseteq \kappa$ such that

- (i) $A \in \text{Stat}(\kappa)$,
- (ii) $A \cap \xi \notin \text{Stat}(\xi)$, $(\xi < \kappa)$,
- (iii) $\alpha \in A \Rightarrow cf(\alpha) = \omega$.

For $\alpha \in A$, let B_{α} be a set of ordinals of order type ω such that $\sup (B_{\alpha}) = \alpha$. Let B be any set of power λ disjoint from $\bigcup_{\alpha \in A} B_{\alpha}$. We will show that the (κ, λ) -system $\mathscr{F} = \langle B_{\alpha} \cup B \mid \alpha \in A \rangle$ satisfies (1.9).

Suppose that \mathscr{F} has a transversal f. Let $A' = \{\alpha \in A \mid f(\alpha) \notin B\}$ then $A' \in \operatorname{Stat}(\kappa)$ and f is regressive and 1-1 on A'. This is impossible and hence $\operatorname{Trans}(\mathscr{F}) = \phi$. To show that $\mathscr{F} \in T(\kappa)$ it will be enough to show that the system $\langle B_{\alpha} \mid \alpha \in A \cap \xi \rangle$ has a transversal for $\xi < \kappa$. We will actually, by transfinite induction on $\xi < \kappa$, prove the following slightly stronger statement R_{ξ} : If D_{α} is a set of ordinals of type ω such that $\sup (D_{\alpha}) = \alpha$, $(\alpha \in A \cap \xi)$, then $\operatorname{Trans}(\langle D_{\alpha} \mid \alpha \in A \cap \xi \rangle) \neq \phi$.

Let $\xi_0 < \kappa$ and assume that R_ξ holds for $\xi < \xi_0$. If $\xi_0 = \eta + 1$, then $A \cap \xi_0 = A \cap \eta$ and so R_{ξ_0} holds. Now assume that ξ_0 is a limit ordinal. By (ii) there is a closed cofinal subset C of ξ_0 such that $C \cap A = \phi$. Let $C = \{v_{\sigma} \mid \sigma < \rho\}$, where $v_0 < v_1 < \ldots < \xi_0$. We can assume that $v_0 = 0$ since $0 \notin A$. For $\alpha \in A \cap \xi_0$ there is $\sigma = \sigma(\alpha) < \rho$ such that $v_{\sigma} < \alpha < v_{\sigma+1}$. Put $E_{\alpha} = D_{\alpha} \cap [v_{\sigma}, v_{\sigma+1})$. By the induction hypothesis, the system $G_{\sigma} = \langle E_{\alpha} \mid \alpha \in A \cap \xi_0 \setminus \sigma(\alpha) = \sigma \rangle$ has a transversal $(\sigma < \rho)$. Moreover, the systems G_{σ} , $(\sigma < \rho)$ are pairwise strongly disjoint and hence $\langle D_{\alpha} \mid \alpha \in A \cap \xi_0 \rangle$ also has a transversal. This shows that R_{ξ_0} holds and the proof is complete.

ment and (ii), $A(z) = \{x \in A \mid x \le z\}$ is well-ordered by \le for all $z \in A$. The order, O(z), of $z \in A$ is the ordinal number which is the type of $(A(z), \le)$. The order of the tree is $\bigcup_{z \in A} O(z)$. A branch is a set $B \subset A$ which is well-ordered by \le and is such that $x \le y \in B \Rightarrow x \in B$. The cardinal κ is weakly compact if it has the tree property, i.e. whenever (A, \le) is a tree of order κ having fewer than κ elements of order ξ for all $\xi < \kappa$, then there is a branch of order κ . (Erdős and Tarski [11] proved that if κ has the tree property then $\kappa \to (\kappa, \kappa)^2$, i.e. any graph on κ either contains a complete subgraph of order κ or an edgefree set of order κ . Hanf proved the converse (see [12]). This fact easily implies the following lemma which is stronger than Theorem 3. We cannot find precisely this statement in the literature although equivalents are known; it is expressed in the style of Rado's selection lemma [13] and we give the simple proof.

Lemma. Let κ be weakly compact and let $\langle F_{\nu} | \nu < \kappa \rangle$ be a $(\kappa, < \kappa)$ -system. Suppose that, for each $\xi < \kappa$; f_{ξ} is a function with domain ξ such that $f_{\xi}(\nu) \in F_{\nu}$, $(\nu < \xi)$. Then there is a function f defined on κ such that

$$(\forall \xi < \kappa)(\exists \eta < \kappa)(f \upharpoonright \xi = f_{\eta} \upharpoonright \xi)$$
.

Remark. If $f_{\xi} \in \text{Trans}(\langle F_{\nu} | \nu < \xi \rangle)$, $(\xi < \kappa)$, then clearly $f \in \text{Trans}(\langle F_{\nu} | \nu < \xi \rangle)$.

Proof of Lemma. Let $A = \{f_{\xi} \mid \mu \mid \mu \leqslant \xi < \kappa\}$. Then the partially ordered set (A, \subseteq) is a tree of order κ . Since κ is strongly inaccessible, there are fewer than κ choice functions of $F \upharpoonright \xi$, $(\xi < \kappa)$ and so the tree has fewer than κ elements of order ξ , $(\xi < \kappa)$. Hence there is a branch B of order κ . Let $f = \bigcup B$. For each $\xi < \kappa$ we have $f \upharpoonright \xi \in A$ and hence $f \upharpoonright \xi = f_{\eta} \upharpoonright \xi$ for some $\eta < \kappa$.

6. PROOF OF THEOREM 4

The necessity of (1.10) is obvious, we have to prove the sufficiency.

