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A Calculation of Injective Dimension
over Valuation Domains.

PAUL C. EKLOF - SAHARON SHELAH (*)

This paper takes up a problem which was posed in a paper by S.
Bazzoni [B], about the injective dimension of certain direct sums of
divisible modules over a valuation domain. We refer the reader to
that paper for the motivation for the problem. We shall make use
of the same notation as in [B], which we now proceed to review.

Let .R be a valuation domain of global dimension n + 1, where
n ~ 2. Let oc E 11~ be a family of archimedean ideals of .R, where A
is a set of cardinality &#x3E;Nn-2. For each a let 1 a be the injective en-
velope of Let and for each let Dn_k be the

aEA

submodule of I consisting of those elements having support of car-
dinality  M~_~ , i.e. for all y E I, y belongs to Dn-k if and only if the
cardinality of

is strictly less ·

Bazzoni proves in [B] that the injective dimension of Dn-k is at
most k. She also shows that the injective dimension of is exactly 1
and that it is consistent with ZFC that the injective dimension of

(*) Indirizzo degli AA.: P. C. EKLOF: University of California, Depart.
of Math., Irvine; S. SHELAH: Hebrew University and Rutgers University,
New Brunswick, New Jersey, 08903 - U.S.A.
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Dn-2 is exactly 2. It is the main purpose of this paper to prove this
latter result in ZFC. In fact we prove :

THEOREM. The injective dimension o f Dn-k is &#x3E; 2 i f 2  k c n.

Before proving the theorem we prove some lemmas. The first of
these is a combinatorial fact. (Compare [Sh ; ~ 6].)

LEMMA 1..Let x be a regular cardinal. There exists ac family { v :
a  x+, v  x~ of subsets of x+ satisfying for all ot  x+:

(4) f or all v  m, the cardinality o f w’ is  x.

PROOF. We shall define the av§ for all v by induction on a. Let

wy = 0 for all v. Now suppose that has been defined for all  a.

If a is a successor ordinal, y say a = y + 1, then let U {V}
for all v. It is easy to see that (1 )-(4) hold for a if they hold for y.

If a is a limit ordinal, let ~, = the cofinality of a, and let q: A - a
be a strictly increasing function such that the supremum of its range
is a. Define a function f : ~, -~ x by the rule:

It is easy to see that f is well-defined because of (1) and (2) and because
x is regular ly 1. Now for each v  x let

Conditions (2) and (4) are easily verified. To see that (1) holds, sup-
pose y  a and choose 03BC such that 77(y) &#x3E; y. Then y E for some try
so if v &#x3E; max (r, p, f (,u)~, then y E To prove (3), let us fix oc and v
and let Y = ~,u  y: f(p) Thus
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Notice first that if 7:  P, and p e Y, then E wv~~‘~; so by induction
wv ~z~ = w y~~‘~ r1 ~ ( z~) . Now for some Y ; in
this case it is easy to see, using the previous observation, that B E 
for any 7: E Y such that B  n(t). Clearly

so we are left with proving the opposite inclusion. Suppose y E w v r1 ~;
then y e for some r E Y. As above, y E for any o E Y such

that y  q( u) , so without loss of generality B  n(t). But then y e n

n R = since fl e 
The second lemma will be used to show that for certain submodules

of the quotient X’ /X has sufficiently large cardinality.
(K and K’ will have the form ~u E I a : ru = 0) for an appropriate r. )
Here is the set of all subsets of y.

LEMMA 2. Let  y} be a sequence o f elements o f R, and let N
be a pure-injective module such that f or  y there .;xists an element

a,~ e N such that = 0 and ~ 0. T hen f or each ~’ e there

exist an etement xs 01 N such that

PROOF. The idea of the construction is that xs should « be» ! all.
03BCES

The actual construction is by induction on y. If y is finite 
let xs = I a,. (We let xO = 0.) Now suppose that for all 8  y and

03BCES

aII S C 3 we have defined xs so that (*) holds. We consider two cases.

Case 1: y = 3 + 1 for some 6. We let zs = if 6 w ~S, and we
let xs = zsn, + a,5 if 6 E S. It is easy to check, using the inductive
hypothesis, that (*) holds.

Case 2 : y = A, a limit ordinal. Here we use the fact that since N
is pure-injective it is algebraically compact: see, for example, [FS;
p. 215]. For any S C A we let xs be a solution of the set of equations

in the single unknown x. (The elements of N have been

defined by induction.) This system of equations is finitely solvable
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in N: indeed, for any finite subset .1~ of A, if 6 &#x3E; sup (F), then xs,,a
is a solution of

Hence by algebraic compactness there is a global solution, Xs. It
remains to check that (*) is satisfied. So suppose that S and T are
subsets of 2, and fl  A such that S n B = T n B. We have:

so rp+l(XS - XT) - 0 -E- 0; hence we are

done by induction. 0

The third lemma will guarantee us the existence of the elements
a, in Lemma 2 provided that r,~R. (Of course, over a valuation
domain, injective = pure-injective + divisible.)