Let S be any set. We shall define a set $S^* \supset S$ in the following way. For $B \subset C$, let

$$\begin{split} G_{S}(B) &= \{K \mid K \subset \subset I_{0 \land} S \cap \mathcal{F}(K) = B \land \\ & \wedge |\mathcal{F}(K) \setminus B| < |K| \land (\forall i \in K) (F_{i} \not\subset S)\} \;. \end{split}$$

If $G_S(B)=\phi$, put $H_S(B)=B$; if $G_S(B)\neq \phi$, select $K\in G_S(B)$ and put $H_S(B)=\mathscr{F}(K)$. Now define

$$S^* = \bigcup_{B \,\subset\,\subset\, S} \, H_S(B) \;.$$

Since $H_S(B) \supset B$, we have that $S^* \supset S$. Also, if S is an infinite set, then $|S^*| = |S|$.

Now put $A_0=\mathcal{F}(I_1),\ A_{n+1}=A_n^*,\ (n<\omega),\ \bar{A}=\bigcup_{n<\omega}A_n.$ Then $|\bar{A}|\leqslant\lambda.$ Put

$$I_3 = \{i \in I | F_i \subset \vec{A}\} \;, \qquad I_4 = I \setminus I_3 \;.$$

Then $I_1 \subset I_3$ and $I_4 \subset I_0$. The hypothesis implies that any finite subfamily of $\mathscr F$ has a transversal and therefore

$$|\,\{i\in I\,|\,F_i=F_{i_0}\,\}|\leqslant |\,F_{i_0}\,| \qquad (i_0\in I_0)\;.$$

It follows from this that $|I_0 \cap I_3| \leq \lambda$ and hence $|I_3| \leq \lambda$. Therefore, by assumption, there is a transversal f of $\mathscr{F}_3 = \langle F_i | i \in I_3 \rangle$. We will show that f can be extended to a transversal of \mathscr{F} , i.e. there is a transversal of $\mathscr{F}_4 = \langle \dot{F}_i | i \in I_4 \rangle$ whose range is disjoint from the set $T = \{f(i) | i \in I_3 \}$.

Suppose this is false. Then, since the members of \mathscr{F}_4 are finite sets, it follows from (1.3) that there is a finite set $K \subset I_4$ such that

$$|\mathscr{F}(K) \setminus T| < |K|$$
.

Let $B = \mathcal{F}(K) \cap \overline{A}$. Then

 $(6.1) \qquad |\mathscr{F}(K) \setminus B| < |K|.$

Also, since B is a finite set, there is an integer n_0 such that $B \subset \subset A_n$ $(n_0 \le n < \omega)$. Let $n_0 \le n < \omega$. By (6.1) and the fact that K is a finite subset of I_4 it follows that

$$K \in G_{A_n}(B) \neq \phi$$
.

Therefore, there is $K_n \subset I_0$ such that

$$A_n \cap \mathscr{F}(K_n) = B$$
,

- $(6.2) | \mathscr{F}(K_n) \setminus B | < |K_n|,$
- $(6.3) \qquad (\forall i \in K_n)(F_i \not\subset A_n) ,$
- $(6.4) \qquad (\forall i \in K_n) (F_i \subset A_{n+1}) \ .$

By (6.4), $K_n \subset I_3$ and therefore, by (6.2), there is $i_n \in K_n$ such that $f(i_n) \in B$. This defines i_n for $n_0 \le n < \omega$. By (6.3) and (6.4) we see that $i_n \ne i_p$, $(n_0 \le n . Therefore, since <math>f$ is 1-1,

$$|B| \geq |\{f(i_n)|\, n_0 \leq n < \omega\}| \geq \aleph_0 \ .$$

This contradiction proves the theorem.

REFERENCES

- [1] P. Hall, On Representatives of Subsets, J. London Math. Soc., 10 (1935), 26-30.
- [2] D. König, Gráphok és mátrixok, *Mat. Fiz. Lapok*, 38 (1931), 116-119. [Hungarian with German summary.]
- [3] M. Hall, Jr., Distinct Representatives of Subsets, Bull. Amer. Math. Soc., 54 (1948), 922-926.
- [4] P. Erdős A. Hajnal, On a property of families of sets, *Acta Math. Acad. Sci. Hungar.*, 12 (1961), 87-123.

- [5] P. Erdős A. Hajnal, Unsolved problems in set theory, Proceedings of Symposia in Pure Mathematics, XIII, Part I, A.M.S. Providence, R.I. (1971), 17-48.
- [6] P. Erdős A. Hajnal, Unsolved and solved problems in set theory, Tarski Symposium (to appear).
- [7] Alexandroff Urysohn, Memoire sur les espaces topologiques compacts, Verh. Nederl. Akad. Wentensch. Sect. I, 14, Nr. 1, S1 (1929).
- [8] R.M. Damerell E.C. Milner, Necessary and sufficient conditions for transversals of countable set systems, *Journal of Combinatorial Theory* (to appear).
- [9] W. Neumer, Verallgemeinerung eines Satzes von Alexandroff and Urysohn, *Math. Zeit.*, 54 (1951), 254-261.
- [10] R.B. Jensen, The fine structure of the constructible hierarchy, Annals Math. Logic, 4 (1972), 229-308. (Theorem 6.1).
- [11] P. Erdős A. Tarski, On some problems involving inaccessible cardinals, in *Essays on the foundations of mathematics*, Jerusalem, (1961), 50-82.
- [12] A. Hajnal, Remarks on a theorem of W.P. Hanf, Fund. Math., 54 (1964), 109-113.
- [13] R. Rado, Axiomatic treatment of rank in infinite sets, Canad. J. Math., 1 (1949), 337-343.