LEMMA. 3. Suppose L is an archimedean ideal and N is a divisible
modules containing JR/Z. Suppose also that r, s, t are elements o f .R such
that t is a non-unit and r = st. Then there exists a E N such that ra = 0

and sa =F 0.

PROOF. We shall let b denote the coset, b -~- .L of b R/L ç N.
Since L is archimedean there is an element b G LBtL. If bt-1 E R, let
a E N such that sa = bt-1 + L. Then ra = b = 0, but 0 since

bt-1 í L (because b ~ tL). If tb-1 E R, let a E N such that s(tb-1) a = I.
Then ra = b = 0, 0 since tb-’(sa) = I. C7

We are now ready to give the:

PROOF OF THE THEOREM. Let As Bazzoni observes,
we can assume that IAI _ ~ ~._k since we can replace D by the direct
summand of D consisting of elements whose support lies in a fixed
subset of 11. of It suffices to prove that 
for some ideal J of R, for then D) # 0 (cf. [FS; VI.5.2]).
For this it suffices to prove that the canonical map: Hom (J, .I) -
- Hom (J, IID) is not surjective. In fact we shall show that this

map is not surjective whenever J is an ideal of R which is not generated
by a set of but is generated by a set of there is
such an ideal because gl. dim R &#x3E; n - k + 2 (cf. [0] or [FS; IV.2.3].)

Let a C ~ n-k-~-1~ be a set of generators of J ordered so that
for all B  a, jp+1 E Rjcx+1 and Rjp+1. Thus for every pair of
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ordinals B  oc we have a non-unit raB of .R such that 
Moreover, for  y  a we have r’ = ry r’

Let x === H~-&#x26;’ We may as well suppose that ll. = x. So defining
amounts to choosing, for each elements 

( a C x+ _ ~ n-k,+1 ) so that for all ~v C x : r~ xy ~ x~~ ~ C x ; for
then we can define = xa + D, where XX ==  x~ E I. We
are going to use the sets (a  x+, v  x) constructed in Lemma 1
in order to define the xv"s; in fact, we shall construct them so that

= x~ if fl E av§. Then f will be defined because, by (1) of Lemma 1,
for there exists so that and hence by (2),
the set of v such is contained in ,u, and thus has car-

dinality less than x.
In order to make f not liftable to a homomorphism into I we shall

also require that the xv be chosen so that if sup (w’) --E- x  a,
then r~ ~ y ~ (The sum is ordinal addition.) Indeed, if there were a
g : J - I which lifted f , then we would have = ya for some ya E I
such that ya = xol + da for some do, E D, for all a x+. For each

,u  X9 let

then for some v C x, Yy is a stationary subset of x+ since U Y,~ = x+
(cf. [J; Lemma 7.4]). Now by (4), sup (w’) 0153 if cf (a) = m, so by
Fodor’s Lemma ([J; p. 59]) there is a stationary subset Y’ of Yy and
an ordinal y such that for all a E Y’ sup = y. Hence there are

elements oc of Y’ such that y -~- x  a. But then 
and and by construction r~ xv ~ ~, which means that g
is not a homomorphism.

Thus it remains only to construct for each v the elements xav of 7y
so that for all  a  x+ :

We shall do this for each fixed v by induction on a. Let x0v = 1. Sup-
pose now that 4 has been defined for all f1  a so that (i) and (ii) hold
where defined. In order to satisfy (i) it is enough to choose xav to be
a solution, z, of the system of equations
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Since I is pure-injective, it suffices to show that this system is finitely
solvable in Iv. If F is a finite subset of w§ and a = max (.F’), we claim
that any z such that = 0153~ will be a solution of

In fact, if fl e F and fl  (1, then since (1, fJ e (3 ) implies that B e w:,
so (J 

(J = x~ {J and = = (J (J 
Now consider (ii). Let 8 = sup (wv). Let z be a fixed solution

of ( ~’) . Then ( i ) will hold if xy is of the f orm z + u where r;u = 0.
It suffices to choose u so that = 0 and for

each y such (We let ~ == 1.) For

then, since r~ = r~ rY, we have that ry(z -’- u) ~ xv . But Lemma 2

(with rv = f or v  x) in conjunction with Lemma 3 implies that
the quotient group

has cardinality :&#x3E;2". Thus there certainly is a u with the desired

properties. This completes the inductive step of the construction,
and hence completes the proof of the theorem. 0

COROLLARY. 1 f gI, dim (1~ ) ~ 3, and for each nEro, In is an injective
nodule containing R/Ln for some archimedean ideal Ln o f R, then the
injective dimension o f 0 I n 2 . Q

nEw
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